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Abstract

Vertical federated learning (VFL) is a privacy-preserving machine learning
paradigm that can learn models from features distributed on different platforms in
a privacy-preserving way. Since in real-world applications the data may contain
bias on fairness-sensitive features (e.g., gender), VFL models may inherit bias
from training data and become unfair for some user groups. However, existing
fair machine learning methods usually rely on the centralized storage of fairness-
sensitive features to achieve model fairness, which are usually inapplicable in
federated scenarios. In this paper, we propose a fair vertical federated learning
framework (FairVFL), which can improve the fairness of VFL models. The core
idea of FairVFL is to learn unified and fair representations of samples based on the
decentralized feature fields in a privacy-preserving way. Specifically, each platform
with fairness-insensitive features first learns local data representations from local
features. Then, these local representations are uploaded to a server and aggregated
into a unified representation for the target task. In order to learn a fair unified repre-
sentation, we send it to each platform storing fairness-sensitive features and apply
adversarial learning to remove bias from the unified representation inherited from
the biased data. Moreover, for protecting user privacy, we further propose a con-
trastive adversarial learning method to remove private information from the unified
representation in server before sending it to the platforms keeping fairness-sensitive
features. Experiments on three real-world datasets validate that our method can
effectively improve model fairness with user privacy well-protected.

1 INTRODUCTION

In recent years, the explosion of data volume has enhanced the performance of machine learning (ML)
models on many tasks, e.g., personalized recommendation and search [41, 50, 2]. In many real-world
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scenarios, feature fields of the same sample may be decentralized on different platforms [48, 29]. For
instance, video watching behaviors and search engine behaviors of the same user usually spread across
different platforms [42]. To learn models from various input features, existing machine learning
methods usually rely on centralized storage of different feature fields [31, 21]. However, the data on
different platforms is usually privacy-sensitive, and cannot be centralized due to privacy concerns and
risks [47, 36]. Thus, vertical federated learning (VFL), which can utilize decentralized features for
unified model learning in a privacy-preserving way, has become more and more important [53, 9, 7].

Existing VFL methods usually communicate intermediate results instead of raw data across platforms
to enable models utilizing decentralized feature fields [53, 9]. For example, Yang et al. [49] proposed
a vertical federated framework for logistic regression. They first calculated local results based on
local feature fields, and then shared encrypted local results with a server to make predictions and learn
parameters. Che et al. [7] proposed a vertical federated multi-view learning framework to integrate
decentralized medical data. They locally encoded medical feature fields kept by multiple hospitals
into representation vectors and uploaded them to the server for diagnosis prediction. However, since
real-world data usually encodes bias on fairness-sensitive features (e.g., genders and ages) [27, 51],
VFL models may inherit bias from data and become unfair to some user groups [45, 46].

Due to the importance of fairness in machine learning, fair ML methods have attracted increasing
attention in recent years [45, 46, 27, 51, 26]. For example, Zafar et al. [51] proposed a fairness-aware
optimization framework to improve the model fairness, which can constrain the difference between
prediction distributions for different user groups. Li et al. [26] proposed a fair recommendation
framework, which quantifies the recommendation unfairness on different user groups as a penalty for
item re-ranking. In general, most of the existing fair ML methods rely on the centralized storage of
fairness-sensitive features to achieve model fairness. However, in vertical federated learning, feature
fields are decentralized on different platforms [43, 14], making it difficult to apply existing fair ML
methods to improve the fairness of VFL models. Thus, how to design a fair VFL framework that can
protect user privacy and meanwhile improve model fairness, is a rarely studied problem.

In this paper, we propose a fair vertical federated learning framework (named FairVFL), which can
improve the fairness of VFL models in a privacy-preserving way. In FairVFL, we partition data into
two groups based on their fairness sensitivities, i.e., fairness-insensitive features that can be used
for the target task and fairness-sensitive features (e.g., genders) that should be causally irrelevant to
model predictions. Along this line, the core of FairVFL is to learn unified and fair representations of
samples based on their features distributed across different platforms with user privacy well-protected.
Specifically, platforms with fairness-insensitive features first learn local data representations, which
are then uploaded to servers to build unified representations. Since unified representations encode rich
information of raw data, they can be used for the target task without access to the raw data. Besides,
unified representations may inherit bias towards sensitive features (e.g., gender stereotype) from
implicit feature correlations in biased data and hurt model fairness [45, 27, 46]. In order to further
learn fair unified representations, we apply adversarial learning to unified representations to remove
bias encoded in them. Due to the decentralized storage of feature fields, unified representations are
sent to platforms with fairness-sensitive features to learn adversarial gradients. Besides, since unified
representations may still encode some private information of raw data [40, 34, 33], directly sharing
them among platforms may incur privacy problems. Thus, we further use contrastive adversarial
learning to remove private information from the unified representations before sending them to other
platforms. Extensive experiments on three real-world datasets show that our FairVFL approach can
effectively improve the fairness of VFL models and meanwhile the privacy is well protected.

2 RELATED WORK

2.1 Vertical Federated Learning

Vertical federated learning is a privacy-preserving paradigm for training ML models from feature
fields that are kept by different platforms that share the same data ID space, and has been widely
studied in recent years [43, 7, 14, 8]. For example, Wu et al. [43] proposed a privacy-preserving
ad CTR prediction framework with vertical federated learning. They proposed to coordinate local
platforms to learn behavior representations from local features and share the behavior representations
with the server to model user interest in ads. However, since real-world data usually encode bias on
fairness-sensitive features (e.g., genders) [45, 46], VFL models may inherit bias from data and make
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unfair decisions for some user groups (e.g., minority users). To improve model fairness in VFL, Liu
et al. [28] formulated the model performance gap for different user groups as a fairness regularization
and incorporated it into the federated optimization objective. However, their method needs to share
the data grouping information with the server, which may also leak user privacy on fairness-sensitive
features (e.g., gender). Different from these methods, we propose a unified framework that can
improve the fairness of VFL models which applies the adversarial learning to learn fair models and
employ a novel contrastive adversarial learning method to protect user privacy.

2.2 Fair Machine Learning

With the increasing impacts of ML techniques on our society, the fairness of machine learning models
has attracted substantial attention [45, 22, 26, 46]. Existing fair machine learning methods are usually
designed to learn unbiased models with respect to various fairness-sensitive features (e.g., genders).
Some of them applied pre-processing techniques [5, 32, 13, 6] (e.g., resampling) or post-processing
techniques [26, 3, 22, 18] (e.g., re-ranking) to improve model fairness. However, these methods
usually independently optimized model accuracy and fairness, which may only achieve a sub-optimal
trade-off between accuracy and fairness [45, 46]. To better improve model fairness, many works have
been proposed to jointly optimize model accuracy and fairness during model training [51, 15, 27, 46].
However, most of the existing fair ML methods rely on the centralized storage of feature fields,
making them difficult to be applied in vertical federated learning. Different from these methods, we
propose a fair vertical federated learning framework, which applies adversarial learning to improve
the fairness of VFL models based on decentralized feature fields.

3 Methodology

3.1 Problem Definition of FairVFL

In VFL, different feature fields of the same samples are decentralized on multiple platforms. From a
fairness perspective, these data can be partitioned into two groups, i.e., fairness-insensitive features
and fairness-sensitive features. The former can be taken by models as the inputs while the latter are
expected to be causally irrelevant to the model predictions. Without loss of generality, we assume
that there are m types of fairness-sensitive features, and we denote the platform keeping the i-th one
with type d

a
i as P a

i .2 Besides, we assume that fairness-insensitive feature fields are decentralized
on n platforms, and we denote the i-th platform as P b

i . Moreover, we assume that there is a task
platform P

t keeping labels y of samples on the target task. Following existing works [43, 50], we
assume that there is a trust-worthy server Pw for information aggregation.

Next, we present a formal definition of privacy protection and fairness. The privacy constraint requires
that the private information in the local data of a platform should not be disclosed to another platform.
Thus, the raw data of a local platform cannot be disclosed and the intermediate results shared with
other platforms should be carefully protected. Besides, in this paper, we define model fairness from a
casual view [27]. The counterfactual fairness requires that the model prediction for a sample should
always hold if we only change the fairness-sensitive features. According to the theoretical analysis in
Li et al. [27], eliminating fairness-sensitive feature information in the data representation that is used
for the model prediction can achieve casual fairness. We remark that even though fairness-sensitive
features are not taken as the inputs, the model may also inherit bias related to sensitive features by
mining inherent shortcuts from data. [45, 27, 46]. The goal of fair vertical federated learning is to
achieve a good trade-off among performance, privacy, and fairness, i.e., improving the fairness of
VFL models with minimal performance drop in a privacy-preserving way.

3.2 Federated Model Serving

The main framework of FairVFL to utilize decentralized feature fields is to encode them into a unified
representation (Fig. 1). The ML model in FairVFL is partitioned into three parts, i.e., multiple local
models {Ml

i|i = 1, ..., n}, an aggregation model Mw and a task-specific model Mt, where M
l
i is

the i-th local model maintained by the platform P
b
i . In FairVFL, local models are used to encode

2To simplify the presentation, we use different symbols to denote platforms storing different fairness-sensitive
feature fields. We remark that a platform can store multiple sensitive feature fields in practice.
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Figure 1: Framework of our fair vertical federated learning method (FairVFL).

local fairness-insensitive features into local representations. We remark that FairVFL is a general
framework and the architecture of a specific local model can be adjusted based on the input data. For
example, the local models for encoding textual search logs can be implemented by transformers [39]
or PLMs [10]. When the task platform P

t needs to serve a target sample s, P t will first distribute
the ID of the sample to fairness-insensitive platforms {P b

i |i = 1, ..., n}. In the i-th platform P
b
i , the

local model Ml
i encodes fairness-insensitive features of the target sample s stored in P

b
i , and builds

a local representation sli. Thus, we can obtain multiple local representations {sli|i = 1, ..., n}, which
encode different fairness-insensitive feature fields of the target sample. Following Wu et al. [43],
these local representations are then uploaded to the server Pw for task prediction.

The aggregation model Mw is maintained by the server Pw. It is used to aggregate information in
local representations into a unified representation s. Specifically, different feature fields usually have
inherent relatedness, mining which can enhance the model for the target task [2, 44]. Thus, we first
apply a multi-head self-attention network [39] to capture relatedness among local representations,
where the contextual representation of sli is denoted as ŝi. Then we apply an attention network to
contextual representations to model their relative importance for representing raw data and build the
unified representation s.3 Since s can encode various information in decentralized fairness-insensitive
feature fields, we further upload the unified representation s instead of raw data to the task platform
P

t to provide information for the target task. (We apply LDP to protect s before sending it to P
t.)

The task-specific model Mt is maintained by the task-specific platform P
t. It is used to utilize

information in the unified representation s to make prediction for the target task: ŷ = M
t(s), where

ŷ is the model prediction. The architecture of the task-specific model Mt is also adjusted based on
the target task (e.g., risk prediction). For instance, for the classification task, we can employ a dense
network to implement Mt. In this way, decentralized fairness-insensitive feature fields of a target
sample can be utilized by FairVFL for the target task without the disclosure of raw data.

3.3 Fair Representation Learning in FairVFL

As introduced in Sec. 3.2, the task prediction for each sample is computed based on their unified
representation s. Thus, the core of FairVFL to achieve counterfactual fairness is to learn a fair

3The aggregation model can be also implemented by other pooling networks, like a dense network.
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and unified representation s that does not encode fairness-sensitive bias. Although the fairness-
sensitive features are not model inputs, the model may still encode bias related to them by mining
inherent shortcuts to these features from data. Thus, we apply adversarial learning to prevent
unified representations from encoding fairness-sensitive bias. Vanilla adversarial learning techniques
usually rely on centralized storage of input data and labels of fairness-sensitive attributes to learn
adversarial gradients for model training. However, in vertical federated scenarios, feature fields are
decentralized on different platforms, which brings challenges to the application of existing methods.
An intuitive solution is sharing the unified representation with platforms that store observed fairness-
sensitive features {P a

i |i = 1, 2, ...,m} to learn corresponding adversarial gradients. However, unified
representations usually encode some private information, and directly sharing them across different
platforms may lead to user privacy leakage. To tackle this challenge, we propose a contrastive
adversarial learning technique to protect user privacy by modifying unified representations.

Contrastive Loss
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Figure 2: The detailed workflow of con-
trastive adversarial learning.

As shown in Fig. 2, the core idea of the contrastive ad-
versarial learning is to learn a protected representation
that only encodes information on a certain fairness-
sensitive feature. The protected representation can
be further shared with the platform keeping the cor-
responding sensitive feature to learn adversarial gra-
dients without leaking user privacy. Specifically, for
each fairness-sensitive feature d

a
i , we first map uni-

fied representation s into a protected representation ai:
ai = Ai(s), where Ai is a mapper based on MLP and
s is the preimage of ai. ai is designed to only retain
information of s on the fairness-sensitive feature d

a
i

and eliminate other user privacy. To achieve this goal,
we propose the contrastive adversarial learning method
to make the preimage of ai indistinguishable among
unified representations with the same feature dai . Given
representations of samples in the same training batch
{(aji , sj)|j = 1, 2, .., E}, we first rank these samples
based on the relevance between their protected repre-
sentations aji and ai: rj = ai · aji , where aj

i and sj
are the protected and unified representation of the j-th
sample, rj is the relevance score, and E is the batch
size.4 Intuitively, highly relevant data samples are likely
to share the same fairness-sensitive feature d

a
i . Thus,

from the top Ei samples ranked by relevance scores,
we can randomly select a unified representation s�i that
is highly likely to be the same with s in d

a
i , where Ei is

a hyper-parameter. s�i is used as the negative sample in contrastive learning to learn a contrastive
discriminator Dc

i to classify preimage of ai:

L
p
i = �

1

|⌦|

X

x2⌦

log
exp(Dc

i (ai, s))
exp(Dc

i (ai, s)) + exp(Dc
i (ai, s�i ))

, (1)

where D
c
i (·) is implemented by an MLP network, ⌦ is the training set and x is a data sample in ⌦.

Optimal discriminator D̂c
i is learned by minimizing L

p
i with fixed representations s, s�i , ai:

D̂
c
i = argmin

Dc
i

L
p
i . (2)

Finally, the optimal discriminator D̂c
i is used to learn contrastive adversarial loss Lc

i and the contrastive
adversarial gradients @Lc

i
@ai on ai with the fixed optimal discriminator D̂c

i , s and s�i :

L
c
i = �

1

|⌦|

X

x2⌦

log
exp(D̂c

i (ai, s))
exp(D̂c

i (ai, s)) + exp(D̂c
i (ai, s�i ))

. (3)

4The relevance score for the current data sample is masked as �1.
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The contrastive adversarial gradient @Lc
i

@ai on ai is further back-propagated to the mapper Ai:

@L
c
i

@Ai
=

@L
c
i

@ai

@ai

@Ai
, ai = Ai(s), (4)

where negative contrastive adversarial gradient �@Lc
i

@Ai
on Ai is used for model updating, and rep-

resentations s and s�i are fixed and not tuned by the contrastive adversarial gradient. In this way,
contrastive adversarial gradients can enforce the mapper Ai to protect user private information in ai.
Since user privacy can be reduced from ai, we further share it with the platform P

a
i keeping label yai

of the fairness-sensitive feature d
a
i to learn corresponding adversarial gradients. The platform P

a
i

first employs a bias discriminator Da
i to predict the label ŷai of fairness-sensitive feature d

a
i from the

protected representation ai and obtain a bias discrimination loss Ld
i as follows:

L
d
i = �

1

|⌦|

X

x2⌦

yai · log ŷa
i , ŷai = D

a
i (ai), (5)

where D
a
i is implemented by an MLP network. Moreover, besides private information, contrastive

adversarial learning may remove bias information from ai and hurt fair representation learning. Thus,
we minimize bias discrimination loss Ld

i to optimize both bias discriminator Da
i and mapper Ai:

D̂
a
i , Âi = arg min

Da
i ,Ai

L
d
i = arg min

Da
i ,Ai

�ya
i · logD

a
i (Ai(s)), (6)

where D̂
a
i is the optimal bias discriminator, Âi is the i-th optimal mapper, and the unified representa-

tion s is fixed. Finally, for the i-th fairness-sensitive feature dai , we can obtain the adversarial loss La
i

and corresponding adversarial gradients @La
i

@s on unified representation s:

L
a
i = �

1

|⌦|

X

x2⌦

ya
i · log ŷai , ŷa

i = D̂
a
i (Âi(s)), (7)

where the optimal bias discriminator and mapper are fixed when optimizing the unified representation
s. The negative adversarial gradient �@La

i
@s is further used to reduce fairness-sensitive bias encoded in

the unified representation s to achieve counterfactual fairness. Besides, we can obtain the task loss Lt

based on task label y and predicted label ŷ. The task loss function is also adjusted based on the target
task. Finally, we can formulate the overall loss L as:

L = L
t
�

mX

i=1

�iL
a
i �

mX

i=1

�iL
c
i , (8)

where L
t, La and L

c represents the training objective for model performance, fairness and privacy
respectively, �i is the weight of loss La

i and �i is the weight of loss Lc
i .

3.4 Federated Model Training

Next, we will introduce how we train model on decentralized fairness-sensitive and insensitive
feature fields. First, for the task loss Lt, the task platform P

t can directly calculate gradient @Lt

@Mt

on task model and gradient @Lt

@s on unified representation s. @Lt

@Mt is used to update M
t and @Lt

@s is
distributed to the server Pw for the further model updating. Second, it is usually difficult to obtain
the optimal discriminator in adversarial learning. Following Goodfellow et al. [16], we optimize the
discriminator for a single step based on discrimination gradients before executing adversarial learning.
Specifically, for the contrastive adversarial learning, the sever first learns contrastive discrimination
gradient @Lp

i
@Dc

i
on contrastive discriminator Dc

i to update it. Then the server utilizes updated D
c
i to

learn contrastive adversarial gradient @Lc
i

@Ai
on mapper Ai to update it. Third, for adversarial learning

on each fairness-sensitive feature d
a
i , platform P

a
i first calculates bias discrimination gradient @Ld

i
@Da

i

on the bias discriminator Da
i and @Ld

i
@ai on protected representation ai. The former is used to optimize

D
a
i . The latter is distributed to the server Pw to calculate gradient on Ai:

@La
i

@Ai
= @La

i
@ai

@ai
@Ai

, which
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is used to optimize Ai. Next, the platform P
a
i calculates the adversarial gradient @La

i
@ai on ai. @La

i
@ai

is further distributed to P
w to calculate adversarial gradients @La

i
@s on the unified representation s

based on gradient back propagation: @La
i

@s = @La
i

@ai
@ai
@s . Until now, the server Pw can further calculate

overall gradients @L
@s = @Lt

@s �
Pm

i=1 �i
@La

i
@s on the unified representation s. The server further

calculates gradient @L
@Mw on the aggregation model: @L

@Mw = @L
@s

@s
@Ma and the gradient @L

@sli
on each

local representation sli: @L
@sli

= @L
@s

@s
@sli

. Finally, gradients on local representations are distributed to
corresponding platforms {P b

i |i = 1, 2, ..., n} to optimize local models {Ml
i|i = 1, 2, ..., n}. The

detailed process of a training round in FairVFL is in Algorithm 1 (Supplementary).

3.5 Discussion on Privacy and Efficiency

Privacy: In FairVFL, each data platform locally keeps its private data and never shares it with the
outside, which can protect user privacy to some extent. Besides, for the vertical federated model
learning and inference, the intermediate model results, i.e., data representations and model gradients,
need to be exchanged across platforms, which may lead to potential privacy leakage. To tackle this
challenge, we propose a contrastive adversarial learning method to protect private information in
data representations, which can compare data representations with the same attribute and remove the
attribute-irrelated information in them. To further protect private information in gradients, we can
apply differential privacy techniques to perturb exchanged gradients as standard VFL methods [47].

Efficiency: FairVFL needs multiple times of communications in a single training round, which may
arouse concerns on communication efficiency. Fortunately, the extra communication costs are usually
small. This is because in the extra communication rounds FairVFL only needs to exchange protected
representations and their gradients, and the extra communication cost is O(4mEH), where m is the
number of fairness-sensitive platforms, H denotes the dimensionality of protected representations,
and E denotes the batch size. Since M , E, and B is usually small in practice, the corresponding
cost is usually minor. For the computation efficiency, compared with the standard VFL framework,
FairVFL only increases the computation cost of the server and platforms with fairness-sensitive
attributes. They need to extra compute the gradients on the attribute discriminators and contrastive
discriminators. Thus, the computation complexities of FairVFL and standard VFL are O(d3 +D

3)
and O(D3) respectively, where d and D denote the parameter sizes of the discriminators and the
main task model. In widely used settings, the discriminator is usually implemented by a small FFNN
network, whose parameters are usually much less than the main task model. Thus, the computation
efficiency of FairVFL is still comparable with standard VFL methods.

4 Experiment

4.1 Datasets and Experimental Settings

We evaluate model performance and fairness on three real-world datasets. The first one is ADULT [24],
which is a widely used public dataset for fair ML [52, 20, 35, 25]. It contains rich feature fields (e.g.,
education and social relation) for income prediction. 20,000 randomly selected data samples are used
to construct training and validation dataset, and 10,000 randomly selected data samples are used to
construct test dataset. Following existing works [45, 46], we treat gender and age as fairness-sensitive
features and utilize other feature fields for income prediction. Besides, we randomly partition 12
types of feature fields in ADULT into three platforms to simulate the VFL scenarios5. The second one
is NEWS, which is constructed by user logs (i.e., news clicks, search, and web-page browsing logs)
on Microsoft News and Bing Search platforms during 6 weeks (June 23th - July 20th, 2019) for news
recommendation. These three types of data are decentralized on three platforms under VFL settings.
We randomly select 100,000 news impressions in the first three weeks to construct the training and
validation set and select 100,000 news impressions in the last week to construct the test set. Besides,
we also treat gender and age as fairness-sensitive attributes in NEWS. The third one is CelebA [30],
which is a public face attributes dataset. To simulate the VFL setting, we use the raw images and a
part of the raw attributes (i.e., the “Straight Hair” attribute and “Wavy Hair”) as the input features.
The raw images are stored in a data platform and other input attributes are stored in another platform.

5
FairVFL is feature partition agnostic and does not rely on specific partition strategy.
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Table 1: Model performance and fairness on ADULT and NEWS.

Training
Strategy

ADULT NEWS

Model Income Prediction Model Fairness Model News Recommendation Model Fairness
Accuracy F1 Gender F1 Age F1 AUC nDCG@10 Gender F1 Age F1

CenTrain
MLP 82.15±0.86 78.42±0.66 78.27±1.60 47.47±0.90 NAML 64.04±0.13 30.80±0.13 70.05±0.21 20.01±3.08

TabNet 82.23±1.02 78.50±0.80 79.07±1.79 49.12±1.24 LSTUR 64.68±0.33 30.97±0.20 70.45±0.37 20.00±0.39
AutoInt 82.31±1.92 78.49±1.50 79.22±0.84 48.99±1.25 NRMS 64.24±0.18 30.78±0.11 70.25±0.24 21.07±0.81

FairGo
MLP 77.97±1.34 78.49±1.25 50.92±6.25 15.92±3.66 NAML 60.73±0.25 28.30±0.16 54.08±5.97 15.93±1.65

TabNet 74.40±1.71 75.33±1.47 50.28±5.32 15.63±3.14 LSTUR 61.03±0.24 28.31±0.15 53.57±3.88 15.74±1.22
AutoInt 76.89±1.50 77.31±1.27 50.59±4.41 15.73±2.27 NRMS 61.49±0.37 28.83±0.31 53.81±2.94 16.45±1.49

FairSM
MLP 77.57±1.39 78.31±1.06 50.66±6.43 15.55±3.10 NAML 60.59±0.19 28.15±0.16 54.13±5.38 15.74±1.52

TabNet 74.04±1.66 75.07±1.39 50.61±4.44 15.98±3.14 LSTUR 61.11±0.54 28.33±0.34 53.16±4.75 15.24±1.84
AutoInt 76.30±2.56 76.88±2.05 50.53±5.02 15.50±3.10 NRMS 61.78±0.31 28.95±0.22 54.10±2.42 15.91±1.99

FairRec
MLP 77.59±1.42 78.08±1.24 50.94±7.15 15.75±4.62 NAML 60.69±0.22 28.21±0.17 54.47±2.79 15.67±1.90

TabNet 74.89±1.76 75.65±1.61 50.35±5.79 15.61±3.18 LSTUR 60.99±0.78 28.31±0.47 53.36±1.37 15.65±0.93
AutoInt 76.60±1.91 77.17±1.54 50.43±7.01 15.83±3.96 NRMS 61.44±0.16 28.76±0.21 53.60±2.84 16.26±2.39

VFL
MLP 81.47±2.14 77.82±1.57 79.05±0.91 47.48±1.25 NAML 63.93±0.45 30.75±0.45 69.72±0.48 20.09±0.86

TabNet 81.77±1.72 78.09±1.35 78.75±0.77 48.36±1.32 LSTUR 64.39±0.32 30.85±0.19 70.07±0.37 19.92±1.63
AutoInt 81.65±1.52 78.02±1.17 79.07±1.42 47.98±1.51 NRMS 64.38±0.13 30.93±0.11 70.67±0.23 21.41±0.66

FairVFL
MLP 76.74±2.64 77.87±2.14 50.31±4.99 15.50±4.33 NAML 60.41±0.18 27.95±0.18 53.38±4.40 15.55±1.41

TabNet 75.51±0.69 76.06±0.60 50.72±5.72 15.48±2.46 LSTUR 60.98±0.28 28.25±0.36 53.51±3.41 15.23±0.94
AutoInt 76.19±0.99 76.86±0.85 50.53±4.48 15.22±2.93 NRMS 61.43±0.13 28.81±0.08 53.33±2.35 15.98±1.94

The target task is to classify whether the input sample has the attribute “Smiling”. We also treat
gender (the “Male” attribute) as the target fairness-sensitive attribute.

In FairVFL, the local representations and unified representations are 400-dimensional. The protected
representations for gender and age are 32- and 64-dimensional, respectively. The weights of con-
trastive adversarial loss for different sensitive features are set to 0.25. The weights of adversarial loss
for gender and age are set to 2

3 and 2
3 on NEWS, respectively. Besides, the weights of adversarial loss

for gender and age are set to 1e2 and 1e1 on ADULT, respectively. We exploit Adam algorithm [23]
for model optimization with 1e-4 learning rate. The size of the mini-batch for model training is set to
32. Besides, for both age and gender, we set Ei to 5 for simplification. We also use the dropout tech-
nique [38] with a 0.2 drop probability to alleviate model overfitting. Hyper-parameters are selected
based on the validation dataset. Codes are available in https://github.com/taoqi98/FairVFL.

4.2 Performance and Fairness Evaluation

Remark that we can achieve counterfactual fairness by reducing fairness-sensitive features encoded
in data representations that are used for the model predictions [27]. Thus, following existing
works [12, 4, 46, 27], we utilize the ensemble of 5 attackers to predict fairness-sensitive features
from unified representations s to evaluate the independence of fairness-sensitive features and data
representations to verify model fairness. If attackers can distinguish fairness-sensitive bias from
unified representations then we can say the model is unfair. Thus, a lower F1 score on the fairness-
sensitive feature classification task means better model fairness. Besides, we use accuracy and
F1 score to evaluate the classification task on ADULT and CelebA. Moreover, following these
works [1, 41], we use AUC and nDCG@10 to evaluate the news recommendation task on NEWS.
Each experiment is repeated five times and we report the average performance.

Table 2: Model performance and fairness on CelebA.
Method Main Task Fairness

Accuracy F1 GenderF1
CenTrain 0.9180±0.0013 0.9180±0.0014 0.8706±0.0069
FairGo 0.9096±0.0086 0.9095±0.0088 0.5159±0.0570
FairSM 0.9032±0.0230 0.9027±0.0242 0.5259±0.0807
FairRec 0.9070±0.0094 0.9067±0.0097 0.5241±0.0743

VFL 0.9192±0.0020 0.9174±0.0021 0.8727±0.0056
FairVFL 0.9045±0.0130 0.9042±0.0135 0.5143±0.0778

We compare our FairVFL method with
several recent representative baseline
methods for fair representation learn-
ing: (1) FairGo [46]: a user-centric fair
representation learning framework that
utilizes adversarial learning to reduce
fairness-sensitive bias information in rep-
resentations; (2) FairSM [27]: a unified
framework to achieve counterfactual fair-
ness on representations; (3) FairRec [45]:
an adversarial representation decomposi-
tion framework that can decompose bias and bias-insensitive information. These methods rely on
centralized storage of features to learn fair ML models. Besides, both FairVFL and these three meth-
ods are general frameworks and can be applied to basic models to improve their fairness. In addition,
baseline methods also include a standard vertical federated representation learning method (VFL)
without fairness criterion [7]. Thus, to compare their effectiveness, we combine them with several
basic ML models on the three datasets. Basic models for ADULT are implemented by three SOTA
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(a) Ablation study on adversarial learning. (b) Ablation study on contrastive adversarial learning.
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Figure 3: Ablation study on adversarial learning and contrastive adversarial learning. CAL denotes
contrastive adversarial learning and Random denotes predicting private data randomly.

models for modeling structural features, including MLP [17], TabNet [11] and AutoInt [37]. Basic
models for NEWS are implemented by SOTA news recommendation models, including NAML [41],
LSTUR [1] and NRMS [44]. Moreover, the VFL model for CelebA is based on ResNet-10 [19]. Due
to space limitations, detailed settings of these basic models are summarized in the Supplementary.

Results on ADULT and NEWS are summarized in Table 1, and results on CelebA are summarized in
Table 2, from which we have several observations. First, basic models based on vertical federated
training (e.g., MLP+VFL) can achieve similar performance with the same basic models based on
centralized training (e.g., MLP). These results show that the vertical federated learning technique can
effectively enable ML models to utilize decentralized feature fields for target tasks without the disclose
of raw data. Second, models without the protection of fair ML methods (e.g., MLP and MLP+VFL)
are biased by fairness-sensitive features. This is because data may encode bias on sensitive features
like genders. Models may inherit bias from data and become unfair to some user groups. Third, after
applying our FairVFL method to basic models, the fairness of these models effectively improves.
This is because our FairVFL method applies the adversarial learning on bias discrimination to unified
representations, which can effectively reduce bias encoded in them and improve model fairness.
Fourth, compared with models protected by centralized fair machine learning methods (i.e., FairGo,
FairSM and FairRec), models protected by FairVFL can achieve similar performance and fairness.
These results verify that our FairVFL method can effectively improve the fairness of VFL models.

4.3 Ablation Study

In this section, we first evaluate the effectiveness of adversarial learning in improving model fairness.
Due to space limitations, we only show results on ADULT in the following sections. Results are
shown in Fig. 3, from which we have several observations. First, after removing adversarial learning
on gender discrimination, model fairness on user gender seriously drops. This is because users of the
same gender usually have similar behavior patterns and there may exist gender bias in data. Models
may inherit gender bias from implicit feature correlations in data and become unfair to some user
groups. To tackle this challenge, FairVFL applies adversarial learning on bias discrimination to
unified representations to reduce gender bias encoded in them. Second, removing adversarial learning
for age discrimination also seriously hurts model fairness on user age, which further verifies the
effectiveness of adversarial learning for improving model fairness.

Next, we verify the effectiveness of contrastive adversarial learning on privacy protection. Since
unified representations include private information of fairness-insensitive features on local platforms,
communicating them across platforms may arouse privacy concerns. Motivated by membership
inference attack methods, we evaluate the privacy protection by inferring the input features of a
unified representation from corresponding protected representations {ai|i = 1, ...,m} that are shared
across platforms {P a

i |i = 1, ...,m}. Specifically, based on the ADULT dataset, we infer the value of
input features from each ai via 5 attackers and average the results. A lower inference accuracy (the
F1 value) means better privacy protection. We remark that for fairness evaluation, we distinguish bias
on fairness-sensitive features from unified representations instead of the shared representations, and
these sensitive features are also not the input of representation learning. We only show results on two
representative feature fields (i.e., education, and social relation) in Fig. 3 due to space limitations. First,
without the protection of contrastive adversarial learning, shared representations are very informative
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(b) Influence of CAL weight !! on model fairness.
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Figure 4: Influence of contrastive adversarial learning weights on privacy protection and model
fairness, where contrastive adversarial loss weights for different sensitive features are set to �c.

for inferring private user information. These results verify that directly sharing unified representations
across platforms may leak user privacy. Second, contrastive adversarial learning can effectively
protect user privacy in protected representations. This is because contrastive adversarial learning
enforces protected representations to be indistinguishable for predicting its preimage from unified
representations of the same fairness-sensitive features, which can effectively reduce bias-irrelevant
personal information in shared representations.

4.4 Hyper-Parameter Analysis

Next, we evaluate the influence of the weights of contrastive adversarial learning {�i|i = 1, 2, ...,m}

on both privacy protection and model fairness. To simplify the analysis, we set them to the same value
(denoted as �c). The influence of �c on privacy protection and model fairness is shown in Fig. 4, from
which we have two observations. First, with the increase of �c, FairVFL can achieve better privacy
protection ability. This is intuitive since larger �c makes contrastive adversarial gradients more
important to update the mappers, making them can reduce user privacy in unified representations
more effectively. Second, larger �c also hurts model fairness more seriously. This is because larger �c
makes mappers pay more attention to reducing user private information, which may hurt their abilities
on retaining information of fairness-sensitive bias information. Thus, the protected representations
may contain less bias information and hurt the effectiveness of adversarial learning in improving
model fairness. Fortunately, when �c is small (e.g., 0.25), FairVFL is effective in privacy protection
since the performance of user privacy inference is close to random. Besides, FairVFL can achieve
satisfied model fairness (about 0.5 and 0.15 F1 value for gender and age prediction) when �c is small
(e.g., 0.25). This indicates that FairVFL can achieve effective privacy protection ability without
hurting model fairness and we set �c to 0.25 in FairVFL.

5 CONCLUSION

In this paper, we propose a fair vertical federated learning framework (named FairVFL), which can
improve the fairness of VFL models in a privacy-preserving way. The core of FairVFL is to learn
fair and unified representations to encode samples based on their decentralized feature fields. Each
platform storing fairness-insensitive features first learns local representations from their local features.
Then these local representations are uploaded to a server to form a unified representation used for the
target task. In order to further learn fair and unified representations, we send them to platforms storing
fairness-sensitive features and apply adversarial learning to reduce bias encoded in them. Besides,
to protect shared representations from leaking user privacy, we propose a contrastive adversarial
learning method to reduce user private information in them before sharing them with other platforms.
Experimental results on three datasets show that FairVFL is comparable with centralized baseline fair
ML methods in terms of both performance and fairness, meanwhile effectively protects user privacy.
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