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ABSTRACT

Functional data, representing curves or trajectories, are ubiquitous in fields like
biomedicine and motion analysis. A fundamental challenge is phase variabil-
ity—temporal misalignments that obscure underlying patterns and degrade model
performance. Current methods often address registration (alignment) and classifica-
tion as separate, sequential tasks. This paper introduces DeepFRC, an end-to-end
deep learning framework that jointly learns diffeomorphic warping functions and a
classifier within a unified architecture. DeepFRC combines a neural deformation
operator for elastic alignment, a spectral representation using Fourier basis for
smooth functional embedding, and a class-aware contrastive loss that promotes
both intra-class coherence and inter-class separation. We provide the first theoreti-
cal guarantees for such a joint model, proving its ability to approximate optimal
warpings and establishing a data-dependent generalization bound that formally
links registration fidelity to classification performance. Extensive experiments on
synthetic and real-world datasets demonstrate that DeepFRC consistently outper-
forms state-of-the-art methods in both alignment quality and classification accuracy,
while ablation studies validate the synergy of its components. DeepFRC also shows
notable robustness to noise, missing data, and varying dataset scales. Code is
available at https://github.com/Drivergo-93589/DeepFRC.

1 INTRODUCTION

Functional data analysis (FDA) is a key area for analyzing data that varies continuously over domains
like time, space, or other variables (Ramsay & Silverman, 2005; Ferraty & Vieu, 2006; Srivastava &
Klassen, 2016). Functional data is ubiquitous in fields such as biomechanics, neuroscience, healthcare,
and environmental science, appearing in datasets like growth curves, wearable device signals, EEGs,
fMRI scans, and air pollution levels. Despite its wide applicability, FDA faces challenges stemming
from the infinite-dimensional nature of functional data, as well as issues related to smoothness and
misalignment, necessitating advanced analytical tools (Wang et al., 2016; Matuk et al., 2022).

1.1 MOTIVATION

Two key tasks in FDA are functional registration (curve alignment) and classification. Registration
aligns curves to remove phase variability, enabling meaningful comparisons (Srivastava et al., 2011),
while classification assigns labels based on underlying curve features. Traditionally, these tasks
are addressed separately, with pre-registration followed by classification. However, this decoupled
approach is inefficient, as the label significantly influences the progression pace of the curves, and
alignment can provide valuable insights for classification (Liu & Yang, 2009; Tang et al., 2022).
Jointly analyzing curve alignment and classification accounts for both temporal and structural
variations, offering a more comprehensive understanding of the data.

Deep learning has revolutionized data analysis across various domains by enabling automatic feature
extraction, representation learning, and scalability (LeCun et al., 2015). In FDA, deep learning
presents an opportunity to integrate registration and classification into a unified framework. However,
its application remains underexplored, with existing studies primarily focused on improving either
registration accuracy (Chen & Srivastava, 2021) or classification performance (Yao et al., 2021;
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Wang & Cao, 2024), but rarely addressing both simultaneously. To address this gap, we propose an
end-to-end deep learning framework that combines functional data registration and classification,
eliminating the need for separate preprocessing while leveraging neural networks to model the
complex, non-linear relationships inherent in functional data.

1.2 RELATED WORK

Functional registration is a critical step in FDA, aimed at aligning functional data to correct for phase
variability (Ramsay & Silverman, 2005). Traditional approaches include landmark-based methods
(Kneip & Gasser, 1992; Ramsay & Silverman, 2005), metric-based methods (Wang & Gasser, 1997;
Ramsay & Li, 1998; Srivastava et al., 2011; Srivastava & Klassen, 2016), and model-based methods
(Tang & Müller, 2008; Claeskens et al., 2010; Lu et al., 2017). While effective in some contexts, these
methods face limitations such as high computational cost, manual intervention, and sensitivity to
noise. Landmark-based methods, for example, require subjective and potentially impractical landmark
selection (Marron et al., 2015). Recently, neural network-based methods (Chen & Srivastava, 2021)
have been proposed, but they are still typically used as preprocessing steps, disconnected from the
downstream tasks.

Functional classification has traditionally relied on statistical methods like generalized functional
regression (James, 2002; Müller, 2005) and functional principal component analysis (fPCA) (Hall
et al., 2000; Leng & Müller, 2006), which involve dimension reduction followed by classification.
However, these methods are limited by their reliance on handcrafted features and basis function
selection, which restricts their adaptability to complex, non-linear data. The integration of deep
learning into functional classification, as seen in works by Thind et al. (2020), Yao et al. (2021), and
Wang & Cao (2024), addresses these issues, although they typically treat registration as a separate
preprocessing task.

Few studies have integrated registration and classification within a unified framework for FDA. Lohit
et al. (2019) proposed a Temporal Transformer Network (TTN) for time series classification, but
it is not designed for functional data, neglecting the curve’s smoothness and infinite-dimensional
nature, thus struggling with accurate alignment. More recently, Tang et al. (2022) introduced a two-
level model for joint registration and classification, modeling warping functions via a mixed-effects
approach. However, this model is heavily reliant on assumptions, computationally expensive, and not
easily extendable to multi-class settings.

1.3 CONTRIBUTIONS

Our main contributions are: (1) Unified Architecture for Joint Learning. We introduce the first end-
to-end deep learning model that integrates a neural deformation operator for diffeomorphic warping,
a spectral representation for smooth functional encoding, and a class-aware contrastive loss, enabling
mutual reinforcement between alignment and prediction. (2) Theoretical Foundations. We establish
the first theoretical guarantees for such a model, proving approximation capabilities and providing
a generalization bound linking registration fidelity to classification performance. (3) Extensive
Empirical Validation. Extensive experiments on synthetic and real-world data demonstrate that
DeepFRC consistently outperforms state-of-the-art methods in both tasks, with ablation studies
confirming the synergy of its components and further analyses highlighting its robustness and
computational efficiency.

2 THE MODEL

We study supervised learning with functional data, where each sample consists of an observed
trajectory and a categorical label. Formally, the dataset is {(xi(ti), yi)}Ni=1, where xi(ti) =
(xi(ti1), . . . , xi(tin))

⊺ are observations of an underlying trajectory x(t) sampled at irregular and
potentially misaligned time points ti = (ti1, . . . , tin), and yi ∈ {1, . . . , C} is its class label. We
view functional data as trajectories embedded in an infinite-dimensional space, where misalignment
corresponds to latent time reparameterizations. Instead of treating alignment and prediction as two
separate stages, we propose to jointly learn a diffeomorphic time-warping map γ : t 7→ t̃ and a
classifier f : x(t̃) 7→ y in a single end-to-end architecture (Figure 1). This allows us to directly
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learn representations that are invariant to temporal misalignment while remaining discriminative for
classification.

Input OutputNeural
Deformation

Operator
Spectral

Representation
Classifier
Network

Objective = Contrastive Geometric Alignment Loss + Classification  Loss

Figure 1: Overview of DeepFRC. Multiple raw functional trajectories are first aligned via a neural
deformation operator (1D CNN) that learns diffeomorphic time warping γ(t), producing both warped
curves and alignment functions. The aligned signals are then expanded in a Fourier basis to obtain
spectral coefficients c1, . . . , cK , which serve as inputs to a classifier network (MLP with Softmax
output) for predicting class labels y ∈ 1, . . . , C. Training is performed jointly by minimizing a
contrastive geometric alignment loss and a classification loss.

2.1 NEURAL DEFORMATION OPERATOR FOR TIME WARPING

We introduce a neural deformation operator, parameterized by a 1D convolutional network (Kiranyaz
et al., 2016; Ince et al., 2016; Kiranyaz et al., 2021), that learns velocity fields defining diffeomorphic
warpings. This perspective differs from handcrafted registration methods: instead of explicitly
constructing alignment rules, we parameterize γ through a deep network optimized jointly with
downstream prediction.

Given an input sequence xi(ti) ∈ Rn, a multi-layer 1D CNN extracts temporal features τ(xi(ti)) ∈
Rn:

h(l) = ReLU(W (l) ⊛ h(l−1) +B(l)), l = 1, . . . , l1 − 1, (1)

with h(0) = xi(ti). The final layer is fully connected: τ(xi(ti)) = ReLU(W (l1)h(l1−1) + b(l1)).
Following Chen & Srivastava (2021), we use l1 = 4 convolutional blocks with kernel size 3 and
channels 16→ 32→ 64. This encoder, parameterized by Θ1, produces latent features that encode
temporal deformation fields.

To construct a boundary-preserving diffeomorphism, we transform the latent features into a monotone

cumulative sum: γ̃i(tij) =
∑j

µ=0 τ
2
iµ∑n

ν=0 τ
2
iν
, j = 1, . . . , n, where ti0 = 0, tin = 1, and τi0 = 0.

This ensures γ̃i(0) = 0, γ̃i(1) = 1, and dγ̃i
dt > 0, satisfying diffeomorphic constraints (Chen &

Srivastava, 2021). To further improve smoothness and geometric consistency, we apply an additional
normalization:

γi(tij) =

∑j
µ=0 γ̃iµ∑n
ν=0 γ̃iν

. (2)

This defines a neural operator that outputs valid, smooth, and data-adaptive warping functions.

2.2 SPECTRAL REPRESENTATION OF ALIGNED FUNCTIONS

Once trajectories are aligned by γi, we interpolate the aligned function x̃i(t) on points
{(γi(tij), xi(tij))}nj=1 using stable 1D linear interpolation:

x̃i(t) ≜
n−1∑
r=0

[
x(tir) +

xi(ti(r+1))− xi(tir)

γi(ti(r+1))− γi(tir)
(t− γi(tir))

]
· 1{γi(tir)≤t≤γi(ti(r+1))}. (3)
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Rather than vectorizing x̃i(t) into a high-dimensional grid, which ignores smoothness and leads to
inefficiency, we embed aligned functions into a compact spectral basis:

x̃i(t) ≈
K∑
j=1

cijϕj(t), (4)

where {ϕj(t)}Kj=1 are Fourier basis functions and cij are coefficients estimated by least squares:

c̃i = argmin
{cij}

∫ 1

0

[
x̃i(t)−

K∑
j=1

cijϕj(t)
]2
dt = G−1di, (5)

with Gij =
∫ 1

0
ϕi(t)ϕj(t) dt and dij =

∫ 1

0
x̃i(t)ϕj(t) dt. This spectral representation, inspired by

classical functional data analysis, acts as a form of neural Fourier features, yielding compact, smooth,
and regularized embeddings of aligned functions. We employ 1D linear interpolation (Eq. (3)) for
its numerical stability and computational efficiency, and a Fourier basis expansion (Eq. (4)) as it
introduces no additional regularization hyperparameters. Crucially, both methods satisfy the Lipschitz
continuity condition required by Theorem 3.3.

2.3 CLASSIFIER NETWORK

The spectral coefficients c̃i ∈ RK are fed into a fully connected classifier with l2 − 1 hidden layers
and ReLU activations:

h(l) = ReLU(W (l)h(l−1) + b(l)), l = l1 + 1, . . . , l1 + l2 − 1, (6)

followed by a softmax layer: ψ(c̃i) = Softmax(W (l1+l2)h(l1+l2−1)+b(l1+l2)).We use a three-layer
MLP (l2 = 3) with hidden units of size 8 and 4, parameterized by Θ2.

2.4 OBJECTIVE: CONTRASTIVE GEOMETRIC ALIGNMENT AND CLASSIFICATION

We optimize the model with parameters Θ = {Θ1,Θ2} by combining geometric alignment and
discriminative classification.

Class-aware Contrastive Alignment. To align functional trajectories while preserving class struc-
ture, we adopt the square-root velocity function (SRVF) representation q(t) = sign(ẋ(t))

√
|ẋ(t)| (Sri-

vastava & Klassen, 2016). For a warped trajectory x(γ(t)), the SRVF is (q ⋆ γ)(t) = q(γ(t))
√
γ̇(t).

For sample i, the observed SRVF vector is Qi(γi) = ((qi ⋆ γi)(ti1), . . . , (qi ⋆ γi)(tin))
⊺. We define

a contrastive alignment loss:

L1(Θ1) =

C∑
j=1

∑
i:yi=j

∥Qi(γi)− Q̄(j)∥
N (j)

+ α
∑

1≤u<v≤C

∥Q̄(u) − Q̄(v)∥−1, (7)

where Q̄(j) is the class-wise SRVF mean. The first term encourages intra-class alignment; the
second is a contrastive separation term that increases inter-class margins. Together, this yields a new
contrastive–geometric alignment objective.

Classification Loss. The classifier is trained using standard cross-entropy:

L2(Θ) = − 1

N

N∑
i=1

C∑
j=1

yij logψij . (8)

Joint Objective. The full objective integrates both alignment and prediction:

L(Θ) = L1(Θ1) + βL2(Θ), (9)

where β balances geometric alignment and classification accuracy.
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Algorithm 1 Training DeepFRC

Require: Training data
{
(xi(ti), yi)

}N
i=1

1: Set Hyperparameters: Size of basis function K, loss-related {α, β}, and training parameters η
(epochs E, batch size, learning rate, etc.)

2: Initialize Parameters Θ = Θinitial
3: for e = 1 to E do
4: Forward Propagation:

(1) Compute γi(ti) for each xi(ti)
(2) Warp xi(ti) to obtain x̃i(t), calculate its SRVF Qi(γi), and extract coefficients c̃i
(3) Pass c̃i through the classifier to compute ψ(c̃i)
(4) Compute the loss L(Θ)

5: Backward Propagation: Update Θ via AdamW optimizer using ∂L(Θ)
∂θ , θ ∈ Θ

6: end for
7: Return Trained DeepFRC with optimized parameters Θ∗

Summary. Integrating Sections 2.1–2.4, we obtain DeepFRC (Deep Functional Registration and
Classification), an end-to-end framework coupling (i) a neural deformation operator for alignment,
(ii) a spectral embedding for smooth functional representation, and (iii) a classifier guided by a
contrastive–geometric loss (Figure 1). To the best of our knowledge, DeepFRC is the first model
to unify alignment and prediction of functional data through diffeomorphic neural operators and
contrastive geometry, offering a new paradigm for learning invariant representations of misaligned
functional trajectories. A natural extension of our framework allows it to handle d-dimensional
functional inputs (d ≥ 2) by simply considering xi(ti) ∈ Rn×d, under the assumption of a shared
warping process across dimensions, without requiring additional structural assumptions.

2.5 OPTIMIZATION, MODEL SELECTION AND COMPUTATIONAL COMPLEXITY

The objective in Eq. (9) is optimized via stochastic gradient descent over the model parameters Θ,
using the AdamW optimizer (Ilya & Frank, 2019) for efficient and stable convergence, particularly in
deep architectures (Diederik & Lei, 2015). Gradients with respect to each θ ∈ Θ are computed via
the chain rule, as detailed in Eqs. (A.1)–(A.2) of Appendix A. The complete training procedure is
outlined in Algorithm 1.

The number of basis functions K is empirically set to 100 and shown to be robust across tasks
(Section 4.2). Hyperparameters α and β, which balance alignment and classification loss terms, are
selected via data-splitting methods following (Wang et al., 2023); further model selection details are
provided in Appendix B.

DeepFRC achieves linear time complexity O(Nn) with respect to sample sizeN and sequence length
n. In contrast, traditional alignment techniques such as dynamic time warping (DTW), which rely on
dynamic programming, incur quadratic cost O(Nn2k) (with k < n), rendering them computationally
infeasible for long sequences (Sakoe & Chiba, 1978; Chen & Srivastava, 2021).

3 THEORETICAL ANALYSIS

We now discuss the theoretical properties of the proposed model, demonstrating that it achieves
low registration error under elastic functional data analysis (EFDA) (Srivastava & Klassen, 2016)
framework and low generalization error under mild regularity conditions. Detailed proofs are provided
in Appendices C and D.

The phase variability is modeled using monotone and smooth transformations within the set Γ = {γ :
[0, 1] → [0, 1] | γ(0) = 0, γ(1) = 1, γ̇ > 0}. Under the framework of elastic functional data analysis
(EFDA) (Srivastava et al., 2011), the optimal warpings are defined as: γ∗ = argmin

{γi}
Qreg(γ) ≜

5
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argmin
{γi}

C∑
j=1

∑
i∈{yi=j}

∥Qi(γi)−Q̄(j)∥

N(j) , γi ∈ Γ, where “reg" means “registration". For any other estimated

warping γ̂, the registration error can be quantified as ∆Qreg(γ
∗, γ̂) ≜ |Qreg(γ

∗)−Qreg(γ̂)|.
Theorem 3.1 (Low Registration Error). Assume that: (i) The proposed deep neural network has
sufficient capacity, (ii) Each warping function γ(t) belongs to the admissible set Γ and is continuously
differentiable, and (iii) The SRVF of q(t) of each curve x(t) is continuous and bounded.
Then, for any ϵ > 0, there exists an estimated γ̂ produced by the model such that:

∆Qreg(γ
∗, γ̂) < ϵ.

Remark 3.2. Theorem 3.1 provides a theoretical foundation for our approach, establishing that neural
networks can approximate smooth warping functions in SRVF space, thereby justifying the use of a
learnable diffeomorphic registration module. While direct empirical verification of the approximation
error is challenging due to the inability to obtain globally optimal warpings γ∗ in real data, we
validate the practical observability of this result through controlled simulation studies where the
ground-truth warpings are known.

We further show that the proposed model achieves a small generalization error. Let f̂Θ : x → y
represent the mapping of the proposed DeepFRC model with a fixed architecture. Define the
population risk and empirical risk as R(Θ) = E[l(f̂Θ(x), y)] and Rn(Θ) = 1

N

∑N
i=1 l(f̂Θ(xi), yi),

respectively, where l denotes the individual loss function. The generalization error is given by

∆Rgen(Θ̂) = |ES,A[R(Θ̂)−Rn(Θ̂)]|,

where Θ̂ is the parameter set estimated via a random algorithm A based on a random sample S.
During training, we assume the AdamW optimizer uses an inverse time decay or a custom decay
function to ensure the learning rate αt is monotonically non-increasing with αt ≤ c0/t, for some
constant c0 > 0, and that the algorithm runs for T0 steps. The following result builds upon Theorem
3.8 from Hardt et al. (2016) and Theorem 2 from Yao et al. (2021).

Theorem 3.3 (Low Generalization Error). Assume that: (i) There exists ϵ0 > 0, such that |Q̄(u) −
Q̄(v)| ≥ ϵ0 for 1 ≤ u < v ≤ C and ψij ≥ ϵ0, and (ii) The weight Θ is restricted to a compact region.
Then, for the weights Θ̂ estimated by the proposed model, there exists a constant c0 > 0, such that

∆Rgen(Θ̂) ≲
T

1−1/c0
0

N
.

Remark 3.4. The assumptions of Theorem 3.3 are empirically satisfied and guide model design.
Class separation |Q̄(u) − Q̄(v)| ≥ ϵ0 is supported by distinct SRVF means (Figure 3, Table 1). The
probability floor ψij ≥ ϵ0 is enforced via additively smoothed softmax, keeping all probabilities
above 10−4. Although non-constructive, the bound informs hyperparameter tuning: α is chosen to
maximize separation, while β balances classification and alignment.

4 EXPERIMENTS

We present the results of functional data registration and classification using DeepFRC, evaluated
on both simulated and real-world datasets. Simulated data provides insights into registration, recon-
struction, and classification progression during training. Real-world datasets allow for performance
comparisons with state-of-the-art methods.

Evaluation Metrics. We evaluate our method using metrics for registration, reconstruction, and
classification. Registration quality is assessed by the alignment error (∆Qreg) between estimated
and true warping functions on simulated data, and by the Adjusted Total Variance (ATV) (Chen &
Srivastava, 2021) on both simulated and real data, where lower values indicate better alignment. The
fidelity of the recovered smooth process is measured via the correlation between true and estimated
basis coefficients (simulated data only). Classification performance is reported using accuracy (ACC)
and the macro-averaged F1-score (Sokolova & Lapalme, 2009), with higher values being better.
Detailed metric definitions are provided in Appendix E.1.
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4.1 SIMULATION

Synthetic Data Generation. We generate a balanced two-class functional dataset {xi(t), yi}Ni=1,
where each function xi(t) combines amplitude and phase variation. Amplitude is modeled by
sums of Gaussian bumps, while phase variation is introduced via nonlinear warping functions γi(t).
Class-specific parameters and full generation details are provided in Appendix E.2.

Results. Figure 2 demonstrates the iterative improvement of joint registration and classification
on a simulated dataset. Initially, the raw curves of two classes are visually inseparable (Fig. 2(a)).
Through optimization, DeepFRC progressively refines the alignment, leading to well-separated,
class-specific templates (Fig. 2(a)-(d)). This visual improvement is quantified by a rapidly increasing
Pearson correlation ρ(c∗, ĉ), indicating accurate reconstruction of the true, unwarped functions
(Fig. 2(e)). Concurrently, both registration and classification metrics improve steadily as the combined
loss converges (Fig. 2(f)-(h)), illustrating the synergy between the two tasks. The model’s strong
generalization is confirmed on a held-out test set (Figure A1, Appendix E.2).

Figure 2: Contribution of iterative optimization in training DeepFRC on simulated two-class (yellow
and blue) data. (a)-(d) depict the progression of registration at Epochs 0, 5, 15, and 30. (e)-(h) show
the improvement in reconstruction, registration, classification, and loss over SGD epochs.

4.2 REAL DATA APPLICATION

Real-World Datasets. We evaluate our method on five publicly available datasets, selected for their
prevalence in functional data analysis (Ramsay & Silverman, 2002; 2005) and relevance to phase
variation: Wave, Yoga, Symbol, and MotionSense (Malekzadeh et al., 2019). Wave, Yoga, and
Symbol are sourced from the UCR Time Series Classification Archive, while MotionSense is from
Kaggle. For the Symbol dataset, we use both binary and three-class subsets. The Wave, Symbol, and
MotionSense datasets are class-balanced, whereas Yoga is imbalanced. In terms of dimensionality,
Wave, Yoga, and Symbol are one-dimensional, and MotionSense is three-dimensional. Further details
are provided in Appendix E.3.

Baseline Models. We benchmark DeepFRC against several deep learning models for functional data
analysis, including a joint registration-classification model (TTN (Lohit et al., 2019)), a registration-
only model (SrvfRegNet (Chen & Srivastava, 2021)), and five classification models: FCNNraw,
FCNNfourier, FuncNN (Thind et al., 2020), ADAFNN (Yao et al., 2021), and TSLANet (Eldele et al.,
2024). To ensure a fair comparison, we evaluate sequential registration-classification pipelines by
combining SrvfRegNet with each classification model (excluding TTN, which is already joint). A de-
tailed description of all baseline methods and implementation details are provided in Appendices E.4
and E.5, respectively.

Performance Comparison. Table 1 reports both alignment and classification metrics across five
real-world datasets. Among all models, only DeepFRC and TTN jointly perform registration and

7
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classification. DeepFRC outperforms TTN by using elastic FDA for enhanced functional smoothness,
delivering superior registration across all datasets and significant classification improvements on
Symbol and MotionSense data. Unlike pipelines combining SrvfRegNet and classification models -
which disregard label information during registration - DeepFRC achieves superior alignment, leading
to more interpretable transformations and improved downstream classification accuracy. We observe
that DeepFRC achieves classification accuracy comparable to TSLANet, a recent state-of-the-art
time-series model that outperforms many transformer-based alternatives, across all datasets. Figure
A2 (Appendix E.5) plots the training loss versus epochs for DeepFRC across all datasets, confirming
convergence.

Table 1: Quantitative comparison of registration and classification performance with state-of-the-art
approaches across five real datasets. Bold indicates best results.

Wave Yoga Symbol (2 classes) Symbol (3 classes) MotionSense
Model ATV ACC F1-score ATV ACC F1-score ATV ACC F1-score ATV ACC F1-score ATV ACC F1-score

DeepFRC 5.6 96.4% 0.965 16.2 89.8% 0.909 4.8 96.0% 0.959 3.2 96.3% 0.963 25.0 95.0% 0.952
TTN 6.3 94.7% 0.948 57.7 89.4% 0.904 8.6 92.0% 0.918 4.5 93.3% 0.933 35.1 85.0% 0.857

SrvfRegNet+FCNNraw 7.3 94.6% 0.947 136.0 81.0% 0.830 14.8 94.5% 0.942 6.5 94.7% 0.947 37.7 90.0% 0.909
SrvfRegNet+FCNNfourier 7.3 94.9% 0.950 136.0 84.0% 0.852 14.8 95.0% 0.949 6.5 96.0% 0.959 37.7 90.0% 0.909

SrvfRegNet+FuncNN 7.3 95.7% 0.957 136.0 89.0% 0.908 14.8 93.5% 0.933 6.5 94.7% 0.947 37.7 90.0% 0.889
SrvfRegNet+ADAFNN 7.3 94.6% 0.949 136.0 73.4% 0.753 14.8 89.0% 0.894 6.5 94.3% 0.943 37.7 85.0% 0.857
SrvfRegNet+TSLANet 7.3 96.4% 0.961 136.0 89.3% 0.884 14.8 95.5% 0.955 6.5 96.3% 0.960 37.7 95.0% 0.952

Alignment Visualization. Figure 3 compares alignment quality on the Symbol (3 classes) dataset.
DeepFRC produces smooth, class-separated functional alignments, while TTN distorts class-specific
trajectories (e.g., purple), and SrvfRegNet loses inter-class separation (e.g., blue vs. yellow). Both
baselines significantly degrade interpretability (see also Figures A3 and A4, Appendix E.5). Deep-
FRC’s superior alignment improves inference reliability and preserves generalization performance -
critical for real-world applications.

Figure 3: Visual comparison of alignment on the Symbol (3 classes).

Ablation Studies. The ablation study in Table 2 evaluates the individual contributions of the core
components of our method: the Neural Deformation Operator (N.D.O.) for registration, the Spectral
Representation (S.R.), and the Classifier Network (C.N.). The results demonstrate a clear synergy
between these modules. Removing the registration component (DeepFRC w/o N.D.O.) significantly
degrades classification performance, particularly on the Yoga, Symbol (2-class), and MotionSense
datasets. Conversely, removing the classifier (DeepFRC w/o C.N.) impairs registration accuracy.
The removal of the spectral representation (DeepFRC w/o S.R.) adversely affects both tasks across
all datasets. These findings underscore the importance of the spectral representation and the tight
coupling between registration and classification within DeepFRC’s unified architecture.

Table 2: Ablation study: contributions of three components in DeepFRC.
Wave Yoga Symbol (2 classes) Symbol (3 classes) MotionSense

Model ATV ACC F1-score ATV ACC F1-score ATV ACC F1-score ATV ACC F1-score ATV ACC F1-score

DeepFRC 5.6 96.4% 0.965 16.2 89.8% 0.909 4.8 96.0% 0.959 3.2 96.3% 0.963 25.0 95.0% 0.952
DeepFRC w/o N.D.O. – 94.4% 0.946 – 83.1% 0.846 – 91.0% 0.905 – 94.7% 0.947 – 90.0% 0.909

DeepFRC w/o S.R. 5.8 95.3% 0.955 17.7 89.2% 0.903 5.3 94.5% 0.945 3.3 93.3% 0.933 28.8 90.0% 0.900
DeepFRC w/o C.N. 7.3 – – 136.0 – – 14.8 – – 6.5 – – 37.7 – –

Sensitivity Analysis. We assess DeepFRC’s robustness to the choice of basis family and size K
across five real datasets in Figure 4. The left panel shows performance is stable across basis types
(Fourier, B-spline, polynomial). We attribute this robustness to two factors: (a) joint training adapts

8
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alignment to the inductive biases of each basis, and (b) class-aware registration loss guides the model
toward discriminative structures, reducing basis-specific limitations. The right panel shows that
increasing K improves performance up to around K = 100, after which it plateaus. We believe this
invariance arises from (a) upstream registration reducing functional variability, and (b) downstream
layers adaptively re-weighting or pruning redundant basis functions.

Figure 4: Left: Sensitivity to basis family. “F": Fourier; “B": B-spline; “P": Polynomial. Right:
Sensitivity to number of basis functions K.

5 DISCUSSION

Computational Efficiency. DeepFRC offers significant computational advantages during inference,
with an average runtime of 60s on our real-world datasets—dramatically faster than the traditional
registration method DTW (1000s) and competitive with deep baselines like TTN (15s) and SrvfRegNet
hybrids (90–100s). This efficiency is achieved by eschewing pairwise dynamic programming.
Although training time is on par with other deep models, DeepFRC achieves superior accuracy,
striking an excellent trade-off between performance and computational cost.

Robustness to Noise and Reconstruction Accuracy. We evaluate robustness by injecting Gaussian
noise (σ = 0, 0.05, 0.10, 0.20) into synthetic data and measuring reconstruction quality via the
Pearson correlation between true and estimated basis coefficients. As shown in Table A3, DeepFRC
maintains high correlation under low-to-moderate noise, outperforming TTN and exhibiting greater
stability than SrvfRegNet. Even under high noise (σ = 0.20), its performance degrades gracefully
while surpassing competitors, indicating that the smooth basis representation and joint optimization
confer strong resilience.

Scalability to Large and Small Data. DeepFRC scales efficiently to large datasets with O(Nn)
complexity (Section 2.5). On the augmented Symbol dataset (100 ×), it achieves near-raw per-
formance (ATV=4.8, F1-score=0.944 vs. 4.8, 0.959). Simulations under sparse data conditions
(samples, time points, or both) confirm robust classification, though registration requires sequence
length n ≥ 100 for reliability (Table A4, Appendix E.5).

Robustness to Missing Data. We evaluated DeepFRC’s tolerance to missing observations by
randomly removing 5-10% of data points from half of each real-world dataset (Section 4.2), imputing
gaps via Fourier splines (Wahba, 1990). Under identical hyperparameters, DeepFRC achieved
comparable registration and classification performance to complete data (Figure A5, Appendix E.5 ).

6 CONCLUSION

We introduced DeepFRC, a unified framework for joint functional registration and classification with
theoretical guarantees and comprehensive empirical validation. DeepFRC consistently outperforms
state-of-the-art baselines and remains robust across real-world and simulated settings with noise,
missing values, and scale variation. While empirically invariant to the choice of basis functions, its
theoretical underpinnings remain open. A key limitation is reduced performance on highly volatile
trajectories, where the objective is sensitive to rapid directional changes. Future work will focus on
adaptive architectures and robust loss designs that explicitly capture signal complexity to enhance
generalization.

9
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A OBJECTIVE FUNCTION GRADIENT

By the chain rule, the gradient of the objective function with respect to any θ ∈ Θ is derived as
follows:

∂L(Θ)

∂θ
=


2
C∑
j=1

∑
i∈{yi=j}

(
Qi(γi)

)⊺
· ∂Qi(γi)

∂γi
· ∂γi

∂θ

N(j) − β
N

N∑
i=1

C∑
j=1

yij
ψij

· ∂ψij

∂θ , θ ∈ Θ1,

− β
N

N∑
i=1

C∑
j=1

yij
ψij

· ∂ψij

∂θ , θ ∈ Θ2.

(A.1)

Here, the gradient of the warped SRVF with respect to the warping function γi is given by:

∂Qi(γi)

∂γi
[k] = q̇i(γi(tik))

√
γ̇(tik) + qi(γi(tik))

γ̈(tik)

2
√
γ̇(tik)

, k = 1, . . . , n. (A.2)

When computing the gradient of L1(Θ1) with respect to the warped SRVF (Qi(γi)), the mean SRVF
(Q̄(j)) is treated as constant, updated using the arithmetic mean of the warped SRVF from the previous
iteration (Chen & Srivastava, 2021). For θ ∈ Θ1, the gradient ∂γi∂θ can be expressed as the product
of gradients from integration, fully connected layers, and the 1D-CNN module. Similarly, ∂ψij

∂θ is
derived from the gradient of l2 fully connected layers, interpolation, integration, and the 1D-CNN
module (Yann et al., 2015). For θ ∈ Θ2, ∂ψij

∂θ involves the gradient from fully connected layers in the
prediction module (Yann et al., 2015).

B MODEL SELECTION OF DEEPFRC

The model’s hyperparameters include the size of basis functions K, loss-related parameters {α, β},
and training-related parameters (such as epoch size E, batch size, and learning rate, denoted by vector
η). For the basis representation module, we set K = 100 with a Fourier basis, and the sensitivity
analysis will be studied in real data analysis. To select the other hyperparameters, we follow the
procedure proposed by Wang et al. (2023): the dataset {(x(ti), yi)}Ni=1 is firstly split into two subsets
with a 4:1 ratio. For each combination of hyperparameters, the model is trained by minimizing
Ltrain (Eq. (9)) on the larger subset, and testing error Ltest is computed on the smaller subset. The
combination minimizing Ltest is selected.

In the 1D-CNN module of our model, we fixed the setting of the network structure (set l1 = 4, and
set kernel sizes as 3-3-3 and the channel dimensions as 16-32-64 for the three hidden convolutional
layers). To improve efficiency, robustness, and interpretability, we apply max-pooling (Nagi et al.,
2011) and 1D batch normalization (Ioffe & Szegedy, 2015) after each layer to downsample inputs
and stabilize training, and use global averaging (Krizhevsky et al., 2017) followed by the final fully
connected layer to further reduce features and noise. In the classifier module, we set l2 = 3 and
nodes number n = (8, 4). The above configuration for 1D-CNN module and the fully connected
neural network classifier is widely used Chen & Srivastava (2021); Lohit et al. (2019), and works
well across all the datasets in this paper.

C PROOF OF THEOREM 3.1

For simplicity, we assume ti =
(
0
T , · · · ,

T
T

)
, where [0, T ] is the observed time range, in the following

proof. Consider the function f(x) =
√
x, which is continuous on [0, 1]. For any ε > 0, there exists

δ1 > 0 such that for all |x1 − x2| < δ1, we have
∣∣√x1 −√

x2
∣∣ < ε. Similarly, since q is continuous,

for any ε > 0, there exists δ2 > 0 such that for all |x1 − x2| < δ2, we have |q(x1)− q(x2)| < ε.

Let G be the domain of the neural network’s output function, and Γ be the domain of the alignment
functions γ. Denote Φ : G → Γ as the mapping from the neural network output to the alignment
functions. Since both input and output of the network are discrete, we consider values only at discrete
points. We define g(k)i = gi

(
k
T

)
to maintain consistency between discrete vectors and continuous

functions. The mapping is defined as:

τi 7→ γ̃i 7→ γi,
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γ̃i

(
k

T

)
=

∑k
s=0

(
τ
(s)
i

)2
∑T
s=0

(
τ
(s)
i

)2 , γi

(
k

T

)
=

∑k
s=0 γ̃

(s)
i∑T

s=0 γ̃
(s)
i

.

Let τi be such that Φ(τi) = γi. Since Φ(tτi) = Φ(τi) for all t ̸= 0, we can assume, without loss of
generality, that ∥gi∥2 = 1.

By the approximation property of convolutional neural networks (Yarotsky, 2018) and classical
universal approximation results (Cybenko, 1989; Funahashi, 1989; Hornik, 1991; Stinchcombe,
1999), for any δ4 > 0, there exists a neural network NNΘ with parameters Θ such that

sup
i

∥NNΘ(xi)− τi∥2 < δ4.

Let τ̂i = NNΘ(xi). We now aim to show that for sufficiently small |τi − τ̂i|, we also have |γi − γ̂i|
sufficiently small.

∣∣∣∣γ̃i( kT
)
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∣∣∣∣∣
∑k
s=0 τ

2
i

(
s
T

)∑T
s=0 τ

2
i

(
s
T

) − ∑k
s=0 τ̂

2
i

(
s
T

)∑T
s=0 τ̂

2
i

(
s
T

) ∣∣∣∣∣
≤

∣∣∣∣∣
∑k
s=0 τ

2
i

(
s
T

)∑T
s=0 τ

2
i

(
s
T

) − ∑k
s=0 τ̂

2
i

(
s
T

)∑T
s=0 τ

2
i

(
s
T

) ∣∣∣∣∣+
∣∣∣∣∣
∑k
s=0 τ̂

2
i

(
s
T

)∑T
s=0 τ

2
i

(
s
T

) − ∑k
s=0 τ̂

2
i

(
s
T

)∑T
s=0 τ̂

2
i

(
s
T

) ∣∣∣∣∣
≤

k∑
s=0

(
τi

( s
T

)
+ τ̂i

( s
T

))
δ4 + (1 + δ4)

2 (2 + δ4)δ4
(1− δ4)2

≤
k∑
s=0

(
τi

( s
T

)
+ τ̂i

( s
T

))
δ4 + 27δ4 =M
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k δ4.

Therefore, we have

∥γ̃i − ˆ̃γi∥2 ≤

√√√√ T∑
k=0

M1
k =M

(1)
−1 δ4.

By Hölder’s inequality ∥f∥2 ≤ ∥f∥1 ≤
√
T + 1∥f∥2, we have

∥γ̃i − ˆ̃γi∥1 ≤
√
T + 1M

(1)
−1 δ4.

Note that ∥γ̃i∥1 ≥ γ̃i
(
T
T

)
= 1. On the other hand, for γi, we have∣∣∣∣γi( kT
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Such that we have

∥γi − γ̂i∥2 ≤

√√√√ T∑
k=0

M
(2)
k :=M

(2)
−1 δ4.
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Recall that Qi(γi)
(
k
T

)
= (qi ◦ γi

(
k
T

)
) ·
√
γ̇i
(
k
T

)
. Using the conditions that qi and γi are bounded,

we can bound the difference between Qi(γi) and Qi(γ̂i) by:∣∣∣∣Qi(γi)( kT
)
−Qi(γ̂i)

(
k

T

)∣∣∣∣
≤

∣∣∣∣∣qi ◦ γi
(
k

T

)
·

(√
γ̇i

(
k

T

)
−

√
˙̂γi

(
k

T

))∣∣∣∣∣+
∣∣∣∣∣
√

˙̂γi

(
k

T

)
·
(
qi ◦ γi

(
k

T

)
− qi ◦ γ̂i

(
k

T

))∣∣∣∣∣
≤ sup

t
|qi(t)| ·

∣∣∣∣∣
√
γ̇i

(
k

T

)
−

√
˙̂γi

(
k

T

)∣∣∣∣∣+ sup
t

√
γ̇i(t) ·

∣∣∣∣qi(γi( kT
))

− qi

(
γ̂i

(
k

T

))∣∣∣∣ .
We use

γ̂i( k+1
T )−γ̂i( k−1

T )
2
T

to approximate the derivative for γ̂i, so we have∣∣∣∣γ̇i( kT
)
− ˙̂γi

(
k

T

)∣∣∣∣ ≤
∣∣∣∣∣γ̇i
(
k

T

)
−
γi
(
k+1
T

)
− γi

(
k−1
T

)
2
T

∣∣∣∣∣+
∣∣∣∣∣γi
(
k+1
T

)
− γi

(
k−1
T

)
2
T

−
γ̂i
(
k+1
T

)
− γ̂i

(
k−1
T

)
2
T

∣∣∣∣∣
≤

∣∣∣∣∣γ̇i
(
k

T

)
−
γi
(
k+1
T

)
− γi

(
k−1
T

)
2
T

∣∣∣∣∣+ T sup
k

∣∣∣∣γi( kT
)
− γ̂i

(
k

T

)∣∣∣∣ .
For 0 < δ3 < 1, there exists a T > 0 such that:∣∣∣∣∣γ̇i

(
k

T

)
−
γi
(
k+1
T

)
− γi

(
k−1
T

)
2
T

∣∣∣∣∣ < δ3, ∀k.

Here we can choose δ3 < δ1
2 , δ2 = min{δ2, δ12T }, and δ4 < δ2. Then, we have∣∣∣∣∣

√
γ̇i

(
k

T

)
−

√
˙̂γi

(
k

T

)∣∣∣∣∣ < ε,

∣∣∣∣qi ◦ γi( kT
)
− qi ◦ γ̂i

(
k

T

)∣∣∣∣ < ε,

such that ∣∣∣∣Qi(γi)( kT
)
−Qi(γ̂i)

(
k

T

)∣∣∣∣ ≤M
(3)
−1 ε, where M (3)

−1 is a constant.

This means at each fixed point kT , the difference between Qi(γi) and Qi(γ̂i) is bounded by M (3)
−1 ε,

and it is straightforward to have

∥Qi(γi)−Qi(γ̂i)∥2 ≤
√
TM3

−1ε.

We finally get

∆Qreg(γ
∗, γ̂) = |Qreg(γ

∗)−Qreg(γ̂)|

=

∣∣∣∣∣∣
C∑
j=1

1

N (j)

∑
i∈{yi=j}

∥Qi(γ∗i )−Q
(j)∥2 −

C∑
j=1

1

N (j)

∑
i∈{yi=j}

∥Qi(γ̂i)− Q̂
(j)

∥2
∣∣∣∣∣∣

≤
C∑
j=1

1

N (j)

∑
i∈{yi=j}

∣∣∣∣∥Qi(γ∗i )−Q
(j)∥2 − ∥Qi(γ̂i)− Q̂

(j)

∥2
∣∣∣∣ .

We now simplify 1
N(j)

∑
i∈{yi=j}

∣∣∣∣∥Qi(γ∗i )−Q
(j)∥2 − ∥Qi(γ̂i)− Q̂

(j)

∥2
∣∣∣∣ as

1

N (j)

∑
i∈{yi=j}

∣∣∥ai∥22 + ∥c∥22 + 2⟨ai, bi⟩+ 2⟨bi, c⟩+ 2⟨ai, c⟩
∣∣ ,

where ai = Qi(γi)−Qi(γ̂i), bi = Qi(γ̂i)−Q
(j)
, c = Q

(j) − Q̂
(j)

.
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By the Cauchy-Schwarz inequality: ⟨x, y⟩ ≤ ∥x∥2∥y∥2, we have ∥ai∥2 ≤
√
TM

(3)
−1 ε, and ∥c∥2 =∥∥∥ 1

N(j)

∑
i∈{yi=j} ai

∥∥∥
2
≤

√
TM

(3)
−1 ε. We also have ∥bi∥2 ≤M (4) due to the boundness of qi and γi.

Thus, we have∣∣∣∣∣∣ 1

N (j)

∑
i∈{yi=j}

∥Qi(γi)−Q
(j)∥22 −

1

N (j)

∑
i∈{yi=j}

∥Qi(γ̂i)− Q̂
(j)

∥22

∣∣∣∣∣∣ ≤ 4T
(
M

(3)
−1

)2
ε2+4

√
TM3

−1M
(4)ε.

Therefore, it is straightforward to have

∆Qreg(γ
∗, γ̂) ≤ 4CT

(
M

(3)
−1

)2
ε2 + 4C

√
TM

(3)
−1M

(4)ε.

D PROOF OF THEOREM 3.3

Based on Theorem 2 from Yao et al. (2021), we only need to verify that the loss function and its
gradient are both Lipschitz continuous. Since the mean SRVF (Q̄(j)’s) are treated as constants
when computing their gradients, and we have the condition that there exists ϵ0 > 0, such that
|Q̄(u) − Q̄(v)| ≥ ϵ0 for 1 ≤ u < v ≤ C, we can omit the term

∑
1≤u<v≤C α∥Q̄(u) − Q̄(v)∥−1, and

simplify the loss function of DeepFRC for any individual as

l(f̂Θ(xi), yi) =

C∑
j=1

∥Qi −Q
(j)∥1{i∈{yi=j}} −

C∑
j=1

yij logψij .

The loss function is obviously continuous for ψij ≥ ϵ0, as 1
z is continuous everywhere except at zero.

Similar to Eqs. (A.1) and (A.2), the gradient of l with respect to any θ ∈ Θ can be easily derived.
These gradients can be expressed as products of gradients from ReLU, max pooling, etc., which are
Lipschitz continuous. We note that both the 1D linear interpolation and a Fourier basis expansion in
the stage of spectral representation in DeepFRC satisfy the Lipschitz continuity condition. Therefore,
the theorem follows directly from Theorem 3.8 in Hardt et al. (2016).

E EXPERIMENTAL DETAILS

E.1 EVALUATION METRICS

Registration Metrics:

• Registration Error (∆Qreg): This metric, defined within the EFDA framework, quantifies the
discrepancy between the estimated warping γ̂ and the ground-truth γ∗. It is applicable only to
simulated datasets where γ∗ is known. Lower values indicate better alignment.
• Adjusted Total Variance (ATV): For both simulated and real-world data, we use ATV
to assess alignment without ground-truth warping functions. It is defined as: ATV =
1

(C2)

∑
1≤u<v≤C

TVuv

d(mean(x̃u),mean(x̃v))
, where TVuv (Chen & Srivastava, 2021) is the total variation

between classes u and v, and mean(x̃) is the mean function of the aligned curves. ATV accounts
for inter-class distance, making it suitable for evaluating alignment of similar classes. Lower ATV
indicates better alignment.

Reconstruction Metric:

• Coefficient Correlation (ρ): To evaluate the recovery of the underlying smooth process, we compute
Pearson’s correlation ρ(c∗, ĉ) between the true (c∗) and estimated (ĉ) Fourier basis coefficients. This
metric is used only in simulations where c∗ is accessible. Higher values indicate better reconstruction.

Classification Metrics:

• Accuracy (ACC): The proportion of correctly classified samples.
• Macro-averaged F1-score: Provides a balanced measure of performance across classes, especially
important for imbalanced datasets (Sokolova & Lapalme, 2009).

Higher values for both ACC and F1-score indicate superior classification performance.
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E.2 DESCRIPTION OF SIMULATED DATASETS

We construct a balanced two-class functional dataset {xi(t), yi}Ni=1, where each function xi(t) for
t ∈ [0, 1] is generated by composing amplitude and phase components. The amplitude function is
defined as the sum of two Gaussian bumps:

zi(t | ai, µ, σi) = ai · exp
(
−1

2

(t− µ)2

σ2
i

)
,

where ai and σi are independently drawn from uniform distributions, and µ is a fixed constant. To
introduce phase variation, we define a warping function γi(t) as

γi(t) =

{
exp(bit)−1
exp(bi)−1 , if bi ̸= 0,

t, if bi = 0,
with bi ∼ U(−1.5, 1.5).

Such constructions are widely used for modeling functional data with phase variability (Kneip &
Ramsay, 2008; Tucker et al., 2013). We then generate each function as:

xi(t) =

{∑2
j=1 zi(γi(t) | a

(0j)
i , µ(0j), σ

(0j)
i ), if yi = 0,∑2

j=1 zi(γi(t) | a
(1j)
i , µ(1j), σ

(1j)
i ), if yi = 1,

where the parameters {a(cj)i , µ(cj), σ
(cj)
i }2j=1 for c = 0, 1 are summarized in in the following table.

We simulate N = 6000 functions, each evaluated at 1000 time points. We split the balanced dataset
into training, validation, and test sets with sizes 1600, 400, and 4000, respectively.

Table A1: Parameter setting for simulated data
Index (01) (02) (11) (12)

ai 13 + U(−0.5, 0.5) 12.5 + U(−1, 1) 12 + U(−1, 1) 13 + U(−1.5, 1.5)
µ 0.250 0.715 0.225 0.695
σi 0.06 + U(−0.003, 0.003) 0.075 + U(−0.003, 0.003) 0.06 + U(−0.003, 0.003) 0.1 + U(−0.003, 0.003)

Figure A1: Visualization of alignment by DeepFRC on simulated test data, with evaluation metrics
ρ = 0.976, ∆Qreg = 0.056, ATV=0.504, ACC = 1.000 and F1-score = 1.000.

E.3 DESCRIPTION OF REAL DATASETS

The first four time series datasets are one-dimensional functional data, from the UCR Time Series
Classification Archive (www.timeseriesclassification.com), and the last dataset is three-dimensional
functional data, from Kaggle (www.kaggle.com):

The Wave dataset (Liu & Yang, 2009) consists of eight simple gestures generated using accelerometers,
collected through a particular procedure. For a participant, gestures are gathered when they hold a
device and repeat certain gestures multiple times during a time period. The dataset includes X, Y,
and Z dimensions with 8 classes. Here, we selected the X dimension and classes 2 and 8 for the
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experiment. There are 1120 samples with label partition 591/529, and the train/validation/test split is
320/80/720, with each sample having 315 time points.

The Yoga dataset consists of images of two actors (one male, one female) transitioning between yoga
poses in front of a green screen. The task is to classify the images based on the actor’s gender. Each
image was transformed into a one-dimensional series by measuring the distance from the outline of
the actor to the center. The dataset contains 3300 samples with label partition 1770/1530, and the
train/validation/test split is 800/200/2300. Each sample has 426 time points.

The Symbol dataset involves 13 participants, who were asked to replicate a randomly appearing
symbol. There were 3 possible symbols, creating a total of 6 classes, and each participant made
approximately 30 attempts. The dataset contains X-axis motion data recorded during the process
of drawing the shapes. We conduct experiments on both the 2-class and 3-class cases using the
Symbol dataset. In the 2-class case, there are 343 samples with label partition 182/167, and the
train/validation/test split is 115/28/200. In the 3-class case, there are 510 samples with label partition
182/167/161, and the train/validation/test split is 168/42/300. Each sample has 398 time points.

The MotionSense (Malekzadeh et al., 2019) dataset involves multivariate time-series signals recorded
from smartphone sensors during six daily activities performed by 24 participants. From this dataset,
we selected three signal channels (G.x, G.y and G.z) from two actions (walk and jog) to construct a
binary classification task, containing 80 samples with 200 time points each. The train/validation/test
split is 56/8/16.

E.4 INTRODUCTION OF BASELINES

Here we provide a brief introduction of the compared baseline methods:

• TTN (Lohit et al., 2019): A method for joint alignment and classification of discrete time series but
does not account for curve smoothness.

• SrvfRegNet (Chen & Srivastava, 2021): An unsupervised method that aligns raw functional data
via a 1D CNN.

• FCNNraw: A model that discretizes raw functional data into a vector, inputting it into a fully
connected neural network.

• FCNNfourier: A model that transforms the functional data into Fourier basis coefficients and then
feeds the resulting vector into a fully connected neural network.

• FuncNN (Thind et al., 2020): A model that inputs entire functional curves directly into a fully
connected neural network.

• ADAFNN (Yao et al., 2021): A model that inputs entire functional curves, adapting the bases
during learning.

• TSLANet (Eldele et al., 2024): A model that inputs entire functional curves, with ASB (Adaptive
Spectral Blocks) and ICB (Interactive Convolutional Blocks) as core structure.

E.5 MODEL IMPLEMENTATION DETAILS ON REAL DATA

For all real-world datasets, the functional input is Z-score standardized entry-wise based on the
mean function and standard deviation. To handle missing values (such as NAs) in the functional
input, we use the BasisSmoother function from the skfda.preprocessing.smoothing
module in Python to impute missing values. All of these baseline models are trained until the best
performance is achieved. All the experiments are conducted on NVIDIA GeForce RTX 3090 32G.
The details of implementation for all models are provided as follows:

• The DeepFRC network is implemented as a PyTorch neural network. The hyperparameter
settings for DeepFRC are shown in Table A2. In the discussion of stability with respect to basis
expansion for DeepFRC, we compute Fourier, B-spline, and Polynomial scores as follows: The
Fourier scores are obtained using the fast Fourier transform function rfft from torch.nn.fft,
extracting the first 100 scores. The B-spline scores are derived from the cubic B-spline basis with 98
knots uniformly distributed over the interval [0, 1], resulting in exactly 100 B-spline basis functions.
The Polynomial scores are obtained using the Chebyshev polynomial orthogonal basis, taking the
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Table A2: Hyperparameter setting for DeepFRC on four real datasets
Case α β lrreg lrclass

Wave 3000 50 1e-3 1e-3
Yoga 600 15 1e-3 5e-4

Symbol (2 classes) 300 15 1e-3 1e-3
Symbol (3 classes) 10 10 1e-3 1e-3

MotionSense 15 1 1e-3 1e-3

first 100 Chebyshev polynomial functions. The B-spline and Polynomial scores are both calculated
using the BasisSmoother function from the skfda.preprocessing.smoothing module
in Python.
• The model SrvfRegNet processes functional data through a learnable pre-warping block with
three 1D convolutional layers (16, 32, 64 channels, kernel size 3, ReLU/BatchNorm/pooling),
followed by a fully connected linear layer to generate warping functions. It applies time warping
by minimizing the SRVF loss under an MSE criterion. The input data is the full functional data
requiring alignment. The output of this network is the time-warping function that can generate aligned
functional data. We use the default architecture for the models SrvfRegNet.
• Both FCNNraw and FCNNfourier have the same architecture: a 3-layer MLP, with the input layer
consisting of n observations or 100 Fourier scores (by default), followed by hidden layers with
dimensions [16, 8], and finally outputting the classification results. Each layer is equipped with Layer
Normalization, the ReLU activation function, and a dropout rate of 0.1. The input of FCNNraw is
the raw data, while the input of FCNNfourier is derived from the first 100 Fourier coefficients of the
functional data.
• The models FuncNN and ADAFNN both take the entire curve as input. FuncNN uses a manually
chosen basis expansion, while ADAFNN employs an adaptively learned basis layer for representing
curve data. We use the default architecture for the models FuncNN and ADAFNN.
• The model TSLANet takes univariate or multivariate time series as input, first processing them via
patch segmentation and positional embedding to retain temporal order. Its core structure consists
of Adaptive Spectral Blocks (for dependency capture and denoising) and Interactive Convolutional
Blocks. We use the default architecture for the model TSLANet.
• A note on handling multidimensional functional data is necessary. Models including DeepFRC,
TTN, TSLANet, and FuncNN natively support such inputs. For other baselines, we implemented the
following adaptations: SrvfRegNet was extended to process multidimensional data analogously
to DeepFRC. For FCNNraw and ADAFNN, we concatenated signals from all channels into a single
one-dimensional vector. For FCNNfourier, we used the concatenated basis expansion coefficients
from each channel as the model input.

Figure A2: Training loss vs. epochs by DeepFRC across the five real-life datasets.
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Figure A3: Visualization comparison of alignment performance by DeepFRC, TTN and SrvfRegNet
across three two-class real datasets

Figure A4: Visualization comparison of alignment performance by DeepFRC, TTN and SrvfRegNet
on MotionSense dataset in 3 channels G.x, G.y and G.z.
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Figure A5: Performance of DeepFRC with different missing rates for raw data across five real-world
datasets.

Table A3: Representation coefficients correlation on different noise level on synthetic data
Noise level ε ∼ N(0, σ2)

Model σ = 0 σ = 0.05 σ = 0.10 σ = 0.20

DeepFRC 0.983 0.982 0.979 0.969
TTN 0.541 0.529 0.501 0.490

SrvfRegNet 0.969 0.966 0.961 0.950

Table A4: Robustness under data scarcity. N and n represent sample size and sequence length,
respectively.

Sparse samples (n = 1000) Sparse time points (N = 6000) Sparse samples and time points (N,n)
Evaluation N = 200 N = 100 N = 50 n = 200 n = 100 n = 50 (200, 200) (100, 100) (50, 50)

ATV 0.580 0.784 0.867 0.605 2.105 2.571 1.097 2.454 12.492
ACC 100.0% 100.0% 100.0% 100.0% 99.3% 98.2% 100.0% 95.0% 80.0%

F1-score 1.000 1.000 1.000 1.000 0.992 0.980 1.000 0.947 0.750
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