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ABSTRACT

Clinical trials are conducted to test the effectiveness and safety of potential drugs
in humans for regulatory approval. Machine learning (ML) has recently emerged
as a new tool to assist in clinical trials. Despite this progress, there have been few
efforts to document and benchmark ML4Trial algorithms available to the ML re-
search community. Additionally, the accessibility to clinical trial-related datasets
is limited, and there is a lack of well-defined clinical tasks to facilitate the devel-
opment of new algorithms.
To fill this gap, we have developed PyTrial that provides benchmarks and open-
source implementations of a series of ML algorithms for clinical trial design and
operations. In this paper, we thoroughly investigate 34 ML algorithms for clini-
cal trials across 6 different tasks, including patient outcome prediction, trial site
selection, trial outcome prediction, patient-trial matching, trial similarity search,
and synthetic data generation. We have also collected and prepared 23 ML-ready
datasets as well as their working examples in Jupyter Notebooks for quick imple-
mentation and testing.
PyTrial defines each task through a simple four-step process: data loading,
model specification, model training, and model evaluation, all achievable with
just a few lines of code. Furthermore, our modular API architecture empowers
practitioners to expand the framework to incorporate new algorithms and tasks
effortlessly.

1 INTRODUCTION

Developing a novel drug molecule from its initial concept to reaching the market typically involves a
lengthy process lasting between 7 to 11 years and an average cost of $2 billion (Martin et al., 2017).
Drug development has two major steps: discovery and clinical trials. Discovery aims to find novel
drug molecules with desirable properties, while drug development through clinical trials assesses
their safety and effectiveness. A new drug must pass through phases I, II, and III of clinical trials to
be approved by the FDA. Phase IV trials are conducted after approval to monitor the drug’s safety
and effectiveness. These stages require significant time, investment, and resources.

Machine learning (ML) methods offer a promising avenue to reduce costs and accelerate the drug
development process. Over the past few years, there has been an increasing number of works pub-
lished in the field of ML for drug discovery (Du et al., 2022; Jin et al., 2018; Nigam et al., 2020;
Brown et al., 2019; Fu et al., 2021a; 2022a) and development (Wang et al., 2022; Wang & Sun,
2022c;b; Zhang et al., 2020; Gao et al., 2020a; Fu et al., 2021b; Wang & Sun, 2022a; Wang et al.,
2023a). Although there were efforts in developing benchmarking platforms (Huang et al., 2021b;
Gao et al., 2022) and software solutions (Zhu et al., 2022; Brown et al., 2019) for ML for drug dis-
covery methods, the field of ML4Trial has not seen the same level of systematic development and
documentation (Wang et al., 2022). This can be attributed to the absence of benchmark works and
the lack of clear definitions to formulate clinical trial problems as ML tasks.

This paper presents a comprehensive benchmark called PyTrial that aggregates the mainstream
ML methods for clinical trial tasks. The overview is shown in Figure 1. PyTrial involves 6
ML4Trial tasks, including Patient Outcome Prediction, Patient-Trial Matching, Trial Site Selection,
Trial Search, Trial Outcome Prediction, and Patient Data Simulation. We conclude the 4 data ingre-
dients for these tasks by Patient, Trial, Drug, and Disease, hence defining a unified data loading API.
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Figure 1: The PyTrial platform combines a comprehensive set of AI tools for clinical trial tasks
with over 30 implemented machine learning algorithms. Designed as a Python package, PyTrial
provides practitioners with a versatile solution to harness AI capabilities throughout all phases of
clinical trials. It is featured for a unified data API encompassing patients, drugs, diseases, and trials,
as well as user-friendly ML algorithms and a standardized evaluation pipeline.

Correspondingly, we offer more than 20 ML-ready datasets for fast verification and development of
ML models. At last, we develop a standard evaluation pipeline for all tasks, such as accuracy for
prediction tasks, precision/recall for ranking tasks, and privacy, fidelity, and utility for generation
tasks. For all algorithms involved in PyTrial, we provide a working example in Jupyter Notebook
to ensure convenient testing and implementation.

The software PyTrial provides the following contribution related to ML for clinical trials:

• Problems: We have systematically formulated ML tasks for clinical trial applications and pre-
sented them in a concise summary.

• Algorithms: Our study includes a comprehensive evaluation of over 30 AI methods across 6
mainstream AI algorithms for clinical trial problems.

• API: We offer a unified API for data loading, model training, and model deployment, with inter-
active examples, making it easy for users to implement ML algorithms for clinical trials with just
a few lines of code.

• Datasets: Our study provides 23 datasets covering patients, trials, diseases, and drugs, which are
readily available for use in drug development through ML algorithms.

In a nutshell, PyTrial offers a comprehensive interface to support the rapid implementation of
ML4Trial algorithms on users’ own data and the deployment of these algorithms to enhance clinical
trial planning and running. It also enables future ML4Trial research by providing a well-defined
new benchmark.

2 SOFTWARE DESIGN AND IMPLEMENTATION

2.1 SOFTWARE STRUCTURE

The overall structure of PyTrial is in Figure 1. We create a hierarchical framework that comprises
three primary layers: (1) unified data API, (2) task modules for AI models, and (3) prediction and
evaluation pipeline. We also maintain a standardized ML pipeline for executing all tasks and models.
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Within PyTrial, tasks are defined based on their input and output data, which can be quickly
loaded via the API as

"""An example of building sequential patient data for patient outcome
prediction."""

# load demo data
from pytrial.data.demo_data import load_synthetic_ehr_sequence
data = load_synthetic_ehr_sequence()

# prepare input for the model
from pytrial.tasks.indiv_outcome.data import SequencePatient
data = SequencePatient(data={

"v":data["visit"], # sequence of visits
"y":data["y"], # target labels to predict
"x":data["feature"]}, # static baseline features

metadata={"voc":data["voc"] # vocabulary for events
})

Once we specify the training data, PyTrial offers a standard workflow load data →
model definition → model training → model evaluation as

"""An example of training and testing patient outcome prediction
model."""

# init model
from pytrial.tasks.indiv_outcome.sequence import RNN
model = RNN()

# fit model
model.fit(data)

# make predictions
model.predict(data)

# save model
model.save_model("./checkpoints")

It is important to highlight that we maintain a consistent model API for all tasks, ensuring a seamless
transition when users adopt a new model or engage in a different task. This approach mitigates the
gaps or inconsistencies in the user experience.

2.2 PYTRIAL DATA MODULES

We categorize the modalities of input data for clinical trial tasks by patient, trial, drug, and disease.
Users can create the inputs for the task modules by composing these data modules. A series of
pre-processed datasets are also provided for quick adoption of ML algorithms, as shown in Table 1.

Patient Data. We classify patient data by tabular and sequential datasets. Tabular patient data
represents the static patient features stored in a spreadsheet, i.e., one patient data x = {x1, x2, . . . }
where each x∗ is a binary, categorical, or numerical feature. Sequential data represents multiple
admissions of a patient that are in chronological order, as V1:T = {V1,V2, . . . ,VT }, where an
admission V∗ = {v1,v2, . . . } constitutes a bunch of events v∗ occurred at the same time.

Trial Data. We refer clinical trial data to the trial protocols written in lengthy documents1. Con-
sidering clinical trial documents’ meta-structure, we can extract key information and reorganize
the trial data into a tabular format, represented as t = {t1, t2, . . . }. Each element t∗ in this data
structure can correspond to a section or a feature of the clinical trial. t can be utilized for diverse
tasks such as trial outcome prediction and trial design. Furthermore, considering the topic simi-
larity and timestamp of trials, we can reformulate tabular trial data as sequences, i.e., a trial topic

1https://ClinicalTrials.gov
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Table 1: The list of ML4Trial datasets integrated into the PyTrial platform.

Dataset Name Sample Size Data Format Source
Patient: NCT00041119 (Wang & Sun, 2022b) 3,871 Patient - Tabular PDS
Patient: NCT00174655 (Wang & Sun, 2022b) 994 Patient - Tabular PDS
Patient: NCT00312208 (Wang & Sun, 2022b) 1,651 Patient - Tabular PDS
Patient: NCT00079274 (Wang & Sun, 2022b) 2,968 Patient - Tabular PDS
Patient: NCT00003299 (Wang et al., 2023a) 587 Patient - Tabular PDS
Patient: NCT00694382 (Wang & Sun, 2022b) 1,604 Patient - Tabular PDS
Patient: NCT03041311 (Wang et al., 2023a) 53 Patient - Tabular PDS
PMC-Patient Notes (Zhao et al., 2023) 167,034 Patient - Tabular PubMed
Patient: NCT00694382 (Das et al., 2023) 971 Patient - Sequential PDS
Patient: NCT01439568 (Das et al., 2023) 77 Patient - Sequential PDS
MIMIC-III EHR (Johnson et al., 2016) 38,597 Patient - Sequential MIMIC
MIMIC-IV EHR (Johnson et al., 2023) 143,018 Patient - Sequential MIMIC
Patient Matching Collection (Koopman & Zuccon, 2016) 4,000 Patient - Tabular, Trial - Text SIGIR
TOP Phase I (Fu et al., 2022b; Wang et al., 2023c) 1,787 Trial - Tabular, Trial - Sequential ClinicalTrials.gov
TOP Phase II (Fu et al., 2022b; Wang et al., 2023c) 6,102 Trial - Tabular, Trial - Sequential ClinicalTrials.gov
TOP Phase III (Fu et al., 2022b; Wang et al., 2023c) 4,576 Trial - Tabular, Trial - Sequential ClinicalTrials.gov
Trial Termination Prediction (Wang et al., 2023a) 223,613 Trial - Tabular ClinicalTrials.gov
Trial Similarity (Wang & Sun, 2022c) 1,600 Trial - Text ClinicalTrials.gov
Eligibility Criteria Design (Wang et al., 2023b) 75,977 Trial - Text ClinicalTrials.gov
Clinical Trial Documents (Wang & Sun, 2022c) 447,709 Trial - Text ClinicalTrials.gov
Diseases (Chandak et al., 2023) 17,080 Disease - Tabular, Disease - Ontology PrimeKG
Drug SMILES (Wishart et al., 2006) 6,948 Drug - Graph Drugbank
Drug Features (Wishart et al., 2006) 7,957 Drug - Tabular Drugbank
Drug ATC Codes 6,765 Drug - Ontology WHO

T1:T = {T1,T2, . . . ,TT }, where each T∗ = {t1, t2, . . . } contains a set of trials t∗ started con-
currently.

Drug Data. The structure of small molecule drugs can be described by SMILES strings (Weininger,
1988), which is amenable to graphical deep learning (Kipf & Welling, 2016). We further enrich
the drug data with their properties to build tabular data as d = {d1, d2, . . . }. Moreover, the drug
database can be mapped to the ontology Gdrug = {D,R}, where D is the node set representing
drugs and R is the edge set, according to the drug’s effects on specific organs or systems and its
mechanism of action.

Disease Data. Disease features are tabular data that can be mapped to standard coding systems, e.g.,
ICD-10 (Cartwright, 2013), to formulate disease ontology data. Similar to drug ontology, disease
ontology can be represented by Gdisease consisting of nodes of diseases.

2.3 PYTRIAL TASK MODULES

In this section, we briefly describe the clinical trial task modules. A complete list of tasks and
algorithms in PyTrial is shown in Table 2.

Patient Outcome Prediction. Patient outcome prediction refers to the task of predicting the clinical
outcome of individual patients. This is extremely beneficial for clinical trials, as it helps in multiple
aspects, such as developing personalized treatment plans to reduce the risk of subjecting patients
to ineffective or harmful interventions, improving trial enrollment, and selecting interventions with
higher probabilities of success to enhance trial design. For instance, if a patient is predicted to have
a high risk of developing adverse outcomes with the new drug, it is safer and more ethical to not
recruit this patient for the clinical trial. However, the eligibility criteria should be balanced to ensure
broader and representative enrollments while minimizing the risks to individual patients.

Machine Learning Setup. The clinical outcome can be either a binary label y ∈ {0, 1}, such as
mortality, readmission, or continuous values y ∈ R, like blood pressure or length of stay. The input
tabular patient data can be denoted by x, and sequential data can be V = {V0,V1:T }, where V0

and V1:T are the patient’s baseline features and longitudinal records, respectively. The goal of this
task is to train an encoder function g(·) that combines and transforms the input V into a lower-
dimensional representation h. Subsequently, a prediction model f(·) is utilized to forecast the target
outcome, i.e., ŷ = f(h). We implement many patient outcome prediction algorithms for tabular
inputs (Gorishniy et al., 2021; Wang & Sun, 2022b; Wang et al., 2023a) and sequential inputs (Choi
et al., 2016a;b; Xu et al., 2018; Ma et al., 2017b; Gao et al., 2020b).
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Table 2: The list of ML4Trial algorithms implemented in the PyTrial platform.

Task Method Input Data Module

Patient Outcome Prediction

Logistic Regression (Wang & Sun, 2022b) Patient - Tabular indiv outcome.tabular.LogisticRegression
XGBoost (Wang & Sun, 2022b) Patient - Tabular indiv outcome.tabular.XGBoost
MLP (Wang & Sun, 2022b) Patient - Tabular indiv outcome.tabular.MLP
FT-Transformer (Gorishniy et al., 2021) Patient - Tabular indiv outcome.tabular.FTTransformer
TransTab (Wang & Sun, 2022b) Patient - Tabular indiv outcome.tabular.TransTab
AnyPredict (Wang et al., 2023a) Patient - Tabular indiv outcome.tabular.AnyPredict
RNN (Choi et al., 2016a) Patient - Sequential indiv outcome.sequence.RNN
RETAIN (Choi et al., 2016b) Patient - Sequential indiv outcome.sequence.RETAIN
RAIM (Xu et al., 2018) Patient - Sequential indiv outcome.sequence.RAIM
Dipole (Ma et al., 2017a) Patient - Sequential indiv outcome.sequence.Dipole
StageNet (Gao et al., 2020b) Patient - Sequential indiv outcome.sequence.StageNet

Trial Site Selection
PG-Entropy (Srinivasa et al., 2022) Trial - Tabular site selection.PolicyGradientEntropy
FRAMM (Theodorou et al., 2023a) Trial - Tabular site selection.FRAMM

Trial Outcome Prediction

Logistic Regression (Fu et al., 2022b) Trial - Tabular trial outcome.LogisticRegression
MLP (Fu et al., 2022b) Trial - Tabular trial outcome.MLP
XGBoost (Fu et al., 2022b) Trial - Tabular trial outcome.XGBoost
HINT (Fu et al., 2022b) Trial - Tabular trial outcome.HINT
SPOT (Wang et al., 2023c) Trial - Sequential trial outcome.SPOT
AnyPredict (Wang et al., 2023a) Trial - Tabular trial outcome.AnyPredict

Patient-Trial Matching
DeepEnroll (Zhang et al., 2020) Trial - Text, Patient - Sequential trial patient match.DeepEnroll
COMPOSE (Gao et al., 2020a) Trial - Text, Patient - Sequential trial patient match.COMPOSE

Trial Search

BM25 (Wang & Sun, 2022c) Trial - Text trial search.BM25
Doc2Vec (Le & Mikolov, 2014) Trial - Text trial search.Doc2Vec
WhitenBERT (Huang et al., 2021a) Trial - Text trial search.WhitenBERT
Trial2Vec (Wang & Sun, 2022c) Trial - Text trial search.Trial2Vec

Trial Patient Simulation

GaussianCopula (Sun et al., 2019) Patient - Tabular trial simulation.tabular.GaussianCopula
CopulaGAN (Sun et al., 2019) Patient - Tabular trial simulation.tabular.CopulaGAN
TVAE (Xu et al., 2019) Patient - Tabular trial simulation.tabular.TVAE
CTGAN (Xu et al., 2019) Patient - Tabular trial simulation.tabular.CTGAN
MedGAN (Choi et al., 2017) Patient - Tabular trial simulation.tabular.MedGAN
RNNGAN (Wang & Sun, 2022a) Patient - Sequential trial simulation.sequence.RNNGAN
EVA (Biswal et al., 2021) Patient - Sequential trial simulation.sequence.EVA
SynTEG (Zhang et al., 2021) Patient - Sequential trial simulation.sequence.SynTEG
PromptEHR (Wang & Sun, 2022a) Patient - Sequential trial simulation.sequence.PromptEHR
Simulants (Beigi et al., 2022) Patient - Sequential trial simulation.sequence.KNNSampler
TWIN (Das et al., 2023) Patient - Sequential trial simulation.sequence.TWIN

Trial Site Selection. Effective clinical trial operation depends on identifying the best clinical sites
and investigators. To achieve this, we need to recruit those sites and investigators that possess
the clinical expertise and patient demographics required for the trial. Balancing patient enrollment
number, patient diversity, and quality/cost of the site is critical to ensure optimal results.

When initiating a new clinical trial, Contract Research Organizations (CROs) select investigators
from a large pool using a set of predefined criteria. The task of matching a trial site is posed as a
fair ranking problem, where the list of potential trial sites is ranked to maximize patient enrollment
and diversity. Algorithms used in this process optimize enrollment by evaluating investigator perfor-
mance records and patient demographics, thereby refining the selection process. They also promote
diversity by facilitating the inclusion of underrepresented populations in clinical trials, aligning with
regulatory recommendations and fostering comprehensive research outcomes.

Machine Learning Setup. Trial site selection is a crucial aspect of clinical trials, aiming to identify
the most suitable sites from the candidate set S = {s1, s2, . . . }, for recruiting diverse and suf-
ficiently numbered patients to evaluate the treatment’s effectiveness and safety. It is framed as a
ranking problem, generating a ranking R over S based on the trial t in order to select a subset of
the highest-ranked sites. The goal is then to learn a policy π mapping t to a ranking (or distribution
of rankings) such that we minimize ℓ(π;S, t), a predefined loss function measuring enrollment, di-
versity, and/or any other factor over the subset of sites selected (as measured by being ranked above
some threshold). We incorporate Policy gradient entropy (PGentropy) (Srinivasa et al., 2022) and
Fair Ranking with Missing Modalities (FRAMM) (Theodorou et al., 2023a) for this problem.

Trial Outcome Prediction. Assessing patient-level outcomes is essential, but predicting trial-level
outcomes accurately is equally important (Fu et al., 2022b; Wang et al., 2023c). It helps in clinical
trial planning and saves resources and time by avoiding high-risk trials. Note that it is important to
balance this outcome risk assessment with ethical considerations that take into account the fairness,
value, and importance of the trial. The main objective for trial outcome prediction is to evaluate
the likelihood of a trial’s success based on diverse information such as the target disease, drug can-
didate, eligibility criteria for patient recruitment, and other trial design considerations. Algorithms
can optimize the trial parameters according to AI predictions, which improves the trial design and
reduces the likelihood of inconclusive or failed results due to poorly designed eligibility criteria,
outcome measures, or experimental arms.

5



Under review as a conference paper at ICLR 2024

Machine Learning Setup. This task is framed as a prediction problem where the target y ∈ {0, 1} is
a binary indicator of whether the trial would succeed in getting approved for commercialization. We
need to implement an encoder g(·) that encodes multi-modal trial data, e.g., text, table, or sequence,
into dense embeddings h. A prediction model f(·) then forecasts the trial outcome ŷ = f(h).
We incorporate trial outcome prediction algorithms for tabular inputs (Fu et al., 2022b) and for
sequential inputs (Wang et al., 2023c).

Patient-Trial Matching. Failing to enroll sufficient subjects in a trial is a long-standing problem:
more than 60% of trials are delayed due to lacking accrual, which causes potential losses of $600K
per day (Ness, 2022). ML is promising to accelerate the patient identification process where it selects
the appropriate patients that match the trial eligibility criteria based on their records. It also builds
the connection between eager patients and suitable trials to improve overall patient engagement.

Machine Learning Setup. Formally, this task is formulated as a ranking problem: given the pa-
tient sequential data V1:T = {V1,V2, . . . } and text trial data {I,E}, where I = {i1, i2, . . . } are
inclusion criteria and E = {e1, e2, . . . } are exclusion criteria. The target is to minimize the dis-
tance of V and {i} and maximize the distance of V1:T and {e} if the patient matches the trial.
Our package involves DeepEnroll (Zhang et al., 2020) and Cross-Modal Pseudo-Siamese Network
(COMPOSE) (Gao et al., 2020a).

Trial Search. The task of trial search involves finding relevant clinical trials based on a given
query or input trial. It enables the efficient identification of relevant trials during the trial design
and planning phase. Trial search facilitates trial design by referring to prior trial protocols and
results, which can provide important reference points related to the trial design, such as control
arms, outcome measures and endpoints, sample size, eligibility criteria.

Machine Learning Setup. This task is formulated as a retrieval problem, where an encoder function
f(·) is utilized to convert the input trial text data or tabular trial data t = {t1, t2, . . . } (where each t
indicates a section of the document) into semantically meaningful embeddings h. We implemented
pre-trained language models (Devlin et al., 2019) and self-supervised document embedding methods
(Wang & Sun, 2022c).

Trial Patient Simulation. Generating synthetic clinical trial patient records can help unlock data
sharing across institutes while protecting patient privacy. This is accomplished by developing gen-
erative AI models that learn from real patient data and use that knowledge to create new, synthetic
patient data. This can be done through unconditional or conditional generation. The resulting per-
sonalized patient data simulation helps balance the generated data and create more records for un-
derrepresented populations. This method also has the potential to reduce the need for patient re-
cruitment while still providing insights into the treatment effects between digital twins. Synthetic
patient data can be used to augment control arms in external comparator studies, making this method
particularly relevant in those applications Theodorou et al. (2023b); D’Amico et al. (2023).

Machine Learning Setup. Formally, we denote a patient data by X = {V0,V1:T } and the training
set X . A generator p(·) is trained on the real patient records V so as to generate synthetic records
unconditionally, as X̂ ∼ p(X|X ;Z), where Z is a random noise input; or generate conditioned on
manually specified features X′, as X̂ ∼ p(X|X ;X′). As mentioned, we can generate two types
of patient data: tabular (Sun et al., 2019; Xu et al., 2019; Choi et al., 2017) and sequential (Biswal
et al., 2021; Zhang et al., 2021; Wang & Sun, 2022a; Beigi et al., 2022).

2.4 PREDICTION AND EVALUATION PIPELINE

PyTrial integrates a series of utility functions for evaluation. Users can refer to the task-specific
metrics to evaluate the performances of ML4Trial models. More specifically, the 6 tasks listed in
Table 2 can be categorized by prediction, ranking, and generation. Below, we briefly describe the
metrics for these tasks. Detailed descriptions can be found in Appendix B.

Prediction. For classification tasks, PyTrial provides accuracy (ACC), area under ROC curve
(AUROC), area under precision-recall curve (PR-AUC) for binary and multi-class classification;
F1-score, PR-AUC, Jaccard score for multi-label classification. For regression tasks, mean-squared
error (MSE) is offered.
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Ranking. Based on the retrieved top-k candidates, we compute a series of retrieval metrics, includ-
ing precision@K, recall@K, and ndCG@K to measure the ranking quality.

Generation. The PyTrial framework utilizes metrics to evaluate the privacy, fidelity, and utility
aspects of generated synthetic data. The privacy metric assesses the level of resilience of the gener-
ated synthetic data against privacy adversaries, including membership inference attacks and attribute
disclosure attacks. The fidelity metric quantifies the similarity between the synthetic and original
real data. Lastly, the utility metric determines the usefulness of the synthetic data when applied to
downstream ML tasks.

3 BENCHMARK ANALYSIS

In this section, we describe how we benchmark ML4Trial algorithms using PyTrial with the
discussions of main findings. We will release the experiment code, the documentation of PyTrial,
and interactive Colab notebook examples.

We benchmark all the six ML4Trial tasks integrated into PyTrial (see Section 2.3). We cover the
results of trial site selection and patient trial matching in the Appendix due to the page limit. We
used the best hyperparameters for all these methods through validation performances, with details
discussed in the Appendix. We picked the benchmark datasets for each task that fit the input data
modality and format, as listed in Table 1.

3.1 PATIENT OUTCOME PREDICTION

Table 3: The benchmarking results for patient outcome prediction for tabular patient datasets. Re-
sults are AUROC for patient mortality label prediction (binary classification). “-” implies the model
is not converging. The best are in bold.

Dataset Method
Name Condition LogisticRegression XGBoost MLP FT-Transformer TransTab AnyPredict

Patient: NCT00041119 Breast Cancer 0.5301 0.5526 0.6091 - 0.6088 0.6262
Patient: NCT00174655 Breast Cancer 0.6613 0.6827 0.6269 0.8423 0.7359 0.8038
Patient: NCT00312208 Breast Cancer 0.6012 0.6489 0.7233 0.6532 0.7100 0.7596
Patient: NCT00079274 Colorectal Cancer 0.6231 0.6711 0.6337 0.6386 0.7096 0.7004
Patient: NCT00003299 Lung Cancer 0.6180 - 0.7465 - 0.6499 0.8649
Patient: NCT00694382 Lung Cancer 0.5897 0.6969 0.6547 0.7197 0.5685 0.6802
Patient: NCT03041311 Lung Cancer 0.6406 0.8393 - - 0.6786 0.9286

We evaluate the patient outcome prediction algorithms on the tabular clinical trial patient datasets
released in (Wang et al., 2023a). Given our focus on patient mortality prediction datasets, we have
chosen a wide range of tabular prediction models. These models include traditional options like
Logistic Regression and XGBoost (Chen & Guestrin, 2016). We also incorporate modern neu-
ral network alternatives like MLP and FT-Transformer (Gorishniy et al., 2021). Additionally, we
explore the potential of cross-table transfer learning models TransTab (Wang & Sun, 2022b) and
AnyPredict (Wang et al., 2023a). Further details about the selected models and the experimental
setups can be found in Appendix C.

The result of AUROC is shown in Table 3. Interestingly, we observed that AnyPredict (Wang et al.,
2023a) achieved the best performance on four datasets, primarily due to its ability to leverage trans-
fer learning across tables. On the other hand, FT-Transformer (Gorishniy et al., 2021) performed
exceptionally well on two datasets but struggled in converging on two other datasets. This finding
suggests that sophisticated deep learning methods excel at representation learning but may require
larger amounts of data for accurate tabular patient prediction.

3.2 TRIAL OUTCOME PREDICTION

We conducted an evaluation of trial outcome prediction algorithms using the TOP benchmark (Fu
et al., 2022b). We have involved a suite of traditional machine learning prediction models such
as Logistic Regression, MLP, and XGBoost (Chen & Guestrin, 2016) as the baselines. We also
incorporate specific trial outcome prediction models HINT (Fu et al., 2022b), SPOT (Wang et al.,
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Table 4: The benchmarking results for trial outcome prediction for tabular clinical trial outcome
datasets. Results are AUROC and PR-AUC for trial outcome labels (binary classification). The best
are in bold.

TOP Phase I TOP Phase II TOP Phase III
Method AUROC PR-AUC AUROC PR-AUC AUROC PR-AUC

LogisticRegression 0.520 0.500 0.587 0.565 0.650 0.687
MLP 0.550 0.547 0.611 0.604 0.681 0.747
XGBoost 0.518 0.513 0.600 0.586 0.667 0.697
HINT 0.576 0.567 0.645 0.629 0.723 0.811
SPOT 0.660 0.689 0.630 0.685 0.711 0.856
AnyPredict 0.699 0.726 0.706 0.733 0.734 0.881

2023c), and AnyPredict (Wang et al., 2023a). Details of the experimental setups can be found in
Appendix D.

The results, including AUROC and PR-AUC scores, are presented in Table 4. The performance of
the algorithms demonstrates that HINT (Fu et al., 2022b) outperforms the baselines by a signifi-
cant margin. This is attributed to HINT’s incorporation of multi-modal trial components such as
molecule structures and disease ontology. Building upon HINT, SPOT (Wang et al., 2023c) further
enhances the predictions by employing a sequential modeling strategy for trial outcomes. Notably,
AnyPredict (Wang et al., 2023a) achieves the best performance by transfer learning leveraging the
data from the Trial Termination Prediction dataset.

3.3 TRIAL SEARCH

Table 5: The benchmarking results for trial search for the Trial Similarity dataset. Results are
precision@K (prec@K) and recall@K (rec@K), and nDCG@K for trial similarities (ranking). The
best are in bold.

Method Prec@1 Prec@2 Prec@5 Rec@1 Rec@2 Rec@5 nDCG@5

BM25 0.7015 0.5640 0.4246 0.3358 0.4841 0.7666 0.7312
Doc2Vec 0.7492 0.6476 0.4712 0.3008 0.4929 0.7939 0.7712
WhitenBERT 0.7476 0.6630 0.4525 0.3672 0.5832 0.8355 0.8129
Trial2Vec 0.8810 0.7912 0.5055 0.4216 0.6465 0.8919 0.8825

We conducted an evaluation of the trial search models on the trial search dataset released in (Wang
& Sun, 2022c). We have involved the classic probabilistic retrieval algorithm BM25 (Trotman et al.,
2014), and the distributional document embedding model Doc2Vec (Mikolov et al., 2013) as the
baselines. We also incorporate the sentence transformers based on pre-trained language models
WhitenBERT (Huang et al., 2021a) as the comparison to the recent dense trial search algorithm
Trial2Vec (Wang & Sun, 2022c). The details of the experimental setups can be found in Appendix E.

The ranking performances are presented in Table 5. The results indicate that the plain BERT model
(WhitenBERT) (Huang et al., 2021a) only provides a slight improvement compared to traditional
retrieval algorithms like BM25 (Trotman et al., 2014). However, Trial2Vec (Wang & Sun, 2022c),
which considers the meta-structure of clinical trial documents and employs hierarchical trial encod-
ing, achieves superior retrieval results.

3.4 TRIAL PATIENT SIMULATION

We select a series of synthetic patient data generation algorithms from the electronic healthcare
records (EHRs) generation literature, including EVA (Biswal et al., 2021), SynTEG (Zhang et al.,
2021), and PromptEHR (Wang & Sun, 2022a). We report their performance to emphasize the impor-
tance of developing trial-specific patient simulation models. We also evaluate a recent trial patient
generation model Simulants (Beigi et al., 2022) and a personalized trial patient generation model
TWIN (Das et al., 2023). We report the fidelity of the generated synthetic patient data based on the
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(a) EVA (b) SynTEG (c) PromptEHR (d) Simulants (e) TWIN

(f) EVA (g) SynTEG (h) PromptEHR (i) Simulants (j) TWIN

Figure 2: The benchmarking results for trial patient simulation on the sequential patient data. Re-
sults are dimension-wise probabilities for medications and adverse events (fidelity evaluation). The
x- and y-axis show the dimension-wise probability for real and synthetic data, respectively. r is the
Pearson correlation coefficient between them; a higher r value indicates better performance.

sequential trial patient data, which were released in (Das et al., 2023), in Figure 2. The descriptions
of these algorithms and experimental setups are available in Appendix F.

In Figure 2, r indicates the affinity of the synthetic data with the real data. We find deep neu-
ral networks, which were originally proposed for EHRs, such as EVA (Biswal et al., 2021), Syn-
TEG (Zhang et al., 2021), and PromptEHR (Wang & Sun, 2022a) struggled to fit the data due to
the limited sample size. In contrast, Simulants (Beigi et al., 2022) builds on a perturbation strategy
with KNN while it produces data that closely resembles real data. Similarly, TWIN (Das et al.,
2023) is equipped with a carefully designed perturbation approach by variational auto-encoders
(VAE) (Kingma & Welling, 2013) to maintain high fidelity while boosting privacy.

4 CONCLUSION

This paper presents PyTrial, an innovative Python package designed for advancing research in
ML-driven clinical trial development. The package offers a comprehensive suite of 34 machine
learning methods customized for addressing six prevalent clinical trial tasks, alongside a collection
of 23 readily available ML datasets. PyTrial establishes an intuitive and adaptable framework,
complete with illustrative examples demonstrating method application and simplified workflows,
enabling users to achieve their objectives with just a few lines of code. The package introduces
method standardization through its four distinct modules, aiming to simplify and expedite ML re-
search in drug development. This empowers researchers to explore a wide array of challenges in
clinical trials using an extensive array of ML techniques. We further discuss the ethical impact of
PyTrial in Section A.
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A ETHICS & SOCIETAL IMPACT

Though AI shows great promise in boosting drug development, there are still significant ethics and
societal impacts that need to be discussed and addressed. We categorize the potential issues into:

Algorithmic Bias Machine learning (ML) algorithms are usually optimized by minimizing the av-
erage empirical risk. It may raise a concern about the trained algorithms being biased towards the
major populations in the training data while undermining the utility for the minority (Mehrabi et al.,
2021). We break down the discussion into predictive and generative algorithms in our case:

• Predictive model may perform badly for long-tailed examples. For instance, biased patient out-
come prediction or recruitment models may lead to selection bias among clinical trial participants.
As such, the in vivo experiment results may not reveal a comprehensive view of effectiveness and
adverse effects on a broad population. For this reason, we declare that predictive models should
not be used for the participant selection process. Also, in the future, we will support adding
algorithmic fairness regularization to predictive models (Kamishima et al., 2011).

• Generative model may tend to rehearse only the frequent patterns learned from the training pop-
ulations, hence decreasing the diversity of the generated populations. The analysis or algorithms
developed on the generated data may then inherit this bias. To mitigate this bias, our software
develops a recent generation algorithm TWIN (Das et al., 2023) that can produce personalized
patient digital twin generation. As such, users can balance the generated synthetic cohort by
augmenting for the minority groups. We expect to add more of these types of algorithms in the
future.

Data Privacy. Our package offers a solution to run ML4Trial algorithms in the local environment,
so it does not raise privacy concerns for most use cases. Nonetheless, releasing them to the other
party may still cause potential patient data leakage when the generated synthetic records are not
being fully audited. To avoid it, our package offers a suite of evaluation functions to audit the results
of the generated synthetic patient data, including the evaluation of privacy risks in multiple aspects.

Responsible Use of AI. It is crucial to ensure the responsible use of AI in clinical trials; we list
several important topics we consider:

• Human Oversight. Despite the power of AI algorithms, they should not replace the judgment
and experience of medical professionals because AI models make incorrect predictions or lead to
adverse outcomes. Human experts should maintain a central role in the decision-making process
and use AI as a source of valuable insights, ensuring the correct interpretation and audit of the AI
results.

• Transparency and Accountability. The practitioners need to ensure transparency in the AI-driven
drug development process. It includes detecting and rectifying biases, errors, or unintended con-
sequences produced by AI algorithms. It also requires the timely disclosure of the use of AI
algorithms and the results.

• Adherence to Ethical Guidelines. Developing and deploying AI algorithms in clinical trials should
adhere to the established ethical guidelines and standards. The use of AI should not compromise
patient privacy, safety, or well-being. We modify the license of our software to reflect this principle
referring to the template in (Contractor et al., 2022).

In summary, we expect AI can boost clinical trials significantly in the future. Nonetheless, it is vital
to align AI practices with ethical principles to minimize the pitfalls and ensure the advancement of
ML4Trial in an ethical, equitable, and patient-centric manner.

B EVALUATION METRICS

B.1 PREDICTION

The evaluation metrics for the prediction can be categorized into four types: binary classification
(ACC, AUROC, PR-AUC), multi-class classification (ACC), multi-label classification (F1-score,
Jaccard score), and regression (MSE).
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• ACC. It measures the ratio of the predicted class that matches the ground truth label. The range is
[0.0, 1.0], where 1.0 is the best.

• AUROC. It is the area under the receiver operating characteristic (ROC) curve where the x-axis is
the false positive rate (FPR) and the y-axis the true positive rate (TPR). For binary classification,
AUROC indicates the capability of the model to identify positive samples, e.g., mortality, from
the testing datasets. The common range of it is [0.5, 1.0], where 1.0 is the best.

• PR-AUC. It is the area under the precision-recall curve that depicts the precision (y-axis) against
recall (x-axis). The curve is obtained by varying the probability threshold that the classifier uses
to predict whether a sample is positive or not. It works as a way to measure binary prediction
performances. Compared to AUROC, PR-AUC usually fits better for class imbalance datasets.
The common range of it is [0.0, 1.0], where 1.0 is the best.

• F1-score. It is a measure of prediction performance by making a harmonic mean of the precision
and recall, i.e.,

F1 = 2 ∗ precision ∗ recall
precision + recall

. (1)

The range is [0.0, 1.0], where 1.0 is the best.

• Jaccard score. It is used to compute the similarity between two asymmetric binary variables so
as to fit the multi-label prediction scenario. Consider the predicted label set is ŷ ∈ {0, 1}C where
C is the number of classes, and the ground truth is y ∈ {0, 1}C . Jaccard score calculates the
overlapping

Jaccard(ŷ, y) =
|ŷ ∩ y|
|ŷ ∪ y|

. (2)

The range is [0.0, 1.0], where 1.0 is the best.

• MSE. It measures how close the regression predictions match the ground truth labels by calculating
the average squared error on the test set as 1

N

∑
(ŷ − y)2. The range is [0.0,∞), where 0.0 is the

best.

B.2 RANKING

The evaluation metrics for the ranking task are precision@K, recall@K, and nDCG@K.

• precision@K. It counts how precise the top-K results are, as

precision@k =
# of relevant cases in the top k results

k
. (3)

The range is [0.0, 1.0], the best is 1.0.

• recall@K. It counts how good the model captures all relevant cases from the candidate set, as

recall@k =
# of relevant cases in the top k results

# of relevant trials in all candidate
. (4)

The range is [0.0, 1.0], the best is 1.0.

• nDCG@K. The full name is normalized discounted cumulative gain (nDCG). It considers the
ranking performance in the retrieved set, as

nDCGk =
DCGk

IDCGk
, (5)

where we have

DCGk =

k∑
i=1

reli
log2(i+ 1)

, (6)

IDCGk = maximize DCGk, (7)

where reli ∈ {0, 1} indicates whether the i-th retrieved samples are relevant or not. So the range
of nDCG@K is [0.0, 1.0], where 1.0 is the best.
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B.3 GENERATION

We involve three genres of evaluation metrics for synthetic data generation in terms of privacy,
fidelity, and utility.

Privacy We evaluate privacy to ensure that the information disclosed in the synthetic data is not
sensitive and cannot be traced back to the original data. There are three types of metrics:

• Presence disclosure. Presence disclosure refers to the scenario where an attacker, possessing a set
of patient records denoted as Xq , seeks to determine if any individuals X ∈ Xq are present in the
model’s training set X . This attack is known as a membership inference attack for ML models.
We calculate the risk by using both synthetic data X̂ and compromised evaluation data Xq as

Sensitivity =
# of known records discovered from synthetic data

total # of known records
. (8)

It is in the range [0.0, 1.0], and the lower, the better.
• Attribute disclosure. A potential risk is the inference of unknown attributes of a target patient, such

as specific medications they are taking, using partial information. This risk arises from synthetic
data, as it can provide insights into the distribution of real data, enabling attackers to infer sensitive
patient information. The evaluation of this risk involves assessing the extent to which synthetic
data enables attribute inference by

Mean Sensitivity =
1

N

N∑
v=1

# of unknown features of v discovered
total # of unknown features of v

, (9)

where v is a compromised visit, and N is the total number of compromised visits. It is in the range
[0.0, 1.0], and the lower, the better.

• Nearest neighbor adversarial accuracy risk (NNAA). NNAA is a privacy loss metric used to quan-
tify the degree to which a generative model exhibits overfitting tendencies on the real dataset. This
metric is crucial as overfitting can raise privacy concerns if a method reproduces the training data
entirely when generating synthetic data. To calculate NNAA, three datasets of equal size need
to be created: the training set X , the synthetic data X̂ , and the evaluation data XE . NNAA is
computed using the following formula:

NNAA = dist(XE , X̂ )− dist(X , X̂ ), (10)

where we have

dist(XE , X̂ ) =
1

2

(
1

N

N∑
i=1

1(δES(i) > δEE(i)) +
1

N

N∑
i=1

1(δSE(i) > δSS(i))

)
, (11)

dist(X , X̂ ) =
1

2

(
1

N

N∑
i=1

1(δTS(i) > δTT (i)) +
1

N

N∑
i=1

1(δST (i) > δSS(i))

)
. (12)

Here, δES(i) = minj∥xi
E − xj

S∥ is defined as the ℓ2-distance between xi
E ∈ XE and its nearest

neighbor in xj
S ∈ X̂ ; δTS(i) = minj∥xi

T −xj
S∥ is the distance between xj

S and xi
T ∈ X . Similarly

we can define δTS ,δST and δSE . Here , δEE(i) = minj,j ̸=i∥xi
E − xj

E∥. Similarly, we can define
δTT and δSS . 1(·) is indicator function.

Fidelity We evaluate the fidelity of synthetic data by calculating the dimension-wise probability
(DP) with the following formula

DP(x) =
# of visits containing the feature x

# of total visits
, (13)

which is the probability of each feature (e.g., medication events) in the dataset. For the real data
X , we can compute a sequence of DPs as DP(X ) = {DP(xi)}ni where n is the total number of
features. Similarly, we obtain DP for synthetic data as DP(X̂ ). The overall fidelity score is obtained
by plotting the scatter plots of real data DPs v.s. synthetic data DPs for visualization. In addition, we
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compute the Pearson correlation r between DP(X ) and DP(X̂ ). r ∈ [−1, 1] and the best situation is
r = 1.

Utility Quantifying the utility of synthetic data generated for downstream tasks is crucial. One such
task is training a machine learning (ML) model to predict the incidence rate of a specific clinical
endpoint for patients using the generated data X̂ . To create a training dataset from X̂ , we define
I as the set of patient record inputs X̂i and Y as the corresponding target labels representing the
endpoints ŷi. Thus, the utility of X̂ can be defined as:

Utility(X̂ ) = V (I,Y;A), (14)

where A is any arbitrary predictive ML algorithm that learns from the dataset {I,Y}. The func-
tion V (·) measures the prediction performance of A after training, typically using metrics such as
AUROC. It’s important to note that the range of values for V may vary depending on the chosen
evaluation metric.

C BENCHMARK: PATIENT OUTCOME PREDICTION

Dataset Our dataset consists of tabular patient data, which is summarized in Table 6. This data was
collected from seven separate oncology clinical trials 2, and each trial has its own unique schema.
The dataset comprises distinct groups of patients with varying conditions. Our goal is to train a
model that can accurately predict the morbidity of patients, which involves a binary classification
task.

Table 6: The statistics of Patient Outcome Prediction Datasets. # is short for the number of. Cate-
gorical, Binary, and Numerical show the number of columns belonging to these types. N/A means
no label is available for the target task.

Trial ID Trial Name # Patients Categorical Binary Numerical Positive Ratio

NCT00041119 Breast Cancer 1 3,871 5 8 2 0.07
NCT00174655 Breast Cancer 2 994 3 31 15 0.02
NCT00312208 Breast Cancer 3 1,651 5 12 6 0.19
NCT00079274 Colorectal Cancer 2,968 5 8 3 0.12
NCT00003299 Lung Cancer 1 587 2 11 4 0.94
NCT00694382 Lung Cancer 2 1,604 1 29 11 0.45
NCT03041311 Lung Cancer 3 53 2 11 13 0.64

External Patient Database

MIMIC-IV 143,018 2 1 1 N/A
PMC-Patients 167,034 1 1 1 N/A

Model implementation

• XGBoost (Chen & Guestrin, 2016): This is a tree ensemble method augmented by gradient-
boosting. We use ordinal encoding for categorical and binary features and standardize numerical
features via scikit-learn (Pedregosa et al., 2011). We encode textual features, e.g., patient
notes, via a pre-trained BioBERT (Lee et al., 2020) model. The encoded embeddings are fed to
XGBoost as the input. We tune the model using the hyperparameters: max depth in {4, 6, 8};
n estimator in {50, 100, 200}; learning rate in {0.1, 0.2}; We take early-stopping with patience
of 5 rounds.

• Multilayer Perceptron (MLP): This is a simple neural network built with multiple fully-connected
layers. The model is with 2 dense layers where each layer has 128 hidden units. We tune the
model using the hyperparameters: learning rate in {1e-4,5e-4,1e-3}; batch size in {32, 64}; We
take the max training epochs of 10; weight decay of 1e-4.

• FT-Transformer (Gorishniy et al., 2021): This is a transformer-based tabular prediction model.
The model is with 2 transformer modules where each module has 128 hidden units in the attention

2https://data.projectdatasphere
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layer and 256 hidden units in the feed-forward layer. We use multi-head attention with 8 heads.
We tune the model using the hyperparameters: learning rate in {1e-4,5e-4,1e-3}; batch size in
{32, 64}; We take the max training epochs of 10 and weight decay of 1e-4.

• TransTab (Wang & Sun, 2022b): This is a transformer-based tabular prediction model that is able
to learn from multiple tabular datasets. Following the transfer learning setup of this method, we
take a two-stage training strategy: first, train it on all datasets in the task, then fine-tune it on each
dataset and report the evaluation performances. The model is with 2 transformer modules where
each module has 128 hidden units in the attention layer and 256 hidden units in the feed-forward
layer. We use multi-head attention with 8 heads. We tune the model using the hyperparameters:
learning rate in {1e-4,5e-4,1e-3}; batch size in {32, 64}; We take the max training epochs of 10
and weight decay of 1e-4.

• AnyPredict (Wang et al., 2023a): This is a transformer-based tabular prediction model built on
BERT. The model has 12 transformer layers and was initialized using BioBERT checkpoint 3. It
is equipped with GPT-3.5 (Ouyang et al., 2022) via OpenAI’s API 4 for data consolidation and
enhancement. This model is able to make pseudo annotations and learn from external patient
datasets, which are MIMIC-IV EHR and PMC-Patient notes. We tune the model using the hyper-
parameters: learning rate in {2e-5,5e-5,1e-4}; batch size in {32, 64}; We take the max training
epochs of 5 and weight decay of 1e-5.

D BENCHMARK: TRIAL OUTCOME PREDICTION

Dataset We involve two data sources for this task: TOP benchmark (Fu et al., 2022b) and Trial
Termination Prediction (Wang et al., 2023a). Both are tabular prediction tasks: the TOP benchmark’s
target label is the success or failure of the trial, which indicates whether the trial meets the primary
endpoint or not. By contrast, Trial Termination Prediction has the target label of whether the trial
would terminate. The data statistics are in Table 7.

Table 7: The statistics of the Clinical Trial Outcome Datasets. # is short for the number of. N/A
means no label is available for the target task.

Dataset # Trials # Treatments # Conditions # Features Positive Ratio

TOP Benchmark Phase I 1,787 2,020 1,392 6 0.56
TOP Benchmark Phase II 6,102 5,610 2,824 6 0.50
TOP Benchmark Phase III 4,576 4,727 1,619 6 0.68

ClinicalTrials.gov Database

Trial Termination Prediction 223,613 244,617 68,697 9 N/A

Model implementation

• XGBoost (Chen & Guestrin, 2016): This is a tree ensemble method augmented by gradient-
boosting. We follow the setup used in (Fu et al., 2022b).

• MLP (Tranchevent et al., 2019): It is a feed-forward neural network, which has 3 fully-connected
layers with the dimensions of dim-of-input-feature, 500, and 100, and ReLU activations. We
follow the setup used in (Fu et al., 2022b).

• HINT (Fu et al., 2022b): It integrates several key components. Firstly, there is a drug molecule en-
coder utilizing MPNN (Message Passing Neural Network). Secondly, a disease ontology encoder
based on GRAM is incorporated. Thirdly, a trial eligibility criteria encoder leveraging BERT is
utilized. Additionally, there is a drug molecule pharmacokinetic encoder, and a graph neural net-
work is employed to capture feature interactions. Subsequently, the model feeds the interacted
embeddings into a prediction model for accurate outcome predictions. We follow the setup used
in (Fu et al., 2022b).

3https://huggingface.co/dmis-lab/biobert-v1.1
4Engine gpt-3.5-turbo-0301: https://platform.openai.com/docs/models/

gpt-3-5
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• SPOT (Wang et al., 2023c): The Sequential Predictive Modeling of Clinical Trial Outcome
(SPOT) is an innovative approach that follows a sequential process. Initially, it identifies trial
topics to cluster the diverse trial data from multiple sources into relevant trial topics. Next, it
generates trial embeddings and organizes them based on topic and timestamp, creating structured
clinical trial sequences. Treating each trial sequence as an individual task, SPOT employs a meta-
learning strategy, enabling the model to adapt to new tasks with minimal updates swiftly. We
follow the setup used in (Wang et al., 2023c).

• AnyPredict (Wang et al., 2023a): This is a transformer-based tabular prediction model built on
BERT. The model has 12 transformer layers and was initialized using the BioBERT checkpoint.
It is equipped with GPT-3.5 (Ouyang et al., 2022) via OpenAI’s API for data consolidation and
enhancement. This model is able to make pseudo annotations and learn from external datasets,
which as the trial termination prediction dataset. We tune the model using the hyperparameters:
learning rate in {2e-5,5e-5,1e-4}; batch size in {32, 64}; We take the max training epochs of 5
and weight decay of 1e-5.

E BENCHMARK: TRIAL SEARCH

Dataset The raw training dataset is Clinical Trial Document with 447,709 clinical trials, out of
which we keep 311,485 interventional trials for self-supervised training. The Trial Similarity data is
utilized to evaluate the ranking performances of all methods. Given each target trial, the dataset pro-
vides 10 candidate trials labeled as {1, 0} indicating relevant or not. We can calculate precision@k,
recall@k, and nDCG@k, referring to Eqs. equation 3, equation 4, equation 5, based on the ranking
results.

Model implementation

• BM25 (Trotman et al., 2014): A bag-of-words retrieval method. We used the default parameters
referring to the rank-bm25 package 5.

• Doc2Vec (Mikolov et al., 2013): It is a classic dense retrieval method by building distributed word
representations by self-supervised learning methods (CBOW). We take an average pooling of word
representations in a document for retrieval by cosine distance. We used the default parameters
referring to the gensim package 6.

• WhitenBERT (Huang et al., 2021a): This is a post-processing method that uses anisotropic BERT
embeddings to improve semantic search. We take the average of the last and first layers. This
method does not have hyperparameters to choose from.

• Trial2Vec (Wang & Sun, 2022c): This is a self-supervised method that utilizes BERT as the
backbone and makes a hierarchical encoding of clinical trial documents considering their meta-
structure, e.g., the sections. We used the same set of hyperparameters referring to the original
paper.

F BENCHMARK: TRIAL PATIENT SIMULATION

Dataset We utilized the patient records from two clinical trials:

• Phase III breast cancer trial (NCT00174655): A total of 2,887 patients were included in this
study, and they were randomly allocated to different treatment groups. The purpose of the study
was to assess the effectiveness of Docetaxel, given either sequentially or in combination with Dox-
orubicin, followed by CMF, compared to Doxorubicin alone or in combination with Cyclophos-
phamide, followed by CMF, as adjuvant treatments for node-positive breast cancer patients.

• Phase II small cell lung carcinoma trial (NCT01439568): This Phase II trial dataset includes data
from both the comparator and experimental arms. A total of 90 patients were randomly assigned
to the arms to investigate the impact of LY2510924 in combination with Carbo-platin/Etoposide
compared to Carboplatin/Etoposide alone in the treatment of extensive-stage Small Cell Lung
Carcinoma.

5https://pypi.org/project/rank-bm25
6https://radimrehurek.com/gensim/models/doc2vec.html
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These datasets were pre-processed following the instructions in (Das et al., 2023). Below are the
statistics of the processed datasets in Table 8.

Table 8: The statistics of used sequential clinical trial patient data for synthetic data generation tasks.

Patient: NCT00174655 Patient: NCT01439568
Item Number Item Number
# of Patients 971 # of Patients 77
# of Visits 8,292 # of Visits 353
Max # of visits per patient 14 Max # of visits per patient 5
Types of treatments 4 Types of treatments 3
Types of medications 100 Types of medications 100
Types of adverse events 56 Types of adverse events 29
# Patients with severe outcome 122 # Patients with severe outcome 56

Model implementation

• EVA (Biswal et al., 2021): this method leverages variational autoencoders (VAE) to fit the sequen-
tial EHRs. EVA is equipped with a hierarchically factorized conditional variant of VAE to make
controlled generation. We used the default hyperparameters reported in the original paper.

• SynTEG (Zhang et al., 2021): this method consists of a recurrent neural network (RNN) and a gen-
erative adversarial network (GAN). It utilizes RNN to encode the historical state of patients while
using GAN to learn to generate synthetic visits. We used the default hyperparameters reported in
the original paper.

• PromptEHR (Wang & Sun, 2022a): this method builds on encoder-decoder language models that
perform causal language modeling on the serialized EHRs. It is also capable of making conditional
generation through prompt learning. We used the default hyperparameters reported in the original
paper.

• Simulants (Beigi et al., 2022): it is a simple method that perturbs each real patient record by
randomly extracting the corresponding pieces from its nearest neighbors. We used the default
hyperparameters reported in the original paper.

• TWIN (Das et al., 2023): it was proposed to generate personalized clinical trial digital twins that
closely resemble each individual’s properties. It introduces VAE for generating the perturbations
to produce synthetic records from the target record. We used the default hyperparameters reported
in the original paper.

Fidelity evaluation We performed a fidelity evaluation on a different patient dataset from a sequen-
tial trial (Patient: NCT01439568), and the results are presented in Figure 3. It is observed that both
EVA and SynTEG exhibit poor performance on this small dataset, which consists of only 77 patients
and 353 visits. PromptEHR, however, shows slightly better performance than the former two. On
the other hand, TWIN achieves slightly better results compared to Simulants.

Privacy evaluation

• Presence disclosure: We randomly select m% real patient records to set the attacker’s data Xq ,
where m ∈ {1%, 5%, 10%, 20%}. Then, we calculate the Sensitivity scores referring to Eq.
equation 8. Results are shown in Table 9. We identify that although Simulants produce high-
fidelity synthetic data, it encounters high privacy risk because it turns out to replicate the real
patient records when sampling and shuffling across the nearest neighbors of the target patient. On
the contrary, TWIN is able to produce novel visits and hence faces less privacy risk.

Table 9: The presence disclosure sensitivity scores with a varying ratio of known samples by the
attacker. The lower the value, the better.

# of known samples in Xq 1% 5% 10% 20%

Simulants 0.21 0.53 0.43 0.40
TWIN 0.16 0.21 0.20 0.19
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(a) EVA (b) SynTEG (c) PromptEHR (d) Simulants (e) TWIN

(f) EVA (g) SynTEG (h) PromptEHR (i) Simulants (j) TWIN

Figure 3: The benchmarking results fortrial patient simulation on the sequential patient data
(NCT01439568). Results are dimension-wise probabilities for medications and adverse events (fi-
delity evaluation). The x- and y-axis show the dimension-wise probability for real and synthetic
data, respectively. r is the Pearson correlation coefficient between them; a higher r value indicates
better performance

• Attribute disclosure: We hold out a set of patients and assume that the attacker has access to m
of features of these records, where m ∈ {5, 10, 15, 20} in our experiments. We then calculate the
Mean Sensitivity scores according to Eq. equation 9. Results are shown in Table 10. It is found
that Simulants bear a higher attribute disclosure risk than TWIN in most cases.

Table 10: The attribute disclosure sensitivity scores with a varying number of known features by the
attacker. The lower the value, the better.

# of compromised features 5 10 15 20

Simulants 0.221 0.283 0.303 0.394
TWIN 0.258 0.261 0.272 0.243

• Nearest neighbor adversarial attack risk: We compute NNAA risk score according to Eq. equa-
tion 10, where we hold 100 patients’ records from the original real dataset to formulate the evalua-
tion data XE and another 100 to formulate the training set X . We observed that TWIN has NNAA
score of 0.275 while Simulants has 0.300.

G BENCHMARK: TRIAL SITE SELECTION

Dataset In these experiments, we utilized real-world clinical trials and claims data as the basis for
our research. The dataset consists of 33,323 sites, which were matched with 4,392 trials. Each
site was associated with static features, including specialty information, the most recent patient
diagnoses and prescriptions, and past enrollment histories. To establish connections between trials
and sites, each trial was matched with a fixed number, denoted as M , of sites from the available
pool.

To introduce the challenge of missing data, we created 10 versions of each trial. For each version, a
random mask was generated to determine whether each modality for each site would be present in
the data point. While the trial data is publicly accessible, the original site data and enrollment labels
are proprietary. Therefore, we started with the real representations of the trials and constructed
a synthetic version of the dataset. We accomplished this by creating a pool of 30,000 sites. To
generate the static and medical history features for these sites, we randomly sampled from univariate
and conditional distributions based on the characteristics of the real dataset. Subsequently, using an
enrollment prediction model trained on the real labels, we simulated the enrollment history and
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labels for the entire synthetic dataset. Finally, we applied the same augmentation techniques used in
the real dataset to introduce the challenge of missing modalities to the synthetic dataset.

Model implementation The following methods are included:

• Random: selects a subset of sites at random.

• One-Sides Policy Gradient (PGOS) (Singh & Joachims, 2019): it is a fairness baseline that adopts
a regularization approach to mitigate the underrepresentation of demographic groups within rank-
ings. Rather than explicitly optimizing diversity, this approach focuses on constraining or regular-
izing fairness to ensure that all demographic groups are adequately represented in the rankings. By
incorporating regularization techniques, the baseline model aims to minimize biases and promote
equitable outcomes by preventing the systematic underrepresentation of any particular group.

• Doctor2Vec (Biswal et al., 2020): it utilizes static features and patient visits to construct a doctor
representation. This representation is subsequently queried by a trial representation and passed
through a downstream network to predict the doctor’s enrollment count for that particular trial.
Therefore, it is trained on the smaller, full-data version of the dataset prior to repeating each trial
ten times to account for the challenge of missing modalities.

• FRAMM (Theodorou et al., 2023a): it is a deep reinforcement learning framework proposed for
optimizing site selection for clinical trials. It can handle missing modalities with a modality
encoder. It also seeks to reach a trade-off between the enrollment and fairness metrics through
specific reward functions. It leverages deep Q-learning to approximate the contribution of each
individual site.

Metrics We include the following metrics for enrollment and diversity, respectively.

• Enrollment: we compare the size of each model’s enrolled cohort with the ground truth maximal
enrollment via relative error, calculated by

Relative Error =
Max Enrollment − Model Enrollment

Max Enrollment
(15)

• Diversity: we use the entropy of the overall racial distribution of the final enrolled population,
defined by

H(p) = −
6∑

k=1

pk log pk (16)

Experimental results Our findings are presented from two perspectives: the ability to enroll large
patient populations and the simultaneous consideration of diversity within that cohort. We evalu-
ate the performance in terms of enrolling a substantial number of patients for a given study while
also ensuring a balanced representation of diverse individuals within the enrolled population. By
addressing both aspects, we aim to provide a comprehensive assessment of the effectiveness of the
approach in achieving enrollment goals while promoting inclusivity and diversity.

• Enrollment evaluation: To evaluate the models’ performance in terms of enrollment-focused site
selection, we present the enrollment-only results in Table 11. FRAMM achieves the highest en-
rollment performance on the full-data test set, despite being trained on a distinct data type. Similar
results are found on the synthetic dataset where FRAMM reduces relative error up to 74% on the
missing data test set as compared to the Random baseline shown in Table 12.

Table 11: Enrollment-Only Performance

Relative Error (↓)

Random 0.621 ± 0.019
Doctor2Vec 0.525 ± 0.021
FRAMM 0.512 ± 0.020

Table 12: Synthetic Enrollment-Only Perfor-
mance

Relative Error

Random 0.227 ± 0.003
FRAMM 0.062 ± 0.001
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Figure 4: Enrollment vs. Diversity Tradeoffs

• Diversity evaluation: In Figure 4a, we illustrate the ability of each method to strike a balance be-
tween enrollment and diversity by plotting the trajectories of relative error against entropy while
varying the weightings of the fairness component in the loss function. We compare FRAMM
to the PGOS and Random baselines using the real dataset. The results demonstrate that both
FRAMM and the PGOS model outperform the Random baseline in enhancing diversity. How-
ever, FRAMM exhibits superior performance by enabling more efficient and adjustable trade-offs
between enrollment and diversity compared to PGOS. It maintains higher enrollment rates for a
given level of diversity and offers precise control over the diversity level through different weight-
ings (λ), whereas PGOS is generally limited to a specific region once λ is increased from 0.
Similar patterns emerge in the synthetic dataset, as depicted in Figure 4b, where FRAMM contin-
ues to demonstrate its capability in achieving more efficient and customizable trade-offs between
enrollment and diversity compared to the PGOS baseline.
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