
Bridging the Human to Robot Dexterity Gap through
Object-Oriented Rewards

Irmak Guzey† Yinlong Dai Georgy Savva Raunaq Bhirangi Lerrel Pinto

New York University

object-rewards.github.io

𝒯

𝒯

Reward R(𝒯R, 𝒯H)

H
um

an
R

ob
ot

Policy

Human Video Robot Policy
R

H

Fig. 1: HUDOR generates rewards from human videos by tracking points on the manipulable object, indicated by the rainbow-colored
dots, over the trajectory. This allows for online training of multi-fingered robot hands given only a single video of a human solving the task
(left) and without robot teleoperation. To optimize the robot’s policy (middle), rewards are computed by matching the point movements
of the robot policy TR with those in the human video TH . In under an hour of online fine-tuning, our Allegro robot hand (right) is able
to open the music box.

Abstract— Training robots directly from human videos is
an emerging area in robotics and computer vision. While
there has been notable progress with two-fingered grippers,
learning autonomous tasks without teleoperation remains a
difficult problem for multi-fingered robot hands. A key reason
for this difficulty is that a policy trained on human hands
may not directly transfer to a robot hand with a different
morphology. In this work, we present HUDOR, a technique
that enables online fine-tuning of the policy by constructing
a reward function from the human video. Importantly, this
reward function is built using object-oriented rewards derived
from off-the-shelf point trackers, which allows for meaningful
learning signals even when the robot hand is in the visual
observation, while the human hand is used to construct the
reward. Given a single video of human solving a task, such
as gently opening a music box, HUDOR allows our four-
fingered Allegro hand to learn this task with just an hour of
online interaction. Our experiments across four tasks, show
that HUDOR outperforms alternatives with an average of 4×
improvement. Code and videos are available on our website
https://object-rewards.github.io/.

I. INTRODUCTION

Humans effortlessly perform a wide range of dexterous
tasks in their daily lives [1]. Achieving similar capabilities
in robots is essential for their effective deployment in the
real world. Towards this end, recent advances have enabled

†Correspondence to irmakguzey@nyu.edu.

the learning of multi-modal, long-horizon, and dexterous
behaviors for two-fingered grippers [2, 3, 4, 5] using imi-
tation learning (IL) from teleoperated robot data. However,
extending such methods to more complex tasks with multi-
fingered hands has proven challenging.

The difficulty with using teleoperation-based learning for
multi-fingered hands stems from two key issues. First, this
requires large amounts of data for moderate amounts of
robustness. For example, even tasks with two-fingered grip-
pers [6, 7, 8] often require thousands of demonstrations
to train robust policies. This data requirement is likely
greater for tasks demanding higher precision and dexterity.
Second, teleoperating multi-fingered hands is a challenging
systems problem due to the demand for lower-latency and
continuous feedback when controlling multiple degrees of
freedom [9, 10, 11].

An alternate approach that circumvents teleoperation is
to develop policies for robots using first-person videos of
humans executing tasks [12, 13, 14]. However, most previous
approaches have required either additional teleoperated robot
demonstrations [15] or human-intervened learning [16]
for fine-tuning. This extra information is often necessary
to bridge the gap between the morphological and visual
differences between human hands (as seen in human video
data) and robot hands (as observed in robot interactions).

https://object-rewards.github.io/
https://object-rewards.github.io/


In this work, we present HUDOR, a new approach to
bridge the gap between human videos and robot policies
through online imitation learning. Given a human video
and hand pose trajectories, an initial robot replay can be
generated using pose transformation and full robot inverse
kinematics. However, this initial replay often fails due to
morphological differences between human and robot hands.
HUDOR improves this initial replay through following steps:
(a) We track the points of the manipulated object in both
human and robot trajectory videos; (b) then calculate the
similarity of object motion and articulation using these
tracked point sets, (c) and finally fine-tune the initial robot
trajectory through reinforcement learning. By iteratively re-
fining its performance based on these comparisons, the robot
effectively imitates human actions while adapting to its own
physical constraints.

We evaluate HUDOR on four dexterous tasks, including
opening a small music box with one hand and sliding and
picking up a thin card. Our contributions can be summarized
as follows:

1) HUDOR introduces the first framework that enables
the learning of dexterous policies on multi-fingered
robot hands using only a single human video and hand
pose trajectory (Section IV).

2) HUDOR introduces a new object-oriented reward cal-
culation method that matches human and robot trajec-
tories. This approach gives 2.1× better performance
on three of our tasks than common reward functions
(Section IV-B).

3) HUDOR outperforms state-of-the-art offline imitation
learning methods for learning from human demonstra-
tions [16, 3], achieving an average improvement of
2.64×, emphasizing the need for online corrections
(Section IV-A).

Robot videos are best viewed on our website: https:
//object-rewards.github.io/.

II. RELATED WORKS

a) Robot Learning for Dexterous Manipulation: Learn-
ing dexterous policies for multi-fingered hands remains a
key challenge in robotics [17, 18, 9]. While some ap-
proaches train policies in simulation for real-world deploy-
ment [19, 18], sim-to-real transfer struggles with in-scene
object manipulation [20, 21]. Other works develop teleoper-
ation frameworks[22, 23, 10, 24]to address this by training
offline policies using robot data, but challenges persist due
to morphology difference and lack of tactile feedback.

Given the challenges of large-scale data collection, most
offline dexterous policies tend to fail due to overfitting. To
mitigate this, some previous works have focused on learning
policies with limited data [25, 26], by using nearest-neighbor
matching for action retrieval [25, 10, 22] or by learning
a residual policy from a single demonstration with online
interactions to improve generalization [26, 27].

b) Learning from Human Videos: With the goal of
scaling up data collection using more accessible sources,

the vision and robotics communities have worked on learn-
ing meaningful behaviors and patterns from human videos
[28, 29, 30, 31]. Some efforts focus on learning simulators
that closely mimic the real-world environment of the robot
from human videos using generative models [29, 32, 28],
using these simulators to train policies and make decisions
by predicting potential future outcomes.

Other works use internet-scale human videos to learn
higher-level skills or affordances [30, 33]. However, these
works either require low-level policies to learn action prim-
itives for interacting with objects [30], or only focus on
simple tasks where a single point of contact is sufficient for
manipulation [33]. Yet other approaches leverage on-scene
human videos to learn multi-stage planning [15, 13], but need
additional robot data to learn lower-level object interactions.
Notably, all of these works focused on two-gripper robots,
where manipulation capabilities are limited and objects are
less articulated.

A recent study, DexCap [16], addresses this issue for
dexterous hands by using multiple cameras and a hand
motion capture system to collect human demonstrations. An
offline policy is learned by masking the human hand from
the environment point cloud followed by an online fine-
tuning stage with human feedback. HUDOR differs from
this work by eliminating the need for cumbersome human
feedback by automatically extracting a reward from a single
human demonstration and allowing the robot to learn from
its mistakes to compensate for the morphology mismatch
between the robot and the human.

III. LEARNING TELEOPERATION-FREE ONLINE
DEXTERIOUS POLICIES

HUDOR involves three steps: (1) A human video and
corresponding hand pose trajectory are recorded; (2) hand
poses are transferred and executed on the robot using pose
transformation and full-robot inverse kinematics (IK); and (3)
reinforcement learning (IRL) is used to successfully imitate
the expert trajectory.

A. Robot Setup and Human Data Collection

Our hardware setup includes a Kinova JACO 6-DOF
robotic arm with a four-fingered Allegro hand [9] attached,
two RealSense RGBD cameras [34] and a Meta Quest 3 VR
headset used to collect hand pose estimates. We compute
the relative transformation between the Quest frame and
the robot frame to directly transfer the recorded hand pose
trajectory from the human video to the robot as shown in
Figure 2. We use two ArUco markers to compute relative
transformations between camera frames. Details of relative
transformations used and data alignment can be found in
appendix (Section VI-B).

To ensure the robot’s fingertips follow the desired posi-
tions relative to its base, we implemented a custom inverse
kinematics (IK) module for the full robot arm-hand system.
The IK module takes the desired fingertip positions atr and
the current joint positions of both hand and arm jt as inputs,
and outputs the next joint positions j∗t+1 = I(atr, j

t) needed

https://object-rewards.github.io/
https://object-rewards.github.io/


HOW

at
o

at
a

HRW

at
a

W

W

Fig. 2: Illustration of the robot setup and trajectory transfer in
HUDOR. Aruco markers are used for calibration. Here, the VR
headset is used solely for obtaining hand pose estimates and can
be worn or attached to the setup as needed. World frame W is
visualized on the ArUco marker on the operation table.

to reach the target. [35]. The hand learning rate is set to be
50 times higher than the arm learning rate, allowing the IK
to prioritize the hand movements.

B. Residual Policy Learning

Due to morphological differences between human and
robot hands, and VR hand pose estimation errors, naively
replaying retargeted fingertip trajectories on the robot often
fails to solve tasks. To address this, we employ an online
residual policy using inverse reinforcement learning (IRL) to
enhance trajectory replay. Given the visual disparity between
human and robot hands, reward functions based on image-
based matching [27, 26] with in-domain demonstration data
are ineffective in providing reward signals. To bridge this
domain gap, we introduce a novel object-centric trajectory-
matching reward algorithm.

a) Object Point Tracking and Trajectory Matching: We
use off-the-shelf computer vision models to track the motion
of points on the object of interest for reward computation.
We compute the mean squared error between motion of these
points in the human expert video and the robot policy rollout
and use this as a reward at every timestep in our online
learning framework. In appendix (Section VI-C), we explain
our reward calculation in detail.

C. Exploration Strategy

We select a subset of action dimensions to explore and
learn from. This speeds up the learning process and enables
quick adaptation. For exploration, we use a scheduled ad-
ditive Ornstein-Uhlenbeck (OU) noise [36, 37] to ensure
smooth robot actions. We learn a residual policy πr(·) on
this subset by maximizing the reward function RH2R

i for
each episode i using DrQv2 [38].

Inputs to the residual policy at+ = πr(a
t
r,∆st,E(P t

R), T t
R)

at time t are: (a) the human retargeted fingertip positions with
respect to the robot’s base atr, (b) change in current robot
fingertip positions ∆st = st − st−1, (c) the centroid of the
tracked points set E(P t

R) and (d) the object motion at time
t, T t

R. Finally, we compute the executed actions as follows:
at = atr + πr(a

t
r,∆st,E(P t

R), T t
R). The action, at, is sent

Fig. 3: Illustration of how online correction improves robot policy
and moves the robot trajectory closer to the expert’s as time
progresses in the Paper Sliding task. We showcase the X-axis of
the trajectory of the tracked points for different episodes and their
corresponding rewards.

to the IK module which converts it into joint commands for
the robot.

IV. EXPERIMENTAL EVALUATION

We experiment with four dexterous tasks, namely bread
picking, card sliding, music box opening, and paper sliding,
which are visualized in Figure 5. Exploration axes mentioned
are with respect to the base of the robot.

Evaluating robot performance: To compare the robot’s
performance, we evaluate HUDOR against various online
and offline algorithms. For all online algorithms, we train the
policies until the reward converges, up to one hour of online
interactions. We evaluate the methods by running rollouts on
10 varying initial object configurations for every task. More
information on tasks that are evaluated can be found at VI-D.

A. How important are online corrections?

Figure 3 demonstrates how online learning improves the
policy in the Paper Sliding task. To showcase the importance
of online corrections, we implement and run the state-of-
the-art transformer-based behavior cloning (BC) algorithm
VQ-Bet [3], as the base architecture for all of our offline
baselines. We ablate the input and the amount of demonstra-
tions used to experiment on different aspects, and compare
HUDOR against other offline baselines, with details can be
found in appendix (Section VI-E).

Table I shows the comparison results. Both BC baselines
manage to reach the paper but do little beyond that for
Paper Sliding. Our strongest baseline, Point Cloud BC,
performs relatively well on Paper Sliding and Bread Picking.
We observed that with this baseline, when the robot hand
occupies too much of the scene, the model fails due to out-of-
distribution data. More of the failure cases can be seen on our
website. For highly precise tasks such as Music Box Opening
and Card Sliding, all offline methods fail, highlighting the
importance of online corrections for tasks requiring high
dexterity.

B. Does HUDOR improve over other reward functions?

To compensate for the visual differences between the hu-
man and robot videos, we use object-oriented point tracking
based reward functions to guide the online learning. We
ablate over our design decision, and train online policies
for three of our tasks with Image OT and Pred OT. For

https://object-rewards.github.io


(b) Spatial Generalization Results(a) Decoupling

oc

HRC

Reached the lid / semi opened it
Reached the box but not the lid

Music Box Opening

Picked the bread but dropped itOriginal object position
Couldn’t pick up the bread

Bread Picking

Original object position
SuccessSuccess

Fig. 4: Illustration of how we conduct spatial generalization experiments and their results. First, (a) we decouple the hand and arm
generalization by identifying the object location with respect to the robot base and using this location to extract a larger offset to be
added to the trained policies with HUDOR. Next, (b) we present spatial generalization experiments for the Bread Picking and Music
Box Opening tasks. We illustrate the evaluation locations and report their success below. Note that while policies learned with HUDOR
generalize successfully in the majority of locations for Bread Picking, they fail to perform similarly in the more dexterous task, Music
Box Opening. Videos of evaluation runs can be found on our website.

TABLE I: Comparison of HUDOR to different offline algorithms.
Paper sliding success is measured in cm of rightward motion; other
tasks show success rates out of 10 robot rollouts.

Method Bread Card Music Paper
(./10) (./10) (./10) (cm)

BC - 1 Demo [3] 0 0 0 3.5 ± 1.1
BC [3] 3 0 0 4.1 ± 1.3

Point Cloud BC [16] 3 0 0 12 ± 1.3
HUDOR (ours) 8 7 6 17.3 ± 1.5

Image OT [27], We pass RGB images from both the robot
and the human videos through pretrained Resnet-18 [39]
image encoders to get image representations and apply
optimal transport (OT) based matching on them to get the
reward, similar to FISH [27]. For Pred OT, instead of direct
images we apply OT matching on the points that are tracked
throughout both the trajectories of tracked sets of points
τpr and τph .

TABLE II: Comparison of success of HUDOR to different reward
extraction algorithms.

Method HUDOR(ours) Image OT [27] Pred OT

Bread Picking 8 6 6
Music Box Opening 6 1 2
Paper Sliding (cm) 17.25 ± 1.47 16.1 ± 1.37 16.5 ± 1.23

We present the success rates in Table II. Further discussion
and evaluation of point-tracking-based rewards can be found
in the appendix (Section VI-F).

C. How well does HUDOR generalize to new objects?

We test the generalization capabilities of policies trained
with HUDOR on new objects for two of our tasks, with
the results shown in Figure 6 in appendix. In these experi-
ments, we directly run the policies on new objects without
retraining, using different text prompts for each inference to
obtain object segmentation. We observe that HUDOR can
generalize with varying degrees of success to new objects
when their shape and texture are not significantly different

from the original object. While the weight and thickness
of the card affect success in Card Sliding, texture is the
most critical factor causing failure in Bread Picking. Despite
the Dobby sculpture having a very different shape from the
bread, HUDOR performs well; however, when the object
is slippery, like the Red Peg, we observe complete failure.
These experiments show how point-tracking can enable some
policy generalization.

D. How effectively does HUDOR generalize to larger areas?

We evaluated how well policies trained with HUDOR
generalize spatially to larger areas. Here, we did not train any
new policies from scratch for broader spatial generalization
due to the extensive online training time required. Instead, we
decouple the spatial generalization component from policy
learning. More information can be found in Appendix VI-G.

We present the results in Fig. 4. While this approach
enables fairly effective spatial generalization for the bread-
picking task, it fails to generalize for music box opening
due to the dexterity and sensitivity required. We observe a
trend where the fingers move too high, missing the lid on the
leftmost edges of the evaluation area, and too low, lifting the
box instead of opening the lid on the rightmost edges. We
believe this issue arises both from residual policy predictions
and noise in the depth received from the camera.

V. LIMITATIONS AND DISCUSSION

This paper introduces HUDOR, a point-tracking, object-
oriented reward mechanism aimed at improving human-to-
robot policy transfer for dexterous hands. HUDOR outper-
forms both offline and online methods with varying reward
functions and generalizes to new objects.

However, HUDOR has three limitations: it relies solely on
in-scene human videos, limiting its generalization; it lacks a
retry mechanism within episodes, making long-term training
difficult. Enhancing HUDOR with in-the-wild data collection
and a multi-stage learning framework could address these
challenges.



REFERENCES

[1] V. Kumar, E. Todorov, and S. Levine, “Optimal control with
learned local models: Application to dexterous manipulation,”
2016 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 378–383, 2016.

[2] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning Fine-
Grained Bimanual Manipulation with Low-Cost Hardware,”
arXiv e-prints arXiv:2304.13705, Apr. 2023.

[3] S. Lee, Y. Wang, H. Etukuru, H. J. Kim, N. M. Mahi
Shafiullah, and L. Pinto, “Behavior Generation with Latent
Actions,” arXiv e-prints arXiv:2403.03181, Mar. 2024.

[4] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel,
R. Tedrake, and S. Song, “Diffusion policy: Visuomotor policy
learning via action diffusion,” The International Journal of
Robotics Research, 2024.

[5] Z. J. Cui, Y. Wang, N. M. M. Shafiullah, and L. Pinto,
“From play to policy: Conditional behavior generation from
uncurated robot data,” arXiv preprint arXiv:2210.10047, 2022.

[6] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen,
K. Choromanski, T. Ding, D. Driess, A. Dubey, C. Finn, et al.,
“RT-2: Vision-Language-Action Models Transfer Web Knowl-
edge to Robotic Control,” arXiv e-prints arXiv:2307.15818, p.
arXiv:2307.15818, July 2023.

[7] Open X-Embodiment Collaboration, A. O’Neill, A. Rehman,
A. Gupta, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee, et al.,
“Open X-Embodiment: Robotic Learning Datasets and RT-X
Models,” arXiv e-prints arXiv:2310.08864, Oct. 2023.

[8] H. Etukuru, N. Naka, Z. Hu, S. Lee, J. Mehu, A. Edsinger,
C. Paxton, S. Chintala, L. Pinto, and N. M. Mahi Shafi-
ullah, “Robot Utility Models: General Policies for Zero-
Shot Deployment in New Environments,” arXiv e-prints
arXiv:2409.05865, Sept. 2024.

[9] S. Pandian Arunachalam, I. Güzey, S. Chintala, and L. Pinto,
“Holo-Dex: Teaching Dexterity with Immersive Mixed Real-
ity,” arXiv e-prints arXiv:2210.06463, Oct. 2022.

[10] A. Iyer, Z. Peng, Y. Dai, I. Guzey, S. Haldar, S. Chintala, and
L. Pinto, “OPEN TEACH: A Versatile Teleoperation System
for Robotic Manipulation,” arXiv e-prints arXiv:2403.07870,
Mar. 2024.

[11] R. Ding, Y. Qin, J. Zhu, C. Jia, S. Yang, R. Yang, X. Qi,
and X. Wang, “Bunny-VisionPro: Real-Time Bimanual Dex-
terous Teleoperation for Imitation Learning,” arXiv e-prints
arXiv:2407.03162, July 2024.

[12] S. Kumar, J. Zamora, N. Hansen, R. Jangir, and X. Wang,
“Graph inverse reinforcement learning from diverse videos,”
arXiv preprint arXiv:2207.14299, 2022.

[13] L. Smith, N. Dhawan, M. Zhang, P. Abbeel, and S. Levine,
“AVID: Learning Multi-Stage Tasks via Pixel-Level Trans-
lation of Human Videos,” arXiv e-prints arXiv:1912.04443,
Dec. 2019.

[14] C. Eze and C. Crick, “Learning by Watching: A Review of
Video-based Learning Approaches for Robot Manipulation,”
arXiv e-prints arXiv:2402.07127, Feb. 2024.

[15] C. Wang, L. Fan, J. Sun, R. Zhang, L. Fei-Fei, D. Xu,
Y. Zhu, and A. Anandkumar, “MimicPlay: Long-Horizon
Imitation Learning by Watching Human Play,” arXiv e-prints
arXiv:2302.12422, Feb. 2023.

[16] C. Wang, H. Shi, W. Wang, R. Zhang, L. Fei-Fei, and
C. K. Liu, “DexCap: Scalable and Portable Mocap Data
Collection System for Dexterous Manipulation,” arXiv e-
prints arXiv:2403.07788, Mar. 2024.

[17] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko,
R. Singh, J. Liu, D. Makoviichuk, K. Van Wyk, A. Zhurkevich,
B. Sundaralingam, Y. Narang, J.-F. Lafleche, D. Fox, and
G. State, “DeXtreme: Transfer of Agile In-hand Manipulation
from Simulation to Reality,” arXiv e-prints arXiv:2210.13702,
Oct. 2022.

[18] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin,
B. McGrew, A. Petron, A. Paino, M. Plappert, G. Powell,
R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder,
L. Weng, Q. Yuan, W. Zaremba, and L. Zhang, “Solv-
ing Rubik’s Cube with a Robot Hand,” arXiv e-prints
arXiv:1910.07113, Oct. 2019.

[19] K. Shaw, A. Agarwal, and D. Pathak, “LEAP Hand: Low-
Cost, Efficient, and Anthropomorphic Hand for Robot Learn-
ing,” arXiv e-prints arXiv:2309.06440, Sept. 2023.

[20] Z.-H. Yin, B. Huang, Y. Qin, Q. Chen, and X. Wang, “Rotating
without Seeing: Towards In-hand Dexterity through Touch,”
arXiv e-prints arXiv:2303.10880, Mar. 2023.

[21] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani,
D. Jayaraman, Y. Zhu, L. Fan, and A. Anandkumar, “Eureka:
Human-Level Reward Design via Coding Large Language
Models,” arXiv e-prints arXiv:2310.12931, Oct. 2023.

[22] S. P. Arunachalam, I. Güzey, S. Chintala, and L. Pinto, “Holo-
dex: Teaching dexterity with immersive mixed reality,” arXiv
preprint arXiv:2210.06463, 2022.

[23] S. Yang, M. Liu, Y. Qin, R. Ding, J. Li, X. Cheng,
R. Yang, S. Yi, and X. Wang, “ACE: A Cross-Platform Visual-
Exoskeletons System for Low-Cost Dexterous Teleoperation,”
arXiv e-prints arXiv:2408.11805, Aug. 2024.

[24] A. Handa, K. Van Wyk, W. Yang, J. Liang, Y.-W. Chao,
Q. Wan, S. Birchfield, N. Ratliff, and D. Fox, “Dexpilot:
Vision-based teleoperation of dexterous robotic hand-arm sys-
tem,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 9164–9170.

[25] I. Guzey, B. Evans, S. Chintala, and L. Pinto, “Dexterity from
touch: Self-supervised pre-training of tactile representations
with robotic play,” 2023.

[26] I. Guzey, Y. Dai, B. Evans, S. Chintala, and L. Pinto, “See to
Touch: Learning Tactile Dexterity through Visual Incentives,”
arXiv e-prints arXiv:2309.12300, Sept. 2023.

[27] S. Haldar, J. Pari, A. Rai, and L. Pinto, “Teach a Robot to
FISH: Versatile Imitation from One Minute of Demonstra-
tions,” arXiv e-prints arXiv:2303.01497, Mar. 2023.

[28] J. Liang, R. Liu, E. Ozguroglu, S. Sudhakar, A. Dave, P. Tok-
makov, S. Song, and C. Vondrick, “Dreamitate: Real-World
Visuomotor Policy Learning via Video Generation,” arXiv e-
prints arXiv:2406.16862, June 2024.

[29] M. Yang, Y. Du, K. Ghasemipour, J. Tompson, D. Schuur-
mans, and P. Abbeel, “Learning interactive real-world simu-
lators,” arXiv preprint arXiv:2310.06114, 2023.

[30] K. Pertsch, R. Desai, V. Kumar, F. Meier, J. J. Lim, D. Ba-
tra, and A. Rai, “Cross-Domain Transfer via Semantic Skill
Imitation,” arXiv e-prints arXiv:2212.07407, Dec. 2022.

[31] K. Grauman, A. Westbury, L. Torresani, K. Kitani, J. Malik,
T. Afouras, K. Ashutosh, V. Baiyya, et al., “Ego-Exo4D:
Understanding Skilled Human Activity from First- and Third-
Person Perspectives,” arXiv e-prints arXiv:2311.18259, Nov.
2023.

[32] J. Urain, A. Mandlekar, Y. Du, M. Shafiullah, D. Xu,
K. Fragkiadaki, G. Chalvatzaki, and J. Peters, “Deep Gener-
ative Models in Robotics: A Survey on Learning from Multi-
modal Demonstrations,” arXiv e-prints, p. arXiv:2408.04380,
Aug. 2024.

[33] S. Bahl, R. Mendonca, L. Chen, U. Jain, and D. Pathak, “Af-
fordances from Human Videos as a Versatile Representation
for Robotics,” arXiv e-prints arXiv:2304.08488, Apr. 2023.

[34] L. Keselman, J. Iselin Woodfill, A. Grunnet-Jepsen, and
A. Bhowmik, “Intel RealSense Stereoscopic Depth Cameras,”
arXiv e-prints arXiv:1705.05548, May 2017.

[35] T. Yenamandra, F. Bernard, J. Wang, F. Mueller, and
C. Theobalt, “Convex Optimisation for Inverse Kinematics,”
arXiv e-prints arXiv:1910.11016, Oct. 2019.

[36] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the
brownian motion,” Phys. Rev., vol. 36, pp. 823–841, Sep



1930. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRev.36.823

[37] T. Lillicrap, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[38] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto, “Mastering
visual continuous control: Improved data-augmented rein-
forcement learning,” arXiv preprint arXiv:2107.09645, 2021.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–
778.

[40] R. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision. Academic Press, 2002.

[41] L. Medeiros et al., “Lang-segment-anything,” https://github.
com/luca-medeiros/lang-segment-anything, 2023, accessed:
2024-09-15.

[42] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland,
L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo,
P. Dollár, and R. Girshick, “Segment Anything,” arXiv e-prints
arXiv:2304.02643, Apr. 2023.

[43] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal,
P. Bojanowski, and A. Joulin, “Emerging Properties
in Self-Supervised Vision Transformers,” arXiv e-prints
arXiv:2104.14294, Apr. 2021.

[44] N. Karaev, I. Rocco, B. Graham, N. Neverova, A. Vedaldi,
and C. Rupprecht, “Cotracker: It is better to track together,”
arXiv preprint arXiv:2307.07635, 2023.

[45] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep
learning on point sets for 3d classification and segmentation,”
in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 652–660.

https://link.aps.org/doi/10.1103/PhysRev.36.823
https://link.aps.org/doi/10.1103/PhysRev.36.823
https://github.com/luca-medeiros/lang-segment-anything
https://github.com/luca-medeiros/lang-segment-anything


VI. APPENDIX

A. Related Works
Our work draws inspiration from extensive research in dexterous

manipulation, learning from human videos, and imitation learning.
In this section, we focus our discussion on the most pertinent
contributions across these interrelated areas.

a) Robot Learning for Dexterous Manipulation: Learn-
ing dexterous policies for multi-fingered hands has been a long-
standing challenge that has captured the interest of the robotics
learning community [17, 18, 9]. Some works have addressed this
problem by training policies in simulation and deploying them in the
real world [19, 18]. Although this approach has produced impressive
results for in-hand manipulation [20, 21], closing the sim-to-real gap
becomes cumbersome when manipulating in-scene objects.

Other works have focused on developing different teleoperation
frameworks [22, 23, 10, 24] and training offline policies using robot
data collected through these frameworks. While these frameworks
are quite responsive, teleoperating dexterous hands without directly
interacting with objects remains difficult for users due to the
morphological mismatch between current robotic hands and the lack
of tactile feedback for the teleoperator.

Given the challenges of large-scale data collection, most offline
dexterous policies tend to fail due to overfitting. To mitigate this,
some previous works have focused on learning policies with limited
data [25, 26], either by using nearest-neighbor matching for action
retrieval [25, 10, 22] or by initializing with a single demonstration
and learning a residual policy with online interactions to improve
generalization [26, 27].

b) Learning from Human Videos: With the goal of scal-
ing up data collection using more accessible sources, the vision
and robotics communities have worked on learning meaningful
behaviors and patterns from human videos [28, 29, 30, 31]. Some
efforts focus on learning simulators that closely mimic the real-
world environment of the robot from human videos using generative
models [29, 32, 28], using these simulators to train policies and
make decisions by predicting potential future outcomes.

Other works use internet-scale human videos to learn higher-
level skills or affordances [30, 33]. However, these works either
require low-level policies to learn action primitives for interacting
with objects [30], or only focus on simple tasks where a single
point of contact is sufficient for manipulation [33]. Yet other
approaches leverage on-scene human videos to learn multi-stage
planning [15, 13], but need additional robot data to learn lower-
level object interactions. Notably, all of these works focused on
two-gripper robots, where manipulation capabilities are limited and
objects are less articulated.

A recent study, DexCap [16], addresses this issue for dexterous
hands by using multiple cameras and a hand motion capture system
to collect human demonstrations. An offline policy is learned
by masking the human hand from the environment point cloud
followed by an online fine-tuning stage with human feedback.
HUDOR differs from this work by eliminating the need for cum-
bersome human feedback by automatically extracting a reward from
a single human demonstration and allowing the robot to learn from
its mistakes to compensate for the morphology mismatch between
the robot and the human.

B. Human Data Collection
a) Relative Transformations: We collect human hand pose

estimates using existing hand pose detectors on Quest 3, and capture
visual data using the RGBD cameras. We use two ArUco markers
to compute relative transformations between camera frames. The
first marker is used to define a world frame and transform fingertip
positions from the Quest frame to the world frame, while the second
marker is used to determine the transformation between the robot’s
base and the world frame. Fingertip pose for the ith human fingertip
captured in the headset frame at time t, at,i

o , are first transformed

to the world frame as at,i
w = HOW × at,i

o , where HOW is the
homogeneous transform from the headset frame to the world frame.
This transform is computed by detecting the ArUco marker on the
table using the cameras on the VR headset. A standard calibration
procedure [40] is used to compute the transformation HRW between
the roboxt frame and the world frame by detecting the two ArUco
markers using the RGB camera shown in Figure 2. This calibration
allows us to directly transfer human fingertip positions from the
Oculus headset to the robot’s base using the equation:

at,i
r = H−1

RW × at,i
w (1)

= H−1
RW ×HOW × at,i

o (2)

where, at,i
r are the homogeneous coordinates of the ith human

fingertip positions from the recorded video in the robot frame.
Henceforth, we use at

r = [at,0
r , at,1

r , at,2
r at,3

r ] to refer to the 12-
dimensional vector containing concatenated locations of the four
fingertips in robot frame.

b) Data aglinment: During data collection, we record the
fingertip positions at

r and image data ot for all t = 1 . . . T where
T is the trajectory length. Since these components are collected
at different frequencies, we align them on collected timestamps to
produce synchronized tuples (at

r, o
t) for each time t. The data is

then subsampled to 5 Hz.

C. Object Point Tracking and Trajectory Matching
a) Object State Extraction: : Given a trajectory τ =

[o1, . . . , oT ], where T is the length of the trajectory and ot is
an RGB image at time t, we use the first frame o1 as input to a
language-grounded Segment-Anything Model [41, 42] – langSAM.
langSAM uses a text prompt and GroundingDINO [43] to extract
bounding boxes for the object, which are then input to the SAM [42]
to generate a mask. The output of langSAM corresponding to o1

is a segmentation mask for the initial object position, P 1 ∈ RN×2,
which is represented as a set of N points on the object, where N
is a hyperparameter. The parameter N determines the density of
object tracking and is adjusted based on the object’s size in the
camera view.

b) Point Tracking: : The mask P 1 is used to initialize
the transformer-based point tracking algorithm Co-Tracker [44].
Given a trajectory of RGB images, τ , and the first-frame segmen-
tation mask, P 1, Co-Tracker tracks points pti = (xt

i, y
t
i) in the

image throughout the trajectory τ for all t ∈ {1 . . . T}, where
P 1 = [p11, . . . p

1
N ]. We use τp = [P 1, . . . PT ] to denote the point

trajectory consisting of the sets of tracked points.
c) Matching the Trajectories: : First, we define two

additional quantities: mean translation at time t, δttrans, and mean
rotation at time t, δtrot. δttrans is defined as the mean displacement
of all the points in P t from P 1. Similarly, δtrot is defined as the
mean rotation vector about the centroid of all the points in P t from
P 1. Concretely,

δttrans = E
i
(pti − p1i ) (3)

δtrot = E
i

[(
pti − E

i
(pti)

)
×

(
p1i − E

i
(p1i )

)]
(4)

We define the object motion at time t as T t = [δttrans, δ
t
rot].

Given two separate point trajectories, one corresponding to the robot
τp
R and one corresponding to the human τp

H , the reward at time t is
calculated by computing the root mean squared error between the
object motions of the robot and human at time t:

rH2R
t = −

√(
|T t

R − T t
H |2

)
(5)



B
re

ad
 P

ic
ki

ng

8/10

Pa
pe

r S
lid

in
g

17cm

M
us

ic
 B

ox
 

O
pe

ni
ng

6/10

C
ar

d 
Sl

id
in

g

7/10

Fig. 5: Rollouts of trained policies from HUDOR on four tasks are shown. For all tasks, training is conducted using a single human
video. Success for each task is shown in the rightmost frames. Videos are best viewed on our website: https://object-rewards.
github.io/.

D. Task Descriptions
We experiment with four dexterous tasks, which are visualized

in Figure 5. Exploration axes mentioned are with respect to the
base of the robot.

a) Bread Picking: The robot must locate and pick up an
orange piece of bread, holding it steadily. The bread is positioned
within a 15cm × 10cm space. We explore the X axes of all fingers.
The text prompt used is orange bread.

b) Card Sliding: The robot slides a thin card with its thumb
and picks it up with its other fingers. The card is positioned within
a 10cm × 10cm space. We explore the X and Y axes of the thumb,
using the text prompt orange card.

c) Music Box Opening: The robot opens a small music
box by stabilizing it with its thumb and unlatching the top with
its index finger. The box is positioned within a 10cm × 10cm
space. We explore all axes of the thumb and index fingers, using
the prompt green music box.

For this task, since the rotation of the object was significant,
for each time t, we calculated the mean rotation vector about the
centroid of all the points in P t from P 1, and concatenated it to
the object motion. Additionally, we observed that a sparse reward
was better for this task, so we only used the last 5 frames of
the trajectory for reward calculation for HUDOR and all of our
baselines.

d) Paper Sliding: The robot slides a piece of paper to the
right. The paper is positioned within a 15cm × 15cm space. The
prompt is blue paper with pizza patterns. Success is measured by
how far the paper moves to the right in cms, and we explore the X
and Z axes of all fingers.

E. Offline Baselines
1) BC - 1 Demo [3]: HUDOR enables training robust policies

with only a single human demonstration. For fairness, we
compare its offline counterpart and train VQ-Bet end-to-end
using only a single demonstration per task. The centroid of
the tracked points set, the rotation and translation of the
object, and the robot’s fingertip positions are given as input
to the model.

2) BC [3]: We run VQ-Bet similar to the previous baseline, but
we use 30 demonstrations for each task.

3) Point Cloud BC: Similar to DexCap [16], we include point
cloud in our input space and modify the input of the BC
algorithm by concatenating the point cloud representations

5/10 5/10 4/10 0/10

Dobby Brown Music Box Medicine Bottle Red Peg

5/10 4/10 2/10 2/10

Green Gum Package Small Plate Brown Tissue Yellow Tea Bag

B
re

ad
 P

ic
ki

ng
C

ar
d 

Sl
id

in
g

Fig. 6: Generalization experiments on Bread Picking and Card
Sliding task. We input the text prompts on top and bottom as input
to the language grounded SAM model to get the initial mask for
each object.

received from PointNet [45] encoder. We uniformly sample
5000 points from the point cloud and pass them to PointNet
without any further preprocessing. Gradients are backprop-
agated through the entire system, including the point cloud
encoder.

F. Advantages of Trajectory Matching Reward
We observe that in tasks where the object occupies a large area

in the image and the visual differences between the hand and the
robot do not significantly affect the image, the Image OT baseline
performs similarly to HUDOR, as seen in the Paper Sliding task.
However, in tasks where the camera needs to be closer to the
object to detect its trajectory—such as Music Box Opening—the
visual differences between the hand and the robot significantly
hinder training, causing image-based reward calculations to fail.
On the other hand, direct matching on the predicted points fails
because the points tracked for two separate trajectories do not
correspond to each other; the same indexed point in one trajectory
may correspond to a different location on the object in another
trajectory. These differences cause matching to give inconsistent
reward emphasizing the importance of matching trajectories rather
than points or images.

G. Spatial Generalization
For decoupling the arm and the hand manipulation: we first

calculate the object’s location in pixel space from the camera using
a similar object detection pipeline as described in Section III-B.

https://object-rewards.github.io/
https://object-rewards.github.io/


Then, combined with the depth image, we reproject this to a 3D
translation relative to the camera, oc. We transform this translation
to the robot’s base frame by or = H−1

RC oc where HRC is the
homogeneous transform from the robot’s base to the camera frame
as shown in Fig. 4. Next, we calculate the offset of this location
from the original object location in the demonstration ôr , as or−ôr .
Finally, at inference time, we load the weights for each task trained
with HUDOR and apply this offset to all the fingers.


	Introduction
	Related Works
	Learning Teleoperation-Free Online Dexterious Policies 
	Robot Setup and Human Data Collection
	Residual Policy Learning
	Exploration Strategy

	Experimental Evaluation
	How important are online corrections?
	Does HuDOR improve over other reward functions?
	How well does HuDOR generalize to new objects?
	How effectively does HuDOR generalize to larger areas?

	Limitations and Discussion
	Appendix
	Related Works
	Human Data Collection
	Object Point Tracking and Trajectory Matching
	Task Descriptions
	Offline Baselines
	Advantages of Trajectory Matching Reward
	Spatial Generalization


