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ABSTRACT

We present a new generative autoencoder model with dual contradistinctive losses
to improve generative autoencoder that performs simultaneous inference (recon-
struction) and synthesis (generation). We name our model dual contradistinctive
generative autoencoder (DC-VAE) that integrates an instance-level discriminative
loss (maintaining the instance-level fidelity for the reconstruction/synthesis) with
a set-level adversarial loss (encouraging the set-level fidelity for the reconstruc-
tion/synthesis), both being contradistinctive. There also exists a mathematical
connection between the instance-based classification and instance-level conditional
distribution. DC-VAE achieves competitive results in three tasks, including image
synthesis, image reconstruction, and representation learning. DC-VAE is applicable
to various tasks in computer vision and machine learning.

(a) DC-VAE (ours) Reconstruction results. Left: 128× 128. Right: 512× 512.

(b) DC-VAE (ours) Sampling results. Left: 128× 128. Right: 512× 512.
Figure 1: DC-VAE Reconstruction (top) and Sampling (bottom) on LSUN Bedroom Yu et al. (2015)
at resolution 128× 128 (left) and CelebA-HQ (Karras et al., 2018) at resolution 512× 512 (right).

1 INTRODUCTION

Tremendous progress has been made in deep learning for the development of various learning
frameworks (Krizhevsky et al., 2012; He et al., 2016; Goodfellow et al., 2014; Vaswani et al., 2017).
Autoencoder (AE) (LeCun, 1987; Hinton & Zemel, 1994) aims to compactly represent and faithfully
reproduce the original input signal by concatenating an encoder and a decoder in an end-to-end
learning framework. The goal of AE is to make the encoded representation semantically efficient
and sufficient to reproduce the input signal by its decoder. Autoencoder’s generative companion,
variational autoencoder (VAE) (Kingma & Welling, 2014), additionally learns a variational model for
the latent variables to capture the underlying sample distribution. For the encoder and decoder models
separately, tremendous progress has been made in image classification with deep convolutional neural
network (CNN) (Krizhevsky et al., 2012; He et al., 2016) (an encoder) and in image generation with
generative adversarial network (GAN) (Goodfellow et al., 2014) (a decoder).
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The key objective for a generative autoencoder is to maintain two types of fidelities: (1) an instance-
level fidelity to make the reconstruction/synthesis faithful to the individual input data sample, and (2)
a set-level fidelity to make the reconstruction/synthesis of the decoder faithful to the entire input data
set. The VAE/GAN algorithm (Larsen et al., 2016) combines a reconstruction loss with an adversarial
loss. However, the result of VAE/GAN is sub-optimal, as shown in Table 1.

The pixel-wise reconstruction loss in the standard VAE (Kingma & Welling, 2014) typically results
in blurry images with degenerated semantics. A possible solution to resolving the above conflict
lies in two aspects: (1) turning the measure in the pixel space into induced feature space that is
more semantically meaningful; (2) changing the L2 distance (per-pixel) into a learned instance-level
distance function for the entire image (akin to generative adversarial networks which learn set-level
distance functions). Taking these two steps allows us to design an instance-level classification loss that
is aligned with the adversarial loss in the GAN model enforcing set-level fidelity. Motivated by the
above observations, we develop a new generative autoencoder model with dual contradistinctive losses
by adopting a discriminative loss performing instance-level classification (enforcing the instance-level
fidelity), which is rooted in metric learning (Kulis et al., 2012) and contrastive learning (Hadsell
et al., 2006; Wu et al., 2018; van den Oord et al., 2018). Combined with the adversarial losses for the
set-level fidelity, both terms are formulated in the induced feature space performing contradistinction:
(1) the instance-level contrastive loss considers each input instance (image) itself as a class, and (2)
the set-level adversarial loss treats the entire input set as a positive class. We name our method dual
contradistinctive generative autoencoder (DC-VAE) and make the following contributions.

• We develop a new algorithm, dual contradistinctive generative autoencoder (DC-VAE), by com-
bining instance-level and set-level classification losses in the VAE framework, and systematically
show the significance of these two loss terms in DC-VAE.

• The effectiveness of DC-VAE is illustrated in three tasks altogether, including image synthesis,
image reconstruction, and representation learning.

2 RELATED WORK

Related work can be roughly divided into three categories: (1) generative autoencoder, (2) deep
generative model, and (3) contrastive learning.

Variational autoencoder (VAE) (Kingma & Welling, 2014) points to an exciting direction of generative
models by developing an Evidence Lower BOund (ELBO) objective (Higgins et al., 2017; Ding et al.,
2020). However, the VAE reconstruction/synthesis is known to be blurry. To improve the image
quality, a sequence of VAE based models have been developed (Larsen et al., 2016; Dumoulin et al.,
2017; Huang et al., 2018; Brock et al., 2018; Zhang et al., 2019). VAE/GAN (Larsen et al., 2016)
adopts an adversarial loss to improve the quality of the image, but its output for both reconstruction
and synthesis (new samples) is still unsatisfactory. IntroVAE Huang et al. (2018) adds a loop from
the output back to the input and is able to attain image quality that is on par with some modern GANs
in some aspects. However, its full illustration for both reconstruction and synthesis is unclear. PGA
(Zhang et al., 2019) adds a constraint to the latent variables.

Pioneering works of (Tu, 2007; Gutmann & Hyvärinen, 2012) alleviate the difficulty of learning
densities by approximating likelihoods via classification (real (positive) samples vs. fake (pseudo-
negative or adversarial) samples). Generative adversarial network (GAN) (Goodfellow et al., 2014)
builds on neural networks and amortized sampling (a decoder network that maps a noise into an
image). The subsequent development after GAN (Radford et al., 2016; Arjovsky et al., 2017;
Gulrajani et al., 2017; Karras et al., 2018; Gong et al., 2019; Dumoulin et al., 2017; Donahue et al.,
2017) has led to a great leap forward in building decoder-based generative models. It has been widely
observed that the adversarial loss in GANs contributes significantly to the improved quality of image
synthesis. Energy-based generative models (Salakhutdinov & Hinton, 2009; Xie et al., 2016; Jin
et al., 2017; Lee et al., 2018) — which aim to directly model data density — are making a steady
improvement for a simultaneously generative and discriminative single model.

From another angle, contrastive learning (Hadsell et al., 2006; Wu et al., 2018; He et al., 2020; Chen
et al., 2020) has lately shown its particular advantage in unsupervised training of CNN features.
It overcomes the limitation in unsupervised learning where class label is missing by turning each
image instance into one class. Thus, the softmax function in the standard discriminative classification
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training can be applied. Contrastive learning can be connected to metric learning (Bromley et al.,
1993; Chopra et al., 2005; Chechik et al., 2010).

In this paper, we aim to improve VAE (Kingma & Welling, 2014) by introducing a contrastive loss
(van den Oord et al., 2018) to address instance-level fidelity between the input and the reconstruction
in the induced feature space. Unlike in self-supervised representation learning methods (van den
Oord et al., 2018; He et al., 2020; Chen et al., 2020), where self-supervision requires generating
a transformed input (via data augmentation operations), the reconstruction naturally fits into the
contrastive term that encourages the matching between the reconstruction and the input image
instance, while pushing the reconstruction away from the rest of the images in the entire training set.
Thus, the instance-level and set-level contradistinctive terms collaborate with each to encourage the
high fidelity of the reconstruction and synthesis. In Figure 3, we systematically show the significance
of with and without the instance-level and the set-level contradistinctive terms. In addition, we explore
multi-scale contrastive learning via two schemes in Section 4.1: 1) deep supervision for contrastive
learning in different convolution layers, and 2) patch-based contrastive learning for fine-grained data
fidelity. In the experiments, we show competitive results for the proposed dual contradistinctive
generative autoencoder (DC-VAE) in a number of benchmarks for three tasks, including image
synthesis, image reconstruction, and representation learning.

3 PRELIMINARIES: VAE AND VAE/GAN

Variational autoencoder (VAE) Assume a given training set S = {xi}ni=1 where each xi ∈ Rm.
We suppose that each xi is sampled from a generative process p(x|z). In the literature, vector
z refers to latent variables. In practice, latent variables z and the generative process p(x|z) are
unknown. The objectives of a variational autoencoder (VAE) (Kingma & Welling, 2014) is to
simultaneously train an inference network qφ(z|x) and a generator network pθ(x|z). In VAE
(Kingma & Welling, 2014), the inference network is a neural network that outputs parameters for
Gaussian distribution qφ(z|x) = N (µφ(x),Σφ(x)). The generator is a deterministic neural network
fθ(z) parameterized by θ. Generative density pθ(x|z) is assumed to be subject to a Gaussian
distribution: pθ(x|z) = N (fθ(z), σ2I). These models can be trained by minimizing the negative of
evidence lower bound (ELBO) in Eq. (1) below.

LELBO(θ,φ;x) = −Ez∼qφ(z|x)[log(pθ(x|z))] +KL[qφ(z|x)||p(z)] (1)

where p(z) is the prior, which is assumed to be N (0, I). The first term −Eqφ(z|x)[log(pθ(x|z))]

reduces to standard pixel-wise reconstruction loss Eqφ(z|x)[||x− fθ(z)||22] (up to a constant) due to
the Gaussian assumption. The second term is the regularization term, which prevents the conditional
qφ(z|x) from deviating from the Gaussian prior N (0, I). The inference network and generator
network are jointly optimized over training samples by:

min
θ,φ

E
x∼pdata(x)

LELBO(θ,φ;x). (2)

where pdata is the distribution induced by the training set S.

VAE has an elegant formulation. However, it relies on a pixel-wise reconstruction loss, which is
known not ideal to be reflective of perceptual realism (Johnson et al., 2016; Isola et al., 2017), often
resulting in blurry images. From another viewpoint, it can be thought of as using a kernel density
estimator (with an isotropic Gaussian kernel) in the pixel space. Although allowing efficient training
and inference, such a non-parametric approach is overly simplistic for modeling the semantics and
perception of natural images.

VAE/GAN Generative adversarial networks (GANs) (Goodfellow et al., 2014) and its variants
(Radford et al., 2016), on the other hand, are shown to be producing highly realistic images. The
success was largely attributed to learning a fidelity function (often referred to as a discriminator)
that measures how realistic the generated images are. This can be achieved by learning to contrast
(classify) the set of training images with the set of generated images (Tu, 2007; Gutmann & Hyvärinen,
2012; Goodfellow et al., 2014).

VAE/GAN (Larsen et al., 2016) augments the ELBO objective (Eq. (2)) with the GAN objective.
Specifically, the objective of VAE/GAN consists of two terms, namely the modified ELBO (Eq. (3))
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and the GAN objective. To make the notations later consistent, we now define the set of given training
images as S = {xi}ni=1 in which a total number of n unlabeled training images are present. For
each input image xi, the modified ELBO computes the reconstruction loss in the feature space of the
discriminator instead of the pixel space:

LELBO(θ,φ, D;xi) = Ez∼qφ(z|xi)[||FD(xi)− FD(fθ(z))||22] +KL[qφ(z|xi)||p(z)] (3)

where FD(·) denotes the feature embedding from the discriminator D. Feature reconstruction loss
(also referred to as perceptual loss), similar to that in style transfer (Johnson et al., 2016). The modified
GAN objective considers both reconstructed images (latent code from qφ(z|x)) and sampled images
(latent code from the prior p(z)) as its fake samples:

LGAN(θ,φ, D;xi) = logD(xi)+Ez∼qφ(z|xi) log(1−D(fθ(z))+Ez∼p(z) log(1−D(fθ(z)). (4)

The VAE/GAN objective becomes:

min
θ,φ

max
D

n∑
i=1

[LELBO(θ,φ, D;xi) + LGAN(θ,φ, D;xi)] . (5)

4 DUAL CONTRADISTINCTIVE GENERATIVE AUTOENCODER (DC-VAE)

Here we want to address a question: Is the degeneration of the synthesized images by VAE always
the case once the decoder is joined with an encoder? Can the problem be remedied by using a more
informative loss?

Although improving the image qualities of VAE by integrating a set-level contrastive loss (GAN
objective of Eq. (4)), VAE/GAN still does not accurately model instance-level fidelity. Inspired by
the literature on instance-level classification (Malisiewicz et al., 2011), approximating likelihood by
classification (Tu, 2007), and contrastive learning (Hadsell et al., 2006; Wu et al., 2018; He et al.,
2020), we propose to model instance-level fidelity by contrastive loss (commonly referred to as
InfoNCE loss) (van den Oord et al., 2018). In DC-VAE, we perform the following minimization and
loosely call each term a loss.

Linstance(θ,φ, D; i, {xj}nj=1) , −Ez∼qφ(z|xi)

[
log

eh(xi,fθ(z))∑n
j=1 e

h(xj ,fθ(z))

]
, (6)

where i is an index for a training sample (instance), {xj}nj=1 is the union of positive samples
and negative samples, h(x,y) is the critic function that measures compatibility between x and y.
Following the popular choice from (He et al., 2020), h(x,y) is the cosine similarity between the
embeddings of x and y: h(x,y) = FD(x)>FD(y)

||FD(x)||2||FD(y)||2 . Note that unlike in contrastive self-supervised
learning methods (van den Oord et al., 2018; He et al., 2020; Chen et al., 2020) where two views
(independent augmentations) of an instance constitutes a positive pair, an input instance xi and its
reconstruction fθ(z) comprises a positive pair in DC-VAE. Likewise, the reconstruction fθ(z) and
any instance that is not xi can be a negative pair.

To bridge the gap between the instance-level contrastive loss (Eq. (6)) and log-likelihood in ELBO
term (Eq. (1)), we show the following observation.

Theorem 1 (From (Ma & Collins, 2018; Poole et al., 2019)) The following objective is minimized,
i.e., the optimal critic h is achieved, when h(fθ(z),x) = log p(x|z) + c(x) where c(x) is any
function that does not depend on z.

INCE , Ex1,···xK
Ei[Linstance(θ,φ, D; i, {xj}nj=1)]. (7)

From Theorem 1, we see that the contrastive loss of Eq. (6) implicitly estimates the log-likelihood
log pθ(x|z) required for the evidence lower bound (ELBO). Hence, we modify the ELBO objective
of Eq. (1) as follows and name it as implicit ELBO (IELBO):

LIELBO(θ,φ, D;xi) = Linstance(θ,φ, D; i, {xj}nj=1) +KL[qφ(z|xi)||p(z)]. (8)
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Figure 2: Model architecture for the proposed DC-VAE algorithm.

Finally, the combined objective for the proposed DC-VAE algorithm becomes:

min
θ,φ

max
D

n∑
i=1

[LIELBO(θ,φ, D;xi) + LGAN(θ,φ, D;xi)] . (9)

The definition of LGAN follows Eq. (4). Note here we also consider the term in Eq. (4) as contrasdis-
tinctive since it tries to minimize the difference/discriminative classification between the input (“real”)
image set and the reconstructed/generated (“fake”) image set. Below we highlight the significance of
the two contradistinctive terms. Figure 2 shows the model architecture.

• Instance-level fidelity. The first item in Eq. (8) is an instance-level fidelity term encouraging the
reconstruction to be as close as possible to the input image while being different from all the rest of
the images. A key advantage of the contrastive loss in Eq. (8) over the standard reconstruction loss
in Eq. (3) is its relaxed and background instances aware formulation. In general, the reconstruction
in Eq. (3) wants a perfect match between the reconstruction and the input, whereas the contrastive
loss in Eq. (8) requests for being the most similar one among the training samples. This way, the
contrastive loss becomes more cooperative with less conflict to the GAN loss, compared with the
reconstruction loss. The introduction of the contrastive loss results in a significant improvement
over VAE and VAE/GAN in which only matching the reconstruction, and the input instance is
enforced.

• Set-level fidelity. The second item in Eq. (9) is a set-level fidelity term encouraging the entire
set of synthesized images to be non distinguishable from the input image set. Having this term
(Eq. (4)) is still important since the instance contrastive loss alone (Eq. (9)) will also lead to a
degenerated situation: the input image and its reconstruction can be projected to the same point in
the new feature space, but without a guarantee that the reconstruction itself lies on the valid “real”
image manifold.

As shown in Figure 3 and Table 1 for the comparison with and without the individual terms in Eq.
(9). We observe evident effectiveness of the proposed DC-VAE combining both the instance-level
fidelity term (Eq. (6)) and the set-level fidelity term (Eq. (4)), compared with VAE (using pixel-wise
reconstruction loss without the GAN objective), VAE-GAN (using feature reconstruction loss and the
GAN objective), and VAE contrastive (using contrastive loss but without the GAN objective).

In the experiments, we show that both terms required to achieve faithful reconstruction (captured by
InfoNCE loss) with perceptual realism (captured by the GAN loss).

4.1 MULTI SCALE CONTRASTIVE LEARNING

Inspired by (Lee et al., 2015), we utilize information from feature maps at different scales. In addition
to contrasting on the last layer of D in Equation 9, we add contrastive objective on fl(z) where fl is
some function on top of an intermediate layer l of D. We do it in two different ways.
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1. Deep supervision: We use 1×1 convolution to reduce the dimension channel-wise, and use
a linear layer to obtain fl.

2. Local patch: We use a random location across channel at layer l (size: 1×1×d, where d is
the channel depth).

The intuition for the second is that in a convolutional neural network, one location at a feature map
corresponds to a receptive area (patch) in the original image. Thus, by contrasting locations across
channels in the same feature maps, we are encouraging the original image and the reconstruction to
image have locally similar content, while encouraging them to have locally dissimilar content in other
images. We use deep supervision for initial training, and add local patch after certain iterations.

5 EXPERIMENTS

Input

VAE

VAE/GAN

DC-VAE 
(ours)

(a) CIFAR-10 Reconstruction (b) CIFAR-10 Samples

Contrastive 
w/o GAN

Figure 3: Qualitative results of CIFAR-10 (Krizhevsky et al., 2009) images (resolution 32×32) for experiments
in Table 1 (Krizhevsky et al., 2009).

5.1 IMPLEMENTATION

Datasets To validate our method, we train our method on several different datasets — CIFAR-10
(Krizhevsky et al., 2009), STL-10 (Coates et al., 2011), CelebA (Liu et al., 2015), CelebA-HQ (Karras
et al., 2018), and LSUN bedroom (Yu et al., 2015). See the appendix for more detailed descriptions.

Network architecture For 32× 32 resolution, we design the encoder and decoder subnetworks of
our model in a similar way to the discriminator and generator found through neural architecture
search in AutoGAN (Gong et al., 2019). For the higher resolution experiments (128 × 128 and
512 × 512 resolution), we use Progressive GAN (Karras et al., 2018) as the backbone. Network
architecture diagram is available in the appendix.

Training details The number of negative samples for contrastive learning is 8096 for all datasets. The
latent dimension for the VAE decoder is 128 for CIFAR-10, STL-10, and 512 for CelebA, CelebA-HQ
and LSUN Bedroom. Learning rate is 0.0002 with Adam parameters of (β1, β2) = (0.0, 0.9) and a
batch size of 128 for CIFAR-10 and STL-10. For CelebA, CelebA-HQ, LSUN Bedroom datasets, we
use the optimizer parameters given in (Karras et al., 2018). The contrastive embedding dimension
used is 16 for each of the experiments.

5.2 ABLATION STUDY

Table 1: Ablation studies on CIFAR-10 for the proposed DC-VAE algorithm. We follow (Johnson et al.,
2016) and measure perceptual distance in an relu4_3 layer of a pretrained VGG network. ↓ means lower is better.
↑ means higher is better.

Method FID↓/IS↑
Sampling

FID↓/IS↑
Reconstruction

Pixel↓
Distance

Perceptual↓
Distance

VAE 115.8 / 3.8 108.4 / 4.3 21.8 65.8
VAE/GAN 39.8 / 7.4 29.0 / 7.6 62.7 57.2
VAE-Contrastive 240.4 / 1.8 242 / 1.9 53.6 104.2
DC-VAE 17.9 / 8.2 21.4 / 7.9 45.9 52.9

To demonstrate the necessity of the GAN loss (Eq. 4) and contrastive loss (Eq. 8), we conduct
four experiments with the same backbone. These experiments are: VAE (No GAN, no Contrastive),
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VAE/GAN (with GAN, no Contrastive), VAE-Contrastive (No GAN, with Contrastive, and ours
(With GAN, with Contrastive). Here, GAN denotes Eq. 4, and Contrastive denotes Eq. 8.

Qualitative analysis From Figure 3, we see that without GAN and contrastive, images are blurry;
Without GAN, the contrastive head can classify images, but not on the image manifold; Without
Contrastive, reconstruction images are on the image manifold because of the discriminator, but
they are different from input images. These experiments show that it is necessary to combine both
instance-level and set-level fidelity, and in a contradistinctive manner.

Quantitative analysis In Table 1 we observe the same trend. VAE generates blurry images; thus
the FID/IS (Inception Score) is not ideal. VAE-Contrastive does not generate images on the natural
manifold; thus FID/IS is poor. VAE/GAN combines set-level and instance-level information. However
the L2 objective is not ideal; thus the FID/IS is sub-optimal. For both reconstruction and sampling
tasks, DC-VAE generates high fidelity images and has a favorable FID and Inception score. This
illustrates the advantange of having a contradistinctive objective on both set level and instance level.
To measure the faithfulness of the reconstructed image we compute the pixelwise L2 distance and the
perceptual distance (Johnson et al. (2016)). For the pixel distance, VAE has the lowest value because
it directly optimizes this distance during training; our pixel-wise distance is better than VAE/GAN
and VAE-Contrastive. For perceptual distance, our method outperforms other three, which confirms
that using contrastive learning helps reconstruct images semantically.

Table 2: Comparison on CIFAR-10 and STL-10. Average Inception scores (Salimans et al., 2016) and FID
scores (Heusel et al., 2017). Results derived from (Gong et al., 2019). Table style derived from (Lee et al., 2019).
†Result from Aneja et al. (2020). ∗Result from (Dieng et al., 2019).

CIFAR-10 STL-10

Method Inception Score↑ FID↓ Inception Score↑ FID↓
Methods based on GAN:
DCGAN (Radford et al., 2016) 6.6 - - -
ProbGAN (He et al., 2019) 7.8 24.6 8.9 46.7
WGAN-GP ResNet (Gulrajani et al., 2017) 7.9 - - -
RaGAN (Jolicoeur-Martineau, 2018) - 23.5 - -
SN-GAN (Miyato et al., 2018) 8.2 21.7 9.1 40.1
MGAN (Hoang et al., 2018) 8.3 26.7 - -
Progressive GAN (Karras et al., 2018) 8.8 - - -
Improving MMD GAN (Wang et al., 2019) 8.3 16.2 9.3 37.6
PULSGAN (Guo et al., 2020) - 22.3 - -
AutoGAN (Gong et al., 2019) 8.6 12.4 9.2 31.0
Methods based on VAE:
VAE 3.8 115.8 - -
VAE/GAN 7.4 39.8 - -
VEEGAN∗ (Srivastava et al., 2017) - 95.2 - -
WAE-GAN (Tolstikhin et al., 2017) - 93.1 - -
NVAE† (Vahdat & Kautz, 2020) Sampling - 50.8 - -
NVAE† (Vahdat & Kautz, 2020) Reconstruction - 2.67 - -
DC-VAE Sampling (ours) 8.2 17.9 8.1 41.9
DC-VAE Reconstruction (ours) 7.9 21.4 8.4 43.6

5.3 COMPARISON TO EXISTING GENERATIVE MODELS

Table 2 gives a comparison of quantitative measurement for CIFAR-10 and STL-10 dataset. In
general, there is a large difference in terms of FID and IS between GAN family and VAE family of
models. Our model has state-of-the-art results in VAE family, and is comparable to state-of-the-art
GAN models on CIFAR-10. Similarly Table 4 shows that DC-VAE is able to generate images that
are comparable to GAN based methods even on higher resolution datasets.

5.4 LATENT SPACE REPRESENTATION: IMAGE AND STYLE INTERPOLATION

We further validate the effectiveness of DC-VAE for representation learning. One benefit of having
an AE/VAE framework compared with just a decoder as in GAN Goodfellow et al. (2014) is to be
able to directly obtain the latent representation from the input images. The encoder and decoder
modules in VAE allows us to readily perform image/style interpolation by mixing the latent variables
of different images and reconstruct/synthesize new ones. We demonstrate qualitative results on
image interpolation (Fig. 5, Appendix Fig. 9), style interpolation (Appendix Fig. 10) and image
editing (Fig. 6). We directly use the trained DC-VAE model without disentanglement learning Karras
et al. (2019). Additional latent space analysis and the method used for interpolation and editing is
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(a) Input Image (1024× 1024)

(b) IntroVAE Reconstruction (1024× 1024)

(c) DC-VAE Reconstruction (ours, 512× 512)
Figure 4: Comparison of DC-VAE (resolution 512 × 512) with IntroVAE (Huang et al., 2018) (resolution
1024× 1024).

Table 3: Quality of image generation (FID) com-
parison on LSUN Bedrooms. †128×128 resolution.
¶256×256 resolution. ↓ means lower is better.
Method FID↓

Progressive GAN‡ (Karras et al., 2018) 8.3
SNGAN† (Miyato et al., 2018) (from (Chen et al., 2019)) 16.0
SSGAN†(Chen et al., 2019) 13.3
StyleALAE¶ (Pidhorskyi et al., 2020) Reconstruction 15.92
StyleALAE¶ (Pidhorskyi et al., 2020) Sampling 17.13
DC-VAE† (ours) Reconstruction 10.57
DC-VAE† (ours) Sampling 14.3

Table 4: FID on CelebA. ∗64×64 resolution.
Method FID↓
Methods based on GAN:
PresGAN∗ (Dieng et al., 2019) 29.1
LSGAN (Mao et al., 2017) (from (Hoshen et al., 2019)) 53.9
COCO-GAN † (Lin et al., 2019) 5.7
PGAN† (Karras et al., 2018) (from (Lin et al., 2019)) 7.30
Methods based on VAE:
VEE-GAN† (Srivastava et al., 2017) (from (Dieng et al., 2019)) 46.2
WAE-GAN∗ (Tolstikhin et al., 2017) 42
DC-VAE† (ours) Reconstruction 14.3
DC-VAE† (ours) Sampling 19.9

provided in the Appendix. We also quantitatively compare the latent space disentanglement through
the perceptual path length (PPL) (Karras et al., 2019) (Table 6). We observe that DC-VAE learns
a more disentangled latent space representation than the backbone Progressive GAN (Karras et al.,
2018) and StyleALAE (Pidhorskyi et al., 2020) that uses a much more capable StyleGAN (Karras
et al., 2019) backbone.

Figure 5: Interpolation results generated by DC-VAE (ours) on CelebA-HQ (Karras et al., 2018) images
(512× 512, left) and LSUN Bedroom Yu et al. (2015) images (128× 128, right). More images can be seen in
Appendix Figure 9. (Zoom in for a better visualization.)

5.5 LATENT SPACE REPRESENTATION: CLSSIFICATION

To show that our model learns a good representation, we measure the performance on the downstream
MNIST classification task (Ding et al., 2020). The VAE models were trained on MNIST dataset
(LeCun, 1998). We feed input images into our VAE encoder and get the latent representation. Then we
train a linear classifier on the latent representation to classify the classes of the input images. Results
in Table 5 show that our model gives the lowest classification error in most cases. This experiment
demonstrates that our model not only gains the ability to do faithful synthesis and reconstruction, but
also gains better representation ability on the VAE side.
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Figure 6: Image editing on CelebA-HQ (Karras et al., 2018) validation set images (resolution 512× 512). The
method used to generate these is outlined in Appendix A.2.

Table 5: Comparison to prior VAE-based representation learning methods. Classification error on MNIST
dataset. ↓: lower is better. 95 % confidence intervals are from 5 trials. Results derived from (Ding et al., 2020).

Method dz = 16 ↓ dz = 32 ↓ dz = 64 ↓
VAE (Kingma & Welling, 2014) 2.92%±0.12 3.05%±0.42 2.98%±0.14
β-VAE(β=2) (Higgins et al., 2017) 4.69%±0.18 5.26%±0.22 5.40%±0.33
FactorVAE(γ=5) (Kim & Mnih, 2018) 6.07%±0.05 6.18%±0.20 6.35%±0.48
β-TCVAE (α=1,β=5,γ=1) (Chen et al., 2018) 1.62%±0.07 1.24%±0.05 1.32%±0.09
Guided-VAE (Ding et al., 2020) 1.85%±0.08 1.60%±0.08 1.49%±0.06
Guided-β-TCVAE (Ding et al., 2020) 1.47%±0.12 1.10%±0.03 1.31%±0.06
DC-VAE (Ours) 1.30%±0.035 1.27%±0.037 1.29%±0.034

Method Backbone PPL Full↓
StyleALAE (Pidhorskyi et al., 2020) StyleGAN 33.29
Progressive GAN (Karras et al., 2018) Progressive GAN 40.71
DC-VAE (ours) Progressive GAN 24.66

Table 6: PPL Comparison of on CelebA-HQ Karras et al. (2018)

6 CONCLUSION

In this paper, we have proposed dual contradistinctive generative autoencoder (DC-VAE), a new
framework that integrates an instance-level discriminative loss (InfoNCE) with a set-level adversarial
loss (GAN) into a single variational autoencoder framework. Our experiments show competitive
results for a single model in several tasks, including image synthesis, image reconstruction, represen-
tation learning for image interpolation, and representation learning for classification. DC-VAE points
to a encouraging direction that attains high-quality synthesis (decoding) and inference (encoding).
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A APPENDIX

A.1 Additional reconstruction results

Figure 7: Additional CelebA-HQ (Karras et al., 2018) reconstruction images (resolution 512× 512)
generated by DC-VAE (ours)
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Figure 8: Additional LSUN Bedroom (Yu et al., 2015) reconstruction images (resolution 128× 128)

A.2 Analysing the latent space

In this section we analyse the smoothness of the latent space learnt by DC-VAE. In Figure 9 we
qualitatively show the high resolution (512× 512) CelebA-HQ Karras et al. (2018) images generated
by an evenly spaced linear blending between two latent vectors. In Fig. 6 we show that DC-VAE
is able to perform meaningful attribute editing on images while retaining the original identity. To
perform image editing, we first need to compute the direction vector in the latent space that correspond
to a desired attribute (e.g. has glasses, has blonde hair, is a woman, has facial hair). We compute
these attribute direction vectors by selecting 20 images that have the attribute and 20 images that
do not have the attribute, obtaining the corresponding pairs of 20 latent vectors, and calculating the
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difference of the mean. The results in Fig. 6 show that these direction vectors can be added to a latent
vector to add a diverse combination of desired image attributes while retaining the original identity of
the individual.

Additionally we corroborate the above qualitative results quantitatively by inspecting the Perceptual
Path Length (PPL) Karras et al. (2019) of our learn DC-VAE Decoder (Tab. 6) to measures the
disentanglement of the latent space. We note that although ProgressiveGAN (ours base model) has a
better FID score, DC-VAE has a lower PPL score which indicated that the latent space learnt is more
disentangled.
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Figure 9: Additional latent space interpolations on CelebA-HQ (Karras et al., 2018) (resolution
512× 512)
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Figure 10: Latent Mixing results on CelebA-HQ Karras et al. (2018). Each combined image in the
grid is generated by replacing an arbitrary subset of Source A latent with the corresponding Source B
latent.

A.3 Effect of negative samples

In this section we analyse the effect of varying the number of negative samples used for contrastive
learning. The figure 11 shows the reconstruction error on the CIFAR-10 Krizhevsky et al. (2009) test
set as the negative samples is varied. We observe that a higher number of negative samples results in
better reconstruction. We choose 8096 for all of our experiments because of memory constraints.

A.4 Datasets used

CIFAR-10 comprises 50,000 training images and 10,000 test images with a spatial resolution of
32 × 32. STL-10 is a similar dataset that contains 5,000 training images and 100,000 unlabeled
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Figure 11: Pixel reconstruction error on CIFAR-10 Krizhevsky et al. (2009) test set for varying
number of negative samples

images at 96× 96 resolution. We follow the procedure in AutoGAN(Gong et al., 2019) and resize
the STL-10 images to 32× 32. The CelebA dataset has 162,770 training images and 19,962 testing
images, CelebA-HQ contains 29,000 training images with 1,000 test images of size 1024 × 1024,
and LSUN Bedroom has approximately 3M images. We resize all images progressively in these three
datasets from (4× 4) to (512× 512) for the progressive training.

A.5 Network architecture diagrams

In Figures 15 we show the detailed network architecture of DC-VAE for input resolutions of 32× 32.
Note that the comparison results shown in Figure 3 and Table 1 in the main paper, for VAE, VAE/GAN,
VAE w/o GAN, and our proposed DC-VAE are all based on the same network architecture (shown in
Figure 15 here), for a fair comparison.

The network architectures shown in Figure 15 are adapted closely from the networks discovered by
(Gong et al., 2019) through Neural Architecture Search. The DC-VAE developed in our paper is not
tied to any particular CNN architecture. We choose the AutoGAN architecture (Gong et al., 2019) to
start with a strong baseline. The decoder in Figure 15 matches the generator in (Gong et al., 2019).
The encoder is built by modifying the output shape of the final linear layer in the discriminator of
AutoGAN (Gong et al., 2019) to match the latent dimension and adding spectral normalization. The
discriminator is used both for classifying real/fake images, and contrastive learning. For each layer
we choose, we first apply 1x1 convolution and a linear layer, and then use this feature as an input to
the contrastive module. For experiments at 32× 32, we pick two different positions: the output of
second residual conv block (lower level) and the output of the first linear layer (higher level). For
experiments on higher resolution datasets we use a Progressive GAN (Karras et al., 2018) Generator
and Discriminator as our backbone and apply similar modifications as described above.

A.6 Training infrastructure

A.7 Further details about the representation learning experiments

As seen in Table 4 in the main paper, we show the representation capability of DC-VAE following
the procedure outlined in (Ding et al., 2020). We train our model on the MNIST dataset (LeCun,
1998) and measure the transferability though a classification task on the latent embedding vector.
Specifically, we first pretrain the DC-VAE model on the training split of the MNIST dataset. Following
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that we freeze the DC-VAE model and train a linear classifier that takes latent embedding vector as
the input and predicts the class label of the original image.
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Figure 12: Visualization of the effect of adding each instance level and set level objectives. Table 1
and Figure 3 contain FID (Heusel et al., 2017) results and qualitative comparisons on the CIFAR-10
(Krizhevsky et al., 2009) that correspond to these settings.
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Figure 13: DC-VAE synthesis images on LSUN images (Yu et al., 2015) (resolution 128× 128)
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(a) STL10 Reconstructions generated by DC-VAE (b) STL10 Samples generated by DC-VAE

Figure 14: DC-VAE reconstruction (a) and synthesis results (b) on STL10 (Coates et al., 2011)
images (resolution 32× 32). In (a) the top two rows are input images and the bottom two rows are
the corresponding reconstruction images.
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Figure 15: Network architecture of DC-VAE for resolution 32 × 32 for CIFAR-10 (Krizhevsky
et al., 2009) and STL-10 (Coates et al., 2011). (a) is the Encoder. (b) is the Decoder. (c) is the
Discriminator.
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