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ABSTRACT

Self-supervised learning aims to learn a embedding space where semantically simi-
lar samples are close. Contrastive learning methods pull views of samples together
and push different samples away, which utilizes semantic invariance of augmen-
tation but ignores the relationship between samples. To better exploit the power
of augmentation, we observe that semantically similar samples are more likely to
have similar augmented views. Therefore, we can take the augmented views as a
special description of a sample. In this paper, we model such a description as the
augmentation distribution, and we call it augmentation feature. The similarity in
augmentation feature reflects how much the views of two samples overlap and is
related to their semantical similarity. Without computational burdens to explicitly
estimate values of the augmentation feature, we propose Augmentation Component
Analysis (ACA) with a contrastive-like loss to learn principal components and
an on-the-fly projection loss to embed data. ACA equals an efficient dimension
reduction by PCA and extracts low-dimensional embeddings, theoretically pre-
serving the similarity of augmentation distribution between samples. Empirical
results show that our method can achieve competitive results against various tra-
ditional contrastive learning methods on different benchmarks. Code available at
https://github.com/hanlu-nju/AugCA.

1 INTRODUCTION

The rapid development of contrastive learning has pushed self-supervised representation learning to
unprecedented success. Many contrastive learning methods surpass traditional pretext-based methods
by a large margin and even outperform representation learned by supervised learning (Wu et al.,
2018; van den Oord et al., 2018; Tian et al., 2020a; He et al., 2020; Chen et al., 2020a;c). The
key idea of self-supervised contrastive learning is to construct views of samples via modern data
augmentations (Chen et al., 2020a). Then discriminative embeddings are learned by pulling together
views of the same sample in the embedding space while pushing apart views of others.

Contrastive learning methods utilize the semantic invariance between views of the same sample,
but the semantic relationship between samples is ignored. Instead of measuring the similarity
between certain augmented views of samples, we claim that the similarity between the augmentation
distributions of samples can reveal the sample-wise similarity better. In other words, semantically
similar samples have similar sets of views. As shown in Figure 1 left, two images of deer create
many similar crops, and sets of their augmentation results, i.e., their distributions, overlap much. In
contrast, a car image will rarely be augmented to the same crop as a deer, and their augmentation
distributions overlap little. In Figure 1 right, we verify the motivation numerically. We approximate
the overlaps between image augmentations with a classical image matching algorithm (Zitova &
Flusser, 2003), which counts the portion of the key points matched in the raw images. We find
samples of the same class overlap more than different classes on average, supporting our motivation.
Therefore, we establish the semantic relationship between samples in an unsupervised manner based
on the similarity of augmentation distributions, i.e., how much they overlap.

In this paper, we propose to describe data directly by their augmentation distributions. We call the
feature of this kind the augmentation feature. The elements of the augmentation feature represent
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Figure 1: Left: semantically similar samples (e.g., those in the same class) usually create similar
augmentations. The right figure indicates the same class images have higher averaged augmentation
overlaps than those from different classes on four common datasets. For this reason, we learn
embeddings by preserving the similarity between augmentation distributions of samples.

the probability of getting a certain view by augmenting the sample as shown in the left of Figure 2.
The augmentation feature serves as an “ideal” representation since it encodes the augmentation
information without any loss and we can easily obtain the overlap of two samples from it. However,
not only its elements are hard to calculate, but also such high-dimensional embeddings are impractical
to use.

Inspired by the classical strategy to deal with high-dimensional data, we propose Augmentation
Component Analysis (ACA), which employs the idea of PCA (Hotelling, 1933) to perform dimension
reduction on augmentation features previously mentioned. ACA reformulates the steps of extracting
principal components of the augmentation features with a contrastive-like loss. With the learned
principal components, another on-the-fly loss embeds samples effectively. ACA learns operable
low-dimensional embeddings theoretically preserving the augmentation distribution distances.

In addition, the similarity between the objectives of ACA and traditional contrastive loss may explain
why contrastive learning can learn semantic-related embeddings – they embed samples into spaces
that partially preserve augmentation distributions. Experiments on synthetic and real-world datasets
demonstrate that our ACA achieves competitive results against various traditional contrastive learning
methods. Our contributions are as follows:

• We propose a new self-supervised strategy, which measures sample-wise similarity via the
similarity of augmentation distributions. This new aspect facilitates learning embeddings.

• We propose ACA method that implicitly employs the dimension reduction over the augmentation
feature, and the learned embeddings preserve augmentation similarity between samples.

• Benefiting from the resemblance to contrastive loss, our ACA helps explain the functionality of
contrastive learning and why they can learn semantically meaningful embeddings.

2 RELATED WORK

Self-Supervised Learning. Learning effective visual representations without human supervision is
a long-standing problem. Self-supervised learning methods solve this problem by creating supervision
from the data itself instead of human labelers. The model needs to solve a pretext task before it
is used for the downstream tasks. For example, in computer vision, the pretext tasks include
colorizing grayscale images (Zhang et al., 2016), inpainting images (Pathak et al., 2016), predicting
relative patch (Doersch et al., 2015), solving jigsaw puzzles (Noroozi & Favaro, 2016), predicting
rotations (Gidaris et al., 2018) and exploiting generative models (Goodfellow et al., 2014; Kingma &
Welling, 2014; Donahue & Simonyan, 2019). Self-supervised learning also achieves great success in
natural language processing (Mikolov et al., 2013; Devlin et al., 2019).

Contrastive Learning and Non-Contrastive Methods. Contrastive approaches have been one
of the most prominent representation learning strategies in self-supervised learning. Similar to the
metric learning in supervised scenarios (Ye et al., 2019; 2020), these approaches maximize the
agreement between positive pairs and minimize the agreement between negative pairs. Positive pairs
are commonly constructed by co-occurrence (van den Oord et al., 2018; Tian et al., 2020a; Bachman
et al., 2019) or augmentation of the same sample (He et al., 2020; Chen et al., 2020a;c; Li et al., 2021;
Ye et al., 2023), while all the other samples are taken as negatives. Most of these methods employ the
InfoNCE loss (van den Oord et al., 2018), which acts as a lower bound of mutual information between
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views. Based on this idea, there are several methods that attempt to improve contrastive learning,
including mining nearest neighbour (Dwibedi et al., 2021; ?; Azabou et al., 2021) and creating extra
views by mixing up (Kalantidis et al., 2020) or adversarial training (Hu et al., 2021). Another stream
of methods employs a similar idea of contrastive learning to pull views of a sample together without
using negative samples (Grill et al., 2020; Chen & He, 2021). Barlow Twins (Zbontar et al., 2021)
minimizes the redundancy within the representation vector. Tsai et al. (2021) reveals the relationship
among Barlow Twins, contrastive and non-contrastive methods. Most of these methods only utilize
the semantic invariance of augmentation and ignore the relationship between samples. Different
from them, we propose a new way to perform self-supervised learning by preserving the similarity
of augmentation distribution, based on the observation that a strong correlation exists between the
similarity of augmentation distributions and the similarity of semantics.

Explanation of Contrastive Learning. Several works provide empirical or theoretical results for
explaining the behavior of contrastive learning. Tian et al. (2020b); Xiao et al. (2021) explore the
role of augmentation and show contrastive model can extract useful information from views but
also can be affected by nuisance information. Zhao et al. (2021) empirically shows that contrastive
learning preserves low-level or middle-level instance information. In theoretical studies, Saunshi et al.
(2019) provide guarantees of downstream linear classification tasks under conditionally independence
assumption. Other works weaken the assumption but are still unrealistic (Lee et al., 2021; Tosh
et al., 2021). HaoChen et al. (2021) focus on how views of different samples are connected by the
augmentation process and provide guarantees with certain connectivity assumptions. Wang et al.
(2022) notice that the augmentation overlap provides a ladder for gradually learning class-separated
representations. In addition to the alignment and uniformity as shown by Wang & Isola (2020),
Huang et al. (2021) develop theories on the crucial effect of data augmentation on the generalization
of contrastive learning. Hu et al. (2022) explain that the contrastive loss is implicitly doing SNE with
“positive” pairs constructed from data augmentation. Inspired by the important role of augmentation,
we provide a novel self-supervised method that ensures preserving augmentation overlap.

3 NOTATIONS

The set of all natural data (data without augmentation) is denoted by X̄ , with size |X̄ | = N . We
assume that the natural data follow a uniform distribution p(x̄) on X̄ , i.e., p(x̄) = 1

N ,∀x̄ ∈ X̄ . By
applying an augmentation method A, a natural sample x̄ ∈ X̄ could be augmented to another sample
x with probability pA(x | x̄), so we use p(· | x̄) to encode the augmentation distribution. 1 For
example, if x̄ is an image, then A can be common augmentations like Gaussian blur, color distortion
and random cropping (Chen et al., 2020a). Denote the set of all possible augmented data as X . We
assume X has finite size |X | = L and L > N for ease of exposition. Note that N and L are finite,
but can be arbitrarily large. We denote the encoder as fθ, parameterized by θ, which projects a sample
x to an embedding vector in Rk.

4 LEARNING VIA AUGMENTATION OVERLAPS

As we mentioned in Section 1, measuring the similarity between the augmentation distri-
butions, i.e., the overlap of the augmented results of the two samples reveals their se-
mantic relationship well. For example, in natural language processing, we usually gen-
erate augmented sentences by dropping out some words. Then different sentences with
similar meanings are likely to contain the same set of words and thus have a high
probability of creating similar augmented data. With the help of this self-supervision,
we formulate the embedding learning task to meet the following similarity preserving condition:

dRk (fθ⋆ (x̄1) , fθ⋆ (x̄2)) ∝ dA(p(· | x̄1), p(· | x̄2)) . (1)
dRk is a distance measure in the embedding space Rk, and dA measures the distance between two
augmentation distributions. Equation (1) requires the learned embedding with the optimal parameter
θ⋆ has the same similarity comparison with that measured by the augmentation distributions. In this
section, we first introduce the augmentation feature for each sample, which is a manually designed
embedding satisfying the condition in Equation (1). To handle the high dimensionality and complexity
of the augmentation feature, we further propose our Augmentation Component Analysis (ACA) that
learns to reduce the dimensionality and preserve the similarity.

1Note that p(· | x̄) is usually difficult to compute and we can only sample from it. We omit the subscript A
and directly use p(· | x̄) in the following content for convenient
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Figure 2: The idea of learning embeddings via Augmentation Component Analysis (ACA). The
upper right figure demonstrates the process of PCA. It learns PCs and projects the input feature to get
embeddings of data. Similarly, ACA performs PCA on the augmentation feature, which encodes all
the information about the augmentation distribution. To overcome the dimensional and computational
complexity, ACA employs ACA-PC loss and projection loss to learn PCs and embeddings tractably.
Via ACA, our model can learn embeddings that preserve augmentation similarity for natural data.

4.1 AUGMENTATION FEATURE

To reach the goal of similarity preserving in Equation (1), a direct way is to manually construct the
feature by the augmentation distributions of each natural sample, i.e., f(x̄) = [p(x1 | x̄), . . . , p(xL |
x̄)]⊤, where each element p(xi | x̄) represents the probability of getting a certain element xi in
space X by augmenting x̄. We omit θ in f(x̄) since such augmentation feature2 does not rely
on any learnable parameters. In this case, any distance dRL defined in the space of f is exactly a
valid distribution distance, which reveals the augmentation overlaps and is related to the semantic
similarity.

Although the constructive augmentation feature naturally satisfies the similarity preserving condition
(Equation (1)) (because it directly use the augmentation distribution without loss of information), it
is impractical for the following reasons. First, its dimensionality is exponentially high, which is up
to L, the number of possible augmented results. For example, even on CIFAR10, the small-scale
dataset with image size 32× 32× 3, L is up to 2563072 (3072 pixels and 256 possible pixel values).
Second, the computation of each element is intractable. We may need an exponentially large number
of samples to accurately estimate each p(x | x̄). The dimensionality and computation problems
make the augmentation feature impractical both at inference and training time. Such inconvenience
motivates us to (1) conduct certain dimension reduction to preserve the information in low dimensional
space (Section 4.2) and (2) develop an efficient algorithm for dimension reduction (Section 4.3).

4.2 DIMENSION REDUCTION ON AUGMENTATION FEATURES

To deal with the high-dimensional property, we employ the idea of PCA (Hotelling, 1933), which
reconstructs the data with principal components.3 For convenience, we denote the design matrix of
augmentation feature by A, where A ∈ RN×L, Ax̄,x = p(x | x̄) (see Figure 2). We perform PCA
on a transformed augmentation feature called normalized augmentation feature:

Â = AD− 1
2 , (2)

where D = diag([dx1
, dx2

, . . . , dxL
]), dx =

∑
x̄ p(x | x̄). Based on normalized augmentation

feature, we can develop an efficient algorithm for similarity preserving embeddings.

Assume the SVD of Â = UΣV ⊤ with U ∈ RN×N , Σ ∈ RN×L, V ∈ RL×L , PCA first learns the
projection matrix consisting of the top-k right singular vectors, which can be denoted as Ṽ ∈ RL×k.
The vectors in Ṽ are called Principal Components (PCs). Then, it projects the feature by ÂṼ to get
the embeddings for each sample. The overall procedure is illustrated at the top-right of Figure 2.
But performing PCA on the augmentation feature will encounter many obstacles. The element of
augmentation feature is not possible to estimate accurately, not to mention its high dimensionality.

2Following the common knowledge in dimension reduction, we call the raw high dimensional representation
as “feature”, and learned low-dimensional representation as “embedding”.

3In this paper, we use the non-centred version (Reyment & Jvreskog, 1996), which is more appropriate for
observations than for variables, where the origin matters more.
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Even if we can somehow get the projection matrix Ṽ , it is also impractical to project the high-
dimensional matrix Â. For this reason, we propose ACA to make PC learning and projection process
efficient without explicitly calculating elements of augmentation feature.

4.3 AUGMENTATION COMPONENT ANALYSIS

Although there are several obstacles when performing PCA on the augmentation features directly,
fortunately, it is efficient to sample from the augmentation distribution p(x | x̄), i.e., by performing
augmentation on the natural data x̄ and get an augmented sample x. Being aware of this, our ACA
uses two practical losses to simulate the PCA process efficiently by sampling. The first contrastive-
like loss leads the encoder to learn principal components of Â, which can be efficiently optimized by
sampling like traditional contrastive methods. The second loss performs on-the-fly projection of Â
through the training trajectory, which solves the difficulty of high dimensional projection.

Learning principal components. ACA learns the principal components by an efficient contrastive-
like loss. Besides its projection functionality, these learned principal components can also serve as
embeddings that preserve a kind of posterior distribution similarity, as we will show later.

In the SVD view, UΣ serves as the PCA projection results for samples and V contains the principal
components (Jolliffe, 2002). However, if changing our view, V Σ can be seen as the representation of
each column. Since each column of Â encodes the probability of the augmented data given natural
data, V Σ preserves certain augmentation relationships, as we will show in Theorem 4.2 later. To
leverage the extrapolation power of encoders like deep neural networks, we choose to design a loss
that can guide the parameterized encoder fθ to learn similar embeddings as PCA. Inspired by the rank
minimization view of PCA (Vidal et al., 2016), we employ the low-rank approximation objective
with matrix factorization, similar to HaoChen et al. (2021):

min
F∈RL×k

Lmf = ∥Â⊤Â− FF⊤∥2F , (3)

where columns of F store the scaled version of top-k right singular vectors, and each row can be seen
as the embedding of augmented data as will show in Lemma 4.1. According to Eckart–Young–Mirsky
theorem (Eckart & Young, 1936), by optimizing Lmf , we can get the optimal F̂ , which has the form
Ṽ Σ̃Q, Q ∈ Rk×k is an orthonormal matrix. Σ̃ and Ṽ contains the top-k singular values and right
singular vectors. By expanding Equation (3), we get Augmentation Component Analysis Loss for
learning Principal Components (ACA-PC) in the following lemma:
Lemma 4.1 (ACA-PC loss). Let Fx,: =

√
dxf

⊤
θ (x),∀x ∈ X . Minimizing Lmf is equivalent to

minimizing the following objective:

LACA-PC =− 2E
x̄∼p(x̄),

xi∼p(xi|x̄)
xj∼p(xj |x̄)

fθ(xi)
⊤fθ(xj)

+NEx1∼pA(x1),x2∼pA(x2)

[(
fθ(x1)

⊤fθ(x2)
)2]

.
(4)

The proof can be found in Appendix F. In ACA-PC, the first term is the common alignment loss for
augmented data and the second term is a form of uniformity loss (Wang & Isola, 2020). Both terms
can be estimated by Monte-Carlo sampling. ACA-PC is a kind of contrastive loss. But unlike most
of the others, it has theoretical meanings. We note that the form of ACA-PC differs from spectral
loss (HaoChen et al., 2021) by adding a constant N before the uniformity term. This term is similar
to the noise strength in NCE (Gutmann & Hyvärinen, 2010) or the number of negative samples in
InfoNCE (van den Oord et al., 2018). It can be proved that the learned embeddings by ACA-PC
preserve the posterior distribution distances between augmented data:
Theorem 4.2 (Almost isometry for posterior distances). Assume fθ is a universal encoder, σk+1

is the (k + 1)-th largest singular value of Â, dmin = minx dx, and δx1x2 = I(x1 = x2),
the minimizer θ∗ of LACA−PC satisfies:

d2post(x1,x2)−
2σ2

k+1

dmin
(1− δx1x2

) ≤ ∥fθ∗(x1)− fθ∗(x2)∥22 ≤ d2post(x1,x2) , ∀x1,x2 ∈ X

where the posterior distance

d2post(x1,x2) =
∑
x̄∈X̄

(pA(x̄ | x1)− pA(x̄ | x2))
2 (5)
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measures the squared Euclidean distance between the posterior distribution pA(x̄ | x) = p(x|x̄)p(x̄)
pA(x) .

We give the proof in Appendix G. Theorem 4.2 states that the optimal encoder for ACA-PC preserves
the distance of posterior distributions between augmented data within an error related to embedding
size k. As k increase to N , the error decrease to 0. It corresponds to the phenomenon that a larger
embedding size leads to better contrastive performance (Chen et al., 2020a). The posterior distribution
pA(x̄ | x) represents the probability that a given augmented sample x is created by a natural sample
x̄. Augmented data that are only produced by the same natural sample will have the smallest
distance, and embeddings of those in overlapped areas will be pulled together by ACA-PC. Since
the overlapped area are usually created by two same-class samples, ACA-PC can form semantically
meaningful embedding space.

It is also noticeable that the optimal encoder meets the similarity preserving condition (Equation (1))
but concerning the posterior distribution for augmented data not the augmentation distribution for
natural data. Since what we care about is the distribution of natural data, we further propose a
projection loss that helps learn good embeddings for all the natural data.

On-the-fly Projection. As stated in the previous part, the learned embeddings by ACA-PC not
only serve as certain embeddings for augmented data but also contain principal components of
normalized augmentation feature. Based on this, we propose to use these embeddings to act as a
projection operator to ensure meaningful embeddings for all the natural data. To be specific, denote
the embedding matrix for all augmented data as F aug(∈ RL×k), where each row F aug

x,: = f⊤
θ∗(x).

From Equation (3) and F̂x,: =
√
dxf

⊤
θ∗(x), it can be easily seen that:

F aug = D− 1
2 F̂ = D− 1

2 Ṽ Σ̃Q

Similar to PCA (Hotelling, 1933) that projects the original feature by the principal components V ,
we propose to use F aug to project the augmentation feature to get the embeddings for each natural
sample. Denote the embedding matrix for natural data as Fnat(∈ RN×k), where each row Fnat

x̄,:

represents the embeddings of x̄. We compute Fnat as follows:

Fnat = AF aug = ÂD
1
2D− 1

2 Ṽ Σ̃Q = (Ũ Σ̃)Σ̃Q, (6)

where Σ̃,Ũ contain the top-k singular values and corresponding left singular vectors. It is noticeable
that Fnat is exactly the PCA projection result multiplied by an additional matrix Σ̃Q. Fortunately,
such additional linear transformation does not affect the linear probe performance (HaoChen et al.,
2021). With Equation (6), the embedding of each natural sample can be computed as follows:

Fnat
x̄,: = Ax̄,:F

aug =
∑
x

p(x | x̄)f⊤
θ∗(x) = Ex∼p(x|x̄)f

⊤
θ∗(x) (7)

which is exactly the expected feature over the augmentation distribution. Similar to Theorem 4.2, the
embeddings calculated by Equation (7) also present a certain isometry property:
Theorem 4.3 (Almost isometry for weighted augmentation distances). Assume fθ is a universal
encoder, σk+1 is the (k + 1)-th largest sigular value of Â,δx̄1x̄2 = I(x̄1 = x̄2), let the minimizer of
LACA−PC be θ∗ and g(x̄) = Ex∼p(x|x̄)fθ∗(x) as in Equation (7), then:

d2w-aug(x̄1, x̄2)− 2σ2
k+1 (1− δx̄1x̄2

) ≤ ∥g(x̄1)− g(x̄2)∥2Σ−2
k

≤ d2w-aug(x̄1, x̄2) , ∀x1,x2 ∈ X

where ∥·∥Σ−2
k

represent the Mahalanobis distance with matrix Σ−2
k ,Σk = diag([σ1, σ2, . . . , σk]) is

the diagonal matrix containing top-k singular values and the weighted augmentation distance

d2w-aug(x̄1, x̄2) =
1

N

∑
x∈X

(p(x | x̄1)− p(x | x̄2))
2

pA(x)
(8)

measures the weighted squared Euclidean distance between the augmentation distribution p(x | x̄).

Different from Theorem 4.2, which presents isometry between Euclidean distances in embeddings
and augmentation distribution, Theorem 4.3 presents isometry between Mahalanobis distances. The
weighted augmentation distances weigh the Euclidean distances by pA(x). dw-aug can be regarded
as a valid augmentation distance measure dA as in Equation (1) and Fnat preserve such a distance.
So our goal is to make embeddings of x̄ approaches Ep(x|x̄)fθ⋆(x). However, as stated before, the
additional projection process is not efficient, i.e., we need exponentially many samples from p(x | x̄).
We notice that samples during the training process of ACA-PC can be reused. For this reason, we
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propose an on-the-fly projection loss that directly uses the current encoder for projection:
Lproj = Ex̄∼p(x̄)

[
∥fθ(x̄)− Ep(x|x̄)fθ(x)∥22

]
(9)

Full objective of ACA. Based on the discussion of the above parts, ACA simultaneously learns the
principal components by ACA-PC and projects natural data by an on-the-fly projection loss. The full
objective of ACA has the following form:

LACA-Full = LACA-PC + αLproj (10)
where α is a trade-off hyperparameter. We also find N in Equation (4) too large for stable training, so
we replace it with a tunable hyperparameter K. Here, we only display the loss in expectation forms.
The details of the implementation are described in Appendix A.

5 A PILOT STUDY

In this section, we experiment with our Augmentation Component Analysis method on a synthetic
mixture component data with a Gaussian augmentation method. In this example, we aim to show the
relationship between semantic similarity and posterior/weighted augmentation distances. We also
show the effectiveness of our method compared to traditional contrastive learning. In this example,
the natural data x̄ are sampled from a mixture gaussian with c component:

p(x̄) =

c∑
i=1

πiN (µi, siI)

We use Gaussian noise as the data augmentation of a natural data sample, i.e., A(x̄) = x̄+ ξ where
ξ ∼ N (0, saI). Concretely, we conduct our experiment on 2-D data with c = 4, πi =

1
c , si = 1 and

µi uniformly distributed on a circle with radius 2 . For each component, we sample 200 natural data
with the index of the component as their label. For each natural datum, we augment it 2 times with
sa = 4, which results in totally 1600 augmented data. We compute the augmentation probability for
between x and x̄ by p(x | x̄) and we normalize the probability for each x̄.

First, we plot the distribution of posterior distances (Equation (5)) for pairs of augmented data and
weighted augmentation distances (Equation (8)) for pairs of natural data in Figure 3 left. The two
distances appear to have similar distributions because the synthetic data are Gaussian. It can be seen
that data from the same component tend to have small distances, while from different components,
their distances are large. In low-distance areas, there are pairs of the same class, which means that
the two distances are reliable metrics for judging semantic similarity. In all, this picture reveals the
correlation between semantic similarity and posterior/weighted augmentation distances.

Second, we compare our methods with SimCLR (Chen et al., 2020a), the traditional contrastive
method and Spectral (HaoChen et al., 2021), which similarly learns embeddings with spectral theory.
We test the learned embeddings using a Logistic Regression classifier and report the error rate of
the prediction in Figure 3 right. We also report performance when directly using augmentation
feature (AF). First, AF has discriminability for simple linear classifiers. SimCLR and Spectral tend
to underperform AF as the embedding size increases, while our methods consistently outperform.
It may be confusing since our method performs dimension reduction on this feature. But we note
that as the embedding size increases, the complexity of the linear model also increases, which affects
the generalizability. All the methods in Figure 3 right show degradation of this kind. However,
our methods consistently outperform others, which shows the superiority of ACA. Additionally,
by adding projection loss, ACA-Full improves ACA-PC by a margin. Additionally, traditional
contrastive learning like SimCLR achieves similar performance as our methods. We think it reveals
that traditional contrastive learning has the same functionality as our methods.

6 EXPERIMENTS

6.1 SETUP

Dataset. In this paper, we conduct experiments mainly on the following datasets with RTX-3090
×4. CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009): two datasets containing totally 500K
images of size 32 × 32 from 10 and 100 classes respectively. STL-10 (Coates et al., 2011): derived
from ImageNet (Deng et al., 2009), with 96 × 96 resolution images with 5K labeled training data
from 10 classes. Additionally, 100K unlabeled images are used for unsupervised learning. Tiny
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Figure 3: Synthetic experiments on mixture Gaussian data with Gaussian noise as augmentation. (a)
The posterior distance and weighted augmentation distances among data sampled from the same
component and different components. It reveals the correlation between semantic similarity and
the two distances, especially when the distance is small. (b) Comparison of linear classification
performance among SimCLR, Spectral and our methods with various embedding dimensions ranging
from 4 to 200. The dashed line represents the result when directly using Augmentation Feature (AF).
ACA-PC outperforms SimCLR and Spectral. ACA-Full further improves.

ImageNet: a reduced version of ImageNet (Deng et al., 2009), composed of 100K images scaled
down to 64 × 64 from 200 classes. ImageNet-100 (Tian et al., 2020a): a subset of ImageNet, with
100-classes. ImageNet (Deng et al., 2009), the large-scale dataset with 1K classes.

Network Structure. Following common practice (Chen et al., 2020a;b;c), we use the encoder-
projector structure during training, where the projector projects the embeddings into a low-
dimensional space. For CIFAR-10 and CIFAR-100, we use the CIFAR variant of ResNet-18 (He
et al., 2016; Chen & He, 2021) as the encoder. We use a two-layer MLP as the projector whose
hidden dimension is half of the input dimension and output dimension is 64. For STL-10 and Tiny
ImageNet, only the max-pooling layer is disabled following (Chen & He, 2021; Ermolov et al., 2021).
For these two datasets, we use the same projector structure, except that the output dimension is 128.
For ImageNet, we use ResNet-50 with the same projector as Chen et al. (2020a).

Image Transformation. Following the common practice of contrastive learning (Chen et al.,
2020a), we apply the following augmentations sequentially during training: (a) crops with a random
size; (b) random horizontal flipping; (c) color jittering; (d) grayscaling. For ImageNet-100 and
ImageNet, we use the same implementation as (Chen et al., 2020a).

Optimizer and other Hyper-parameters. For datasets except for ImageNet, adam opti-
mizer (Kingma & Ba, 2015) is used for all datasets. For CIFAR-10 and CIFAR-100, we use
800 epochs with a learning rate of 3× 10−3. For Tiny ImageNet and STL-10, we train 1,000 epochs
with a learning rate 2 × 10−3. We use a 0.1 learning rate decay at 100, 50, 20 epochs before the
end. Due to hardware resource restrictions, we use a mini-batch of size 512. The weight decay is
1 × 10−6 if not specified. Following common practice in contrastive learning, we normalize the
projected feature into a sphere. For CIFAR-10, we use α = 1. For the rest datasets, we use α = 0.2.
By default, K is set to 2. For ImageNet, we use the same hyperparameters as (Chen et al., 2020a)
except batch size being 256, α = 0.2 and K = 2.

Evaluation Protocol. We evaluate the learned representation on two most commonly used pro-
tocols – linear classification (Zhang et al., 2016; Kolesnikov et al., 2019) and k-nearest neighbors
classifier (Chen & He, 2021). In all the experiments, we train the linear classifier for 100 epochs. The
learning rate exponentially decays from 10−2 to 10−6. The weight decay is 1× 10−6. We report the
classification accuracy on test embeddings as well as the accuracy of a 5-Nearest Neighbors classifier
for datasets except for ImageNet.

6.2 PERFORMANCE COMPARISON

In Table 1, we compare the linear probe performance on various small-scale or mid-scale bench-
marks with several methods including SimCLR (Chen et al., 2020a), BYOL (Grill et al., 2020),
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Table 1: Top-1 linear classification accuracy and 5-NN accuracy on four datasets with a ResNet-18
encoder. We use bold to mark the best results and underline to mark the second-best results. ♯ means
the results are reproduced by our code.

method CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet
Linear 5-NN Linear 5-NN Linear 5-NN Linear 5-NN

SimCLR♯ 90.88 88.25 65.53 55.32 89.27 85.44 47.41 31.95
BYOL♯ 91.20 89.52 64.85 54.92 88.64 86.73 47.66 32.96
SimSiam♯ 91.06 89.43 65.41 54.84 90.04 85.48 45.17 30.41
Spectral♯ 90.28 87.25 65.42 55.05 89.16 84.23 45.69 29.32

ACA-PC (ours) 90.35 87.38 65.69 54.57 90.08 85.86 46.08 30.97
ACA-Full (ours) 92.04 89.79 67.16 56.52 90.88 86.44 48.79 33.53

Table 2: Left: Top-1 classification accuracy and 5-NN accuracy on ImageNet-100 with ResNet-18.
†: results are taken from (Wang & Isola, 2020). ⋆: results are taken from (Tian et al., 2020b).♯
means the results are reproduced by our code. Right: Top-1 classification accuracy on ImageNet with
ResNet-50, results are taken from (Chen & He, 2021; HaoChen et al., 2021). We use bold to mark
the best results and underline to mark the second-best results.

ImageNet-100 Linear 5-NN

MoCo† 72.80 -
Lalign + Luniform

† 74.60 -
InfoMin⋆ 74.90 -
SimCLR♯ 75.62 62.70
Spectral♯ 75.52 61.80

ACA-PC (ours) 75.80 62.54
ACA-Full (ours) 76.02 63.20

ImageNet Linear (100 epochs)

SimCLR 66.5
MoCo v2 67.4
BYOL 66.5
SimSiam 68.1
Spectral 66.97

ACA-PC (ours) 67.21
ACA-Full (ours) 68.32

SimSiam (Chen & He, 2021) and Spectral (HaoChen et al., 2021). For transfer learning benchmarks,
please refer to Appendix D and Appendix E. SimCLR uses is a method that uses contrastive loss.
BYOL and SimSiam do not use negative samples. Spectral is a similar loss derived from the idea
of spectral clustering. From Table 1, we can see that our ACA-Full method achieves competitive
results on small- or mid-scale benchmarks, achieving either the best or the second-best results on all
benchmarks except the 5-NN evaluation on STL-10. Also, ACA-PC differs from ACA-Full in the
projection loss. In all the benchmarks, we can see that the projection loss improves performance.

For large-scale benchmarks, we compare several methods on ImageNet-100 and ImageNet.
On ImageNet-100, we compare our method additionally to MoCo (He et al., 2020), Lalign +
Luniform (Wang & Isola, 2020) and InfoMin (Tian et al., 2020b). Note that the results of the
other three methods are reported when using the ResNet-50 encoder, which has more capacity than
ResNet18. Our method can also achieve state-of-the-art results among them. This means that our
method is also effective with relatively small encoders even on large-scale datasets. On ImageNet,
we see that ACA-PC achieves competitive performance against state-of-the-art contrastive meth-
ods (Chen et al., 2020a;c; Grill et al., 2020; Chen & He, 2021; HaoChen et al., 2021) and ACA-Full
achieves the best.

7 CONCLUSION AND FUTURE WORK

In this paper, we provide a new way of constructing self-supervised contrastive learning tasks by
modeling similarity through augmentation overlap, which is motivated by the observation that seman-
tically similar data usually creates similar augmentations. We propose Augmentation Component
Analysis to perform PCA on augmentation feature efficiently. Interestingly, our methods have a
similar form as the traditional contrastive loss and may explain the ability of contrastive loss. We
hope our paper can inspire more thoughts about how to measure similarity in self-supervised learning
and how to construct contrastive learning tasks. Future studies may be explorations of applying
ACA to learn representations of other forms of instances, such as tasks (Achille et al., 2019) and
models (Wu et al., 2023).
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Figure 4: The implementation of ACA. Like traditional contrastive learning methods, ACA samples
a mini-batch from the whole natural dataset, then performs two random augmentations on the
mini-batch. The mini-batch sampling and augmentation create samples from p(x̄) and p(x | x̄)
respectively. Then we use the samples to estimate the values of Luni,Luni and Lproj as in the figure.

A IMPLEMENTATION AND FURTHER DISCUSSION

In the previous section, we have presented the expected form of ACA. Thanks to its form, we can
efficiently optimize ACA by Monte-Carlo sampling, making the problem tractable.

For convenience of illustration, we decompose the ACA-PC loss into two parts, i.e., LACA-PC =
Lali + Luni. For the first part, Lali serves as the alignment loss in traditional contrastive learning,
which maximizes the inner product similarity between augmented samples from the same natural
data:

Lali = 2E
x̄∼p(x̄),

xi∼p(xi|x̄)
xj∼p(xj |x̄)

− fθ(xi)
⊤fθ(xj), (11)

we use the mini-batch of natural sample to estimate Ex̄∼p(x̄). And we just use one sample to estimate
Exi∼p(xi|x̄) and Exj∼p(xj |x̄) respectively. This leads to the traditional contrastive learning procedure
: sample a mini-batch of natural data, augment it twice, compute and maximize the similarity of two
augmented data.

For the second part, Luni minimize the inner product similarity of augmented data from the marginal
distribution:

Luni = NEx1∼pA(x1),x2∼pA(x2)

[(
fθ(x1)

⊤fθ(x2)
)2]

. (12)

We use the in-batch augmented data to estimate Ex1∼pA(x1). Notably, two augmented samples
randomly sampled are hardly augmented by the same natural sample. Therefore, following common
practice (Chen et al., 2020a), we use two augmented data that are created by augmenting two different
natural data to compute this term. Additionally, we find that N in Luni is too large to perform stable
numerical computation. Thus in our implementation, we replace the N with a tunable noise strength
K.

For Lproj, it is not efficient to fully sample from p(x | x̄). However, it is notable that:

Lproj = Ex̄∼p(x̄)

[
∥fθ(x̄)− Ep(x|x̄)fθ(x)∥22

]
= E

x̄∼p(x̄),
xi∼p(xi|x̄)
xj∼p(xj |x̄)

[
∥fθ(x̄)−

fθ(xi) + fθ(xj)

2
∥22
]
.

It has the same expectation subscript as Lali. So we can use the same strategy as LACA-PC and reuse
the samples. Lproj is computed along with Lali during training, i.e., the principal component learning
and projection are done simultaneously. That is why we call Lproj “on-the-fly projection”.

The overall implementation of ACA is illustrated in Figure 4. And the algorithm is illustrated in
Algorithm 1.

Discussion on the relation with traditional contrastive learning. As is described in this section.
ACA-PC takes a similar form as traditional contrastive learning methods. Similar to them, ACA-
PC maximizes the inner product similarity of two views from the sample by Equation (11), and
minimizes the squared inner product similarity of views from different samples. Note that we
have proved that the learned embeddings by ACA-PC function as the principal components of the
augmentation feature and preserve the posterior augmentation distances (Theorem 4.2). We believe
traditional contrastive loss also has the similar functionality as ours. Due to the strong correlation
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between augmentation overlap and semantic similarity, this may explain contrastive learning can learn
semantically meaningful embeddings even though they ignore the semantic relationship between
samples.

Discussion on approximation in implementations. There are several approximations to stabilize
the training. First, we replace the factor N in Equation (12) with a tunable noise strength K . Usually,
the number of samples is very large in common datasets. When we use a complex model like DNN,
it is unstable to involve such a large number in the loss. Therefore, we tune it small and find it works
well. But we also note that we use N in our synthetic experiment in Section 5 for the dimensionality
and model is not too complex. The superior results proves effectiveness of our theory. Second, we
normalize embeddings to project them into a sphere, which equals replacing the inner product with
cosine similarity. We find this modification improves the performance from 81.84% to 91.58%.

Algorithm 1 Augmentation Component Analysis Algorithm
Require: Unlabeled natural dataset {xi}Ni=1; Augmentation function A ; Encoding model fθ param-

eterized with θ; projection parameter α; Noise Strength K; Batch size B.
1: for sampled minibatch {xi}Bi=1 do
2: for i = 1, 2, . . . , B do
3: x

(1)
i = A(x̄i),x

(2)
i = A(x̄i)

4: end for
5: LACA−Full = − 2

B

∑B
i=1 f

⊤
θ (x

(1)
i )fθ(x

(2)
i ) + K

B(B−1)

∑
i ̸=j(f

⊤
θ (x

(1)
i )fθ(x

(2)
j ))2 +

α∥fθ(x̄)−
fθ(x

(1)
i )+fθ(x

(2)
i )

2 ∥2
6: update θ with w.r.t LACA−Full.
7: end for
8: return fθ

B EFFECT OF AUGMENTATION OVERLAPS

Like contrastive learning, our method relies on the quality of augmentation. Therefore, we in-
vestigate the influence of different augmentations and reveal the relationship between distribution
difference and the linear probe performance on CIFAR10. The augmentation distribution is estimated
by augmenting 106 times for a subset of random 2000 pairs of samples with the number of intra-class
and inter-class pairs being 1000 respectively. Note that as is stated in Section 4.1, even on CIFAR10,
the actual value of L is exponentially large (up to 2563072). It is impossible to accurately estimate a
distribution over so many possible values. But we notice that for neural networks, many operators can
reduce the possible number of values, like convolutions and poolings. Following this observation and
to make the computation efficient, we descrete the color into 8-bit for each channel and use a max
pooling operation to get a 4× 4 picture. by this kind of approximation, the number of L reduces to
848. Seems still too large, but it can be noted that the augmentation distribution of each sample covers
only a small region. It is enough to estimate the distribution by sampling. For memory restriction,
we cannot fully estimate the weighted augmentation distance in Theorem 4.3. Because we cannot
store all possible values for pA(x). Instead, we use the Hellinger distance as the distribution distance
measure:

d2H(x̄1, x̄2) =
1

N

∑
x∈X

(√
p(x | x̄1)−

√
p(x | x̄2)

)2
Hellinger distance ranges [0, 2], making the comparison clear.

We list the experimented augmentation here:

1. Grayscale: Randomly change the color into gray with probability of 0.1.

2. HorizontalFlip: Randomly flip horizontally with probability 0.5.

3. Rotation: Randomly rotate image with uniformly distributed angle in [0, π]

4. ColorJitter: Jitter (brightness, contrast, saturation, hue) with strength (0.4, 0.4, 0.4, 0.1)
and probability 0.8.
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Table 3: Histogram (HIST) of distribution distances and linear probe accuracy (ACC) when using
different augmentations on CIFAR10. Note that HIST is estimated in the input space. It is property
of augmentation, regardless of learning algorithm. We aims to investigate the different augmentation
overlaps caused by different augmentation, and reveal its connection between learned model. “Same”
denotes the distance between samples with the same semantic class, and “Different” means different
classes. The existence of overlap and relationship between intra-/inter-class distances affects the
performance.

Grayscale HorizontalFlip Rotation
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1 2
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

Co
unt

A g u m e n t a t i o n  D i s t a n c e s

 S a m e
 D i f f e r e n t

1

1 0

2 0

3 0

1 2
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

Co
unt

A g u m e n t a t i o n  D i s t a n c e s

 S a m e
 D i f f e r e n t

1 2
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

Co
unt

A g u m e n t a t i o n  D i s t a n c e s

 S a m e
 D i f f e r e n t

1
0

1 0

ACC 27.05% 29.67% 33.50%
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5. ResizedCrop: Extract crops with a random size from 0.2 to 1.0 of the original area and a
random aspect ratio from 3/4 to 4/3 of the original aspect ratio.

6. Augs in SimCLR: Sequential combination of 5,4,1,2.

In Table 3, we display the histogram (HIST) of intra- and inter-class augmentation distribution
distances. ACC displays the linear probe performance on the test set. From the table, the following
requirements for a good augmentation can be concluded: (1) Existence of overlap. For the upper
three augmentations. The “scope” of augmentation is small. As a result, most of the samples do
not overlap. This makes embeddings lack the discriminative ability for downstream tasks. On the
contrary, the lower three create overlaps for most of the samples, leading to much better performance.
(2) Intra-class distance is lower than inter-class. Compared to ColorJitter, ResizedCrop makes
more intra-class samples have lower distance. So ResizedCrop outperforms ColorJitter. SimCLR
augmentation surpasses these two for the same reason. Interestingly, we find that the same phenomena
appear when using other contrastive methods like SimCLR. It shows that these methods somehow
utilize the augmentation overlap like our method.

C PERFORMANCE CURVE

In this section, we illustrate the performance curve throughout training. We aim to demonstrate the
functionality of projection loss and show that our ACA method leads to better performance. The
compared traditional contrastive learning method is chosen to be SimCLR, for the reason that our
method only differs from SimCLR in the loss, with all other things (architecture, optimizer and other
shared hyperparameters) identical. Also, we do not introduce extra mechanisms like momentum
encoder (BYOL, MoCo) and predictor (BYOL, SimSiam).

Figure 5 shows the performance curve along with the projection loss on the CIFAR-10 dataset. The
left figure shows the projection loss. We can see that in the early stage of training, the projection loss
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Figure 5: Values of projection loss and accuracy during training. Left is the projection loss. It rises
in the early stage and is stable later, showing that the projection loss prevents the embeddings of
natural data from deviating from the center of augmentation distribution. The mid and right figures
show the performance curve measured by kNN accuracy and test accuracy. ACA-PC achieves similar
performance as SimCLR but ACA-Full is better during the training process.

Table 4: We compare various SSL methods on transfer tasks by training linear layers. Only a single
linear layer is trained on top of features. Simple random horizontal flips are used. Results except
ours are taken from Koohpayegani et al. (2021). Our method can achieve competitive results with
other contrastive learning methods despite short epochs, especially that it can surpass 1000-epoch
SimCLR.

Method Epochs Food CIFAR10 SUN Cars Aircraft DTD Pets Caltech Flowers Mean

Supervised 72.30 93.60 61.90 66.70 61.00 74.90 91.50 94.50 94.70 78.90

SimCLR 1000 72.80 90.50 60.60 49.30 49.80 75.70 84.60 89.30 92.60 74.00
MoCo v2 800 72.50 92.20 59.60 50.50 53.20 74.40 84.60 90.00 90.50 74.20

BYOL 1000 75.30 91.30 62.20 67.80 60.60 75.50 90.40 94.20 96.10 79.20
BYOL-asym 200 70.20 91.50 59.00 54.00 52.10 73.40 86.20 90.40 92.10 74.30

MoCo v2 200 70.40 91.00 57.50 47.70 51.20 73.90 81.30 88.70 91.10 72.60
MSF 200 70.70 92.00 59.00 60.90 53.50 72.10 89.20 92.10 92.40 75.80

MSF-w/s 200 71.20 92.60 59.20 55.60 53.70 73.20 88.70 92.70 92.00 75.50

ACA (ours) 100 72.54 90.01 59.17 49.61 56.51 73.78 83.27 89.92 90.18 74.07

will increase. It reveals that the natural data will deviate from the center of augmentation distribution.
It is harmful to the performance of the model. With the help of projection loss, the embeddings of
natural data will be dragged back to their right position, the center. The mid and right figures illustrate
the performance curve during training. With only ACA-PC loss, the model can only achieve similar
performance during training. But the ACA-Full loss will help improve performance during training.
Also, we can see that ACA starts to outperform SimCLR and ACA-PC by a considerable margin
from about 50 epochs. This happens to be the epoch in which the projection loss increases to its
stable level. Therefore, pulling the natural data to the center of its augmentation helps to learn better
embeddings.

D TRANSFER TO OTHER DATASETS

Following Chen et al. (2020a), we evaluate the self-supervised pre-trained models for linear classifi-
cation task on 10 datasets as it is conducted in MSF paper (Koohpayegani et al., 2021). The results
are reported in Table 4. All the results other than ACA are taken from Koohpayegani et al. (2021).
Although our method is trained with fewer epochs, it achieves competitive results with contrastive
learning methods. Notably, it surpasses the 1000-epoch SimCLR which differs from our method only
in loss. It shows that the embeddings learned by our method are also transferable to other downstream
tasks. We think it is due to the universality of the correlation between augmentation similarity and
semantical similarity across these benchmarks.
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Table 5: We compare our models on the transfer task of object detction. We find that given a similar
computational budget, our method is better than SimCLR, with shorter training time. The models
are trained on the VOC trainval07+12 set and evaluated on the test07 set. We report average
over 5 runs.

Method Epochs AP50 AP AP75

Sup. IN - 81.30 53.50 58.80
Scratch - 60.20 33.80 33.10

SimCLR (Chen et al., 2020a) 200 81.80 55.50 61.40
MoCo v2 (Chen et al., 2020c) 200 82.30 57.00 63.30

BYOL (Grill et al., 2020) 200 81.40 55.30 61.10
SwAV (Caron et al., 2020) 200 81.50 55.40 61.40

SimSiam (Chen & He, 2021) 200 82.40 57.00 63.70
MSF (Koohpayegani et al., 2021) 200 82.20 56.70 63.40

MSF w/s (Koohpayegani et al., 2021) 200 82.20 56.60 63.10

ACA-Full (ours) 100 82.25 56.14 63.05

E TRANSFER TO OBJECT DETECTION

Following the procedure outlined in ?, we use Faster-RCNN Ren et al. (2015) for the task of object
detection on PASCAL-VOC Everingham et al. (2015). We use the code provided at MoCo repository4

with default parameters. All the weights are finetuned on the trainval07+12 set and evaluated
on the test07 set. We report an average over 5 runs in Table 5. Despite the shorter training epochs,
our method can achieve better results than SimCLR, especially outperform by a large margin on
AP75(> 1%).

F PROOF OF LEMMA 4.1

For convenient, we define M := Â⊤Â. The elements of M are:

Mx1x2
=
∑
x̄∈X̄

p(x1 | x̄)p(x2 | x̄)√
dx1

√
dx2

,x1,x2 ∈ X (13)

Expanding Equation (3), we get:

Lmf =
∑

x1,x2∈X
(Mx1x2

− F⊤
x1
Fx2

)2

=
∑

x1,x2∈X
(Mx1x2

−
√
dx1

√
dx2

fθ(x1)
⊤fθ(x2))

2

= const − 2
∑

x1,x2∈X

√
dx1

√
dx2Mx1x2fθ(x1)

⊤fθ(x2) +
∑

x1,x2∈X
dx1dx2(fθ(x1)

⊤fθ(x2))
2

= const − 2
∑

x1,x2∈X

∑
x̄∈X̄

p(x1 | x̄)p(x2 | x̄)fθ(x1)
⊤fθ(x2) +

∑
x1,x2∈X

dx1
dx2

(fθ(x1)
⊤fθ(x2))

2

4https://github.com/facebookresearch/moco
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multiply by p(x̄) = 1
N and replace dx with

∑
x̄ p(x | x̄) = NpA(x). The objective becomes:

min
θ

− 2
∑

x1,x2∈X

∑
x̄∈X̄

p(x1 | x̄)p(x2 | x̄)p(x̄)fθ(x1)
⊤fθ(x2)

+N
∑

x1,x2∈X
pA(x1)pA(x2)(fθ(x1)

⊤fθ(x2))
2

= −2E
x̄∼p(x̄),

xi∼A(xi|x̄)
xj∼A(xj |x̄)

[
fθ(x1)

⊤fθ(x2)
]

+NEx1∼pA(x1),x2∼pA(x2)

[
(fθ(x1)

⊤fθ(x2))
2
]

= LACA-PC

G PROOF OF THEOREM 4.2

As in Appendix F, we define M := Â⊤Â. By Eckart–Young–Mirsky theorem (Eckart & Young,
1936), the minimizer F̂ of ∥M − FF⊤∥2F , must have the form V̂ Σ̂Q, where V̂ , Σ̂ contain the top-k
singular values and corresponding right singular vectors of Â, Q ∈ Rk×k is some orthonormal matrix
with Q⊤Q = I . Since we let Fx =

√
dxfθ(x), then the minimizer θ⋆ must satisfy

fθ⋆(x) = Q
σ̂ ⊙ v̂(x)√

dx
= Q

[σ1v1(x), σ2v2(x), . . . , σkvk(x)]
⊤

√
dx

.

where ⊙ is the element-wise multiplication. For convenience, we use σi to denote i-th largest singular
value, ui(x̄),vi(x) to denote the element of i-th left/right singular value corresponding to x̄/x . When
p(x̄) = 1

N , dx = NpA(x) =
pA(x)
p(x̄) . Then the posterior distance:

d2post(x1,x2) =
∑
x̄∈X̄

(pA(x̄ | x1)− pA(x̄ | x2))
2

=
∑
x̄∈X̄

(
p(x1 | x̄)p(x̄)

pA(x1)
− p(x1 | x̄)p(x̄)

pA(x1)

)2

=
∑
x̄∈X̄

(
p(x1 | x̄)

dx1

− p(x2 | x̄)
dx2

)2

=
∑
x̄∈X̄

(
Âx̄x1√
dx1

− Âx̄x2√
dx2

)2

=
∑
x̄∈X̄

(
N∑
i=1

σiui(x̄)vi(x1)√
dx1

− σiui(x̄)vi(x2)√
dx2

)2

=
∑
x̄∈X̄

(
N∑
i=1

σiui(x̄)(
vi(x1)√

dx1

− vi(x2)√
dx2

)

)2

=
∑
x̄∈X̄

∑
i,i′

σiui(x̄)σi′ui′(x̄)(
vi(x1)√

dx1

− vi(x2)√
dx2

)(
vi′(x1)√

dx1

− vi′(x2)√
dx2

)

=
∑
i,i′

σiσi′(
vi(x1)√

dx1

− vi(x2)√
dx2

)(
vi′(x1)√

dx1

− vi′(x2)√
dx2

)
∑
x̄∈X̄

ui(x̄)ui′(x̄)

(1)
=
∑
i,i′

σiσi′(
vi(x1)√

dx1

− vi(x2)√
dx2

)(
vi′(x1)√

dx1

− vi′(x2)√
dx2

)δi,i′

=

N∑
i=1

σ2
i (
vi(x1)√

dx1

− vi(x2)√
dx2

)2

(14)
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(1) is due to the orthogonality of singular vectors. Note that:

N∑
i=1

(
vi(x1)√

dx1

− vi(x2)√
dx2

)2

=

L∑
i=1

(
vi(x1)√

dx1

− vi(x2)√
dx2

)2 −
L∑

i=N+1

(
vi(x1)√

dx1

− vi(x2)√
dx2

)2

≤
L∑

i=1

(
vi(x1)√

dx1

− vi(x2)√
dx2

)2

=

L∑
i=1

v2i (x1)

dx1

+

L∑
i=1

v2i (x2)

dx2

− 2

L∑
i=1

vi(x1)vi(x2)√
dx1

√
dx2

=
1

dx1

+
1

dx2

− 2δx1x2√
dx1

√
dx2

(2)

≤ (
1

dx1

+
1

dx2

)(1− δx1x2)

≤ 2

dmin
(1− δx1x2

)

(2) can be deduced by considering conditions whether x1 = x2 or not. Then:

∥fθ⋆(x1)− fθ⋆(x2)∥2

=

k∑
i=1

σ2
i (
vi(x1)√

dx1

− vi(x2)√
dx2

)2

=d2post(x1,x2)−
N∑
i=k

σ2
i (
vi(x1)√

dx1

− vi(x2)√
dx2

)2 (≤ d2post(x1,x2))

≥d2post(x1,x2)− σ2
k+1

N∑
i=k+1

(
vi(x1)√

dx1

− vi(x2)√
dx2

)2

≥d2post(x1,x2)− σ2
k+1

N∑
i=1

(
vi(x1)√

dx1

− vi(x2)√
dx2

)2

≥d2post(x1,x2)−
2σ2

k+1

dmin
(1− δx1x2)

Therefore, we have proved Theorem 4.2.

H PROOF OF THEOREM 4.3

similar to Appendix G,
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d2w-aug(x̄1, x̄2) =
∑
x∈X

1

NpA(x)
(p(x | x̄1)− p(x | x̄2))

2

=
∑
x∈X

(
p(x | x̄1)√
NpA(x)

− p(x | x̄1)√
NpA(x)

)2

=
∑
x∈X

(
p(x | x̄1)√

dx
− p(x | x̄1)√

dx

)2

=
∑
x∈X

(
Âx̄1x − Âx̄2x

)2

=
∑
x∈X

(
N∑
i=1

σiui(x̄1)vi(x)− σiui(x̄2)vi(x)

)2

=
∑
x∈X

(
N∑
i=1

σi(ui(x̄1)− ui(x̄2))vi(x)

)2

=
∑
x∈X

∑
i,i′

σivi(x)σi′vi′(x)(ui(x̄1)− ui(x̄2))(ui′(x̄1)− ui′(x̄2))

=
∑
i,i′

σiσi′(ui(x̄1)− ui(x2))(ui′(x̄1)− ui′(x̄2))
∑
x∈X

vi(x)vi′(x)

(1)
=
∑
i,i′

σiσi′(ui(x̄1)− ui(x̄2))(ui′(x̄1)− ui′(x̄2))δi,i′

=

N∑
i=1

σ2
i (ui(x1)− ui(x2))

2

(1) is due to the orthogonality of singular vectors. And g(x̄) takes the following form:

g(x̄) = Q
[
σ2
1u1(x), σ

2
2u2(x), . . . , σ

2
kuk(x)

]⊤
.

Thus,

∥g(x̄1)− g(x̄2)∥2Σ−2
k

=

k∑
i=1

σ2
i (ui(x1)− ui(x2))

2

= d2w-aug(x̄1, x̄2)−
N∑

i=k+1

σ2
i (ui(x1)− ui(x2))

2 (≤ d2w-aug(x̄1, x̄2))

≥ d2w-aug(x̄1, x̄2)− σ2
k+1

N∑
i=1

(ui(x1)− ui(x2))
2

= d2w-aug(x̄1, x̄2)− 2σ2
k+1(1− δx̄1x̄2)

I ABLATION STUDY ON PARAMETER α AND K

We conduct ablation experiments on the parameter α and K. α is the trade-off parameter between
ACA-PC loss and projection loss Equation (10). K act as the noise strength for ACA-PC, which
replaces N in Equation (4).

Figure 6 shows the effect of α and K on different benchmarks. It can be seen that α is necessary to
improve the performance of ACA-PC. A certain value of α helps the model to achieve better results.
However, a too large value of α degrades the performance. The same phenomenon is the same on K.
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Figure 6: Ablation studies on the effect of α and K. We report linear classification and 5-nearest
neighbor accuracy on different datasets with the ResNet-18 encoder. The upper 3 figures illustrate
the effect of α on 3 different datasets. The lower 3 figures illustrate the performance v.s. K.

J COMPARISON OF NEAREST NEIGHBORS

We randomly select 8 samples from the validation set of ImageNet-100 (Tian et al., 2020a). Then we
use the encoder learned by our ACA method and SimCLR (Chen et al., 2020a) to extract features
and investigate their nearest neighbors of them. The left-most column displays the selected samples
and the following columns show the 5 nearest neighbors. The samples labeled as different classes
are marked by the red box. We also annotate the distance between the samples and their nearest
neighbors. First, we can see that even though utilizing the augmentation in a different way, ACA
achieves similar results as traditional contrastive learning. Both of them can learn semantically
meaningful embeddings. However, we can see that ACA tends to learn embeddings that pull
together images that are similar in the input space, i.e., creating similar augmentation, while SimCLR
sometimes has neighbors that seem different.
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Figure 7: The 5 nearest neighbors of selected samples in the embedding space of ACA and SimCLR.
The images were taken from the ImageNet-100 validation set. Distances between selected samples
and their nearest neighbors are annotated above each picture. We can see that the embeddings
learned by ACA tend to pull together images that are similar in the input space, i.e., creating similar
augmentation. While SimCLR sometimes has neighbors that seem different.
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