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ABSTRACT

Catastrophic forgetting remains a core challenge in continual learning (CL),
whereby the models struggle to retain previous knowledge when learning new
tasks. While existing gradient-alignment-based CL methods have been proposed
to tackle this challenge by aligning gradients between previous and current tasks,
they do not carefully consider the interdependence between previously learned
tasks and fully explore the potential of seen tasks. Against this issue, we first
adopt the MiniMax theorem and reformulate the existing commonly-adopted gra-
dient alignment optimization problem in a gradient weighting framework. Then
we incorporate the Pareto optimality to capture the interrelationship among previ-
ously learned tasks, and design a Pareto regularized gradient alignment algorithm
(PRGA), which effectively enhances the overall performance of past tasks while
ensuring the performance of the current task. Comprehensive empirical results
demonstrate that the proposed PRGA outperforms current state-of-the-art contin-
ual learning methods across multiple datasets and different settings.

1 INTRODUCTION

An ideal intelligent system should possess the ability to incrementally learn, swiftly adapting to
environmental changes while retaining previously acquired knowledge. Despite the remarkable per-
formance of current deep neural networks (DNNs) on specific tasks, they still encounter challenges
when it comes to effectively adapting to streaming tasks. One critical issue is catastrophic forgetting,
whereby acquiring knowledge on a new task leads to a significant decline in performance on previ-
ously learned tasks. To alleviate this issue, numerous algorithms have been proposed in the field of
continual learning (CL), aiming to enhance the incremental learning ability of DNNs on streaming
tasks (Lopez-Paz & Ranzato, 2017; Kirkpatrick et al., 2017; Serra et al., 2018; Gupta et al., 2020;
Guo et al., 2020; Arani et al., 2021; Wang et al., 2023; Chrysakis & Moens, 2023).

Gradient alignment (GA) is currently a simple-yet-effective research line in continual learning. It
primarily focuses on directly manipulating the gradient of the current task to discover a gradient
update direction that improves its performance, while simultaneously ensuring that the performance
of previously learned tasks is not negatively affected (Lopez-Paz & Ranzato, 2017; Chaudhry et al.,
2018; Guo et al., 2020; Riemer et al., 2019; Gupta et al., 2020). For example, the representative
method GEM (Lopez-Paz & Ranzato, 2017) utilizes a small memory buffer to store samples from
previous tasks and aims to find a gradient update direction u adhering to two primary two main
constraints: 1) the to-be-estimated u should be as close as possible to the gradient of the current
task gn for improving the performance on the current task; 2) the inner product ⟨u, gi⟩ between the
to-be-updated gradient u and the gradient of every past task gi, where 1 ≤ i < n, should be non-
negative to prevent adverse effect on the performance of past task, thereby alleviating forgetting. To
accelerate the optimization process of GEM (Lopez-Paz & Ranzato, 2017), instead of computing the
individual gradient of each previous task, AGEM (Chaudhry et al., 2018) and MEGA (Guo et al.,
2020) have proposed to compute an average past gradient gavg to execute the aforementioned inner-
product constraint. The average past gradient gavg is calculated using examples randomly sampled
from the memory buffer. Similarly, MER (Riemer et al., 2019) and La-MAML (Gupta et al., 2020)
attempt to align the gradient of the current task gn with the average gradient gavg via a bi-level
optimization procedure. As seen, these existing gradient alignment methods primarily focus on
aligning the to-be-estimated gradient update direction u for the current task with the gradients of
previous tasks, e.g., gi or gavg , for preventing the performance deterioration on previous tasks.
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Despite the promising success achieved by most existing gradient-alignment-based CL methods,
there remains potential for further performance improvement. One main limitation of these meth-
ods is that they do not fully explore the mutual influence among previously learned tasks. Recent
studies (Sener & Koltun, 2018; Lin et al., 2019; Momma et al., 2022), have shown that even seem-
ingly unrelated tasks can exhibit strong dependencies and that different tasks can be viewed as an
inductive bias in the learning system. If we can effectively utilize the inter-task dependencies, we
can improve the retention of prior knowledge, mitigate the deleterious effects of forgetting, and ulti-
mately elevate the overall performance across all tasks. Motivated by this insight, without sacrificing
the performance of the current task, we aim to construct a new gradient alignment framework that
models the relationships among previously learned tasks and manipulates the gradient update direc-
tion u to maximize the overall performance of past tasks during training, rather than just adhering
to the non-negative inner product constraints.

To achieve this goal, in this paper, we first revisit the current prevailing gradient-alignment-based
CL methods and theoretically reformulate the optimization objective involved in these methods as a
gradient weighting problem. From this perspective, we propose a Pareto regularized gradient align-
ment framework, called PRGA, which focuses on weighted updates of the gradients of past tasks
to maximize their overall performance. The proposed PRGA not only enables effective learning of
the current task but also captures the relationship among different previous tasks and balances the
overall performance of past tasks. In summary, our main contributions are listed as follows:

• New Perspective. We mathematically derive that the objective of the existing gradient alignment
pipeline is equivalent to a gradient weighting framework. Furthermore, we establish that current
representative gradient-alignment-based CL methods, including GEM (Lopez-Paz & Ranzato,
2017), AGEM (Chaudhry et al., 2018), MEGA (Guo et al., 2020), and La-MAML (Gupta et al.,
2020) can all be interpreted as special cases of the proposed gradient weighting framework.

• Effective Algorithm. Based on the derived gradient weighting framework, we propose to intro-
duce the Pareto optimality mechanism to optimize the weights imposed on the gradient of every
past task for maximizing the overall performance of all the previously learned tasks. Conse-
quently, the gradient update u not only considers the performance of the current task but also
accounts for the interdependence among the previously learned tasks.

• Superior Performance. We conduct comprehensive experiments under different settings on three
datasets, which validate the effectiveness of the proposed PRGA algorithm. Additionally, we
conduct extensive ablation studies to investigate the effect of each component in PRGA algorithm.

2 RELATED WORKS

Continual learning methods. In the field of continual learning, various approaches have been
proposed to address catastrophic forgetting in recent years. These existing approaches can be
broadly categorized into four classes: regularization-based, parameter-isolation-based, replay-based,
and gradient-alignment-based. Specifically, regularization-based methods (Kirkpatrick et al., 2017;
Huszár, 2017; Ritter et al., 2018; Zenke et al., 2017; Yang et al., 2019; 2021) intend to design
different regularization techniques to preserve important parameters for previously learned tasks.
Parameter-isolation-based approaches (Serra et al., 2018; Mallya & Lazebnik, 2018; Fernando et al.,
2017; Aljundi et al., 2017) focus on isolating task-specific parameters to prevent interference be-
tween tasks. Replay-based methods (Rolnick et al., 2019; Lopez-Paz & Ranzato, 2017; Chaudhry
et al., 2018; Aljundi et al., 2019; Buzzega et al., 2020; Arani et al., 2021; Wang et al., 2023) try to
maintain the knowledge acquired from previous tasks through different experience replay strategies,
such as generating synthetic data or storing and replaying past experiences. Gradient-alignment-
based approaches aim to align the gradients of previously learned tasks with that of the current task
to alleviate catastrophic forgetting (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018; Guo et al.,
2020; Riemer et al., 2019; Gupta et al., 2020). In this paper, along the research line of gradient
alignment, we propose a novel Pareto optimization based gradient-aligned framework for continual
learning. Compared to the existing gradient alignment methods, our method additionally takes into
account the interdependencies among past tasks and achieves an overall superior performance.

Pareto Optimality. As a crucial manner to achieve multi-objective optimization, Pareto optimality
has been extensively investigated in multi-task learning (MTL) applications (Sener & Koltun, 2018;
Lin et al., 2019; Fliege & Vaz, 2016; Mahapatra & Rajan, 2020), with the aim to balance different
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competing tasks. To obtain Pareto optimality, MGDA (Sener & Koltun, 2018) proposed to convert
the multi-objective optimization problem that accommodates all objectives of different tasks into a
single-objective optimization problem. Afterwards, Lin et al. further explored Pareto fronts in MTL
to ensure that the estimated solutions are uniformly distributed on the Pareto front. However, these
Pareto optimization based MTL methods have not been fully investigated in the context of dynamic
streaming tasks and are therefore unsuitable for CL tasks. In contrast, our proposed new gradient
weighting framework is designed for the specific CL scenario, which makes it easy and natural to
integrate the Pareto optimization mechanism for overall performance improvement. To the best of
our knowledge, we are the first to introduce Pareto optimization specifically for CL.

3 PARETO REGULARIZED GRADIENT ALIGNMENT FOR CL

In this section, we will first revisit the current gradient alignment framework commonly adopted for
continual learning and propose a reformulation of it as a gradient weighting method. Subsequently,
we propose a specific gradient alignment framework for continual learning from the perspective
of gradient weighting. Compared to existing gradient alignment methods, our proposed algorithm
further models the relationships of the previously learned tasks to maximize the overall performance
of those tasks. The details of the proposed framework are presented below.

3.1 REVISIT GRADIENT ALIGNMENT IN CONTINUAL LEARNING

Suppose there are N sequential tasks {T1, T2, ..., TN}. During the streaming learning process, to
obtain the update on the current task Tn with gradient gn, most existing gradient-alignment-based
CL methods focus on identifying the next gradient update direction u that is most proximate to
gn for ensuring the performance of the current task without negatively affecting all the learned
n−1 tasks in the past. Mathematically, the corresponding optimization problem can be formulated
as (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018):

max
u
− 1

2
∥gn − u∥22, s.t. ⟨u, gi⟩ ≥ 0, i = 1, 2, . . . , n− 1, (1)

where gi represents the gradient of the previously learned task Ti. The non-negative constraint (also
known as regularization) represents that expected gradient u is updated in the direction forming an
acute angle with every gi in order to avoid deteriorating the performance of previous tasks.

By adopting the Lagrange multiplier (Boyd & Vandenberghe, 2004), we can convert Eq. (1) into an
unconstrained form as:

max
u

min
λi≥0

− 1

2
∥gn − u∥22 +

∑n−1
i=1 λi⟨u, gi⟩. (2)

where λi is a non-negative penalty coefficient. Let Qn−1 = {(λ1, ..., λn−1)|λi ≥ 0} and g(λ) =∑n−1
i=1 λigi, where λ = [λ1, . . . , λn−1]. Eq. (2) can be equivalently written as:

max
u

min
λ∈Qn−1

− 1

2
∥gn − u∥22 + ⟨u, g(λ)⟩. (3)

From Eq. (3), we can know that the feasible domains of the maximum and the minimum optimiza-
tion processes are both convex sets, and the objective function is convex w.r.t. the variable of the
minimum operation for λ and concave w.r.t. the variable of the maximum operation for u. Accord-
ing to the MiniMax theorem (see Appendix A.1), we can swap the order of the maximum and the
minimum operation in Eq. (3) and then derive the following optimization problem as:

min
λ∈Qn−1

max
u
− 1

2
∥gn − u∥22 + ⟨u, g(λ)⟩

(a)⇔ min
λ∈Qn−1

1

2
∥g(λ)∥22 + ⟨gn, g(λ)⟩

(b)⇔ min
λ∈Qn−1

1

2
∥g(λ)∥22 + ⟨gn, g(λ)⟩+

1

2
∥gn∥22 ⇔ min

λ∈Qn−1

1

2
∥g(λ) + gn∥22,

(4)

where (a) holds since the solution u∗ of the maximum problem can be directly obtained as u∗ =
gn + g(λ), and (b) holds since the term 1

2∥gn∥
2
2 is independent of the optimization variable λ.

As seen, the last step in Eq. (4) is a gradient weighting problem, which aims to learn the weight λi

imposed on the gradient of every past task Ti. The solution λ∗ can easily be solved by the Frank-
Wolfe algorithm (Jaggi, 2013; Sener & Koltun, 2018) and then we can get the final update direction
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as u∗ = gn + g(λ∗). For clarity, we call the reformulated regularized gradient alignment method
as RGA. Please refer to Appendix A.1 for the detailed optimization process.

Remark 1: Compared to the existing gradient aligned CL approaches, the proposed RGA frame-
work has specific merits and contributions: 1) Based on the theoretical derivations (2)(3)(4), we
carefully reformulate Eq. (1) as a gradient weighting optimization problem, making it possible to be
easily solved with a higher computation efficiency than GEM (Lopez-Paz & Ranzato, 2017) which
formulated (1) as a quadratic programming problem; 2) RGA encompasses AGEM (Chaudhry et al.,
2018) as a special case where all previous tasks are merged into one task, i.e., n = 2. Other gradient-
alignment-based CL methods such as La-MAML (Gupta et al., 2020) and MEGA (Guo et al., 2020)
can also be analyzed within our gradient weighting framework. In La-MAML, the involved opti-
mization objective is equivalent to that of AGEM. In MEGA, the weights are manually assigned for
different tasks. Please see Appendix A.2 for the details regarding the reformulation framework (4).

3.2 PARETO OPTIMIZATION-BASED GRADIENT ALIGNMENT FOR CONTINUAL LEARNING

As analyzed in Sec. 3.1, in RGA, the original gradient alignment optimization problem (1) is equiva-
lent to the gradient weighting problem (4). By deeply exploring the derived optimal update direction
u∗=gn + g(λ∗) = gn+

∑n−1
i=1λ

∗
i gi, we can observe that: 1) the weighting coefficient on the gradient

of the current task gn is fixed and the to-be-optimized variable is the weight λi imposed on the
gradient of every previous task gi; 2) From the constraint in Eq. (1), λi is solved under the regular-
ization that the final gradient update direction u does not negatively impact the performance of the
previously learned task Ti. It is known that at every streaming training step, such a weighting-based
gradient update rule for u is designed to improve the performance of the current task Tn, while
treating previous tasks as regularization tasks. This inspires us to ask the following question: is it
possible to further optimize λi to improve the overall performance of the previous tasks by taking
into account the intrinsic correlation among them, rather than just considering them as auxiliary
tasks? This section focuses on answering this question.

Based on the analysis in (Lin et al., 2019; Momma et al., 2022), it is known that seemingly unre-
lated tasks can exhibit significant dependencies. By effectively leveraging the dependencies among
diverse tasks, it becomes possible to enhance the overall performance across all previously learned
tasks. Motivated by this insight, we aim to model the relationships of past tasks to help optimize
λi for the entire performance improvement of previously seen tasks. To this end, we introduce the
Pareto optimality to further optimize the weighting schemes g(λ) of previous tasks in RGA. Here
Pareto optimality refers to solutions where the whole performance is not dominated by any single
task, and it seeks to maximize the overall marginal benefit across different tasks (Sener & Koltun,
2018). In such a manner, we hope to thoroughly explore and model the interrelationships among
previous tasks, thereby improving the overall performance of all these tasks.

Specifically, by considering g(λ) as the overall to-be-estimated gradient direction of all the previ-
ously learned tasks, our goal is to guarantee that g(λ) would benefit all the tasks learned so far.
According to Pareto optimality, this can be achieved by maximizing the minimum inner product of
the previous gradient gi and g(λ), i ∈ {1, . . . , n− 1}. Mathematically, this can be formulated as:

max
g(λ)

min
1≤i≤n−1

⟨gi, g(λ)⟩ −
1

2
∥g(λ)∥22. (5)

where the second term in the objective function is to constrain the gradient norm for avoiding infinity.

Define g(λ̃) =
∑n−1

i=1 λ̃igi and Pn−1 = {(λ̃1, ..., λ̃n−1)|λ̃i ≥ 0,
∑n−1

i=1 λ̃i = 1}. Then for the first
term in Eq. (5) we prove that

min
1≤i≤n−1

⟨gi, g(λ)⟩⇔ min
λ̃∈Pn−1

⟨g(λ̃), g(λ)⟩, (6)

based on the following two inequalities: As λ̃ ∈ Pn−1, it always holds that ⟨g(λ̃), g(λ)⟩ ≥
min

1≤i≤n−1
⟨gi, g(λ)⟩. So we have min

λ̃∈Pn−1
⟨g(λ̃), g(λ)⟩ ≥ min

1≤i≤n−1
⟨gi, g(λ)⟩; 2) Since ⟨gi, g(λ)⟩ is

a special case of ⟨g(λ̃), g(λ)⟩, we can deduce that min
λ̃∈Pn−1

⟨g(λ̃), g(λ)⟩ ≤ min
1≤i≤n−1

⟨gi, g(λ)⟩.

By substituting Eq. (6) into Eq. (5), we can obtain that

max
g(λ)

min
λ̃∈Pn−1

⟨g(λ̃), g(λ)⟩ − 1

2
∥g(λ)∥22. (7)
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Algorithm 1 Frank-Wolfe Algorithm for Solving Eq. (8)

Input: Initialization λ̃ = [ 1
n−1 , . . . ,

1
n−1 ]

Output: the coefficient vector λ̃ of previous tasks
1: Precompute D = GTG, where G =

[
gT
1 , . . . , g

T
n−1

]
2: repeat
3: α = argminα∈{αT1=1,α⪰0}α

TDλ̃

4: η = argminη∈[0,1]

(
λ̃+ η

(
α− λ̃

))T
D
(
λ̃+ η

(
α− λ̃

))
5: λ̃← (1− η) λ̃+ ηα
6: until η ∼ 0 or Reaching the maximum iteration number

According to the MiniMax theorem, we can swap the order of minimization and maximization
operations in Eq. (7). Similar to the derivations in Eq. (4), we can get the solution of the maximum
optimization problem as g(λ∗) = g(λ̃) and then the minimization problem can be expressed as:

min
λ̃∈Pn−1

1

2
∥g(λ̃)∥22 ⇔ min

λ̃∈Pn−1

1

2
∥
∑n−1

i=1 λ̃igi∥22, (8)

which can be easily solved by utilizing the Frank-Wolfe algorithm (Jaggi, 2013; Sener & Koltun,
2018) as listed in Alg. 1. Then, the gradient update direction is u∗ = gn + g(λ̃∗). We refer to this
derived Pareto regularized gradient alignment algorithm for CL as PRGA.

The gradient update rule u∗ = gn + g(λ̃∗) tells that the gradient of the current task gn plays an
important role in the update u∗ since its weighting coefficient is fixed as 1 while the weight λ̃∗

i on
the gradient of every previous task gi meets 0 ≤ λ̃∗

i ≤ 1 and
∑n−1

i=1 λ̃
∗
i = 1. This means that our

PRGA is a CL framework that prioritize different tasks. It principally focuses on the performance
of the current task and simultaneously balances the entire performance improvement of past tasks.

Remark 2: Compared to GEM and RGA, the proposed PRGA not only integrates the gradient align-
ment mechanism to avoid forgetting and ensure the performance of the current task, but also models
the mutual influence among different previous tasks in order to further improve the entire perfor-
mance of the previously learned tasks via the Pareto optimization. It should be worth mentioning
that it is exactly the gradient weighting perspective proposed in our RGA that makes it possible to
further design a flexible weighting algorithm PRGA for the whole performance improvement. From
this point, the proposed RGA and PRGA both have specific contributions, which will be validated
in Sec. 4. Moreover, we also provide convergence analysis in Appendix B.

3.3 GRADIENT COMPUTATION

As evidenced by the theorectical analysis and empircal results in (Riemer et al., 2019; Gupta et al.,
2020), aligning adaptation-based hyper-gradients among tasks yields superior performance com-
pared to aligning the vanilla gradient. Motivated by this observation, we propose to compute gi via
the hyper-gradient manner for our proposed RGA in Sec. 3.1 and PRGA in Sec. 3.2. Concretely, at
the tth training step, the hyper-gradient gi, i ∈ {1, . . . , n} is computed as:

gi =
∂L(fθ̃t+1

(xm), ym)

∂θt
, where θ̃t+1 = θt − α∇θtL(xi, yi), (9)

where f(·) denotes the model with parameter θ; (xm, ym) represents the samples drawn from the
buffer M which stores samples of seen tasks; (xi, yi) are samples from the task Ti; L(·) is the
loss function; α denotes the adaptation learning rate and θ̃t+1 denotes the intermediate parameters
computing gi. The overall implementation algorithm of the proposed PRGA is outlined in Alg. 2.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate the effectiveness of our proposed
methods based on diverse benchmark datasets and different CL settings. Besides, we provide a
series of ablation studies to analyze and evaluate the specific role of each component in our method.
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Algorithm 2 The Entire Algorithm Implementation for the Proposed PRGA

Input: At the tth streaming training step, current training task Tn, memory bufferM, learning rates
α and β, network parameter θt for classification

Output: θt+1

1: Sample from memory buffer: (xm, ym) ∼M
2: Sample from memory buffer for previous task Ti: (xi, yi) ∼Mi, i ∈ {1, 2, ..., n−1},Mi ∈M
3: Sample for the current task: (xn, yn) ∼ Tn
4: Compute the hyper-gradient gi, i ∈ {1, . . . , n} based on Eq. (9)
5: Compute the Pareto optimal weights λ̃∗ based on Alg. 1 and get g(λ̃∗) =

∑n−1
i=1 λ̃

∗
i gi

6: Compute the gradient update direction: u∗ = gn + g(λ̃∗)
7: Update network parameter: θt+1 = θt − βu∗

8: Update the memory bufferM with (xn, yn) following (Buzzega et al., 2020)

4.1 EVALUATION PROTOCOL

Benchmark Datasets. Following (Buzzega et al., 2020; Arani et al., 2021; Wang et al., 2023), we
select three widely-used datasets with varying complexity for the subsequent CL experiments, i.e.,
Split CIFAR-10, Split CIFAR-100, and Split TinyImageNet (Buzzega et al., 2020). Split CIFAR-10
and Split CIFAR-100 are derived from the CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009),
respectively. For Split CIFAR-10, the number of tasks N is 5 and each task contains 2 classes. For
Split CIFAR-100, N is 20 and each task is composed of 5 classes. Split Tiny-ImageNet is divided
into 20 tasks, each containing 10 classes. More details about datasets are included in Appendix C.

Implementation Details. Consistent to (Chrysakis & Moens, 2023; Lopez-Paz & Ranzato, 2017),
we utilize the widely-adopted Reduced ResNet-18 (He et al., 2016) as the network backbone ar-
chitecture to implement the proposed methods RGA and PRGA. During the training, the stochastic
gradient descent (SGD) optimizer is used for optimizing network parameters and the batch size is
set as 32. For the experiments on different datasets and various CL settings, the learning rates α and
β are fixed as 0.03 and the sampling batch size for memory bufferM as 300. Please note that all the
comparison experiments are executed under the online class incremental setting, where each task is
trained for only one epoch and the task identity is not provided during inference.

Baselines. For comprehensive comparisons, different types of state-of-the-art continual learning ap-
proaches are adopted, including regularization-based EWC (Huszár, 2017); rehearsal-based meth-
ods, such as, ER (Rolnick et al., 2019), DER (Buzzega et al., 2020), DER++ (Buzzega et al., 2020),
CLSER (Arani et al., 2021), and ER-ACE (Caccia et al., 2021); and representative gradient align-
ment based AGEM (Chaudhry et al., 2018), GEM (Lopez-Paz & Ranzato, 2017), MER (Riemer
et al., 2019), and La-MAML (Gupta et al., 2020). These comparing methods are primarily imple-
mented based on the hyperparameter settings described in (Buzzega et al., 2020) or according to the
hyperparameters specified in their respective papers.

Evaluation Metrics. To fairly and comprehensively validate the effectiveness of our proposed meth-
ods, we adopt several representative evaluation metrics for quantitative comparisons, including Av-
erage Accuracy, Forgetting Measure (Lopez-Paz & Ranzato, 2017), and Anytime Average Accu-
racy (Caccia et al., 2021). The higher these indicators, the better the performance. Specifically,

• Average Accuracy (Acc): It represents the average accuracy on all the previously seen tasks
after completing the model training on N tasks, computed as Acc=AccN = 1

N

∑N
i=1 ai,N , where

ai,j denotes the accuracy of the task Ti after the training on the task Tj and TN is the last task.

• Forgetting Measure (FM): This metric reflects the degree of forgetting that occurs in a
model during sequential training. Concretely, it computes the average decrease from the best
accuracy to the final accuracy after training on TN across all N tasks. This is denoted as
FM= 1

N

∑N
i=1(ai,N−a∗

i ), where a∗i is the best accuracy of the task Ti achieved during training.

• Anytime Average Accuracy (AAA): Different from Acc, this indicator quantifies the classifica-
tion performance of the model throughout the entire learning process. Specifically, its definition
is AAA = 1

N

∑N
j=1 Accj =

1
N

∑N
j=1

(
1
j

∑j
i=1 ai,j

)
.
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(a) (b)

Figure 1: (a) accuracy (Acc) and (b) forgetting measure (FM) of each task achieved by different
competitive CL methods on Split CIFAR-10 with N = 5 and buffer size |M| as 1k. Here T1∼4

denotes the previously learned tasks and T5 is the current task, and Avg(T1∼4) means the average
performance of past tasks T1∼4.
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Figure 2: Task-based confusion matrix of various gradient-alignment-based CL methods on Split
CIFAR-10 dataset with |M|=1k.

4.2 EXPERIMENTAL RESULTS

Direct verification about PRGA. To better understand the working mechanism of our proposed
PRGA, based on Split CIFAR-10, we first provide direct and intuitive model verification. Specifi-
cally, in Fig. 1(a), for the representative comparison methods, we provide the test accuracy of model
on every task Ti (i = 1, . . . , 5) after finishing the sequential training on all 5 tasks and the average
accuracy on all the previously learned four tasks as Avg(T1∼4). We can find that: 1) Our proposed
PRGA is obviously superior to other CL methods on Avg(T1∼4). This finely substantiates the po-
tential of the proposed Pareto optimizatio-based gradient alignment to boost the entire performance
of all the previously learned tasks, which complies with our design motivations; 2) On the newly
learned T5, the proposed RGA and PRGA are comparable even superior to ER and CLSER. As seen,
PRGA generally performs competitively on all the five tasks. Fig. 1(b) depicts the FM of different
methods on every task. For Avg(T1∼4), PRGA averagely obtains a higher FM score and outperforms
ER, CLSER, and RGA, which demonstrates the favorable capability in alleviating forgetting. Please
note that for ER-ACE and La-MAML, they both over-emphasize preserving the performance of a
past task without fully exploring the potential of the current task, which leads to a quite low a∗i and
in turn an extremely high FM score, but a quite low accuracy on T5 as shown in Fig. 1(a). It is unfair
to directly compare with these two methods. These results are consistent with (Caccia et al., 2021).

Moreover, we provide the task-based confusion matrix in Fig. 2 to investigate the proficiency of
the proposed PRGA and other gradient alignment methods in managing task interrelationships. It
is easily understood that a method that can balance task interrelationships and optimize the overall
performance of all the tasks should, at a minimum, distinguish between tasks. By comparing the
diagonal elements representing the correct classification probability of the task identity, we can find
that in general, the proposed PRGA exhibits a larger value on all five tasks, and better balances
every task, which comprehensively validates the effectiveness of the introduced Pareto component
in capturing the interdependence among different tasks. More results are presented in Appendix D.

Performance comparison with AAA and Acc. Table 1 reports the average AAA and Acc of dif-
ferent CL methods on Split CIFAR-10, Split CIFAR-100, and Split-TinyImageNet, under different
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Table 1: Performance comparison on benchmark datasets under different memory buffer sizes |M|.
All the results are averagely computed over 5 repetitions. ‘-’ indicates the implementation is both
highly time-consuming and unstable. The full table with 95% confidence interval is in Appendix D.

Method
Split CIFAR-10 (N=5) Split CIFAR-100 (N=20) Split TinyImageNet (N=20)

|M| = 0.6k |M| = 1k |M| = 1k |M| = 5k |M|= 2k |M| = 5k
AAA Acc AAA Acc AAA Acc AAA Acc AAA Acc AAA Acc

SGD 34.04 16.68 34.04 16.68 9.67 3.24 9.67 3.24 7.63 2.17 7.63 2.17
On-EWC 36.51 18.37 36.51 18.37 9.87 2.77 9.87 2.77 7.96 2.43 7.96 2.43
ER 54.68 39.43 54.91 42.04 17.86 11.89 20.67 14.87 16.27 10.52 16.10 11.89
DER 49.06 25.80 48.25 23.90 10.96 3.71 10.47 3.68 8.04 2.46 7.65 2.04
DER++ 57.17 47.03 61.01 50.31 17.30 8.72 17.08 8.98 12.42 5.57 11.93 5.26
CLSER 61.64 50.36 63.27 53.06 22.58 15.68 23.25 16.42 18.50 10.03 18.88 11.61
ER-ACE 52.27 46.04 57.42 51.17 24.02 15.46 24.93 20.58 20.57 13.23 21.16 17.22
AGEM 37.67 18.51 37.62 18.03 10.61 3.75 10.80 3.52 7.66 2.33 7.79 2.40
GEM 37.78 18.84 37.00 18.73 13.43 6.04 13.71 6.46 10.17 3.70 10.27 3.81
MER 45.39 24.42 50.99 36.15 – – – – – – – –
La-MAML 47.89 30.53 46.08 35.89 17.37 10.03 19.05 12.57 15.81 8.02 16.32 9.24
RGA 60.94 48.66 63.95 54.57 25.81 14.79 35.89 30.47 20.70 11.89 25.01 18.58
PRGA 63.62 53.42 66.23 58.50 26.68 16.54 36.34 33.36 21.56 12.69 25.48 19.40

Table 2: The Forgetting Measure (FM) with 95% confidence interval on benchmark datasets under
different memory buffer size |M|. All the reported results are averagely computed over 5 repetitions.

Method
Split CIFAR-10 (N=5) Split CIFAR-100 (N=20) Split TinyImageNet (N=20)
|M| = 0.6k |M| = 1k |M| = 1k |M| = 5k |M| = 2k |M| = 5k

SGD -61.01±3.30 -61.01±3.30 -54.24±1.20 -54.24±1.20 -43.58±0.58 -43.58±0.58
On-EWC -64.21±0.86 -64.21±0.86 -56.55±1.30 -56.55±1.30 -44.30±1.70 -44.30±1.70
ER -35.68±3.20 -32.16±5.10 -46.25±0.47 -48.54±1.10 -37.90±0.28 -37.43±0.81
DER -54.60±2.80 -55.22±1.70 -60.58±0.38 -59.94±1.40 -47.11±0.65 -46.27±0.85
DER++ -24.00±1.30 -28.01±1.31 -58.61±0.60 -61.23±0.19 -47.13±2.00 -47.65±0.76
CLSER -29.03±3.70 -31.38±1.70 -45.63±0.62 -50.71±0.86 -44.45±0.32 -44.21±0.14
AGEM -66.17±1.61 -66.61±1.60 -60.51±0.34 -60.89±0.37 -45.61±0.04 -45.51±0.27
GEM -58.09±3.90 -57.64±2.70 -45.83±0.69 -50.61±1.90 -42.30±0.11 -42.71±0.03
MER -32.78±0.81 -23.33±8.06 – – – –
RGA -27.88±0.43 -21.99±3.40 -35.23±4.42 -18.84±1.77 -33.29±1.70 -21.22±0.54
PRGA -23.27±2.50 -16.85±2.80 -37.61±0.63 -17.55±0.36 -31.63±1.60 -20.22±1.20

memory buffer size |M|, where the lower part below the horizontal line represents gradient-aligned
CL methods. As seen, with the increase of |M|, the performance of previous tasks can be better
maintained and then almost all the comparing methods present an upward trend. Besides, from Split
CIFAR-10 to Split CIFAR-100 to Split-TinyImageNet, as the task difficulty becomes higher, basi-
cally all the approaches show a downward trend. However, our proposed PRGA always achieves
higher AAA and Acc scores, which almost consistently outperform other baselines across all the
three datasets. This indicates that PRGA not only performs well on the final trained model but also
maintains a sustained advantage throughout the entire streaming training process, which is crucial
in CL. Compared to RGA, PRGA achieves higher performance gains, which finely substantiates the
role of the Pareto optimization based gradient alignment in boosting the entire performance. Due to
limited space, the results about 95% confidence intervals are provided in Appendix D.

Performance comparison with FM. Table 2 compares the performance of different CL methods in
mitigating forgetting and lists the average FM with 95% confidence interval. As |M| increases, the
FMs of other comparative methods improve very little, or even decrease. However, our proposed
RGA and PRGA always show a significant performance improvement on different datasets. The
underlying reason is that the derived hyper-gradient weighting formulation makes RGA and PRGA
able to fully exploit the memory buffer for more accurate gradient alignment. For PRGA, while the
regularization of Pareto optimality aims to help improve the performance of entire previous tasks (as
verified in Table 1), from another perspective, this actually also avoids forgetting to a certain extent,
thus helping PRGA obtain higher FM scores than RGA. As analyzed in Fig. 1, to avoid confusion,
we defer reporting the FM results and analysis for ER-ACE and La-MAML to Appendix D.

Performance comparisons on more realistic settings. To comprehensively evaluate the effec-
tiveness of our proposed methods, based on Split CIFAR-10, we additionally execute the comparing
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Table 3: Performance comparison on the imbalanced Split CIFAR-10 with |M|=1k under two dif-
ferent types of imbalanced CL settings, i.e., Normal and Reversed.

Normal Reversed Normal Reversed
Methods AAA Acc AAA Acc Methods AAA Acc AAA Acc
SGD 36.51±0.40 16.38±0.33 35.32±0.87 17.74±0.22 On-EWC 38.95±0.25 16.95±0.31 37.82±0.27 17.91±0.19

ER 52.28±0.65 32.59±1.86 46.78±3.01 27.89±2.46 A-GEM 38.33±0.25 17.48±0.52 36.54±0.39 17.52±0.32

DER 47.09±1.33 16.89±0.69 40.37±1.54 18.12±0.63 GEM 41.36±0.44 18.03±0.53 38.71±1.08 18.24±0.35

DER++ 61.97±0.63 44.04±2.06 58.52±0.87 39.43±3.29 MER 54.61±1.39 35.15±1.01 52.24±1.92 39.47±1.77

CLSER 61.87±0.41 48.04±0.72 55.32±1.57 42.38±2.97 La-MAML 36.17±1.25 28.99±0.78 31.79±2.03 31.68±1.42

ER-ACE 61.47±1.42 44.12±2.33 60.21±0.17 48.16±1.79 PRGA 66.87±1.92 54.82±1.55 64.45±1.38 58.79±2.66

Table 4: Ablation study on the proposed PRGA. Here FW and HD are the abbreviations for Frank-
Wolfe algorithm used for solving Eq. (4) and hypergradient derived in Sec. 3.3, respectively.

Methods FW HD Pareto Split CIFAR-10 (|M|=1k) Split CIFAR-100 (|M|=5k) Split TinyImageNet (|M|=5k)
AAA Acc FM AAA Acc FM AAA Acc FM

RGAFW ✓ 36.80 19.45 -55.54 16.20 9.05 -54.91 10.89 4.55 -43.74
RGA ✓ ✓ 63.95 54.57 -21.99 35.89 30.47 -18.84 25.01 18.58 -21.22
PRGA ✓ ✓ ✓ 66.23 58.50 -16.85 36.34 33.36 -17.55 25.48 19.40 -20.22

Table 5: Performance on Split CIFAR-10 with 95% confidence interval on the smaller 3-layer DNN
with |M|=1k. The results are averagely computed over 5 runs.

Split-CIFAR10 (|M| =1k)
Methods AAA Acc FM Methods AAA Acc FM
SGD 34.96±0.27 16.08±0.10 -61.63±0.06 On-EWC 35.12±0.12 16.38±0.08 -60.65±0.24

ER 56.82±0.83 39.05±1.80 -35.83±0.81 A-GEM 35.88±0.09 14.15±0.27 -61.90±0.22

DER 50.31±0.19 29.04±0.22 -49.38±0.19 GEM 46.86±0.68 28.02±0.55 -43.39±1.17

DER++ 56.99±0.08 42.30±0.18 -34.07±0.24 MER 58.18±0.34 35.14±0.84 -34.37±0.74

CLSER 60.25±0.12 43.82±0.25 -33.97±0.04 PRGA 61.09±0.62 46.14±0.43 -22.13±0.42

experiments on two more realistic CL settings, including Normal class imbalanced CL and Reversed
class imbalanced CL. Specifically, for the Normal setting, the number of samples possessed by each
streaming task is in a decreasing order, while Reversed takes an increasing order. More details are
included in Appendix D. The corresponding comparison results are reported in Table 3. As seen,
even under these more challenging scenarios, our proposed PRGA still shows superior performance.

Ablation study on each component of PRGA. To evaluate the role of each component of PRGA,
we conduct an ablation study based on Split CIFAR-10 with buffer size |M|=1k. Table 4 presents the
performance of different variants of the proposed gradient weighting framework, including RGAFW,
RGA, and PRGA. Here RGAFW represents the degraded version of RGA which adopts the vanilla
gradient to implement gi instead of the hypergradient computed in Sec. 3.3. The subscript FW de-
notes the Frank-Wolfe algorithm utilized for solving Eq. (4). From the results, we can see that 1) The
introduction of hypergardient helps RGA obtain higher performance than RGAFW; 2) Compared to
RGA, the proposed Pareto optimality strategy further brings performance improvement for PRGA.

More comparisons on different backbones. To explore the versatility of our method across dif-
ferent backbones, based on Split CIFAR-10 with |M|=1k, we also incorporate a smaller three-layer
convolutional network as an additional backbone for experimental analysis. The results are given in
Table 5. Compared to Table 1 and Table 2 with Reduced ResNet-18 as backbone, although all the
comparison methods show a relative performance degradation under the smaller backbone, PRGA
still surpasses other CL methods on all the evaluation metrics and shows a fine applicability.

5 CONCLUSION

In this paper, for the continual learning task, we have adopted the MiniMax theorem and rationally
reformulated the existing widely-adopted gradient alignment optimization problem in a gradient
weighting framework. Such a novel perspective enables us to analyze most existing gradient align-
ment methods as special cases. Building on this insight, we have further proposed a Pareto regular-
ized gradient alignment (PRGA) algorithm which considers the interrelationships among previous
tasks with the aim of enhancing their collective performance. Comprehensive experiments across
various datasets and settings have finely substantiated the superiority of the proposed PRGA as well
as its good applicability beyond the current state-of-the-art continual learning methods.
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A APPENDIX

A.1 THE MINIMAX THEOREM AND FRANK WOLFE ALGORITHM

MiniMax Theorem. (Du & Pardalos, 1995). This theorem answers the question of in which sit-
uation the order of minimization and maximization operations can be swapped. Concretely, let
X ∈ Rn and Y ∈ Rm be two compact convex sets. Suppose f : X × Y → R is a continuous
function that is concave-convex, i.e., f(x, ·) : Y → R is convex for fixed x and f(·, y) : X→ R is
concave for the fixed y. Then we can get that

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y). (10)

As discussed in Section 3.1, the optimization problem described by Eq. (3) satisfies the above re-
quirements. Therefore, we can interchange its optimization order and obtain the gradient weighting
optimization problem, as depicted in Eq. (4).

Frank Wolfe Algorithm. (Jaggi, 2013; Sener & Koltun, 2018) This algorithm is an iterative first-
order optimization algorithm for constrained convex optimization. Therefore, it can be employed to
address the optimization issue presented in Eq. (4). The complete optimization procedure is detailed
in Alg. 3.

Algorithm 3 Frank-Wolfe Algorithm for Solving Eq. (4)

Input: Initialization λ = [ 1
n−1 , . . . ,

1
n−1 ].

Output: the coefficient vector λ of previous tasks.
1: repeat
2: α = argmini∈{1,2,...,n−1}⟨gi, gn +

∑n−1
i=1 gi⟩

3: η = argminη∥gn +
∑n−1

i=1 gi − λαgα + ηgα∥2
4: λ = λ− λαIα + ηIα. ▷ Iα is a unit vector with a value of 1 at the a-th position.
5: until η ∼ 0 or Reaching the maximum iteration.

A.2 ANALYSIS OF THE PROPOSED RGA

By utilizing the MiniMax theorem, we have transformed the gradient alignment method into a gra-
dient weighting problem, as shown in Eq. (4). The resulting optimization direction, determined by
our proposed RGA, can be expressed as u∗ = gn + g(λ), where λ is solved to minimize the objec-
tive function 1

2∥g(λ) + gn∥22. To gain a deeper understanding of the optimization direction u∗, we
conduct an analysis of simple cases (i.e., n = 2, 3) in two-dimensional scenarios. These simplified
cases allow us to examine the behavior of RGA in a more straightforward manner, facilitating a clear
comparison with other gradient alignment methods.

Comparing with Other Gradient Alignment Methods. As depicted in Fig. 3 where n=2, there
are two different situations. According to our derived optimization objective as shown in Eq. (4), our
goal is to get λ1 such that ∥λ1g1 + g2∥22 as small as possible. Concretely, in the situation (a) where
⟨g2, g1⟩ ≥ 0, there is no interference between the two directions, leading to the final optimization
direction u∗ being u∗ = 0 · g1 + g2 = g2. In contrast, in situation (b), where ⟨g2, g1⟩ < 0,
interference between the two directions is observed. In this case, the final optimization direction is
u∗ = g2− ⟨g2,g1⟩

∥g1∥2 g1. It is worth noting that the solutions are exactly the same as those obtained from
AGEM, which implies that AGEM can be regarded as a special case within our gradient weighting
framework. Additionally, La-MAML, a simplified version of MER, has derived an equivalent form
of its bi-level optimization goal that coincides with optimizing the CL objective of AGEM. This
equivalence demonstrates that La-MAML can also be regarded as a specific instance or a special case
of RGA. Similarly, MEGA just manually assigns weights to gradients of different tasks. Therefore,
all these gradient alignment methods can be analyzed within this gradient weighting framework.

Solving the Optimization Problem of RGA. There is a closed-form solution when n=2, as shown
in Fig. 3. For more general situations where n ≥ 2, we can solve them using the Frank-Wolfe
algorithm outlined in Alg. 3. To provide a better understanding, we also present the solutions for
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Figure 3: Illustration of the final determined optimization direction for our proposed RGA with two
Tasks (i.e., n=2) in the simplest two-dimensional context.
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Figure 4: Illustration of the final optimization direction determined by our proposed RGA with three
Tasks (i.e., n=3) in the simplest two-dimensional context.

the case when n = 3 in Fig. 4. It is important to note that when g1, g2, g3 are linearly dependent.
This implies that no update occurs under such circumstances. Nevertheless, this linearly dependent
situation is rare in high-dimensional gradient spaces, as the number of gradients is significantly
smaller than the dimensions involved.

B CONVERGENCE ANALYSIS

To gain a deeper understanding of the proposed PRGA, we also provide its regret bound, as il-
lustrated in Theorem 1. Let the notation Ft(θ) ≜

∑Bt

i=1 L(f(xi; θ), yi) and F (θ) =
∑T

t=1 Ft(θ),
where Bt means the samples number of the t-th training batch, There are four requiring assumptions
as follows:

Assumption 1. The compact convex set C ⊆ Rd has diameter D, i.e., ∀θ, θ′ ∈ C, ∥θ − θ
′∥ ≤ D.

Assumption 2. Let gt denote the t-th update gradient, there exisits σ2 < ∞ such that ∥∇Ft(θ) −
∇F (θ)∥2 ≤ σ2.

Assumption 3. The difference of Ft(θ) and F (θ) is bounded over the constraint set C, i.e., ∀θ ∈
C, t ∈ {1, ..., T}, there exists M2 <∞ such that with probability 1,

∥Ft(θ)− F (θ)∥2 ≤M2

Assumption 4. The gradient∇Ft(θ) is unbiased and is L-Lipschitz continuous over the constraint
set C, i.e.,

∥∇Ft(θ)−∇Ft(θ
′
)∥ ≤ L∥θ − θ

′
∥,∀θ, θ

′
∈ C

Theorem 1. Let T denote the training iteration. Suppose all the above four assumptions are satis-
fied, then with probability at least 1− δ for any δ ∈ (0, 1), we can get,

R(T ) ≤ (log T + 1)(F (θ1)− F (θ∗)) + σ2D log T +
LD2(log T + 1)2

2
+ 4M

√
T log(8/δ).

13
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Proof. Then we will prove the regret bound R(T ) of PRGA as follows,

R(T ) ≜
T∑

t=1

Ft(θt)−minθ

T∑
t=1

Ft(θ). (11)

Let θ∗ = argminθ
∑T

t=1 Ft(θ), then we can get,

R(T ) =

T∑
t=1

Ft(θt)−minθ

T∑
t=1

Ft(θ)

=

T∑
t=1

Ft(θt)−
T∑

t=1

Ft(θ
∗)

=

T∑
t=1

[Ft(θt)− Ft(θ
∗)]

(12)

Then, through calculating the term Ft(θt) − Ft(θ
∗), we can get the regret bound. We first de-

fine a sequence st = F̃t(θt) − Ft(θ
∗) − (F (θt) − F (θ∗)), t = 1, ..., T . It can be observed that

E [st | Ft−1] = 0, where Ft−1 is the σ-algebra generated by {F1, ϵ1, ..., Ft−1, ϵt−1}. It means that
{st}Tt=1 is a martingale difference sequence. According to Assumption 4, we have

∥st∥ = ∥Ft(θt)− Ft(θ
∗)− (F (θt)− F (θ∗)∥ ≤ 2M

Based on the Theorem 3.5 in Pinelis (1994), we can get

P

(
∥

T∑
t=1

st∥ ≥ λ

)
≤ 4 exp

(
− λ2

16TM2

)
,

where λ > 0. By setting λ = 4M
√
T log(8/δ) , we have with probability at least 1− δ/2,

T∑
t=1

st =

T∑
t=1

(Ft(θt)− Ft(θ
∗))−

T∑
t=1

(F (θt)− F (θ∗)) ≤ 4M
√
T log(8/δ).

Combining this term with Eq. (12), we can get,

R(T ) ≤
T∑

t=1

(F (θt)− F (θ∗)) + 4M
√
T log(8/δ)

Let βt =
1
t denote the learning rate, ϵt = gt −∇F (θt) then we can get,

F (θt)− F (θ∗) = (1− βt)(F (θt−1)− F (θ∗)) + αtD∥ϵt−1∥2 +
LD2β2

t

2

≤
t−1∏
τ=1

(1− βτ )(F (θ1)− F (θ∗)) +

t−1∑
τ=1

βτ (D∥ϵτ∥2 +
LD2βτ

2
)

t−1∏
k=τ+1

(1− βk)

≤ 1

t
(F (θ1)− F (θ∗)) +

D

t

t−1∑
τ=1

∥ϵτ∥2 +
LD2 log t

2t

T∑
t=1

F (θt)− F (θ∗) =

T∑
t=1

1

t
(F (θ1)− F (θ∗)) +

T∑
t=1

D

t

t−1∑
τ=1

∥ϵτ∥2 +
T∑

t=1

LD2 log t

2t

≤ (log T + 1)(F (θ1)− F (θ∗)) + σ2D log T +
LD2(log T + 1)2

2

Therefore, the final regret bound is,

R(T ) ≤ (log T + 1)(F (θ1)− F (θ∗)) + σ2D log T +
LD2(log T + 1)2

2
+ 4M

√
T log(8/δ)

14
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C MORE DETAILS OF THE EXPERIMENTS.

Benchmark Datasets. Both CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009) consist
of 50,000 training images and 10,000 testing images, all with a size of 32× 32 pixels. However,
they differ in the number of classes: CIFAR-10 contains 10 classes, while CIFAR-100 includes
100 classes. Following (Chen et al., 2022), the CIFAR-10 and CIFAR-100 are evenly split into 5
tasks and 20 tasks respectively, denoted as Split CIFAR-10 and Split CIFAR-100. Similarly, the
TinyImageNet dataset (Buzzega et al., 2020), which contains 200 classes and 100,000 images with
a size of 64×64 pixels, is divided into 20 tasks, with each task containing 10 classes.

Details of the Comparison Methods. In this study, we compare the proposed PRGA method
with other gradient alignment methods as well as other representative CL methods. Here is a brief
introduction to these comparison methods:

Gradient Alignment Methods:

• GEM (Lopez-Paz & Ranzato, 2017). This method manipulates the gradient of the current task in
a way that ensures the final update direction satisfies the non-negative inner-product constraints
with the gradients of previous tasks.

• AGEM (Chaudhry et al., 2018). Due to GEM solves its constrained optimization problem
through quadratic programming, which is time-consuming, AGEM opts to simplify the problem
by merging all previous tasks into one. This enables the derivation of a closed-form solution.

• MEGA (Guo et al., 2020). This method proposes to manually assign weights to gradients of
different tasks and then update the model in the weighted direction.

• MER (Riemer et al., 2019). This approach utilizes replay examples to align the gradients among
previous tasks and the current task to maximize the transfer from previous tasks and minimize
interference.

• La-MAML (Gupta et al., 2020). This method simplifies the optimization process of MER and
shares a similar gradient alignment objective.

Other Representative CL Methods:

• On-EWC (Huszár, 2017). As one representative regularization-based CL method, it adopts
a Fisher information matrix to approximate the Hessian to discern and protect the important
weights.

• ER (Rolnick et al., 2019). It constructs a memory buffer to store samples of previous tasks and
utilize them during the sequential training.

• DER++ (Buzzega et al., 2020). Building upon the foundation of ER, DER++ stores the pre-
dicted logits of each example. This strategy is employed to apply distillation loss during the
training process.

• CLSER (Arani et al., 2021). On the basis of ER, CLSER employs the dual memory which
maintains short-term and long-term semantic memories.

• ER-ACE (Caccia et al., 2021). This method introduces a novel training approach that primarily
focuses on previous tasks, aiming to avoid abrupt feature changes associated with these tasks.

D OTHER EXPERIMENTAL RESULTS

D.1 FULL TABLE WITH CONFIDENCE INTERVAL

In order to better present the results, we provide the mean performance of AAA, Acc, and FM
metrics, along with their 95% confidence intervals, specifically for each dataset, as shown in Table 6,
Table 7, and Table 8. The results clearly demonstrate that the proposed PRGA method consistently
achieves the highest average performance in terms of AAA and Acc across all three datasets under
different buffer sizes. With respect to the FM metric, aside from ER-ACE and La-MAML, methods
that inherently have an extremely high a∗i as analyzed in Sec.4, our method also outperforms other
methods, achieving the best FM performance.
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Table 6: Performance of all the comparing methods on Split CIFAR-10 under different memory
buffer size |M|. All the reported results are averagely computed over 5 repetitions.

Method
Split CIFAR-10 (N = 5)

|M| = 0.6k |M| = 1k
AAA Acc FM Acc AAA FM

SGD 34.04±3.10 16.68±0.27 -61.01±3.30 34.04±3.10 16.68±0.27 -61.01±3.30
On-EWC 36.51±0.75 18.37±0.30 -64.21±0.86 36.51±0.75 18.37±0.30 -64.21±0.86
ER 54.68±5.11 39.43±3.79 -35.68±3.20 54.91±1.65 42.04±4.33 -32.16±5.10
DER 49.06±1.30 25.80±0.51 -54.60±2.80 48.25±1.95 23.90±0.47 -55.22±1.70
DER++ 57.17±1.08 47.03±1.03 -24.00±1.30 61.01±1.55 50.31±1.50 -28.01±1.31
CLSER 61.64±1.62 50.36±4.06 -29.03±3.70 63.27±0.71 53.06±1.58 -31.38±1.70
ER-ACE 52.27±0.97 46.04±3.75 -9.12±2.94 57.42±0.99 51.17±3.44 -9.68±2.90
AGEM 37.67±1.76 18.51±0.07 -66.17±1.61 37.62±1.53 18.03±0.43 -66.61±1.60
GEM 37.78±1.98 18.84±1.17 -58.09±3.90 37.00±0.47 18.73±0.76 -57.64±2.70
MER 45.36±1.48 24.42±0.42 -32.78±0.81 50.99±2.75 36.15±1.21 -23.33±8.06
La-MAML 47.89±1.45 30.53±3.73 -10.09±0.52 46.08±3.45 35.89±1.35 -5.03±0.86
RGA 60.94±2.65 48.66±5.52 -27.88±0.43 63.95±2.00 54.57±0.84 -21.99±3.40
PRGA 63.62±2.65 53.42±1.17 -23.27±2.50 66.23±1.73 58.50±2.43 -16.85±2.80

Table 7: Performance of all the comparing methods on Split CIFAR-100 under different memory
buffer size |M|. All the reported results are averagely computed over 5 repetitions.

Method
Split CIFAR-100 (N = 20)

|M| = 1k |M| = 5k
AAA Acc FM Acc AAA FM

SGD 9.67±0.18 3.24±0.12 -54.24±1.20 9.67±0.18 3.24±0.12 -54.24±1.20
On-EWC 9.87±0.28 2.77±0.27 -56.55±1.30 9.87±0.28 2.77±0.27 -56.55±1.30
ER 17.86±0.26 11.89±0.27 -46.25±0.47 20.67±0.68 14.87±0.60 -48.54±1.10
DER 10.96±0.20 3.71±0.11 -60.58±0.38 10.47±0.32 3.68±0.06 -59.94±1.40
DER++ 17.30±0.30 8.72±0.52 -58.61±0.60 17.08±0.79 8.98±1.05 -61.23±0.19
CLSER 22.58±0.42 15.68±0.62 -45.63±0.62 23.25±1.34 16.42±1.52 -50.71±0.86
ER-ACE 24.02±0.22 15.46±1.05 -12.01±0.81 24.93±1.95 20.58±0.36 -9.84±1.00
AGEM 10.61±0.09 3.75±0.18 -60.51±0.34 10.80±0.15 3.52±0.13 -60.89±0.37
GEM 13.43±0.04 6.04±0.52 -45.83±0.69 13.71±0.23 6.46±0.93 -50.61±1.90
La-MAML 17.37±0.59 10.03±0.25 -5.95±0.01 19.05±0.54 12.57±0.34 -6.45±0.33
RGA 25.81±0.51 14.79±0.71 -35.23±4.42 35.89±0.84 30.47±0.43 -18.84±1.77
PRGA 26.68±0.21 16.54±0.34 -37.61±0.63 36.34±1.24 33.36±1.92 -17.55±0.36

D.2 OTHER ANALYSIS RESULTS

To better validate the effectiveness of the proposed PRGA, we also provide the accuracy of each task
on Split CIFAR-100 and Split TinyImageNet, as shown in Fig. 6. It is evident from the results that
our method, on average, covers a large area, thereby validating that our proposed PRGA can indeed
sustain the performance of previous tasks and effectively mitigate forgetting. Moreover, we also
provide the confusion matrix of other CL methods, including ER, DER++, CLSER, and ER-ACE.
By comparing with the Fig. 2, it can be seen that all the four methods cannot better distinguish T2
and T3, while the proposed PRGA exhibits much better performance. This further confirms that our
proposed PRGA, by introducing Pareto optimization to consider the interrelationships between past
tasks, can effectively capture and model the relationships among the past tasks.

16



Under review as a conference paper at ICLR 2024

Table 8: Performance of all the comparing methods on Split TinyImageNet under different memory
buffer size |M|. All the reported results are averagely computed over 5 repetitions.

Method
Split TinyImageNet (N = 20)

|M| = 2k |M| = 5k
AAA Acc FM Acc AAA FM

SGD 7.63±0.24 2.17±0.07 -43.58±0.58 7.63±0.24 2.17±0.07 -43.58±0.58
On-EWC 7.96±0.12 2.43±0.13 -44.30±1.70 7.96±0.12 2.43±0.13 -44.30±1.70
ER 16.27±0.10 10.52±0.59 -37.90±0.28 16.10±0.24 11.89±0.63 -37.43±0.81
DER 8.04±0.20 2.46±0.06 -47.11±0.65 7.65±0.11 2.04±0.15 -46.27±0.85
DER++ 12.42±0.34 5.57±0.11 -47.13±2.00 11.93±0.34 5.26±0.21 -47.65±0.76
CLSER 18.50±0.08 10.03±0.22 -44.45±0.32 18.88±0.59 11.61±0.19 -44.21±0.14
ER-ACE 20.57±0.49 13.23±1.13 -8.42±1.25 21.16±0.14 17.22±0.54 -6.56±0.64
AGEM 7.66±0.35 2.33±0.18 -45.61±0.04 7.79±0.03 2.40±0.22 -45.51±0.27
GEM 10.17±0.28 3.70±0.44 -42.30±0.11 10.27±0.07 3.81±0.15 -42.71±0.03
La-MAML 15.81±0.41 8.02±0.10 -3.76±0.11 16.32±0.49 9.24±0.34 -4.38±0.50
RGA 20.70±0.77 11.89±0.54 -33.29±1.70 25.01±0.91 18.58±0.04 -21.22±0.54
PRGA 21.56±0.44 12.69±0.47 -31.63±1.60 25.48±0.67 19.40±0.92 -20.22±1.20
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Figure 5: Task-based confusion matrix of various gradient-alignment-based CL methods on Split
CIFAR-10 dataset with |M|=1k.

(a) Split CIFAR-100 (b) Split  TinyImageNet

Figure 6: Radar charts illustrating each task accuracy on Split CIFAR-100 dataset and Split TinyIm-
ageNet with |M|=5k.
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