
Under review as a conference paper at ICLR 2024

PARFAM – SYMBOLIC REGRESSION BASED ON
CONTINUOUS GLOBAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The problem of symbolic regression (SR) arises in many different applications,
such as identifying physical laws or deriving mathematical equations describ-
ing the behavior of financial markets from given data. Various methods exist
to address the problem of SR, often based on genetic programming. However,
these methods are usually quite complicated and require a lot of hyperparameter
tuning and computational resources. In this paper, we present our new method
ParFam that utilizes parametric families of suitable symbolic functions to trans-
late the discrete symbolic regression problem into a continuous one, resulting in a
more straightforward setup compared to current state-of-the-art methods. In com-
bination with a powerful global optimizer, this approach results in an effective
method to tackle the problem of SR. Furthermore, it can be easily extended to
more advanced algorithms, e.g., by adding a deep neural network to find good-
fitting parametric families. We prove the performance of ParFam with extensive
numerical experiments based on the common SR benchmark suit SRBench, show-
ing that we achieve state-of-the-art results. Our code and results can be found at
https://anonymous.4open.science/r/parfam-90FC.

1 INTRODUCTION

Symbolic regression (SR) describes the task of finding a symbolic function that accurately represents
the connection between given input and output data. At the same time, the function should be as
simple as possible to ensure robustness against noise and interpretability. This is of particular inter-
est for applications where the aim is to (mathematically) analyze the resulting function afterward or
get further insights into the process to ensure trustworthiness, for instance, in physical or chemical
sciences (Quade et al., 2016; Angelis et al., 2023; Wang et al., 2019). The range of possible ap-
plications of SR is therefore vast, from predicting the dynamics of ecosystems (Chen et al., 2019),
forecasting the solar power for energy production (Quade et al., 2016), estimating the development
of financial markets (Liu & Guo, 2023), analyzing the stability of certain materials (He & Zhang,
2021) to planning optimal trajectories for robots (Oplatkova & Zelinka, 2007), to name but a few.
Moreover, as Angelis et al. (2023) point out, the number of papers on SR has increased significantly
in recent years, highlighting the relevance and research interest in this area.

SR is a specific regression task in machine learning that aims to find an accurate model without any
assumption by the user related to the specific data set. Formally, a symbolic function f : Rn → R
that accurately fits a given data set (xi, yi)i=1,...,N ⊆ Rn × R is sought, i.e., it should satisfy
yi = f(xi) for all data points, or in the case of noise yi ≈ f(xi) for all i ∈ {1, . . . , N}. Since, in
this general setting, there are no assumptions on the structure of possible models, the search space is
infinite-dimensional. In practice, however, it is necessary to specify the model space in some sense,
and all methods rely in one way or another on certain implicit assumptions in the modeling process.
For example, genetic programming (GP) methods, one of the most common classes of solution
algorithms, require the choice of base functions that can be combined to build the model. Unlike
other regression tasks, SR aims at finding a simple symbolic and thus interpretable formula while
assuming as little as possible about the unknown function. In contrast to SR, solutions derived via
neural networks (NNs), for instance, lack interpretability and traditional regression tasks typically
assume a strong structure of the unknown function like linearity or polynomial behavior.

1

https://anonymous.4open.science/r/parfam-90FC

Under review as a conference paper at ICLR 2024

To tackle SR problems, the most established methods are based on genetic programming (Augusto
& Barbosa, 2000; Schmidt & Lipson, 2009; 2010; Cranmer, 2023), but nowadays there also exist
many solution algorithms that make use of other machine learning methods, in particular neural
networks (Udrescu & Tegmark, 2020; Martius & Lampert, 2017; Desai & Strachan, 2021; Makke
et al., 2022). However, even though there have been many attempts with complicated procedures
to search through the infinite-dimensional space of functions, many of them show unsatisfactory
results when evaluated on complex benchmarks: La Cava et al. (2021) evaluate 13 state-of-the-art SR
algorithms on the SRBench ground-truth problems: the Feynman (Udrescu & Tegmark, 2020) and
Strogatz (La Cava et al., 2016) problem sets. Both data sets consist of physical formulas with varying
complexities, where the first one encompasses 115 formulas and the latter 14 ordinary differential
equations. Out of the 13 algorithms evaluated by La Cava et al. (2021), all algorithms find at most
30% of the formulas of each problem set in the given time of 8 CPU hours, except for AI Feynman
(Udrescu & Tegmark, 2020). AI Feynman, which is based on recursive function simplification
inspired by the structure of the Feynman data set, is able to recover more than 50% of the Feynman
equations but fails for more than 70% for the Strogatz problems. The rates are even worse for data
sets incorporating noise (La Cava et al., 2021; Cranmer, 2023). In addition to AI Feynman, we are
only aware of one other algorithm, proposed by Holt et al. (2023) after the benchmark by La Cava
et al. (2021), which has demonstrated superior performance on the SRBench ground-truth data sets
while following the SRBench time limit.

In this paper, we introduce the novel algorithm ParFam that addresses SR by leveraging the inherent
structure of physical formulas and, thereby, translating the discrete optimization problem into a con-
tinuous one. This grants users precise control over the search space and facilitates the incorporation
of gradient-based optimization techniques. More precisely, we apply basin-hopping, which com-
bines a global random search with a local search algorithm (Wales & Doye, 1997). Originally, this
algorithm was designed to solve molecular problems and, thus, is suitable for very high-dimensional
landscapes. The details of ParFam are introduced in Section 2.1. Notably, despite its straightfor-
ward nature, ParFam achieves state-of-the-art performance on the Feynman and Strogatz data set as
demonstrated in Section 3.1. Moreover, this structure enables the simple application of pre-trained
NNs to reduce the dimensionality of the search space. This concept is exemplified by our proto-
type, DL-ParFam, introduced in Section 2.2. Through experimentation on a synthetic data set, we
demonstrate that DL-ParFam significantly surpasses ParFam, cf. Section 3.2.

Our Contributions Our key contributions are as follows:

1. We introduce ParFam, a new method for SR leveraging the inherent structure of physical
formulas and, thereby, translating the discrete optimization problem into a continuous one.
This results in the following advantages: (1) Enabling gradient-based optimization tech-
niques; (2) Efficient but simple and user-friendly setup; (3) State-of-the-art performance on
the ground-truth problems of La Cava et al. (2021), the Feynman and Strogatz data sets.

2. Furthermore, we introduce a prototype of the extension DL-ParFam, which shows how the
structure of ParFam allows for using a pre-trained NN, potentially overcoming the limita-
tions of previous approaches.

Related work Traditionally, genetic programming have been used for SR to heuristically search
the space of equations given some base functions and operations (Augusto & Barbosa, 2000;
Schmidt & Lipson, 2009; 2010; Cranmer, 2023). However, due to the accomplishments of neural
networks across diverse domains, numerous researchers aimed to leverage their capabilities within
the realm of SR. Udrescu & Tegmark (2020), for instance, have employed an auxiliary NN to evalu-
ate data characteristics. In a similar vein, Martius & Lampert (2017), Sahoo et al. (2018), and Desai
& Strachan (2021) used compact NN architectures with physically meaningful activation functions,
such as sin and cos, enabling stochastic gradient descent to search for symbolic functions.

The approach by Petersen et al. (2021), on the contrary, relies on reinforcement learning (RL) to ex-
plore the function space, where a policy, modeled by a recurrent neural network, generates candidate
solutions. Mundhenk et al. (2021) combined this concept with genetic programming such that the
RL algorithm iteratively learns to identify a good initial population for the GP algorithm, resulting
in superior performance compared to individual RL and GP approaches. Similarly, Sun et al. (2022)
rely on Monte Carlo tree search to search the space of expression trees for the correct equations.

2

Under review as a conference paper at ICLR 2024

Given the simplicity of sampling functions and evaluating them, several endeavors have emerged
to train NNs using synthetic data to predict underlying functions. Initial simpler approaches were
limited by the variability of the given data set (Biggio et al., 2020) or of the functions (Li et al.,
2022). However, these limitations can be effectively circumvented by more advanced approaches
using the transformer architecture (Biggio et al., 2021; Kamienny et al., 2022; Holt et al., 2023).

Apart from the algorithms evaluated by La Cava et al. (2021), Deep Generative Symbolic Regression
(DGSR) by Holt et al. (2023) and unified Deep Symbolic Regression (uDSR) by Landajuela et al.
(2022) are the only algorithms—to the best of our knowledge—which have been evaluated on the
whole Feynman data set and outperformed the state-of-the-art AI Feynman in the symbolic recovery
rate. Notably, DGSR’s success has only been possible by the computationally expensive pre-training
of an encoder-decoder architecture using RL instead of gradient-based methods to learn invariances
of the functions and an additional finetuning step during inference by performing neural guided
priority queue training (NGPQT) as introduced by Mundhenk et al. (2021). uDSR builds upon the
already well-performing AI Feynman and adds pre-training, genetic programming, reinforcement
learning, and linear regression to it. Unlike for the SRBench benchmark (La Cava et al., 2021),
Landajuela et al. (2022) evaluate their method with a time limit of 24 instead of 8 hours, which is
why we omit uDSR from our comparisons in Section 3.

Most SR algorithms approach the problem by first searching for the analytic form of f and then
optimizing the resulting coefficients. In contrast, only a few algorithms follow the same idea as
ParFam, to merge these steps into one by spanning the search space using an expressive parametric
model and searching for sparse coefficients that simultaneously yield the analytical function and its
coefficients. FFX (McConaghy, 2011) and SINDy (Brunton et al., 2016) utilize a model to span
the search space which is linear in its parameters, to be able to apply efficient methods from linear
regression to compute the coefficients. To increase the search space, they construct a large set of
features by applying the base functions to the input variables. While these linear approaches enable
fast processing in high dimensions, they are unable to model non-linear parameters within the base
functions, restricting the search space to a predefined set of features.

The closest method to ParFam is EQL (Martius & Lampert, 2017; Sahoo et al., 2018), which over-
comes this limitation by utilizing small neural networks with sin, cos, and the multiplication as
activation function. The goal of EQL is to find sparse weights, such that the neural network reduces
to an interpretable formula. However, while EQL applies linear layers between the base functions,
ParFam applies rational layers. Thereby, ParFam is able to represent most relevant functions with
its one layer of base functions, while EQL usually needs multiple ones, which introduces many re-
dundancies, inflates the number of parameters, and complicates the optimization process. ParFam
shares conceptual proximity with EQL, as both methods assume a structure of general formulas,
effectively translating SR into a continuous optimization problem. However, while ParFam aims to
guarantee a unique parameterization for each function, EQL exhibits many redundancies that inflate
the parameter space. Moreover, EQL relies on the local minimizer ADAM (Kingma & Ba, 2014) for
coefficient optimization. On the contrary, ParFam leverages the reduced dimensionality of the pa-
rameter space by applying global optimization techniques for the parameter search, which mitigates
the issues of local minima. Furthermore, ParFam maintains versatility, allowing for the straight-
forward inclusion of the base functions, while EQL cannot handle the exponential, logarithm, root,
and division within unary operators. Similar to DL-Parfam, Liu et al. (2023) enhanced EQL with a
pre-training step. However, this approach still suffers from the listed structural limitations of EQL.

2 METHODS

In the following section, we first introduce our new method ParFam, that exploits a well-suited
representation of possible symbolic functions to which an efficient global optimizer can be applied.
Afterward, we discuss the extension DL-ParFam, which aims to enhance ParFam by utilizing deep
learning to obtain better function representations.

2.1 PARFAM

The aim of SR is to find a simple and thus interpretable function that describes the mapping underly-
ing the data (xi, yi)i=1,...,N without many additional assumptions. Typically, a set of base functions,

3

Under review as a conference paper at ICLR 2024

such as {+,−,−1 , exp, sin,
√}, is predetermined. The primary goal of an SR algorithm is to find

the simplest function that uses only these base functions to represent the data, where simplicity is
usually defined as the number of operations. Since most algorithms make no other assumptions on
the function they are looking for, this approach results in a search space that grows exponentially in
the number of base functions, dimensions of x, and depth of the expression trees.

To reduce the complexity of the search space on the one hand and to obtain more meaningful re-
sults on the other hand, some methods apply filters to prevent the output of unwanted or “unnatural”
functions. For instance, Petersen et al. (2021) prevent their algorithm from creating compositions
of trigonometric functions as sin ◦ cos since these are rarely encountered in any scientific domain.
Given that the main idea of SR is to gain knowledge of scientific processes, such structural as-
sumptions appear to be reasonable. This is also the motivation for restricting the search space in our
approach. Furthermore, we choose the function space such that it can be represented by a parametric
family, and the proper expression can be found by applying a continuous global optimizer.

2.1.1 THE STRUCTURE OF THE PARAMETRIC FAMILY

The main motivation for ParFam is that most functions appearing in real-world applications can be
represented by functions of certain parametric families. More precisely, we assume that they can be
written in the form

fθ(x) = Qk+1(x, g1(Q1(x)), g2(Q2(x)), . . . , gk(Qk(x))), (1)

where Q1, ..., Qk+1 are rational functions, g1, ..., gk are the unary base functions, which cannot be
expressed as rational functions, like sin, exp, √ etc., and x ∈ Rn is the input vector. Moreover,
θ ∈ Rm denotes the coefficients of the individual polynomials, i.e., of the numerators and denomi-
nators of Q1, ..., Qk+1, which are the learnable parameters of this family of functions. The degrees
d1i and d2i , i ∈ {1, . . . , k + 1}, of the numerator and denominator polynomials of Q1, ..., Qk+1,
respectively, and the base functions g1, ..., gk are chosen by the user. Depending on the application,
even specialized custom functions can be added to the set of base functions. This versatility and its
simplicity make ParFam a highly user-friendly tool, adaptable to a wide range of problem domains.
In Appendix A, we explain how to incorporate specific base functions to avoid numerical issues and
further implementation details.

The parametric family we consider excludes composite functions such as sin ◦ cos similarly to Pe-
tersen et al. (2021). This is rooted in the structure of physical formulas we observe, as can be seen,
e.g., in the set of ground-truth problems from SRBench (La Cava et al., 2021), which consists of 129
physically meaningful formulas and only includes one function that does not follow equation 1:√

(x2
1 + x2

2 − 2x1x2 cos(θ1 − θ2)) (Udrescu & Tegmark, 2020, I.29.16).

Furthermore, the “Cambridge Handbook of Physics Formulas” (Woan, 2000) contains more than
2,000 equations from the major physics topics, among which only a handful do not follow the struc-
ture of equation 1. In addition, the structure of ParFam is chosen due to its inherent interpretability,
avoiding complicated compositions, and its high expressivity even if the true formula cannot be
recovered, as shown by our experiments in Section 3.1.

2.1.2 OPTIMIZATION

Restricting the search space to functions of the parametric family given by equation 1 yields the
advantage that we can translate the discrete SR problem into a continuous one, as now the task is to
find the parameters of the rational functions Q1, ..., Qk+1 such that fθ approximates the given data
(xi, yi)i=1,...,N , i.e., we aim to minimize the average l2-distance between yi and fθ(xi). As we aim
for preferably simple functions to derive interpretable and easy-to-analyze results, a regularization
term R(θ) is added to encourage sparse parameters. In total, we aim at minimizing the loss function

L(θ) = 1
N

∑N
i=1 (yi − fθ(xi))

2
+ λR(θ), (2)

where λ > 0 is a hyperparameter to control the weight of the regularization. Here, we choose
R(θ) = ∥θ∥1 as a surrogate for the number of non-zero parameters, which is known to enforce
sparsity in other areas, e.g., NN training (Bishop, 2006; Goodfellow et al., 2016). In Appendix A,
we discuss how to deal with the regularization of the coefficients of rational functions in detail.

4

Under review as a conference paper at ICLR 2024

Although the SR problem is now transformed into a continuous optimization problem, due to the
presence of many local minima, it is not sufficient to apply purely local optimization algorithms
like gradient descent or BFGS (Nocedal & Wright, 2006). This is also discussed by Nocedal &
Wright (2006) and shown in our comparison study in Appendix B. To overcome these local minima,
we instead rely on established (stochastic) global optimization methods. Here, we choose the so-
called basin-hopping algorithm, originally introduced by Wales & Doye (1997), which combines
a local minimizer, e.g., BFGS (Nocedal & Wright, 2006), with a global search technique inspired
by Monte-Carlo minimization as proposed by Li & Scheraga (1987) to cover a larger part of the
parameter space. More precisely, we use the implementation provided by the SciPy library (Virtanen
et al., 2020). Each iteration consists of three steps:

1. Random perturbation of the parameters.

2. Local minimization, e.g., with the BFGS method.

3. Acceptance test based on the function value of the local optimum.

The basic idea of the algorithm is to divide the complex landscape of the loss function into multiple
areas, leading to different optima. These are the so-called basins. The random perturbation of
the parameters allows for hopping between these basins and the local search (based on the real loss
function) inbetween improves the results and ensures that a global minimum is reached if the correct
basin is chosen. For the acceptance test, the criterion introduced by Metropolis et al. (1953) is taken.

Following the optimization with basin-hopping, a finetuning routine is initiated. In this process, co-
efficients that fall below a certain threshold are set to 0, and the remaining coefficients are optimized
using the L-BFGS method, starting from the previously found parameters. The threshold is grad-
ually increased from 10−5 to 10−2 to encourage further sparsity in the discovered solutions. This
step has been found to be crucial in enhancing the parameters initially found by basin-hopping.

2.2 DL-PARFAM

As discussed in the related work section, there have been multiple attempts in recent years to lever-
age pre-training for SR, as synthetic data can be easily generated. Even though modern approaches
are able to handle flexible data sets in high dimensions (Biggio et al., 2021; Kamienny et al., 2022),
they fail to incorporate invariances in the function space during training, e.g., x + y and y + x are
seen as different functions, as pointed out by Holt et al. (2023), which possibly complicates the train-
ing. Holt et al. resolve this by evaluating the generated function to compute the loss and update the
network using RL. This effectively solves the invariance problem, as can be seen by their state-of-
the-art symbolic recovery rate on the Feynman data set. However, evaluating each function during
the training instead of comparing its symbolic expression with the ground-truth is computationally
expensive. Moreover, due to the non-differentiability, the network has to be optimized using suitable
algorithms like Policy gradient methods.

Here, we propose our approach DL-ParFam, which aims to combine the best of both worlds. The
idea is to use an NN that, given a data set (xi, yi = f(xi))i=1,...,N , predicts a sparsity pattern on the
coefficients θ of the parametric family in equation 1. This sparsity pattern or mask specifies which
parameters should be variable and learned in the ParFam algorithm and which can be ignored and
set to a fixed value of 0. The idea of DL-ParFam is visualized in Figure 1. This approach yields
significant improvements compared to ParFam and other pre-training based SR methods:

• Compared to ParFam: DL-ParFam strongly reduces the dimensions of the optimization
problem considered in ParFam, effectively reducing the computation time and success rate
for any global optimizer.

• Compared to other pre-training based SR methods: DL-ParFam predicts the structure of
the function, which can be directly compared with the ground-truth and, thereby, avoids
the evaluation on the data grid in every training step and yields an end-to-end differentiable
pipeline. In addition, DL-ParFam adeptly handles function invariances, as we guarantee
that each set of parameters uniquely defines a function via the structure of ParFam.

The primary purpose of this subsection is to demonstrate the potential of utilizing ParFam as a means
of structuring scientific formulas beyond the direct optimization presented so far. Our intent is not

5

Under review as a conference paper at ICLR 2024

DL-ParFam

NN ParFam

Figure 1: Schematic illustration of the DL-ParFam method: DL-ParFam uses the data
(xi, yi)i=1,...,N as the input of a pre-trained neural network which predicts a mask c ∈ {0, 1}m
in the parameter space. As usual, ParFam then aims to find parameters θ ∈ Rm to minimize the loss
as defined in equation 2. However, instead of optimizing each entry of θ, ParFam only optimizes
those parameters θk for which ck = 1 and keeps the others as 0, essentially reducing the parameter
space to m̃ =

∑m
k=1 cj .

to present an implementation of DL-ParFam in this paper that can rival existing deep learning-based
methods on complex benchmarks like the Feynman data set. This decision is driven by the myriad
challenges inherent in benchmarking, such as high dimensionality, diverse data point distributions,
varying numbers of data points and dimensions, and a plethora of base functions. While these
challenges can be addressed using deep learning techniques, as demonstrated by Biggio et al. (2021),
Kamienny et al. (2022), and Holt et al. (2023), they require specialized architectures. Since the main
focus of this paper is ParFam and the particular choices are not directly related to ParFam, we opt for
a straightforward implementation of DL-ParFam to demonstrate its effectiveness on synthetic data.

The vanilla implementation, which we consider here, uses a simple fully-connected feedforward
neural network NN : RN → Rm which takes as input the data (yi)i=1,...,N and outputs a mask
c ∈ [0, 1]m, where ci represents the likelihood that θi is needed to represent the sought symbolic
function, i.e., ci ≈ 0 indicates that the parameter θi is supposed to be 0 and ci ≈ 1 indicates
θi ̸= 0. To reduce the dimensionality of the NN, we only take the output data y of the functions
as input to the NN. Thus, we implicitly assume that the input data is sampled on the same grid
(xi)i=1,...,N ⊆ Rn for all data sets. To ensure this, we train the NN on synthetically generated data
(yj = (yji)i=1,...,N , cj)j=1,...,K , where cj ∈ [0, 1]m is some mask and yji = fθj (xi) is the output
of the corresponding function evaluated on the fixed grid point xi ∈ Rn. As a loss function with
respect to the parameters w of the NN, we define

LNN(w) =
∑K

j=1 BCE(NN(yj), cj), (3)

where BCE : [0, 1]m × [0, 1]m → R denotes the binary-entropy loss, i.e.,

BCE(c̄, c) = 1
K

∑m
l=1 − (cl log(c̄l) + (1− cl) log(1− c̄l)) . (4)

Another important difference from previous approaches, not outlined before, is that DL-ParFam
combines the experience gained through pre-training with the power of the method ParFam, which
is highly competitive on its own. In Section 3.2, we show the value of this combination.

3 BENCHMARK

In Section 3.1, we evaluate ParFam on the Feynman (Udrescu & Tegmark, 2020) and Strogatz
(La Cava et al., 2016) data sets and report its performance in terms of the symbolic recovery rate,
the coefficient of determination R2, and the complexity of the derived formula showing that our
simple setup significantly outperforms most existing methods and reaches state-of-the-art in SR. In
Section 3.2, we study a prototype of DL-ParFam, revealing the vast potential of adding pre-training
to ParFam.

3.1 PARFAM

After the introduction of the SR benchmark (SRBench) by La Cava et al. (2021), several researchers,
including Mundhenk et al. (2021), Holt et al. (2023), Kamienny et al. (2022), and Biggio et al.

6

Under review as a conference paper at ICLR 2024

(2021), have reported their findings using the SRBench’s ground-truth data sets. These data sets are
the Feynman and the Strogatz data set.

Feynman data set The Feynman data set consists of 119 physical formulas taken from the Feyn-
man lectures and other seminal physics books (Udrescu & Tegmark, 2020). Some examples can
be found in Appendix C. The formulas depend on a maximum of 9 independent variables and are
composed of the elementary functions +,−, ∗, /,√, exp, log, sin, cos, tanh, arcsin and arccos. Fol-
lowing La Cava et al. (2021), we omit three formulas containing arcsin and arccos and one data set
where the ground-truth formula is missing. Additionally, since the data sets contain more data points
than required for ParFam and this abundance of data slows down the optimizer, we only consider
a subset of 500, for the experiments without noise, and 1,000, for the experiments with noise, data
points of the training data for each problem.

Strogatz data set The Strogatz data set introduced by La Cava et al. (2016) is the second ground-
truth problem set included in SRBench (La Cava et al., 2021). It consists of 14 non-linear differential
equations describing seven chaotic dynamic systems in two dimensions, listed in Appendix D. Each
data set contains 400 samples.

Metrics To ensure comparability with the results evaluated on SRBench, we use the same eval-
uation metrics as La Cava et al. (2021). First, we report the symbolic recovery rate, which is the
percentage of equations ParFam recovered. Second, we consider the coefficient of determination

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
, (5)

where ŷi = fθ(xi) represents the model’s prediction and ȳ the mean of the output data y. The closer
R2 is to 1, the better the model describes the variation in the data. It is a widely used measure for
goodness-of-fit since it is independent of the scale and variation of the data. Lastly, we report the
complexity of our formula based on the number of mathematical operations following the definition
in SRBench. The original data sets do not include any noise. However, similar to La Cava et al.
(2021), we additionally perform experiments with noise by adding ϵi ∼ N

(
0, σ2 1

N

∑N
i=1 y

2
i

)
to

the targets yi, where σ denotes the noise level.

Hyperparameters The hyperparameters of ParFam can be divided into two subsets. The first
subset defines the parametric family (fθ)θ∈Rm , e.g., the degree of the polynomials and the set of
base functions. A good choice for this set is highly problem-dependent. However, in the absence
of prior knowledge, it is advantageous to select a parametric family that is sufficiently expansive to
encompass a wide range of potential functions. In this context, we opt for sin, exp, and √ as our
base functions. For the “input rational functions” Q1, . . . , Qk, we set the degrees of the numerator
and denominator polynomials to 2. For Qk+1, we set the degree of the numerator polynomial to 4
and the denominator polynomial to 3. This choice results in a parametric family with hundreds of
parameters, making it challenging for global optimization. To address this issue, we iterate through
various smaller parametric families, each contained in this larger family, see Appendix E for details.
The second set of hyperparameters defines the optimization scheme. Here, we set the regularization
parameter to λ = 0.001, the number of iterations for basin-hopping to 10, and the maximal number
of BFGS steps for the local search to 100 times the dimension of the problem. Our choice of
parameters is summarized in Table 4 in Appendix F.

Results Following La Cava et al. (2021), we allow a maximal training time of 8 CPU hours and
a maximal number of function evaluations of 1, 000, 000. In Figure 2a, we present the symbolic
recovery rate on both data sets together. ParFam, AI Feynman, and DGSR exhibit exceptional
performance, outperforming all other competitors by a substantial margin (over 25%). It is important
to note that AI Feynman performs particularly well on the Feynman data sets but fails on the Strogatz
data set, as shown in Appendix G, indicating that the algorithm is tailored to the Feynman data set.
Since DGSR was not tested on noisy data and AI Feynman is strongly influenced by noise, ParFam
outperforms all competitors at a noise level of σ = 0.01. Furthermore, Figure 2b shows the accuracy
solution, which is the percentage of formulas for which R2 > 0.999 holds on the test sets. Here,
ParFam outperforms all competitors with and without noise. It is important to note that Holt et al.

7

Under review as a conference paper at ICLR 2024

(2023) reported a similar metric but with R2 > 0.99 instead of R2 > 0.999. However, DGSR
achieved a value of 90.95% for this less strict metric, compared to ParFam’s 97.67%. Figure 3
reveals that ParFam achieves a mean R2 significantly better than its competitors, albeit with slightly
more complex formulas. Note that the mean, rather than the median, is shown in this figure since
both ParFam and AI Feynman solve over 50% of the formulas without noise, causing their median
performance to simply reflect this high success rate. The corresponding plot showing the median
and additional results can be found in Appendix G. We performed the experiments without tuning
the hyperparameter λ. To assess the sensitivity of the results with respect to λ, see Appendix H.

0 10 20 30 40 50 60
Solution Rate (%)

ParFam
DGSR

AIFeynman
AFP_FE

DSR
AFP

GP-GOMEA
gplearn

ITEA
EPLEX

Operon
SBP-GP

BSR
FEAT
FFX

MRGP

SRBench ground-truth problems

(a) Symbolic recovery rate

0.0 0.2 0.4 0.6 0.8
Accuracy Solution

ParFam
DGSR

AIFeynman
AFP_FE

DSR
AFP

GP-GOMEA
gplearn

ITEA
EPLEX

Operon
SBP-GP

BSR
FEAT
FFX

MRGP

SRBench ground-truth problems

Target Noise
0.0
0.01

(b) Accuracy solution

Figure 2: Symbolic recovery and accuracy solution rate (percentage of data sets with R2>0.999 for
the test set) on the SRBench ground-truth problems (Feynman and Strogatz data sets).

0.5 0.9 0.99 0.999 0.9999

ParFam
AIFeynman

AFP_FE
DSR
AFP

GP-GOMEA
gplearn

ITEA
EPLEX

Operon
SBP-GP

BSR
FEAT
FFX

MRGP

R2 Test

102 103

Model Size

102 103 104

Training Time (s)
Target Noise

0.0
0.01

SRBench ground-truth problems

Figure 3: Mean results on the SRBench ground-truth problems.

Due to the proximity of EQL (Martius & Lampert, 2017; Sahoo et al., 2018) and ParFam, we deem
a comparison between these two methods as highly interesting, however, the restricted expressivity
of EQL makes it an unfair comparison on the whole Feynman and Strogatz dataset. For this reason,
we show the results for EQL on a reduced benchmark in Appendix I. For results of ParFam on
the Nguyen benchmark (Uy et al., 2011) and comparisons with algorithms that were not tested on
SRBench, like SPL (Sun et al., 2022) and NGGP (Mundhenk et al., 2021), see Appendix J.

3.2 DL-PARFAM

In this subsection, we aim to demonstrate the potential of DL-ParFam by conducting experiments on
synthetically generated data sets. Due to the prototype status of DL-ParFam, the ability to evaluate
it on complex data sets, such as the Feynman dataset, is limited as the data to be processed is not
sampled on the same grid. Therefore, we use synthetic data sets.

8

Under review as a conference paper at ICLR 2024

Table 1: Relative performance and runtime of ParFam and DL-ParFam on the synthetic data set

ParFam DL-ParFam
Iterations Symbolic recovery Training time Symbolic recovery Training time

50 32% 13s 48% 7s
100 30% 24s 46% 12s
500 43% 116s 66% 55s
1000 37% 221s 69% 107s

Synthetic data sets To generate the synthetic data sets, we fix the grid xi = −10 + 0.1i, i ∈
{1, ..., N = 200}, and choose one set of model hyperparameters to define a specific parametric
family (fθ)θ∈Rm . Here, we choose the base functions sin and √, set the degree of all numerator
polynomials to 2 and of all denominator polynomials to 0. Then, we sample (θj)j∈{1,...,K} ⊂
Rm following the scheme described in Appendix K. For each θj , j ∈ {1, . . . ,K}, and each xi

we evaluate fθj (xi) = yji to obtain K data sets ((xi)i=1,...,N , (yji)i=1,...,N , θj)j=1,...,K . For our
numerical tests, we create two different data sets: The first includes 2,000,000 equations for training
the neural network of DL-ParFam, 10,000 for its validation, and another 10,000 for its testing. The
second set consists of 100 formulas to compare DL-ParFam with ParFam. Our hyperparameter
choices are summarized in Table 10 in Appendix L.

Pre-training of DL-ParFam We construct the neural network of DL-ParFam as a feedforward
NN with one hidden layer containing 200 neurons. It is trained as described in Section 2.2 using
the Adam optimizer with a learning rate of 0.0001 and 20,000 epochs with 500 batches, which takes
less than 4h on a TITANRTX GPU. In addition, to predict a mask c ∈ {0, 1}m as described in
Section 2.2 we set ck = 0 if NN((yi)i=1,...,N) < 0.2 and ck = 1 otherwise.

Metrics To evaluate the performance of the NN, we report two metrics: the covering score and the
average successful cover size. The covering score describes the percentage of formulas for which
the mask includes the non-zero parameters, i.e., θjk ̸= 0 implies cjk = 1. The average successful
cover size is the mean over the means of cj across all formulas for which the NN succeeded at
identifying the non-zero parameters. Ideally, this value should be as small as possible, indicating that
the mask size is minimized while still effectively capturing the non-zero parameters. To understand
the influence of the NN in DL-ParFam, we evaluate DL-ParFam and ParFam against each other
on the second synthetic data set and report the symbolic recovery rate. Here, we assume for both
methods that the perfect choice of model parameters is known, i.e., the same that were used to
create the data sets. This assumption allows us to assess the relative performance of DL-ParFam and
ParFam rather than evaluating their general performance.

Results The NN reaches a covering score of 91.32% on the test data set with an average successful
cover size of 26.62%. This indicates that the pre-training helps to reduce the number of parameters
by almost 3/4 in 91.32% of the formulas. The relative performance of ParFam and DL-ParFam is
shown in Table 1, which reveals that DL-ParFam solves consistently 16-32% more equations than
ParFam while requiring only approximately half the time.

4 DISCUSSION AND CONCLUSION

This work introduces ParFam along with its potential extension, DL-ParFam. Despite its inherent
simplicity, ParFam demonstrates remarkable performance, as shown in Section 3.1. Furthermore, its
adaptable structure makes it highly versatile for specific application scenarios. While DL-ParFam
currently only exists in a prototype form, it already shows the feasibility and potential of integrating
pre-training—a crucial direction in SR as pointed out by Kamienny et al. (2022); Biggio et al. (2021);
Holt et al. (2023)—into the ParFam framework.

Limitations While the structure of the parametric family of ParFam is undoubtedly its greatest
asset in tackling SR, it can also be considered its most significant constraint, given that it imposes a

9

Under review as a conference paper at ICLR 2024

tighter constraint on the function space compared to other methods. However, Figure 2 illustrates,
on the one hand, that several algorithms theoretically capable of identifying specific formulas do not
always achieve this in practice. On the other hand, it demonstrates that even if ParFam restricts the
function space too much, it still manages to find a formula that approximates the original function
with remarkable accuracy. Another limitation of ParFam is that optimizing high-dimensional prob-
lems (>10 independent variables) is computationally expensive, given the exponential growth in the
number of parameters with respect to the number of variables.

Future Work Subsequent efforts will concentrate on advancing both ParFam and DL-ParFam.
With ParFam, several avenues remain unexplored, encompassing diverse forms of regularization,
alternative parametrizations, and the potential incorporation of custom-tailored optimization tech-
niques. Nonetheless, our primary focus will be on DL-ParFam, driven by its promising potential,
as evidenced by our experiments. Numerous design choices await exploration, including data sam-
pling strategies, choice of loss function, architecture selection, and more. Existing research in this
direction will undoubtedly serve as valuable guidance (Kamienny et al., 2022; Biggio et al., 2021;
Holt et al., 2023). We anticipate that these advancements will facilitate the deployment of even more
expansive parametric families, thereby mitigating the limitations outlined earlier.

REPRODUCIBILITY STATEMENTS

In our repository https://anonymous.4open.science/r/parfam-90FC, we include the results of our
experiments and the code and instructions necessary to use our algorithms and reproduce all ex-
periments shown in Section 3. Furthermore, we report all settings used in the experiments in the
Appendices F and L.

REFERENCES

Dimitrios Angelis, Filippos Sofos, and Theodoros E. Karakasidis. Artificial intelligence in physical
sciences: Symbolic regression trends and perspectives. Archives of Computational Methods in
Engineering, 30(6):3845–3865, 2023. doi: 10.1007/s11831-023-09922-z.

D. Adriano Augusto and Helio J.C. Barbosa. Symbolic regression via genetic programming. In
Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks, pp. 173–178, 2000. doi:
10.1109/SBRN.2000.889734.

Deaglan J. Bartlett, Harry Desmond, and Pedro G. Ferreira. Exhaustive symbolic regression. IEEE
Transactions on Evolutionary Computation, pp. 1–1, 2023. doi: 10.1109/TEVC.2023.3280250.

Luca Biggio, Tommaso Bendinelli, Aurelien Lucchi, and Giambattista Parascandolo. A seq2seq
approach to symbolic regression. In Learning Meets Combinatorial Algorithms at NeurIPS2020,
2020.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurélien Lucchi, and Giambattista Parascan-
dolo. Neural symbolic regression that scales. In Marina Meila and Tong Zhang (eds.), Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pp. 936–945. PMLR, 2021.
URL http://proceedings.mlr.press/v139/biggio21a.html.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Information Science and
Statistics. Springer New York, 2006.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the National
Academy of Sciences, 113(15):3932–3937, 2016. doi: 10.1073/pnas.1517384113.

Yize Chen, Marco Tulio Angulo, and Yang-Yu Liu. Revealing complex ecological dynamics via
symbolic regression. BioEssays, 41(12):1900069, 2019. doi: 10.1002/bies.201900069.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

10

https://anonymous.4open.science/r/parfam-90FC
http://proceedings.mlr.press/v139/biggio21a.html

Under review as a conference paper at ICLR 2024

Saaketh Desai and Alejandro Strachan. Parsimonious neural networks learn interpretable physical
laws. Scientific reports, 11(1):12761, 2021.

Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning. Adaptive computation
and machine learning. MIT Press, 2016. URL http://www.deeplearningbook.org.

Mu He and Lei Zhang. Machine learning and symbolic regression investigation on stability of mxene
materials. Computational Materials Science, 196:110578, 2021. doi: https://doi.org/10.1016/j.
commatsci.2021.110578.

Samuel Holt, Zhaozhi Qian, and Mihaela van der Schaar. Deep generative symbolic regression.
In The Eleventh International Conference on Learning Representations. OpenReview.net, 2023.
URL https://openreview.net/pdf?id=o7koEEMA1bR.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton. End-
to-end symbolic regression with transformers. In Advances in Neural Information Processing
Systems, 2022. URL http://papers.nips.cc/paper_files/paper/2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

William G. La Cava, Kourosh Danai, and Lee Spector. Inference of compact nonlinear dynamic
models by epigenetic local search. Engineering Applications of Artificial Intelligence, 55:292–
306, 2016. doi: 10.1016/j.engappai.2016.07.004.

William G. La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabrı́cio Olivetti de França,
Marco Virgolin, Ying Jin, Michael Kommenda, and Jason H. Moore. Contem-
porary symbolic regression methods and their relative performance. In Proceed-
ings of the Neural Information Processing Systems Track on Datasets and Bench-
marks, 2021. URL https://datasets-benchmarks-proceedings.neurips.cc/
paper_files/paper/2021.

Mikel Landajuela, Chak Shing Lee, Jiachen Yang, Ruben Glatt, Claudio P Santi-
ago, Ignacio Aravena, Terrell Mundhenk, Garrett Mulcahy, and Brenden K Petersen.
A unified framework for deep symbolic regression. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Infor-
mation Processing Systems, volume 35, pp. 33985–33998. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/dbca58f35bddc6e4003b2dd80e42f838-Paper-Conference.pdf.

Jiachen Li, Ye Yuan, and Hong-Bin Shen. Symbolic expression transformer: A computer vision
approach for symbolic regression. arXiv preprint arXiv:2205.11798, 2022.

Z. Li and H. A. Scheraga. Monte carlo-minimization approach to the multiple-minima problem in
protein folding. Proceedings of the National Academy of Sciences, 84(19):6611–6615, 1987. doi:
10.1073/pnas.84.19.6611.

Jiacheng Liu and Siqi Guo. Symbolic regression in financial economics. In The First Tiny Papers
Track at ICLR 2023, Tiny Papers @ ICLR 2023, Kigali, Rwanda, May 5, 2023. OpenReview.net,
2023.

Jingyi Liu, Weijun Li, Lina Yu, Min Wu, Linjun Sun, Wenqiang Li, and Yanjie Li. SNR: Symbolic
network-based rectifiable learning framework for symbolic regression. Neural Networks, 165:
1021–1034, 2023. doi: 10.1016/j.neunet.2023.06.046. URL https://doi.org/10.1016/
j.neunet.2023.06.046.

Nour Makke, Mohammad Amin Sadeghi, and Sanjay Chawla. Symbolic regression for interpretable
scientific discovery. In Big-Data-Analytics in Astronomy, Science, and Engineering, pp. 26–40.
Springer International Publishing, 2022.

Georg Martius and Christoph H. Lampert. Extrapolation and learning equations. In 5th International
Conference on Learning Representations, Workshop Track Proceedings. OpenReview.net, 2017.
URL https://openreview.net/forum?id=BkgRp0FYe.

11

http://www.deeplearningbook.org
https://openreview.net/pdf?id=o7koEEMA1bR
http://papers.nips.cc/paper_files/paper/2022
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021
https://proceedings.neurips.cc/paper_files/paper/2022/file/dbca58f35bddc6e4003b2dd80e42f838-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/dbca58f35bddc6e4003b2dd80e42f838-Paper-Conference.pdf
https://doi.org/10.1016/j.neunet.2023.06.046
https://doi.org/10.1016/j.neunet.2023.06.046
https://openreview.net/forum?id=BkgRp0FYe

Under review as a conference paper at ICLR 2024

Trent McConaghy. FFX: Fast, Scalable, Deterministic Symbolic Regression Technology, pp. 235–
260. Springer New York, New York, NY, 2011. doi: 10.1007/978-1-4614-1770-5 13.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Ed-
ward Teller. Equation of state calculations by fast computing machines. The Journal of Chemical
Physics, 21(6):1087–1092, 1953. doi: 10.1063/1.1699114.

T. Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Cláudio P. Santiago, Daniel M. Faissol, and
Brenden K. Petersen. Symbolic regression via deep reinforcement learning enhanced genetic
programming seeding. In Advances in Neural Information Processing Systems, volume 34, pp.
24912–24923, 2021. URL https://proceedings.neurips.cc/paper/2021.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
Springer Series in Operations Research and Financial Engineering.
Springer New York, 2 edition, 2006. doi: 10.1007/978-0-387-40065-5.

Zuzana Oplatkova and Ivan Zelinka. Symbolic regression and evolutionary computation in setting
an optimal trajectory for a robot. In 18th International Workshop on Database and Expert Systems
Applications (DEXA 2007), pp. 168–172, 2007. doi: 10.1109/DEXA.2007.58.

Brenden K. Petersen, Mikel Landajuela, T. Nathan Mundhenk, Cláudio Prata Santiago, Sookyung
Kim, and Joanne Taery Kim. Deep symbolic regression: Recovering mathematical expressions
from data via risk-seeking policy gradients. In 9th International Conference on Learning Repre-
sentations, ICLR 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=m5Qsh0kBQG.

Markus Quade, Markus Abel, Kamran Shafi, Robert K. Niven, and Bernd R. Noack. Prediction
of dynamical systems by symbolic regression. Phys. Rev. E, 94:012214, 2016. doi: 10.1103/
PhysRevE.94.012214.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and
control. In Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 4439–4447. PMLR, 2018. URL http://
proceedings.mlr.press/v80/sahoo18a.html.

Michael D. Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data.
Science, 324(5923):81–85, 2009. doi: 10.1126/science.1165893.

Michael D. Schmidt and Hod Lipson. Age-fitness pareto optimization. In Genetic and Evolutionary
Computation Conference, GECCO 2010, Proceedings, pp. 543–544. ACM, 2010. doi: 10.1145/
1830483.1830584.

Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Discovering
governing equations via monte carlo tree search. arXiv preprint arXiv:2205.13134, 2022.

Silviu-Marian Udrescu and Max Tegmark. AI Feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020. doi: doi:10.1126/sciadv.aay2631.

Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, Robert I. McKay, and Edgar Galván
López. Semantically-based crossover in genetic programming: application to real-valued sym-
bolic regression. Genet. Program. Evolvable Mach., 12(2):91–119, 2011. doi: 10.1007/
S10710-010-9121-2. URL https://doi.org/10.1007/s10710-010-9121-2.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

12

https://proceedings.neurips.cc/paper/2021
https://openreview.net/forum?id=m5Qsh0kBQG
https://openreview.net/forum?id=m5Qsh0kBQG
http://proceedings.mlr.press/v80/sahoo18a.html
http://proceedings.mlr.press/v80/sahoo18a.html
https://doi.org/10.1007/s10710-010-9121-2

Under review as a conference paper at ICLR 2024

David J. Wales and Jonathan P. K. Doye. Global optimization by basin-hopping and the lowest en-
ergy structures of lennard-jones clusters containing up to 110 atoms. Journal of Physical Chem-
istry A, 101:5111–5116, 1997. doi: https://doi.org/10.1021/jp970984n.

Yiqun Wang, Nicholas Wagner, and James M. Rondinelli. Symbolic regression in materials science.
MRS Communications, 9(3):793–805, 2019. doi: 10.1557/mrc.2019.85.

Graham Woan. The Cambridge handbook of physics formulas. Cambridge University Press, 2000.

Matthew Wormington, Charles Panaccione, Kevin M Matney, and D Keith Bowen. Characterization
of structures from x-ray scattering data using genetic algorithms. Philosophical Transactions of
the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357
(1761):2827–2848, 1999.

Yang Xiang, DY Sun, W Fan, and XG Gong. Generalized simulated annealing algorithm and its
application to the thomson model. Physics Letters A, 233(3):216–220, 1997.

13

Under review as a conference paper at ICLR 2024

A IMPLEMENTATION DETAILS

In this section, some further implementation details are discussed.

A.1 REGULARIZATION OF THE DENOMINATOR

Since we aim for simple function representations, i.e., for sparse solutions θ ∈ Rm, the regular-
ization term R(θ) is of great importance. If we parameterize a rational function Q : R → R in one
dimension by

Q(x) = Q(a,b)(x) =

∑d1

i=0 aix
i∑d2

i=0 bix
i

(6)

with a ∈ Rd1+1 and b ∈ Rd2+1, the following problem occurs: Since for any γ ∈ R \ {0} and
(a, b) ∈ Rd1+1 × Rd2+1 it holds that Q(a,b)(x) = Q(γa,γb)(x), the parameters cannot be uniquely
determined. Although the non-uniqueness of the solution is not a problem in itself, it shows that this
parameterization is not the most efficient, and, more importantly, the regularization will be bypassed
since γ can be chosen arbitrarily small. We address this issue by normalizing the coefficients of
the denominator, i.e., we use b̃ = b

||b||2 rather than b. In other words, instead of defining rational
functions by equation 6, we consider

Q(a,b)(x) =

∑d1

i=0 aix
i

1
||b||2

∑d2

i=0 bix
i
. (7)

Note that using the 2-norm and not the 1-norm is important since we regularize the coefficients using
the 1-norm. To illustrate this, let b̃ = 1

||b||p b.

Case p = 1: When p = 1, we have ||b̃||1 = 1 for any b ∈ Rd2

. This demonstrates that b̃ is not
regularized anymore and, consequently, also b is not regularized. In essence, this choice of p does
not promote sparsity in the solution.

Case p = 2: In contrast, when p = 2, we have ||b̃||1 = || b
||b||2 ||1. This expression favors sparse

solutions, as it encourages the elements of b̃ to be close to zero, thus promoting regularization and
sparsity in the solution.

A.2 MISCELLANEOUS

In general, we look for rational functions Qi whose numerator and denominator polynomials have
a degree greater than 1 in order to model functions like x2

1 exp(2x2). However, for some base
functions, such as exp,√, sin, cos, higher powers introduce redundancy, for instance, exp(x2)

2 =

exp(2x2). To keep the dimension of the parameter space as small as possible without limiting the
expressivity of ParFam, we allow the user to specify the highest allowed power of each chosen base
function separately. In our experiments, we set it to 1 for all used basis functions: exp, cos and √.

To ensure that the functions generated during the optimization process are always well-defined and
we do not run into an overflow, we employ various strategies:

• To ensure that
√

Q(x) is well-defined, i.e., Q(x) ≥ 0 for all x in the data set, we instead
use

√
|Q(x)|.

• To avoid the overflow that may be caused by the exponential function, we substitute it
by the approximation min{exp(Q(x)), exp(10) + |Q(x)|}, which keeps the interesting
regime but does not run into numerical issues for big values of Q(x). However, adding
|Q(x)| ensures that the gradient still points to a smaller Q(x).

• To stabilize the division and avoid the division by 0 completely, we substitute the denomi-
nator by 10−5 if its absolute value is smaller than 10−5.

Implementing further base functions can be handled in a similar way as for the square root if they
are only defined on a subset of R or are prone to cause numerical problems.

14

Under review as a conference paper at ICLR 2024

B OPTIMIZER COMPARISON

As discussed in the main paper, ParFam needs to be coupled with a powerful (global) optimizer to
approximate the desired function. This section compares different global optimizers, underpinning
our decision to use basin-hopping. We tested the following optimizers, covering different global
optimizers and local optimizers combined with multi-start:

• L-BFGS with multi-start (Nocedal & Wright, 2006)
• BFGS with multi-start (Nocedal & Wright, 2006)
• Basin-hopping (Wales & Doye, 1997)
• Dual annealing (Xiang et al., 1997)
• Differential evolution (Wormington et al., 1999)

We conducted the experiments on a random subset of 15 Feynman problems, which are listed in
Table 2 in Appendix C. For each of the 15 problems, we ran ParFam with each optimizer for seven
different random seeds and different numbers of iterations. As we solely compare the influence of
different optimizers in this experiment, we assume full knowledge of the perfect model parameters
for each algorithm. Hence, we are only learning the parameters θ of one parametric family (fθ)θ∈Rm

instead of iterating through multiple ones as in the experiments in Section 3.1. Therefore, we have to
omit the problem Feynman-test-17 since the perfect model parameters result in a parametric family
with too many parameters to be optimized in a reasonable time and, thus, wasting unreasonable
resources. The results are presented in Figure 4. These show the superiority of basin-hopping and
BFGS with multi-start compared to all the other algorithms. While basin-hopping and BFGS with
multi-start perform similarly well, it is notable that basin-hopping is less sensitive to the training
time (and hence the number of iterations). Therefore, we chose basin-hopping in the main paper,
although using BFGS with multi-start would have led to similar results.

101 102

Training time in s

0.2

0.4

0.6

0.8

Sy
m

bo
lic

 re
co

ve
ry

 ra
te

(a) Symbolic recovery rate

101 102

Training time in s

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 so
lu

tio
n

ra
te

Basin-hopping
BFGS
Differential evolution
Dual annealing
L-BFGS

(b) Accuracy solution rate

Figure 4: Symbolic recovery and accuracy solution rate (percentage of data sets with R2>0.999 for
the test set) of ParFam with different optimizers on the subset of the Feynman problems displayed
in Table 2.

15

Under review as a conference paper at ICLR 2024

C EXAMPLE FEYNMAN PROBLEMS

Table 2 shows a random subset of the Feynman data set. The complete Feynman data set can be
downloaded from https://space.mit.edu/home/tegmark/aifeynman.html.

Table 2: Random subset of 15 equations of the Feynman problem set (Udrescu & Tegmark, 2020).

Name Formula

Feynman-III-4-33 y =
hω

2π
(
exp

(
hω

2πTkb

)
− 1

)
Feynman-III-8-54 y = sin2

(
2πEnt

h

)

Feynman-II-15-4 y = −Bmom cos (θ)

Feynman-II-24-17 y =

√
−π2

d2
+

ω2

c2

Feynman-II-34-29b y =
2πBJzgmom

h

Feynman-I-12-5 y = Efq2

Feynman-I-18-4 y =
m1r1 +m2r2
m1 +m2

Feynman-I-38-12 y =
ϵh2

πmq2

Feynman-I-39-22 y =
Tkbn

V

Feynman-I-40-1 y = n0 exp
(
−gmx

Tkb

)
Feynman-I-43-31 y = Tkbmob

Feynman-I-8-14 y =

√
(−x1 + x2)

2
+ (−y1 + y2)

2

Feynman-I-9-18 y =
Gm1m2

(−x1 + x2)
2
+ (−y1 + y2)

2
+ (−z1 + z2)

2

Feynman-test-17
y =

m2ω2x2
(

αx
y + 1

)
+ p2

2m

Feynman-test-18
y =

3
(
H2

G +
c2kf

r2

)
8πG

16

https://space.mit.edu/home/tegmark/aifeynman.html

Under review as a conference paper at ICLR 2024

D STROGATZ PROBLEMS

Table 3 shows the complete Strogatz data set. It can be downloaded from
https://github.com/lacava/ode-strogatz.

Table 3: The Strogatz ODE problem set (La Cava et al., 2016).

Name Formula

Bacterial Respiration
ẋ = − xy

0.5x2+1 − x+ 20

ẏ = − xy
0.5x2+1 + 10

Bar Magnets
ẋ = − sin (x) + 0.5 sin (x− y)

ẏ = − sin (y)− 0.5 sin (x− y)

Glider
ẋ = −0.05x2 − sin (y)

ẏ = x− cos (y)
x

Lotka-Volterra interspecies dynamics
ẋ = −x2 − 2xy + 3x

ẏ = −xy − y2 + 2y

Predator Prey
ẋ = x

(
−x− y

x+1 + 4
)

ẏ = y
(

x
x+1 − 0.075y

)
Shear Flow

ẋ = cos (x) cot (y)

ẏ =
(
0.1 sin2 (y) + cos2 (y)

)
sin (x)

van der Pol oscillator
ẋ = − 10x3

3 + 10x
3 + 10y

ẏ = − x
10

E MODEL PARAMETER SEARCH

The success of ParFam depends strongly on a good choice of the model parameters: The set of base
functions g1, ..., gk and the degrees d1i and d2i , i ∈ {1, . . . , k+1}, of the numerator and denominator
polynomials of Q1, ..., Qk+1, respectively. On the one hand, choosing the degrees very small or the
set of base functions narrow might restrict the expressivity of ParFam too strongly and exclude the
target function from its search space. On the other hand, choosing the degrees too high or a very
broad set of base functions can yield a search space that is too high-dimensional to be efficiently
handled by a global optimization method. This might prevent ParFam from identifying even very
simple functions.

To balance this tradeoff, we allow ParFam to iterate through many different choices for the hy-
perparameters describing the model. The user specifies upper bounds on the degrees d1i and d2i
of the polynomials and the set of base functions g1, . . . , gk. ParFam then automatically traverses
through different settings, starting from simple polynomials to rational functions to more complex
structures involving the base functions and ascending degrees of the polynomials. The exact pro-
cedure is shown in Algorithm 1. Note that we refer to the rational functions Q1, ..., Qk, which
will be the inputs to the base functions, as the ’input rationals’ and, therefore, describe the degrees
of their polynomials by ’DegInputNumerator’ and ’DegInputDenominator’. Similarly, we denote
the degrees of the polynomials of the output rational function Qk+1 by ’DegOutputNumerator’ and
’DegOutputDenominator’.

17

https://github.com/lacava/ode-strogatz

Under review as a conference paper at ICLR 2024

Algorithm 1: Traversal of the model parameters

Input: Maximal Degree Input Numerator d1max,in,
Maximal Degree Output Numerator d1max,out,
Maximal Degree Input Denominator d2max,in,
Maximal Degree Output Denominator d2max,out,
Maximal number of base functions bmax

Set of base functions Gmax = {g1, . . . , gk}.
Output: List of model parameters L that define the models ParFam can iterate through.

1 Let L = { } be an empty list.
// Start with a polynomial model:

2 Dp = {’DegInputNumerator’: 0, ’DegOutputNumerator’: d1max,out, ’DegInputDenominator’: 0,
’DegOutputDenominator’: 0, ’baseFunctions’: []}

3 L.append(D0)
// Continue with purely rational models with different degrees:

4 for d2out = 1 to d2max,out do
5 for d1out = 1 to d1max,out do
6 Dr = {’DegInputNumerator’: 0, ’DegOutputNumerator’: d1out, ’DegInputDenominator’:

0, ’DegOutputDenominator’: d2out, ’baseFunctions’: []}
7 L.append(Dr)
8 end
9 end
// Include different combinations of base functions:

10 for b = 1 to bmax do
11 for d2out = 0 to d2max,out do
12 for d1out = 1 to d1max,out do
13 for d2in = 0 to d2max,in do
14 for d1in = 1 to d1max,in do
15 for B as a list with b elements of Gmax do

// Note that base functions can be contained in
B multiple times.

16 D = {’DegInputNumerator’: d1in, ’DegOutputNumerator’: d1out,
’DegInputDenominator’: d2in, ’DegOutputDenominator’: d2out,
’baseFunctions’: B}

17 L.append(D)
18 end
19 end
20 end
21 end
22 end
23 end
24 return L

This strategy is comparable to the one proposed by Bartlett et al. (2023), called “Exhaustive Sym-
bolic Regression”. There, they iterate through a list of parameterized functions and use BFGS to
identify the parameters. To create the list of parametrized functions, they construct every possible
function using a given set of base operations and a predefined complexity. Notably, this results in
more than 100,000 functions to evaluate for one-dimensional data, with the same set of base func-
tions as we do, but without cos. Our algorithm, however, only needs to search for the parameters of
around 500 functions since it covers many at the same time by employing the global optimization
strategy.

Due to this high complexity, Bartlett et al. (2023) state that they merely concentrate on one-
dimensional problems and, thus, could benchmark their algorithm only on Feynman-I-6-2a (y =
exp(θ2/2)/

√
2pi), the only one-dimensional problem from the Feynman data set (Udrescu &

18

Under review as a conference paper at ICLR 2024

Tegmark, 2020). This example shows the benefit of employing global search in the parameter space:
While ParFam needs five minutes of CPU time to compute the correct function, Bartlett et al. (2023)
need 33 hours (150 hours, if the set of possible functions is not pre-generated).

F HYPERPARAMETER SETTINGS SRBENCH GROUND-TRUTH PROBLEMS

The hyperparamater settings for the SRBench ground-truth problems are summarized in Table 4.

Table 4: The model and optimization parameters for the SRBench ground-truth problems

Model parameters

Maximal Degree Input Numerator 2
Maximal Degree Input Denominator 2
Maximal Degree Output Numerator 4
Maximal Degree Input Denominator 3
Base functions √, cos, exp
Maximal potence of any variable 3

(i.e., x4
1 is excluded but x3

1x2 is allowed)

Optimization parameters

Global optimizer Basin-hopping
Local optimizer BFGS
Maximal number of iterations global optimizer 10
Maximal data set length 1000
Regularization parameter λ 0.001
Maximal runtime 8 CPU hours
Maximal number of evaluations 1,000,000

G ADDITIONAL PLOTS FOR THE SRBENCH GROUND-TRUTH RESULTS

0 20 40 60
Solution Rate (%)

ParFam
AIFeynman

AFP_FE
DSR
AFP

GP-GOMEA
gplearn

ITEA
EPLEX

Operon
SBP-GP

BSR
FEAT
FFX

MRGP

 Feynman

0 20 40 60
Solution Rate (%)

 Strogatz

Target Noise
0.0
0.01

Figure 5: Symbolic recovery rate on both SRBench ground-truth data sets separated.

19

Under review as a conference paper at ICLR 2024

0.00 0.25 0.50 0.75 1.00
Accuracy Solution

ParFam
AIFeynman

AFP_FE
DSR
AFP

GP-GOMEA
gplearn

ITEA
EPLEX

Operon
SBP-GP

BSR
FEAT
FFX

MRGP

 Feynman

0.00 0.25 0.50 0.75 1.00
Accuracy Solution

 Strogatz

Target Noise
0.0
0.01

Figure 6: Accuracy solution rate (percentage of data sets with R2 > 0.999 for the test set) on the
SRBench ground-truth problems separately.

0.5

1−10
−3

1−10
−6

1−10
−9

1−10
−12

1−10
−15

ParFam
AIFeynman

AFP_FE
DSR
AFP

GP-GOMEA
gplearn

ITEA
EPLEX

Operon
SBP-GP

BSR
FEAT
FFX

MRGP

R2 Test

101 102 103

Model Size

102 103 104

Training Time (s)
Target Noise

0.0
0.01

SRBench ground-truth problems

Figure 7: Results on the SRBench ground-truth problems. Points indicate the median test set per-
formance on all problems. The R2 Test for AIFeynman is missing on the plot since SRBench used
a higher precision data type, such that AIFeynman achieved a median R2 greater than 1− 10−16.

H SENSITIVITY ANALYSIS FOR λ

In Table H, we present the results for ParFam on the ground-truth SRBench data sets for different
values of λ. Note, that this has been done afterwards as a sensitivity analysis and not to choose λ.
Our selection of λ = 0.001 was based on theoretical considerations and prior observations on toy
examples while debugging ParFam.

I COMPARING PARFAM TO EQL ON SRBENCH

As described in the introduction, EQL (Martius & Lampert, 2017; Sahoo et al., 2018) is the clos-
est method to ParFam, since both make use of non-linear parametric models to translate SR to a
continuous optimization problem. Because of this similarity, we believe that it is important to also

20

Under review as a conference paper at ICLR 2024

Table 5: Results of ParFam on the ground-truth SRBench data sets for different values of λ.

λ Accuracy solution rate Symbolic recovery rate Complexity

0.0001 94.7% 50% 227

0.001 91.7% 55.6% 131

0.01 94.7% 52.2% 243

Table 6: Results of ParFam and EQL (Martius & Lampert, 2017; Sahoo et al., 2018) on the 96
SRBench ground-truth equations, which do not include the square root, logarithm, and exponential.

Accuracy solution rate Symbolic recovery rate

ParFam 93.8% 69.8%

EQL 75% 16.7%

show numerical comparisons between these two. However, EQL is not able to express the square
root, logarithm, and exponential, which is why we created a reduced version of the ground-truth SR-
Bench, which omits all equations using any of these base functions. In total, this covers 96 formulas.
The results on these can be seen in Table 6.

To ensure a fair comparison for EQL, we first tried to run it using the default learning parameters and
model parameter search recommended by the authors. However, since EQL will then quickly use up
the computing budget given by SRBench (8 hours of CPU time) we tested EQL for multiple different
hyperparameters on the first 20 problems from SRBench. We then chose the hyperparameters for
which this worked the best and reran the whole benchmark. This, together with the initial run using
the recommended parameters, gives two formulas per equation. In the results shown in Table 6 we
chose the formula with the better R2 on the validation data set. Note, that we did not make use of the
information, that the square root, logarithm, and exponential are never parts of the formulas when
running ParFam, i.e., we included these base functions in the dictionary.

J NGUYEN BENCHMARK

To compare ParFam with SPL (Sun et al., 2022) and NGGP (Mundhenk et al., 2021), which are the
current state-of-the-art on some SR benchmarks (like Nguyen (Uy et al., 2011)), but no results of
them on SRBench were reported, we evaluate ParFam on Nguyen. Interestingly, we observed that
the original domain on which the data was sampled is not big enough to specify the functions, as
ParFam was able to find simple and near indistinguishable approximations to the data that are not
the target formula. For example, it found 0.569x2 − 0.742 sin(1.241x2 − 2.059) − 1.655 instead
of sin(x2) cos(x) − 1, since both are almost identical on the domain [−1, 1]. For this reason, we
extended the data domain for some of the problems. The results for the Nguyen data set can be
seen in Table 7. We used the hyperparameters shown in Table 8. Following Sun et al. (2022), from
whom we take the results of the competitors, we use sin and exp as the standard basis functions for
ParFam and add √ and log for the problems 7, 8, 11, and 8c. Note that formula Nguyen-11 can not
be expressed by ParFam and hence the symbolic recovery rate is 0.

21

Under review as a conference paper at ICLR 2024

Table 7: Results on the Nguyen benchmarks. The results for ParFam are averaged over 6 indepen-
dent runs. The results from SPL (Sun et al., 2022), NGGP (Mundhenk et al., 2021), and GP (a
genetic programming based SR algorithm) are taken from Sun et al. (2022).

Benchmark Expression ParFam SPL NGGP GP

Nguyen-1 x3 + x2 + x 100% 100% 100% 99%

Nguyen-2 x4 + x3 + x2 + x 100% 100% 100% 90%

Nguyen-3 x5 + x4 + x3 + x2 + x 100% 100% 100% 34%

Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 100% 99% 100% 54%

Nguyen-5 sin
(
x2

)
cos (x)− 1 83% 95% 80% 12%

Nguyen-6 sin (x) + sin
(
x2 + x

)
83% 100% 100% 11%

Nguyen-7 log (x+ 1) + log
(
x2 + 1

)
100% 100% 100% 17%

Nguyen-8
√
x 100% 100% 100% 100%

Nguyen-9 sin (x0) + sin
(
x2
1

)
100% 100% 100% 76%

Nguyen-10 2 sin (x0) cos (x1) 100% 100% 100% 86%

Nguyen-11 xy 0% 100% 100% 13%

Nguyen-12 x4
0 − x3

0 + 0.5x2
1 − x1 100% 28% 4% 0%

Nguyen-1c 3.39x3 + 2.12x2 + 1.78x 100% 100% 100% 0%

Nguyen-2c 0.48x4 + 3.39x3 + 2.12x2 + 1.78 100% 94% 100% 0%

Nguyen-5c sin
(
x2

)
cos (x)− 0.75 83% 95% 98% 1%

Nguyen-8c
√
1.23x 100% 100% 100% 56%

Nguyen-9c sin (1.5x0) + sin
(
0.5x2

1

)
100% 96% 90% 0%

Average 91.2% 94.5% 92.4% 38.2%

Table 8: The model and optimization parameters for the Nguyen benchmark.

Model parameters

Maximal Degree Input Numerator 2
Maximal Degree Input Denominator 0
Maximal Degree Output Numerator 6
Maximal Degree Input Denominator 0
Base functions cos, exp (√, log)
Maximal potence of any variable 6

Optimization parameters

Global optimizer Basin-hopping
Local optimizer BFGS
Maximal number of iterations global optimizer 30
Regularization parameter λ 0.1

22

Under review as a conference paper at ICLR 2024

K SYNTHETIC DATA SET

The synthetic data set for the training and evaluation of DL-ParFam in Section 3.2 is sampled in the
following way. We first create a parametric family (fθ)θ∈Rm for fixed model hyperparameters, i.e.,
for a specific choice of base functions and maximal degrees. For the experiments, we choose the
degree of all denominator polynomials to be 0, i.e., Q1, ..., Qk+1 are simple polynomials, and their
maximal degree will be set to 2. As the base functions, we use sin and √.

Now, we aim to sample sparse parameters θ ∈ Rm to obtain interpretable functions. To achieve this,
we randomly choose the number of non-zero coefficients of Qk+1 to be 1 or 2. Next, we choose those
functions among Q1, ..., Qk which are used by Qk+1 and randomly select the non-zero coefficients
of these. If only one coefficient is chosen, we ensure that it does not correspond to the constant term.
For each non-zero coefficient chosen that way, we sample a parameter θi ∼ N (0, 9).

This way we sample a set of parameters (θj)j=1,...,K describing (interpretable) functions fθj . These
functions are evaluated on the fixed grid x = −10,−9.9,−9.8, . . . , 9.9 to create the data sets
((xi)i=1,...,m, (yji = fθj (xi))i=1,...,m)j=1,...,K . Some examples for fθj are presented in Table 9.

Table 9: Example formulas from the synthetic data set used to train and evaluate DL-ParFam in
Section 3.2. All coefficients are rounded to three decimal places.

Formula

1. y = 1.357 sin
(
4.072x2 + 1.044

)
2. y = −2.909x sin

(
8.746x2 − 1.637x+ 0.72

)
+ 2.591

3. y = 4.131x sin
(
1.933x2 − 0.549x+ 3.205

)
− 2.847 sin

(
1.933x2 − 0.549x+ 3.205

)√
|1.344x+ 1.678|

4. y = 0.771x
√

|3.293x2 + 0.878x+ 1.837|+ 3.64 sin
(
0.824x2 − 8.78x+ 1.936

)
5. y = −1.375x

6. y = −6.339x sin (6.961x) + 2.891

7. y = 0.944x sin
(
2.042x2 + 5.451x+ 3.97

)
+ 0.548x

8. y = −3.907x sin
(
5.384x2

)
+ 2.681 sin

(
5.384x2

)√
|0.276x2 + 2.406x− 1.149|

9. y = 4.276x+ 2.025 sin (3.93x)

10. y = −3.007x
√
|x2| − 2.751 sin

(
0.231x2 − 1.3

)
11. y = −2.189x2 − 2.828 sin

(
0.188x2 + 0.63

)
12. y = −0.317 sin

(
−2.351x2 + 1.448x+ 2.344

)
− 6.667

13. y = 2.154x+ 3.064 sin
(
4.773x2

)√
|4.491x− 0.423|

14. y = −0.772x2 + 0.333x sin
(
2.938x2 + 2.245x

)
15. y = −6.929 sin

(
2.451x2 + 2.37x+ 4.415

)√
|2.486x− 1.428| − 1.873 sin

(
2.451x2 + 2.37x+ 4.415

)
16. y = −0.528x2 − 0.601 sin

(
3.249x2

)
17. y = −3.77 sin (0.577x)

√
|0.981x− 2.192|

18. y = 1.076 sin (0.189x)

19. y = −2.046x

20. y = 1.608 sin (5.982x− 2.644)
√
|x2|

23

Under review as a conference paper at ICLR 2024

L HYPERPARAMETER SETTINGS SYNTHETIC BENCHMARK

The hyperparamater settings for the experiments on the synthetic benchmark in Section 3.2 are
summarized in Table 10.

Table 10: The model and optimization parameters for the benchmark with the synthetic data sets.

Data set parameters

Training set size 2,000,000
Validation set size 10,000
Test set size (for the NN) 10,000
Test set size (for DL-ParFam vs ParFam) 100
Maximal number of non-zero coefficients of Qk+1 2

Model parameters
(data creation and training)

Maximal Degree Input Numerator 2
Degree Input Denominator 0
Degree Output Numerator 2
Degree Input Denominator 0
Base functions √, sin
Maximal potence of any variable 2

Optimization parameters
(Neural network pre-training)

Optimizer ADAM
Loss BCE
Number epochs 20,000
Number batches 500
Number hidden layers 1
Number hidden neurons per layer 200
Learning rate 0.0001

Optimization parameters
(ParFam and DL-ParFam)

Global optimizer Basin-hopping
Local optimizer BFGS
Maximal number of iterations global optimizer 10, 20, 50, 100
Regularization parameter λ 0.001
Maximal runtime no limit
Maximal number of evaluations no limit

24

	Introduction
	Methods
	ParFam
	The Structure of the Parametric Family
	Optimization

	DL-ParFam

	Benchmark
	ParFam
	DL-ParFam

	Discussion and Conclusion
	Implementation details
	Regularization of the denominator
	Miscellaneous

	Optimizer comparison
	Example Feynman problems
	Strogatz problems
	Model parameter search
	Hyperparameter settings SRBench ground-truth problems
	Additional plots for the SRBench ground-truth results
	Sensitivity analysis for
	Comparing ParFam to EQL on SRBench
	Nguyen benchmark
	Synthetic data set
	Hyperparameter settings synthetic benchmark

