
Published as a conference paper at ICLR 2023

AUGMENTATION COMPONENT ANALYSIS:
MODELING SIMILARITY VIA THE AUGMENTATION
OVERLAPS

Lu Han, Han-Jia YeB, De-Chuan Zhan
State Key Laboratory for Novel Software Technology, Nanjing University
{hanlu,yehj}@lamda.nju.edu.cn, zhandc@nju.edu.cn

ABSTRACT

Self-supervised learning aims to learn a embedding space where semantically simi-
lar samples are close. Contrastive learning methods pull views of samples together
and push different samples away, which utilizes semantic invariance of augmen-
tation but ignores the relationship between samples. To better exploit the power
of augmentation, we observe that semantically similar samples are more likely to
have similar augmented views. Therefore, we can take the augmented views as a
special description of a sample. In this paper, we model such a description as the
augmentation distribution, and we call it augmentation feature. The similarity in
augmentation feature reflects how much the views of two samples overlap and is
related to their semantical similarity. Without computational burdens to explicitly
estimate values of the augmentation feature, we propose Augmentation Component
Analysis (ACA) with a contrastive-like loss to learn principal components and
an on-the-fly projection loss to embed data. ACA equals an efficient dimension
reduction by PCA and extracts low-dimensional embeddings, theoretically pre-
serving the similarity of augmentation distribution between samples. Empirical
results show that our method can achieve competitive results against various tra-
ditional contrastive learning methods on different benchmarks. Code available at
https://github.com/hanlu-nju/AugCA.

1 INTRODUCTION

The rapid development of contrastive learning has pushed self-supervised representation learning to
unprecedented success. Many contrastive learning methods surpass traditional pretext-based methods
by a large margin and even outperform representation learned by supervised learning (Wu et al.,
2018; van den Oord et al., 2018; Tian et al., 2020a; He et al., 2020; Chen et al., 2020a;c). The
key idea of self-supervised contrastive learning is to construct views of samples via modern data
augmentations (Chen et al., 2020a). Then discriminative embeddings are learned by pulling together
views of the same sample in the embedding space while pushing apart views of others.

Contrastive learning methods utilize the semantic invariance between views of the same sample,
but the semantic relationship between samples is ignored. Instead of measuring the similarity
between certain augmented views of samples, we claim that the similarity between the augmentation
distributions of samples can reveal the sample-wise similarity better. In other words, semantically
similar samples have similar sets of views. As shown in Figure 1 left, two images of deer create
many similar crops, and sets of their augmentation results, i.e., their distributions, overlap much. In
contrast, a car image will rarely be augmented to the same crop as a deer, and their augmentation
distributions overlap little. In Figure 1 right, we verify the motivation numerically. We approximate
the overlaps between image augmentations with a classical image matching algorithm (Zitova &
Flusser, 2003), which counts the portion of the key points matched in the raw images. We find
samples of the same class overlap more than different classes on average, supporting our motivation.
Therefore, we establish the semantic relationship between samples in an unsupervised manner based
on the similarity of augmentation distributions, i.e., how much they overlap.

In this paper, we propose to describe data directly by their augmentation distributions. We call the
feature of this kind the augmentation feature. The elements of the augmentation feature represent
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Figure 1: Left: semantically similar samples (e.g., those in the same class) usually create similar
augmentations. The right �gure indicates the same class images have higher averaged augmentation
overlaps than those from different classes on four common datasets. For this reason, we learn
embeddings by preserving the similarity between augmentation distributions of samples.

the probability of getting a certain view by augmenting the sample as shown in the left of Figure 2.
The augmentation feature serves as an “ideal” representation since it encodes the augmentation
information without any loss and we can easily obtain the overlap of two samples from it. However,
not only its elements are hard to calculate, but also such high-dimensional embeddings are impractical
to use.

Inspired by the classical strategy to deal with high-dimensional data, we propose Augmentation
Component Analysis (ACA), which employs the idea of PCA (Hotelling, 1933) to perform dimension
reduction on augmentation features previously mentioned. ACA reformulates the steps of extracting
principal components of the augmentation features with a contrastive-like loss. With the learned
principal components, another on-the-�y loss embeds samples effectively. ACA learns operable
low-dimensional embeddings theoretically preserving the augmentation distribution distances.

In addition, the similarity between the objectives of ACA and traditional contrastive loss may explain
why contrastive learning can learn semantic-related embeddings – they embed samples into spaces
that partially preserve augmentation distributions. Experiments on synthetic and real-world datasets
demonstrate that our ACA achieves competitive results against various traditional contrastive learning
methods. Our contributions are as follows:

• We propose a new self-supervised strategy, which measures sample-wise similarity via the
similarity of augmentation distributions. This new aspect facilitates learning embeddings.

• We propose ACA method that implicitly employs the dimension reduction over the augmentation
feature, and the learned embeddings preserve augmentation similarity between samples.

• Bene�ting from the resemblance to contrastive loss, our ACA helps explain the functionality of
contrastive learning and why they can learn semantically meaningful embeddings.

2 RELATED WORK

Self-Supervised Learning. Learning effective visual representations without human supervision is
a long-standing problem. Self-supervised learning methods solve this problem by creating supervision
from the data itself instead of human labelers. The model needs to solve a pretext task before it
is used for the downstream tasks. For example, in computer vision, the pretext tasks include
colorizing grayscale images (Zhang et al., 2016), inpainting images (Pathak et al., 2016), predicting
relative patch (Doersch et al., 2015), solving jigsaw puzzles (Noroozi & Favaro, 2016), predicting
rotations (Gidaris et al., 2018) and exploiting generative models (Goodfellow et al., 2014; Kingma &
Welling, 2014; Donahue & Simonyan, 2019). Self-supervised learning also achieves great success in
natural language processing (Mikolov et al., 2013; Devlin et al., 2019).

Contrastive Learning and Non-Contrastive Methods. Contrastive approaches have been one
of the most prominent representation learning strategies in self-supervised learning. Similar to the
metric learning in supervised scenarios (Ye et al., 2019; 2020), these approaches maximize the
agreement between positive pairs and minimize the agreement between negative pairs. Positive pairs
are commonly constructed by co-occurrence (van den Oord et al., 2018; Tian et al., 2020a; Bachman
et al., 2019) or augmentation of the same sample (He et al., 2020; Chen et al., 2020a;c; Li et al., 2021;
Ye et al., 2023), while all the other samples are taken as negatives. Most of these methods employ the
InfoNCE loss (van den Oord et al., 2018), which acts as a lower bound of mutual information between
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views. Based on this idea, there are several methods that attempt to improve contrastive learning,
including mining nearest neighbour (Dwibedi et al., 2021;?; Azabou et al., 2021) and creating extra
views by mixing up (Kalantidis et al., 2020) or adversarial training (Hu et al., 2021). Another stream
of methods employs a similar idea of contrastive learning to pull views of a sample together without
using negative samples (Grill et al., 2020; Chen & He, 2021). Barlow Twins (Zbontar et al., 2021)
minimizes the redundancy within the representation vector. Tsai et al. (2021) reveals the relationship
among Barlow Twins, contrastive and non-contrastive methods. Most of these methods only utilize
the semantic invariance of augmentation and ignore the relationship between samples. Different
from them, we propose a new way to perform self-supervised learning by preserving the similarity
of augmentation distribution, based on the observation that a strong correlation exists between the
similarity of augmentation distributionsand the similarity of semantics.

Explanation of Contrastive Learning. Several works provide empirical or theoretical results for
explaining the behavior of contrastive learning. Tian et al. (2020b); Xiao et al. (2021) explore the
role of augmentation and show contrastive model can extract useful information from views but
also can be affected by nuisance information. Zhao et al. (2021) empirically shows that contrastive
learning preserves low-level or middle-level instance information. In theoretical studies, Saunshi et al.
(2019) provide guarantees of downstream linear classi�cation tasks under conditionally independence
assumption. Other works weaken the assumption but are still unrealistic (Lee et al., 2021; Tosh
et al., 2021). HaoChen et al. (2021) focus on how views of different samples are connected by the
augmentation process and provide guarantees with certain connectivity assumptions. Wang et al.
(2022) notice that the augmentation overlap provides a ladder for gradually learning class-separated
representations. In addition to the alignment and uniformity as shown by Wang & Isola (2020),
Huang et al. (2021) develop theories on the crucial effect of data augmentation on the generalization
of contrastive learning. Hu et al. (2022) explain that the contrastive loss is implicitly doing SNE with
“positive” pairs constructed from data augmentation. Inspired by the important role of augmentation,
we provide a novel self-supervised method that ensures preserving augmentation overlap.

3 NOTATIONS

The set of all natural data (data without augmentation) is denoted by�X , with sizej �X j = N . We
assume that the natural data follow a uniform distributionp( �x ) on �X , i.e., p( �x ) = 1

N ; 8 �x 2 �X . By
applying an augmentation methodA , a natural sample�x 2 �X could be augmented to another sample
x with probabilitypA (x j �x ), so we usep(� j �x ) to encode the augmentation distribution.1 For
example, if�x is an image, thenA can be common augmentations like Gaussian blur, color distortion
and random cropping (Chen et al., 2020a). Denote the set of all possible augmented data asX . We
assumeX has �nite sizejX j = L andL > N for ease of exposition. Note thatN andL are �nite,
but can be arbitrarily large. We denote the encoder asf � , parameterized by� , which projects a sample
x to an embedding vector inRk .

4 LEARNING VIA AUGMENTATION OVERLAPS

As we mentioned in Section 1, measuring the similarity between the augmentation distri-
butions, i.e., the overlap of the augmented results of the two samples reveals theirse-
mantic relationship well. For example, in natural language processing, we usually gen-
erate augmented sentences by dropping out some words. Then different sentences with
similar meanings are likely to contain the same set of words and thus have a high
probability of creating similar augmented data. With the help of this self-supervision,
we formulate the embedding learning task to meet the following similarity preserving condition:

dRk (f � ? ( �x 1) ; f � ? ( �x 2)) / dA (p(� j �x 1); p(� j �x 2)) : (1)
dRk is a distance measure in the embedding spaceRk , anddA measures the distance between two
augmentation distributions. Equation (1) requires the learned embedding with the optimal parameter
� ? has thesame similarity comparisonwith that measured by the augmentation distributions. In this
section, we �rst introduce theaugmentation featurefor each sample,which is a manually designed
embedding satisfying the condition in Equation(1). To handle the high dimensionality and complexity
of the augmentation feature, we further propose our Augmentation Component Analysis (ACA) that
learns to reduce the dimensionality and preserve the similarity.

1Note thatp(� j �x ) is usually dif�cult to compute and we can only sample from it. We omit the subscriptA
and directly usep(� j �x ) in the following content for convenient
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Figure 2: The idea of learning embeddings via Augmentation Component Analysis (ACA). The
upper right �gure demonstrates the process of PCA. It learns PCs and projects the input feature to get
embeddings of data. Similarly, ACA performs PCA on the augmentation feature, which encodes all
the information about the augmentation distribution. To overcome the dimensional and computational
complexity, ACA employs ACA-PC loss and projection loss to learn PCs and embeddings tractably.
Via ACA, our model can learn embeddings that preserve augmentation similarity for natural data.

4.1 AUGMENTATION FEATURE

To reach the goal of similarity preserving in Equation (1), a direct way is to manually construct the
feature by the augmentation distributions of each natural sample,i.e., f ( �x ) = [ p(x 1 j �x ); : : : ; p(x L j
�x )]> , where each elementp(x i j �x ) represents the probability of getting a certain elementx i in
spaceX by augmenting�x . We omit � in f ( �x ) since suchaugmentation feature2 does not rely
on any learnable parameters. In this case, any distancedRL de�ned in the space off is exactly a
valid distribution distance, which reveals the augmentation overlaps and is related to the semantic
similarity.

Although the constructive augmentation feature naturally satis�es the similarity preserving condition
(Equation (1)) (because it directly use the augmentation distribution without loss of information), it
is impractical for the following reasons. First,its dimensionality is exponentially high, which is up
to L , the number of possible augmented results. For example, even on CIFAR10, the small-scale
dataset with image size32� 32� 3, L is up to2563072 (3072 pixels and 256 possible pixel values).
Second,the computation of each element is intractable. We may need an exponentially large number
of samples to accurately estimate eachp(x j �x ). The dimensionality and computation problems
make the augmentation feature impractical both at inference and training time. Such inconvenience
motivates us to (1) conduct certain dimension reduction to preserve the information in low dimensional
space (Section 4.2) and (2) develop an ef�cient algorithm for dimension reduction (Section 4.3).

4.2 DIMENSION REDUCTION ON AUGMENTATION FEATURES

To deal with the high-dimensional property, we employ the idea of PCA (Hotelling, 1933), which
reconstructs the data with principal components.3 For convenience, we denote the design matrix of
augmentation feature byA, whereA 2 RN � L , A �x ;x = p(x j �x ) (see Figure 2). We perform PCA
on a transformed augmentation feature callednormalized augmentation feature:

Â = AD � 1
2 ; (2)

whereD = diag([ dx 1 ; dx 2 ; : : : ; dx L ]), dx =
P

�x p(x j �x ). Based on normalized augmentation
feature, we can develop an ef�cient algorithm for similarity preserving embeddings.

Assume the SVD of̂A = U� V > with U 2 RN � N , � 2 RN � L , V 2 RL � L , PCA �rst learns the
projection matrix consisting of the top-k right singular vectors, which can be denoted as~V 2 RL � k .
The vectors in~V are called Principal Components (PCs). Then, it projects the feature byÂ ~V to get
the embeddings for each sample. The overall procedure is illustrated at the top-right of Figure 2.
But performing PCA on the augmentation feature will encounter many obstacles. The element of
augmentation feature is not possible to estimate accurately, not to mention its high dimensionality.

2Following the common knowledge in dimension reduction, we call the raw high dimensional representation
as “feature”, and learned low-dimensional representation as “embedding”.

3In this paper, we use the non-centred version (Reyment & Jvreskog, 1996), which is more appropriate for
observations than for variables, where the origin matters more.
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Even if we can somehow get the projection matrix~V , it is also impractical to project the high-
dimensional matrixÂ. For this reason,we propose ACA to make PC learning and projection process
ef�cient without explicitly calculating elements of augmentation feature.

4.3 AUGMENTATION COMPONENTANALYSIS

Although there are several obstacles when performing PCA on the augmentation features directly,
fortunately, it is ef�cient to sample from the augmentation distributionp(x j �x ), i.e., by performing
augmentation on the natural data�x and get an augmented samplex . Being aware of this, our ACA
uses two practical losses to simulate the PCA process ef�ciently by sampling. The �rst contrastive-
like loss leads the encoder to learn principal components ofÂ, which can be ef�ciently optimized by
sampling like traditional contrastive methods. The second loss performs on-the-�y projection ofÂ
through the training trajectory, which solves the dif�culty of high dimensional projection.

Learning principal components. ACA learns the principal components by an ef�cient contrastive-
like loss. Besides its projection functionality, these learned principal components can also serve as
embeddings that preserve a kind of posterior distribution similarity, as we will show later.

In the SVD view,U� serves as the PCA projection results for samples andV contains the principal
components (Jolliffe, 2002). However, if changing our view,V � can be seen as the representation of
each column. Since each column ofÂ encodes the probability of the augmented data given natural
data,V � preserves certain augmentation relationships, as we will show in Theorem 4.2 later. To
leverage the extrapolation power of encoders like deep neural networks, we choose to design a loss
that can guide the parameterized encoderf � to learn similar embeddings as PCA. Inspired by the rank
minimization view of PCA (Vidal et al., 2016), we employ the low-rank approximation objective
with matrix factorization, similar to HaoChen et al. (2021):

min
F 2 RL � k

L mf = kÂ> Â � FF > k2
F ; (3)

where columns ofF store the scaled version of top-k right singular vectors, and each row can be seen
as the embedding of augmented data as will show in Lemma 4.1. According to Eckart–Young–Mirsky
theorem (Eckart & Young, 1936), by optimizingL mf , we can get the optimal̂F , which has the form
~V ~� Q, Q 2 Rk � k is an orthonormal matrix.~� and ~V contains the top-k singular values and right
singular vectors. By expanding Equation (3), we get Augmentation Component Analysis Loss for
learning Principal Components (ACA-PC) in the following lemma:

Lemma 4.1(ACA-PC loss). Let Fx ;: =
p

dx f >
� (x ); 8x 2 X . MinimizingL mf is equivalent to

minimizing the following objective:

L ACA-PC = � 2E
�x � p( �x ) ;

x i � p(x i j �x )
x j � p(x j j �x )

f � (x i )> f � (x j )

+ N Ex 1 � pA (x 1 ) ;x 2 � pA (x 2 )

h�
f � (x 1)> f � (x 2)

� 2
i

:
(4)

The proof can be found in Appendix F. In ACA-PC, the �rst term is the common alignment loss for
augmented data and the second term is a form of uniformity loss (Wang & Isola, 2020). Both terms
can be estimated by Monte-Carlo sampling. ACA-PC is a kind of contrastive loss. But unlike most
of the others, it has theoretical meanings. We note that the form of ACA-PC differs from spectral
loss (HaoChen et al., 2021) by adding a constantN before the uniformity term. This term is similar
to the noise strength in NCE (Gutmann & Hyvärinen, 2010) or the number of negative samples in
InfoNCE (van den Oord et al., 2018). It can be proved that the learned embeddings by ACA-PC
preserve the posterior distribution distances between augmented data:

Theorem 4.2(Almost isometry for posterior distances). Assumef � is a universal encoder,� k+1

is the (k + 1) -th largest singular value of̂A, dmin = min x dx , and � x 1 x 2 = I(x 1 = x 2),
the minimizer� � of L ACA � P C satis�es:

d2
post (x 1; x 2) �

2� 2
k+1

dmin
(1 � � x 1 x 2 ) � k f � � (x 1) � f � � (x 2)k2

2 � d2
post (x 1; x 2) ; 8x 1; x 2 2 X

where the posterior distance

d2
post (x 1; x 2) =

X

�x 2 �X

(pA ( �x j x 1) � pA ( �x j x 2))2 (5)
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measures the squared Euclidean distance between the posterior distributionpA ( �x j x ) = p(x j �x )p( �x )
pA (x ) .

We give the proof in Appendix G. Theorem 4.2 states that the optimal encoder for ACA-PC preserves
the distance of posterior distributions between augmented data within an error related to embedding
sizek. As k increase toN , the error decrease to0. It corresponds to the phenomenon that a larger
embedding size leads to better contrastive performance (Chen et al., 2020a). The posterior distribution
pA ( �x j x ) represents the probability that a given augmented samplex is created by a natural sample
�x . Augmented data that are only produced by the same natural sample will have the smallest
distance, and embeddings of those in overlapped areas will be pulled together by ACA-PC. Since
the overlapped area are usually created by two same-class samples, ACA-PC can form semantically
meaningful embedding space.

It is also noticeable that the optimal encoder meets the similarity preserving condition (Equation (1))
but concerning the posterior distribution for augmented data not the augmentation distribution for
natural data. Since what we care about is the distribution of natural data, we further propose a
projection loss that helps learn good embeddings for all the natural data.

On-the-�y Projection. As stated in the previous part, the learned embeddings by ACA-PC not
only serve as certain embeddings for augmented data but also contain principal components of
normalized augmentation feature. Based on this, we propose to use these embeddings to act as a
projection operator to ensure meaningful embeddings for all the natural data. To be speci�c, denote
the embedding matrix for all augmented data asF aug (2 RL � k ), where each rowF aug

x ;: = f >
� � (x ).

From Equation (3) and̂Fx ;: =
p

dx f >
� � (x ), it can be easily seen that:

F aug = D � 1
2 F̂ = D � 1

2 ~V ~� Q

Similar to PCA (Hotelling, 1933) that projects the original feature by the principal componentsV ,
we propose to useF aug to project the augmentation feature to get the embeddings for each natural
sample. Denote the embedding matrix for natural data asF nat (2 RN � k ), where each rowF nat

�x ;:

represents the embeddings of�x . We computeF nat as follows:

F nat = AF aug = ÂD
1
2 D � 1

2 ~V ~� Q = ( ~U ~�) ~� Q; (6)

where~� , ~U contain the top-k singular values and corresponding left singular vectors. It is noticeable
thatF nat is exactly the PCA projection result multiplied by an additional matrix~� Q. Fortunately,
such additional linear transformation does not affect the linear probe performance (HaoChen et al.,
2021). With Equation (6), the embedding of each natural sample can be computed as follows:

F nat
�x ;: = A �x ;:F aug =

X

x

p(x j �x )f >
� � (x ) = Ex � p(x j �x ) f

>
� � (x ) (7)

which is exactly the expected feature over the augmentation distribution. Similar to Theorem 4.2, the
embeddings calculated by Equation (7) also present a certain isometry property:
Theorem 4.3(Almost isometry for weighted augmentation distances). Assumef � is a universal
encoder,� k+1 is the(k + 1) -th largest sigular value of̂A,� �x 1 �x 2 = I( �x 1 = �x 2), let the minimizer of
L ACA � P C be� � andg( �x ) = Ex � p(x j �x ) f � � (x ) as in Equation(7), then:

d2
w-aug ( �x 1; �x 2) � 2� 2

k+1 (1 � � �x 1 �x 2 ) � k g( �x 1) � g( �x 2)k2
� � 2

k
� d2

w-aug ( �x 1; �x 2) ; 8x 1; x 2 2 X

wherek�k� � 2
k

represent the Mahalanobis distance with matrix� � 2
k ,� k = diag([ � 1; � 2; : : : ; � k ]) is

the diagonal matrix containing top-k singular values and the weighted augmentation distance

d2
w-aug ( �x 1; �x 2) =

1
N

X

x 2X

(p(x j �x 1) � p(x j �x 2))2

pA (x )
(8)

measures the weighted squared Euclidean distance between the augmentation distributionp(x j �x ).

Different from Theorem 4.2, which presents isometry between Euclidean distances in embeddings
and augmentation distribution, Theorem 4.3 presents isometry between Mahalanobis distances. The
weighted augmentation distances weigh the Euclidean distances bypA (x ). dw-aug can be regarded
as a valid augmentation distance measuredA as in Equation (1) andF nat preserve such a distance.
So our goal is to make embeddings of�x approachesEp(x j �x ) f � ? (x ). However, as stated before, the
additional projection process is not ef�cient,i.e., we need exponentially many samples fromp(x j �x ).
We notice that samples during the training process of ACA-PC can be reused. For this reason, we
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propose an on-the-�y projection loss that directly uses the current encoder for projection:

L proj = E �x � p( �x )
�
kf � ( �x ) � Ep(x j �x ) f � (x )k2

2

�
(9)

Full objective of ACA. Based on the discussion of the above parts, ACA simultaneously learns the
principal components by ACA-PC and projects natural data by an on-the-�y projection loss. The full
objective of ACA has the following form:

L ACA-Full = L ACA-PC + � L proj (10)

where� is a trade-off hyperparameter. We also �ndN in Equation (4) too large for stable training, so
we replace it with a tunable hyperparameterK . Here, we only display the loss in expectation forms.
The details of the implementation are described in Appendix A.

5 A PILOT STUDY

In this section, we experiment with our Augmentation Component Analysis method on a synthetic
mixture component data with a Gaussian augmentation method. In this example, we aim to show the
relationship between semantic similarity and posterior/weighted augmentation distances. We also
show the effectiveness of our method compared to traditional contrastive learning. In this example,
the natural data�x are sampled from a mixture gaussian withc component:

p( �x ) =
cX

i =1

� i N (� i ; si I )

We use Gaussian noise as the data augmentation of a natural data sample,i.e., A ( �x ) = �x + � where
� � N (0; sa I ). Concretely, we conduct our experiment on 2-D data withc = 4 ; � i = 1

c ; si = 1 and
� i uniformly distributed on a circle with radius2 . For each component, we sample 200 natural data
with the index of the component as their label. For each natural datum, we augment it 2 times with
sa = 4 , which results in totally 1600 augmented data. We compute the augmentation probability for
betweenx and �x by p(x j �x ) and we normalize the probability for each�x .

First, we plot the distribution of posterior distances (Equation (5)) for pairs of augmented data and
weighted augmentation distances (Equation (8)) for pairs of natural data in Figure 3 left. The two
distances appear to have similar distributions because the synthetic data are Gaussian. It can be seen
that data from the same component tend to have small distances, while from different components,
their distances are large. In low-distance areas, there are pairs of the same class, which means that
the two distances are reliable metrics for judging semantic similarity. In all, this picture reveals the
correlation between semantic similarity and posterior/weighted augmentation distances.

Second, we compare our methods with SimCLR (Chen et al., 2020a), the traditional contrastive
method and Spectral (HaoChen et al., 2021), which similarly learns embeddings with spectral theory.
We test the learned embeddings using a Logistic Regression classi�er and report the error rate of
the prediction in Figure 3 right. We also report performance when directly usingaugmentation
feature(AF). First, AF has discriminability for simple linear classi�ers. SimCLR and Spectral tend
to underperform AF as the embedding size increases, while our methods consistently outperform.
It may be confusing since our method performs dimension reduction on this feature. But we note
that as the embedding size increases, the complexity of the linear model also increases, which affects
the generalizability. All the methods in Figure 3 right show degradation of this kind. However,
our methods consistently outperform others, which shows the superiority of ACA. Additionally,
by adding projection loss, ACA-Full improves ACA-PC by a margin. Additionally, traditional
contrastive learning like SimCLR achieves similar performance as our methods. We think it reveals
that traditional contrastive learning has the same functionality as our methods.

6 EXPERIMENTS

6.1 SETUP

Dataset. In this paper, we conduct experiments mainly on the following datasets with RTX-3090
� 4. CIFAR-10 andCIFAR-100 (Krizhevsky et al., 2009): two datasets containing totally 500K
images of size 32� 32 from 10 and 100 classes respectively.STL-10 (Coates et al., 2011): derived
from ImageNet (Deng et al., 2009), with 96� 96 resolution images with 5K labeled training data
from 10 classes. Additionally, 100K unlabeled images are used for unsupervised learning.Tiny
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Figure 3: Synthetic experiments on mixture Gaussian data with Gaussian noise as augmentation. (a)
The posterior distance and weighted augmentation distances among data sampled from the same
component and different components. It reveals the correlation between semantic similarity and
the two distances, especially when the distance is small. (b) Comparison of linear classi�cation
performance among SimCLR, Spectral and our methods with various embedding dimensions ranging
from 4 to 200. The dashed line represents the result when directly usingAugmentation Feature(AF).
ACA-PC outperforms SimCLR and Spectral. ACA-Full further improves.

ImageNet: a reduced version of ImageNet (Deng et al., 2009), composed of 100K images scaled
down to 64� 64 from 200 classes.ImageNet-100(Tian et al., 2020a): a subset of ImageNet, with
100-classes.ImageNet(Deng et al., 2009), the large-scale dataset with 1K classes.

Network Structure. Following common practice (Chen et al., 2020a;b;c), we use the encoder-
projector structure during training, where the projector projects the embeddings into a low-
dimensional space. For CIFAR-10 and CIFAR-100, we use the CIFAR variant of ResNet-18 (He
et al., 2016; Chen & He, 2021) as the encoder. We use a two-layer MLP as the projector whose
hidden dimension is half of the input dimension and output dimension is 64. For STL-10 and Tiny
ImageNet, only the max-pooling layer is disabled following (Chen & He, 2021; Ermolov et al., 2021).
For these two datasets, we use the same projector structure, except that the output dimension is 128.
For ImageNet, we use ResNet-50 with the same projector as Chen et al. (2020a).

Image Transformation. Following the common practice of contrastive learning (Chen et al.,
2020a), we apply the following augmentations sequentially during training: (a) crops with a random
size; (b) random horizontal �ipping; (c) color jittering; (d) grayscaling. For ImageNet-100 and
ImageNet, we use the same implementation as (Chen et al., 2020a).

Optimizer and other Hyper-parameters. For datasets except for ImageNet, adam opti-
mizer (Kingma & Ba, 2015) is used for all datasets. For CIFAR-10 and CIFAR-100, we use
800 epochs with a learning rate of3 � 10� 3. For Tiny ImageNet and STL-10, we train 1,000 epochs
with a learning rate2 � 10� 3. We use a 0.1 learning rate decay at 100, 50, 20 epochs before the
end. Due to hardware resource restrictions, we use a mini-batch of size512. The weight decay is
1 � 10� 6 if not speci�ed. Following common practice in contrastive learning, we normalize the
projected feature into a sphere. For CIFAR-10, we use� = 1 . For the rest datasets, we use� = 0 :2.
By default,K is set to 2. For ImageNet, we use the same hyperparameters as (Chen et al., 2020a)
except batch size being 256,� = 0 :2 andK = 2 .

Evaluation Protocol. We evaluate the learned representation on two most commonly used pro-
tocols – linear classi�cation (Zhang et al., 2016; Kolesnikov et al., 2019) and k-nearest neighbors
classi�er (Chen & He, 2021). In all the experiments, we train the linear classi�er for 100 epochs. The
learning rate exponentially decays from10� 2 to 10� 6. The weight decay is1 � 10� 6. We report the
classi�cation accuracy on test embeddings as well as the accuracy of a 5-Nearest Neighbors classi�er
for datasets except for ImageNet.

6.2 PERFORMANCECOMPARISON

In Table 1, we compare the linear probe performance on various small-scale or mid-scale bench-
marks with several methods including SimCLR (Chen et al., 2020a), BYOL (Grill et al., 2020),
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Table 1: Top-1 linear classi�cation accuracy and 5-NN accuracy on four datasets with a ResNet-18
encoder. We usebold to mark the best results andunderlineto mark the second-best results.] means
the results are reproduced by our code.

method CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet
Linear 5-NN Linear 5-NN Linear 5-NN Linear 5-NN

SimCLR] 90.88 88.25 65.53 55.32 89.27 85.44 47.41 31.95
BYOL] 91.20 89.52 64.85 54.92 88.64 86.73 47.66 32.96
SimSiam] 91.06 89.43 65.41 54.84 90.04 85.48 45.17 30.41
Spectral] 90.28 87.25 65.42 55.05 89.16 84.23 45.69 29.32

ACA-PC (ours) 90.35 87.38 65.69 54.57 90.08 85.86 46.08 30.97
ACA-Full (ours) 92.04 89.79 67.16 56.52 90.8886.44 48.79 33.53

Table 2: Left: Top-1 classi�cation accuracy and 5-NN accuracy on ImageNet-100 with ResNet-18.
y: results are taken from (Wang & Isola, 2020).?: results are taken from (Tian et al., 2020b).]

means the results are reproduced by our code. Right: Top-1 classi�cation accuracy on ImageNet with
ResNet-50, results are taken from (Chen & He, 2021; HaoChen et al., 2021). We usebold to mark
the best results and underlineto mark the second-best results.

ImageNet-100 Linear 5-NN

MoCoy 72.80 -
L align + L uniform

y 74.60 -
InfoMin? 74.90 -
SimCLR] 75.62 62.70
Spectral] 75.52 61.80

ACA-PC (ours) 75.80 62.54
ACA-Full (ours) 76.02 63.20

ImageNet Linear (100 epochs)

SimCLR 66.5
MoCo v2 67:4
BYOL 66.5
SimSiam 68.1
Spectral 66.97

ACA-PC (ours) 67.21
ACA-Full (ours) 68.32

SimSiam (Chen & He, 2021) and Spectral (HaoChen et al., 2021). For transfer learning benchmarks,
please refer to Appendix D and Appendix E. SimCLR uses is a method that uses contrastive loss.
BYOL and SimSiam do not use negative samples. Spectral is a similar loss derived from the idea
of spectral clustering. From Table 1, we can see that our ACA-Full method achieves competitive
results on small- or mid-scale benchmarks, achieving either the best or the second-best results on all
benchmarks except the 5-NN evaluation on STL-10. Also, ACA-PC differs from ACA-Full in the
projection loss. In all the benchmarks, we can see that the projection loss improves performance.

For large-scale benchmarks, we compare several methods on ImageNet-100 and ImageNet.
On ImageNet-100, we compare our method additionally to MoCo (He et al., 2020),L align +
L uniform (Wang & Isola, 2020) and InfoMin (Tian et al., 2020b). Note that the results of the
other three methods are reported when using the ResNet-50 encoder, which has more capacity than
ResNet18. Our method can also achieve state-of-the-art results among them. This means that our
method is also effective with relatively small encoders even on large-scale datasets. On ImageNet,
we see that ACA-PC achieves competitive performance against state-of-the-art contrastive meth-
ods (Chen et al., 2020a;c; Grill et al., 2020; Chen & He, 2021; HaoChen et al., 2021) and ACA-Full
achieves the best.

7 CONCLUSION AND FUTURE WORK

In this paper, we provide a new way of constructing self-supervised contrastive learning tasks by
modeling similarity through augmentation overlap, which is motivated by the observation that seman-
tically similar data usually creates similar augmentations. We propose Augmentation Component
Analysis to perform PCA on augmentation feature ef�ciently. Interestingly, our methods have a
similar form as the traditional contrastive loss and may explain the ability of contrastive loss. We
hope our paper can inspire more thoughts about how to measure similarity in self-supervised learning
and how to construct contrastive learning tasks. Future studies may be explorations of applying
ACA to learn representations of other forms of instances, such as tasks (Achille et al., 2019) and
models (Wu et al., 2023).
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learning via redundancy reduction. InICML, pp. 12310–12320. PMLR, 2021.

Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful image colorization. InECCV, pp.
649–666, 2016.

12



Published as a conference paper at ICLR 2023

Nanxuan Zhao, Zhirong Wu, Rynson W. H. Lau, and Stephen Lin. What makes instance discrimina-
tion good for transfer learning? InICLR, 2021.

Barbara Zitova and Jan Flusser. Image registration methods: a survey.Image and vision computing,
21(11):977–1000, 2003.

13



Published as a conference paper at ICLR 2023

Figure 4: The implementation of ACA. Like traditional contrastive learning methods, ACA samples
a mini-batch from the whole natural dataset, then performs two random augmentations on the
mini-batch. The mini-batch sampling and augmentation create samples fromp( �x ) andp(x j �x )
respectively. Then we use the samples to estimate the values ofL uni,L uni andL proj as in the �gure.

A I MPLEMENTATION AND FURTHER DISCUSSION

In the previous section, we have presented the expected form of ACA. Thanks to its form, we can
ef�ciently optimize ACA by Monte-Carlo sampling, making the problemtractable.

For convenience of illustration, we decompose the ACA-PC loss into two parts,i.e., L ACA-PC =
L ali + L uni. For the �rst part,L ali serves as the alignment loss in traditional contrastive learning,
which maximizes the inner product similarity between augmented samples from the same natural
data:

L ali = 2E
�x � p( �x ) ;

x i � p(x i j �x )
x j � p(x j j �x )

� f � (x i )> f � (x j ); (11)

we use the mini-batch of natural sample to estimateE �x � p( �x ) . And we just use one sample to estimate
Ex i � p(x i j �x ) andEx j � p(x j j �x ) respectively. This leads to the traditional contrastive learning procedure
: sample a mini-batch of natural data, augment it twice, compute and maximize the similarity of two
augmented data.

For the second part,L uni minimize the inner product similarity of augmented data from the marginal
distribution:

L uni = N Ex 1 � pA (x 1 ) ;x 2 � pA (x 2 )

h�
f � (x 1)> f � (x 2)

� 2
i

: (12)

We use the in-batch augmented data to estimateEx 1 � pA (x 1 ) . Notably, two augmented samples
randomly sampled are hardly augmented by the same natural sample. Therefore, following common
practice (Chen et al., 2020a), we use two augmented data that are created by augmenting two different
natural data to compute this term. Additionally, we �nd thatN in L uni is too large to perform stable
numerical computation. Thus in our implementation, we replace theN with a tunable noise strength
K .

ForL proj, it is not ef�cient to fully sample fromp(x j �x ). However, it is notable that:

L proj = E �x � p( �x )
�
kf � ( �x ) � Ep(x j �x ) f � (x )k2

2

�
= E

�x � p( �x ) ;
x i � p(x i j �x )
x j � p(x j j �x )

�
kf � ( �x ) �

f � (x i ) + f � (x j )
2

k2
2

�
:

It has the same expectation subscript asL ali. So we can use the same strategy asL ACA-PC and reuse
the samples.L proj is computed along withL ali during training,i.e., the principal component learning
and projection are done simultaneously. That is why we callL proj “on-the-�y projection”.

The overall implementation of ACA is illustrated in Figure 4. And the algorithm is illustrated in
Algorithm 1.

Discussion on the relation with traditional contrastive learning. As is described in this section.
ACA-PC takes a similar form as traditional contrastive learning methods. Similar to them, ACA-
PC maximizes the inner product similarity of two views from the sample by Equation (11), and
minimizes the squared inner product similarity of views from different samples. Note that we
have proved that the learned embeddings by ACA-PC function as the principal components of the
augmentation feature and preserve the posterior augmentation distances (Theorem 4.2). We believe
traditional contrastive loss also has the similar functionality as ours. Due to the strong correlation
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between augmentation overlap and semantic similarity, this may explain contrastive learning can learn
semantically meaningful embeddings even though they ignore the semantic relationship between
samples.

Discussion on approximation in implementations. There are several approximations to stabilize
the training. First, we replace the factorN in Equation (12) with a tunable noise strengthK . Usually,
the number of samples is very large in common datasets. When we use a complex model like DNN,
it is unstable to involve such a large number in the loss. Therefore, we tune it small and �nd it works
well. But we also note that we useN in our synthetic experiment in Section 5 for the dimensionality
and model is not too complex. The superior results proves effectiveness of our theory. Second, we
normalize embeddings to project them into a sphere, which equals replacing the inner product with
cosine similarity. We �nd this modi�cation improves the performance from 81.84% to 91.58%.

Algorithm 1 Augmentation Component Analysis Algorithm

Require: Unlabeled natural datasetf x i gN
i =1 ; Augmentation functionA ; Encoding modelf � param-

eterized with� ; projection parameter� ; Noise StrengthK ; Batch sizeB .
1: for sampled minibatchf x i gB

i =1 do
2: for i = 1 ; 2; : : : ; B do
3: x (1)

i = A( �x i ); x (2)
i = A( �x i )

4: end for
5: L ACA � F ull = � 2

B

P B
i =1 f >

� (x (1)
i )f � (x (2)

i ) + K
B (B � 1)

P
i 6= j (f >

� (x (1)
i )f � (x (2)

j ))2 +

� kf � ( �x ) � f � (x (1)
i )+ f � (x (2)

i )
2 k2

6: update� with w.r.t L ACA � F ull .
7: end for
8: return f �

B EFFECT OFAUGMENTATION OVERLAPS

Like contrastive learning, our method relies on the quality of augmentation. Therefore, we in-
vestigate the in�uence of different augmentations and reveal the relationship between distribution
difference and the linear probe performance on CIFAR10. The augmentation distribution is estimated
by augmenting106 timesfor a subset of random 2000 pairs of samples with the number of intra-class
and inter-class pairs being 1000 respectively. Note that as is stated in Section 4.1, even on CIFAR10,
the actual value ofL is exponentially large (up to2563072). It is impossible to accurately estimate a
distribution over so many possible values. But we notice that for neural networks, many operators can
reduce the possible number of values, like convolutions and poolings. Following this observation and
to make the computation ef�cient, we descrete the color into 8-bit for each channel and use a max
pooling operation to get a4 � 4 picture. by this kind of approximation, the number ofL reduces to
848. Seems still too large, but it can be noted that the augmentation distribution of each sample covers
only a small region. It is enough to estimate the distribution by sampling. For memory restriction,
we cannot fully estimate the weighted augmentation distance in Theorem 4.3. Because we cannot
store all possible values forpA (x ). Instead, we use the Hellinger distance as the distribution distance
measure:

d2
H ( �x 1; �x 2) =

1
N

X

x 2X

� p
p(x j �x 1) �

p
p(x j �x 2)

� 2

Hellinger distance ranges[0; 2], making the comparison clear.

We list the experimented augmentation here:

1. Grayscale: Randomly change the color into gray with probability of0:1.

2. HorizontalFlip : Randomly �ip horizontally with probability0:5.

3. Rotation: Randomly rotate image with uniformly distributed angle in[0; � ]

4. ColorJitter : Jitter (brightness, contrast, saturation, hue) with strength (0.4, 0.4, 0.4, 0.1)
and probability 0.8.
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Table 3: Histogram (HIST) of distribution distances and linear probe accuracy (ACC) when using
different augmentations on CIFAR10. Note that HIST is estimated in the input space. It is property
of augmentation, regardless of learning algorithm. We aims to investigate the different augmentation
overlaps caused by different augmentation, and reveal its connection between learned model. “Same”
denotes the distance between samples with the same semantic class, and “Different” means different
classes. The existence of overlap and relationship between intra-/inter-class distances affects the
performance.

Grayscale HorizontalFlip Rotation

HIST

ACC 27.05% 29.67% 33.50%

ColorJitter ResizedCrop Augs in SimCLR

HIST

ACC 59.74% 75.98% 92.04%

5. ResizedCrop: Extract crops with a random size from 0.2 to 1.0 of the original area and a
random aspect ratio from 3/4 to 4/3 of the original aspect ratio.

6. Augs in SimCLR: Sequential combination of 5,4,1,2.

In Table 3, we display the histogram (HIST) of intra- and inter-class augmentationdistribution
distances. ACC displays the linear probe performance on the test set. From the table, the following
requirements for a good augmentation can be concluded: (1)Existence of overlap. For the upper
three augmentations. The “scope” of augmentation is small. As a result, most of the samples do
not overlap. This makes embeddings lack the discriminative ability for downstream tasks. On the
contrary, the lower three create overlaps for most of the samples, leading to much better performance.
(2) Intra-class distance is lower than inter-class. Compared to ColorJitter, ResizedCrop makes
more intra-class samples have lower distance. So ResizedCrop outperforms ColorJitter. SimCLR
augmentation surpasses these two for the same reason. Interestingly, we �nd that the same phenomena
appear when using other contrastive methods like SimCLR. It shows that these methods somehow
utilize the augmentation overlap like our method.

C PERFORMANCECURVE

In this section, we illustrate the performance curve throughout training. We aim to demonstrate the
functionality of projection loss and show that our ACA method leads to better performance. The
compared traditional contrastive learning method is chosen to be SimCLR, for the reason thatour
method only differs from SimCLR in the loss, with all other things (architecture, optimizer and other
shared hyperparameters) identical. Also, we do not introduce extra mechanisms like momentum
encoder (BYOL, MoCo) and predictor (BYOL, SimSiam).

Figure 5 shows the performance curve along with the projection loss on the CIFAR-10 dataset. The
left �gure shows the projection loss. We can see that in the early stage of training, the projection loss
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