
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEEPFRC: AN END-TO-END DEEP LEARNING MODEL
FOR FUNCTIONAL REGISTRATION AND CLASSIFICA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Functional data, representing curves or trajectories, are ubiquitous in fields like
biomedicine and motion analysis. A fundamental challenge is phase variabil-
ity—temporal misalignments that obscure underlying patterns and degrade model
performance. Current methods often address registration (alignment) and classifica-
tion as separate, sequential tasks. This paper introduces DeepFRC, an end-to-end
deep learning framework that jointly learns diffeomorphic warping functions and a
classifier within a unified architecture. DeepFRC combines a neural deformation
operator for elastic alignment, a spectral representation using Fourier basis for
smooth functional embedding, and a class-aware contrastive loss that promotes
both intra-class coherence and inter-class separation. We provide the first theoreti-
cal guarantees for such a joint model, proving its ability to approximate optimal
warpings and establishing a data-dependent generalization bound that formally
links registration fidelity to classification performance. Extensive experiments on
synthetic and real-world datasets demonstrate that DeepFRC consistently outper-
forms state-of-the-art methods in both alignment quality and classification accuracy,
while ablation studies validate the synergy of its components. DeepFRC also shows
notable robustness to noise, missing data, and varying dataset scales. Code is
available at https://github.com/Drivergo-93589/DeepFRC.

1 INTRODUCTION

Functional data analysis (FDA) is a key area for analyzing data that varies continuously over domains
like time, space, or other variables (Ramsay & Silverman, 2005; Ferraty & Vieu, 2006; Srivastava &
Klassen, 2016). Functional data is ubiquitous in fields such as biomechanics, neuroscience, healthcare,
and environmental science, appearing in datasets like growth curves, wearable device signals, EEGs,
fMRI scans, and air pollution levels. Despite its wide applicability, FDA faces challenges stemming
from the infinite-dimensional nature of functional data, as well as issues related to smoothness and
misalignment, necessitating advanced analytical tools (Wang et al., 2016; Matuk et al., 2022).

1.1 MOTIVATION

Two key tasks in FDA are functional registration (curve alignment) and classification. Registration
aligns curves to remove phase variability, enabling meaningful comparisons (Srivastava et al., 2011),
while classification assigns labels based on underlying curve features. Traditionally, these tasks
are addressed separately, with pre-registration followed by classification. However, this decoupled
approach is inefficient, as the label significantly influences the progression pace of the curves, and
alignment can provide valuable insights for classification (Liu & Yang, 2009; Tang et al., 2022).
Jointly analyzing curve alignment and classification accounts for both temporal and structural
variations, offering a more comprehensive understanding of the data.

Deep learning has revolutionized data analysis across various domains by enabling automatic feature
extraction, representation learning, and scalability (LeCun et al., 2015). In FDA, deep learning
presents an opportunity to integrate registration and classification into a unified framework. However,
its application remains underexplored, with existing studies primarily focused on improving either
registration accuracy (Chen & Srivastava, 2021) or classification performance (Yao et al., 2021;

1

https://github.com/Drivergo-93589/DeepFRC

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Wang & Cao, 2024), but rarely addressing both simultaneously. To address this gap, we propose an
end-to-end deep learning framework that combines functional data registration and classification,
eliminating the need for separate preprocessing while leveraging neural networks to model the
complex, non-linear relationships inherent in functional data.

1.2 RELATED WORK

Functional registration is a critical step in FDA, aimed at aligning functional data to correct for phase
variability (Ramsay & Silverman, 2005). Traditional approaches include landmark-based methods
(Kneip & Gasser, 1992; Ramsay & Silverman, 2005), metric-based methods (Wang & Gasser, 1997;
Ramsay & Li, 1998; Srivastava et al., 2011; Srivastava & Klassen, 2016), and model-based methods
(Tang & Müller, 2008; Claeskens et al., 2010; Lu et al., 2017). While effective in some contexts, these
methods face limitations such as high computational cost, manual intervention, and sensitivity to
noise. Landmark-based methods, for example, require subjective and potentially impractical landmark
selection (Marron et al., 2015). Recently, neural network-based methods (Chen & Srivastava, 2021)
have been proposed, but they are still typically used as preprocessing steps, disconnected from the
downstream tasks.

Functional classification has traditionally relied on statistical methods like generalized functional
regression (James, 2002; Müller, 2005) and functional principal component analysis (fPCA) (Hall
et al., 2000; Leng & Müller, 2006), which involve dimension reduction followed by classification.
However, these methods are limited by their reliance on handcrafted features and basis function
selection, which restricts their adaptability to complex, non-linear data. The integration of deep
learning into functional classification, as seen in works by Thind et al. (2020), Yao et al. (2021), and
Wang & Cao (2024), addresses these issues, although they typically treat registration as a separate
preprocessing task.

Few studies have integrated registration and classification within a unified framework for FDA. Lohit
et al. (2019) proposed a Temporal Transformer Network (TTN) for time series classification, but
it is not designed for functional data, neglecting the curve’s smoothness and infinite-dimensional
nature, thus struggling with accurate alignment. More recently, Tang et al. (2022) introduced a two-
level model for joint registration and classification, modeling warping functions via a mixed-effects
approach. However, this model is heavily reliant on assumptions, computationally expensive, and not
easily extendable to multi-class settings.

1.3 CONTRIBUTIONS

Our main contributions are: (1) Unified Architecture for Joint Learning. We introduce the first end-
to-end deep learning model that integrates a neural deformation operator for diffeomorphic warping,
a spectral representation for smooth functional encoding, and a class-aware contrastive loss, enabling
mutual reinforcement between alignment and prediction. (2) Theoretical Foundations. We establish
the first theoretical guarantees for such a model, proving approximation capabilities and providing
a generalization bound linking registration fidelity to classification performance. (3) Extensive
Empirical Validation. Extensive experiments on synthetic and real-world data demonstrate that
DeepFRC consistently outperforms state-of-the-art methods in both tasks, with ablation studies
confirming the synergy of its components and further analyses highlighting its robustness and
computational efficiency.

2 THE MODEL

We study supervised learning with functional data, where each sample consists of an observed
trajectory and a categorical label. Formally, the dataset is {(xi(ti), yi)}Ni=1, where xi(ti) =
(xi(ti1), . . . , xi(tin))

⊺ are observations of an underlying trajectory x(t) sampled at irregular and
potentially misaligned time points ti = (ti1, . . . , tin), and yi ∈ {1, . . . , C} is its class label. We
view functional data as trajectories embedded in an infinite-dimensional space, where misalignment
corresponds to latent time reparameterizations. Instead of treating alignment and prediction as two
separate stages, we propose to jointly learn a diffeomorphic time-warping map γ : t 7→ t̃ and a
classifier f : x(t̃) 7→ y in a single end-to-end architecture (Figure 1). This allows us to directly

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

learn representations that are invariant to temporal misalignment while remaining discriminative for
classification.

Input OutputNeural
Deformation

Operator
Spectral

Representation
Classifier
Network

Objective = Contrastive Geometric Alignment Loss + Classification Loss

Figure 1: Overview of DeepFRC. Multiple raw functional trajectories are first aligned via a neural
deformation operator (1D CNN) that learns diffeomorphic time warping γ(t), producing both warped
curves and alignment functions. The aligned signals are then expanded in a Fourier basis to obtain
spectral coefficients c1, . . . , cK , which serve as inputs to a classifier network (MLP with Softmax
output) for predicting class labels y ∈ 1, . . . , C. Training is performed jointly by minimizing a
contrastive geometric alignment loss and a classification loss.

2.1 NEURAL DEFORMATION OPERATOR FOR TIME WARPING

We introduce a neural deformation operator, parameterized by a 1D convolutional network (Kiranyaz
et al., 2016; Ince et al., 2016; Kiranyaz et al., 2021), that learns velocity fields defining diffeomorphic
warpings. This perspective differs from handcrafted registration methods: instead of explicitly
constructing alignment rules, we parameterize γ through a deep network optimized jointly with
downstream prediction.

Given an input sequence xi(ti) ∈ Rn, a multi-layer 1D CNN extracts temporal features τ(xi(ti)) ∈
Rn:

h(l) = ReLU(W (l) ⊛ h(l−1) +B(l)), l = 1, . . . , l1 − 1, (1)

with h(0) = xi(ti). The final layer is fully connected: τ(xi(ti)) = ReLU(W (l1)h(l1−1) + b(l1)).
Following Chen & Srivastava (2021), we use l1 = 4 convolutional blocks with kernel size 3 and
channels 16→ 32→ 64. This encoder, parameterized by Θ1, produces latent features that encode
temporal deformation fields.

To construct a boundary-preserving diffeomorphism, we transform the latent features into a monotone

cumulative sum: γ̃i(tij) =
∑j

µ=0 τ
2
iµ∑n

ν=0 τ
2
iν
, j = 1, . . . , n, where ti0 = 0, tin = 1, and τi0 = 0.

This ensures γ̃i(0) = 0, γ̃i(1) = 1, and dγ̃i
dt > 0, satisfying diffeomorphic constraints (Chen &

Srivastava, 2021). To further improve smoothness and geometric consistency, we apply an additional
normalization:

γi(tij) =

∑j
µ=0 γ̃iµ∑n
ν=0 γ̃iν

. (2)

This defines a neural operator that outputs valid, smooth, and data-adaptive warping functions.

2.2 SPECTRAL REPRESENTATION OF ALIGNED FUNCTIONS

Once trajectories are aligned by γi, we interpolate the aligned function x̃i(t) on points
{(γi(tij), xi(tij))}nj=1 using stable 1D linear interpolation:

x̃i(t) ≜
n−1∑
r=0

[
x(tir) +

xi(ti(r+1))− xi(tir)

γi(ti(r+1))− γi(tir)
(t− γi(tir))

]
· 1{γi(tir)≤t≤γi(ti(r+1))}. (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Rather than vectorizing x̃i(t) into a high-dimensional grid, which ignores smoothness and leads to
inefficiency, we embed aligned functions into a compact spectral basis:

x̃i(t) ≈
K∑
j=1

cijϕj(t), (4)

where {ϕj(t)}Kj=1 are Fourier basis functions and cij are coefficients estimated by least squares:

c̃i = argmin
{cij}

∫ 1

0

[
x̃i(t)−

K∑
j=1

cijϕj(t)
]2
dt = G−1di, (5)

with Gij =
∫ 1

0
ϕi(t)ϕj(t) dt and dij =

∫ 1

0
x̃i(t)ϕj(t) dt. This spectral representation, inspired by

classical functional data analysis, acts as a form of neural Fourier features, yielding compact, smooth,
and regularized embeddings of aligned functions. We employ 1D linear interpolation (Eq. (3)) for
its numerical stability and computational efficiency, and a Fourier basis expansion (Eq. (4)) as it
introduces no additional regularization hyperparameters. Crucially, both methods satisfy the Lipschitz
continuity condition required by Theorem 3.3.

2.3 CLASSIFIER NETWORK

The spectral coefficients c̃i ∈ RK are fed into a fully connected classifier with l2 − 1 hidden layers
and ReLU activations:

h(l) = ReLU(W (l)h(l−1) + b(l)), l = l1 + 1, . . . , l1 + l2 − 1, (6)

followed by a softmax layer: ψ(c̃i) = Softmax(W (l1+l2)h(l1+l2−1)+b(l1+l2)).We use a three-layer
MLP (l2 = 3) with hidden units of size 8 and 4, parameterized by Θ2.

2.4 OBJECTIVE: CONTRASTIVE GEOMETRIC ALIGNMENT AND CLASSIFICATION

We optimize the model with parameters Θ = {Θ1,Θ2} by combining geometric alignment and
discriminative classification.

Class-aware Contrastive Alignment. To align functional trajectories while preserving class struc-
ture, we adopt the square-root velocity function (SRVF) representation q(t) = sign(ẋ(t))

√
|ẋ(t)| (Sri-

vastava & Klassen, 2016). For a warped trajectory x(γ(t)), the SRVF is (q ⋆ γ)(t) = q(γ(t))
√
γ̇(t).

For sample i, the observed SRVF vector is Qi(γi) = ((qi ⋆ γi)(ti1), . . . , (qi ⋆ γi)(tin))
⊺. We define

a contrastive alignment loss:

L1(Θ1) =

C∑
j=1

∑
i:yi=j

∥Qi(γi)− Q̄(j)∥
N (j)

+ α
∑

1≤u<v≤C

∥Q̄(u) − Q̄(v)∥−1, (7)

where Q̄(j) is the class-wise SRVF mean. The first term encourages intra-class alignment; the
second is a contrastive separation term that increases inter-class margins. Together, this yields a new
contrastive–geometric alignment objective.

Classification Loss. The classifier is trained using standard cross-entropy:

L2(Θ) = − 1

N

N∑
i=1

C∑
j=1

yij logψij . (8)

Joint Objective. The full objective integrates both alignment and prediction:

L(Θ) = L1(Θ1) + βL2(Θ), (9)

where β balances geometric alignment and classification accuracy.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Training DeepFRC

Require: Training data
{
(xi(ti), yi)

}N
i=1

1: Set Hyperparameters: Size of basis function K, loss-related {α, β}, and training parameters η
(epochs E, batch size, learning rate, etc.)

2: Initialize Parameters Θ = Θinitial
3: for e = 1 to E do
4: Forward Propagation:

(1) Compute γi(ti) for each xi(ti)
(2) Warp xi(ti) to obtain x̃i(t), calculate its SRVF Qi(γi), and extract coefficients c̃i
(3) Pass c̃i through the classifier to compute ψ(c̃i)
(4) Compute the loss L(Θ)

5: Backward Propagation: Update Θ via AdamW optimizer using ∂L(Θ)
∂θ , θ ∈ Θ

6: end for
7: Return Trained DeepFRC with optimized parameters Θ∗

Summary. Integrating Sections 2.1–2.4, we obtain DeepFRC (Deep Functional Registration and
Classification), an end-to-end framework coupling (i) a neural deformation operator for alignment,
(ii) a spectral embedding for smooth functional representation, and (iii) a classifier guided by a
contrastive–geometric loss (Figure 1). To the best of our knowledge, DeepFRC is the first model
to unify alignment and prediction of functional data through diffeomorphic neural operators and
contrastive geometry, offering a new paradigm for learning invariant representations of misaligned
functional trajectories. A natural extension of our framework allows it to handle d-dimensional
functional inputs (d ≥ 2) by simply considering xi(ti) ∈ Rn×d, under the assumption of a shared
warping process across dimensions, without requiring additional structural assumptions.

2.5 OPTIMIZATION, MODEL SELECTION AND COMPUTATIONAL COMPLEXITY

The objective in Eq. (9) is optimized via stochastic gradient descent over the model parameters Θ,
using the AdamW optimizer (Ilya & Frank, 2019) for efficient and stable convergence, particularly in
deep architectures (Diederik & Lei, 2015). Gradients with respect to each θ ∈ Θ are computed via
the chain rule, as detailed in Eqs. (A.1)–(A.2) of Appendix A. The complete training procedure is
outlined in Algorithm 1.

The number of basis functions K is empirically set to 100 and shown to be robust across tasks
(Section 4.2). Hyperparameters α and β, which balance alignment and classification loss terms, are
selected via data-splitting methods following (Wang et al., 2023); further model selection details are
provided in Appendix B.

DeepFRC achieves linear time complexity O(Nn) with respect to sample sizeN and sequence length
n. In contrast, traditional alignment techniques such as dynamic time warping (DTW), which rely on
dynamic programming, incur quadratic cost O(Nn2k) (with k < n), rendering them computationally
infeasible for long sequences (Sakoe & Chiba, 1978; Chen & Srivastava, 2021).

3 THEORETICAL ANALYSIS

We now discuss the theoretical properties of the proposed model, demonstrating that it achieves
low registration error under elastic functional data analysis (EFDA) (Srivastava & Klassen, 2016)
framework and low generalization error under mild regularity conditions. Detailed proofs are provided
in Appendices C and D.

The phase variability is modeled using monotone and smooth transformations within the set Γ = {γ :
[0, 1] → [0, 1] | γ(0) = 0, γ(1) = 1, γ̇ > 0}. Under the framework of elastic functional data analysis
(EFDA) (Srivastava et al., 2011), the optimal warpings are defined as: γ∗ = argmin

{γi}
Qreg(γ) ≜

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

argmin
{γi}

C∑
j=1

∑
i∈{yi=j}

∥Qi(γi)−Q̄(j)∥

N(j) , γi ∈ Γ, where “reg" means “registration". For any other estimated

warping γ̂, the registration error can be quantified as ∆Qreg(γ
∗, γ̂) ≜ |Qreg(γ

∗)−Qreg(γ̂)|.
Theorem 3.1 (Low Registration Error). Assume that: (i) The proposed deep neural network has
sufficient capacity, (ii) Each warping function γ(t) belongs to the admissible set Γ and is continuously
differentiable, and (iii) The SRVF of q(t) of each curve x(t) is continuous and bounded.
Then, for any ϵ > 0, there exists an estimated γ̂ produced by the model such that:

∆Qreg(γ
∗, γ̂) < ϵ.

Remark 3.2. Theorem 3.1 provides a theoretical foundation for our approach, establishing that neural
networks can approximate smooth warping functions in SRVF space, thereby justifying the use of a
learnable diffeomorphic registration module. While direct empirical verification of the approximation
error is challenging due to the inability to obtain globally optimal warpings γ∗ in real data, we
validate the practical observability of this result through controlled simulation studies where the
ground-truth warpings are known.

We further show that the proposed model achieves a small generalization error. Let f̂Θ : x → y
represent the mapping of the proposed DeepFRC model with a fixed architecture. Define the
population risk and empirical risk as R(Θ) = E[l(f̂Θ(x), y)] and Rn(Θ) = 1

N

∑N
i=1 l(f̂Θ(xi), yi),

respectively, where l denotes the individual loss function. The generalization error is given by

∆Rgen(Θ̂) = |ES,A[R(Θ̂)−Rn(Θ̂)]|,

where Θ̂ is the parameter set estimated via a random algorithm A based on a random sample S.
During training, we assume the AdamW optimizer uses an inverse time decay or a custom decay
function to ensure the learning rate αt is monotonically non-increasing with αt ≤ c0/t, for some
constant c0 > 0, and that the algorithm runs for T0 steps. The following result builds upon Theorem
3.8 from Hardt et al. (2016) and Theorem 2 from Yao et al. (2021).

Theorem 3.3 (Low Generalization Error). Assume that: (i) There exists ϵ0 > 0, such that |Q̄(u) −
Q̄(v)| ≥ ϵ0 for 1 ≤ u < v ≤ C and ψij ≥ ϵ0, and (ii) The weight Θ is restricted to a compact region.
Then, for the weights Θ̂ estimated by the proposed model, there exists a constant c0 > 0, such that

∆Rgen(Θ̂) ≲
T

1−1/c0
0

N
.

Remark 3.4. The assumptions of Theorem 3.3 are empirically satisfied and guide model design.
Class separation |Q̄(u) − Q̄(v)| ≥ ϵ0 is supported by distinct SRVF means (Figure 3, Table 1). The
probability floor ψij ≥ ϵ0 is enforced via additively smoothed softmax, keeping all probabilities
above 10−4. Although non-constructive, the bound informs hyperparameter tuning: α is chosen to
maximize separation, while β balances classification and alignment.

4 EXPERIMENTS

We present the results of functional data registration and classification using DeepFRC, evaluated
on both simulated and real-world datasets. Simulated data provides insights into registration, recon-
struction, and classification progression during training. Real-world datasets allow for performance
comparisons with state-of-the-art methods.

Evaluation Metrics. We evaluate our method using metrics for registration, reconstruction, and
classification. Registration quality is assessed by the alignment error (∆Qreg) between estimated
and true warping functions on simulated data, and by the Adjusted Total Variance (ATV) (Chen &
Srivastava, 2021) on both simulated and real data, where lower values indicate better alignment. The
fidelity of the recovered smooth process is measured via the correlation between true and estimated
basis coefficients (simulated data only). Classification performance is reported using accuracy (ACC)
and the macro-averaged F1-score (Sokolova & Lapalme, 2009), with higher values being better.
Detailed metric definitions are provided in Appendix E.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1 SIMULATION

Synthetic Data Generation. We generate a balanced two-class functional dataset {xi(t), yi}Ni=1,
where each function xi(t) combines amplitude and phase variation. Amplitude is modeled by
sums of Gaussian bumps, while phase variation is introduced via nonlinear warping functions γi(t).
Class-specific parameters and full generation details are provided in Appendix E.2.

Results. Figure 2 demonstrates the iterative improvement of joint registration and classification
on a simulated dataset. Initially, the raw curves of two classes are visually inseparable (Fig. 2(a)).
Through optimization, DeepFRC progressively refines the alignment, leading to well-separated,
class-specific templates (Fig. 2(a)-(d)). This visual improvement is quantified by a rapidly increasing
Pearson correlation ρ(c∗, ĉ), indicating accurate reconstruction of the true, unwarped functions
(Fig. 2(e)). Concurrently, both registration and classification metrics improve steadily as the combined
loss converges (Fig. 2(f)-(h)), illustrating the synergy between the two tasks. The model’s strong
generalization is confirmed on a held-out test set (Figure A1, Appendix E.2).

Figure 2: Contribution of iterative optimization in training DeepFRC on simulated two-class (yellow
and blue) data. (a)-(d) depict the progression of registration at Epochs 0, 5, 15, and 30. (e)-(h) show
the improvement in reconstruction, registration, classification, and loss over SGD epochs.

4.2 REAL DATA APPLICATION

Real-World Datasets. We evaluate our method on five publicly available datasets, selected for their
prevalence in functional data analysis (Ramsay & Silverman, 2002; 2005) and relevance to phase
variation: Wave, Yoga, Symbol, and MotionSense (Malekzadeh et al., 2019). Wave, Yoga, and
Symbol are sourced from the UCR Time Series Classification Archive, while MotionSense is from
Kaggle. For the Symbol dataset, we use both binary and three-class subsets. The Wave, Symbol, and
MotionSense datasets are class-balanced, whereas Yoga is imbalanced. In terms of dimensionality,
Wave, Yoga, and Symbol are one-dimensional, and MotionSense is three-dimensional. Further details
are provided in Appendix E.3.

Baseline Models. We benchmark DeepFRC against several deep learning models for functional data
analysis, including a joint registration-classification model (TTN (Lohit et al., 2019)), a registration-
only model (SrvfRegNet (Chen & Srivastava, 2021)), and five classification models: FCNNraw,
FCNNfourier, FuncNN (Thind et al., 2020), ADAFNN (Yao et al., 2021), and TSLANet (Eldele et al.,
2024). To ensure a fair comparison, we evaluate sequential registration-classification pipelines by
combining SrvfRegNet with each classification model (excluding TTN, which is already joint). A de-
tailed description of all baseline methods and implementation details are provided in Appendices E.4
and E.5, respectively.

Performance Comparison. Table 1 reports both alignment and classification metrics across five
real-world datasets. Among all models, only DeepFRC and TTN jointly perform registration and

7

https://www.timeseriesclassification.com
https://www.kaggle.com/datasets/malekzadeh/motionsense-dataset

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

classification. DeepFRC outperforms TTN by using elastic FDA for enhanced functional smoothness,
delivering superior registration across all datasets and significant classification improvements on
Symbol and MotionSense data. Unlike pipelines combining SrvfRegNet and classification models -
which disregard label information during registration - DeepFRC achieves superior alignment, leading
to more interpretable transformations and improved downstream classification accuracy. We observe
that DeepFRC achieves classification accuracy comparable to TSLANet, a recent state-of-the-art
time-series model that outperforms many transformer-based alternatives, across all datasets. Figure
A2 (Appendix E.5) plots the training loss versus epochs for DeepFRC across all datasets, confirming
convergence.

Table 1: Quantitative comparison of registration and classification performance with state-of-the-art
approaches across five real datasets. Bold indicates best results.

Wave Yoga Symbol (2 classes) Symbol (3 classes) MotionSense
Model ATV ACC F1-score ATV ACC F1-score ATV ACC F1-score ATV ACC F1-score ATV ACC F1-score

DeepFRC 5.6 96.4% 0.965 16.2 89.8% 0.909 4.8 96.0% 0.959 3.2 96.3% 0.963 25.0 95.0% 0.952
TTN 6.3 94.7% 0.948 57.7 89.4% 0.904 8.6 92.0% 0.918 4.5 93.3% 0.933 35.1 85.0% 0.857

SrvfRegNet+FCNNraw 7.3 94.6% 0.947 136.0 81.0% 0.830 14.8 94.5% 0.942 6.5 94.7% 0.947 37.7 90.0% 0.909
SrvfRegNet+FCNNfourier 7.3 94.9% 0.950 136.0 84.0% 0.852 14.8 95.0% 0.949 6.5 96.0% 0.959 37.7 90.0% 0.909

SrvfRegNet+FuncNN 7.3 95.7% 0.957 136.0 89.0% 0.908 14.8 93.5% 0.933 6.5 94.7% 0.947 37.7 90.0% 0.889
SrvfRegNet+ADAFNN 7.3 94.6% 0.949 136.0 73.4% 0.753 14.8 89.0% 0.894 6.5 94.3% 0.943 37.7 85.0% 0.857
SrvfRegNet+TSLANet 7.3 96.4% 0.961 136.0 89.3% 0.884 14.8 95.5% 0.955 6.5 96.3% 0.960 37.7 95.0% 0.952

Alignment Visualization. Figure 3 compares alignment quality on the Symbol (3 classes) dataset.
DeepFRC produces smooth, class-separated functional alignments, while TTN distorts class-specific
trajectories (e.g., purple), and SrvfRegNet loses inter-class separation (e.g., blue vs. yellow). Both
baselines significantly degrade interpretability (see also Figures A3 and A4, Appendix E.5). Deep-
FRC’s superior alignment improves inference reliability and preserves generalization performance -
critical for real-world applications.

Figure 3: Visual comparison of alignment on the Symbol (3 classes).

Ablation Studies. The ablation study in Table 2 evaluates the individual contributions of the core
components of our method: the Neural Deformation Operator (N.D.O.) for registration, the Spectral
Representation (S.R.), and the Classifier Network (C.N.). The results demonstrate a clear synergy
between these modules. Removing the registration component (DeepFRC w/o N.D.O.) significantly
degrades classification performance, particularly on the Yoga, Symbol (2-class), and MotionSense
datasets. Conversely, removing the classifier (DeepFRC w/o C.N.) impairs registration accuracy.
The removal of the spectral representation (DeepFRC w/o S.R.) adversely affects both tasks across
all datasets. These findings underscore the importance of the spectral representation and the tight
coupling between registration and classification within DeepFRC’s unified architecture.

Table 2: Ablation study: contributions of three components in DeepFRC.
Wave Yoga Symbol (2 classes) Symbol (3 classes) MotionSense

Model ATV ACC F1-score ATV ACC F1-score ATV ACC F1-score ATV ACC F1-score ATV ACC F1-score

DeepFRC 5.6 96.4% 0.965 16.2 89.8% 0.909 4.8 96.0% 0.959 3.2 96.3% 0.963 25.0 95.0% 0.952
DeepFRC w/o N.D.O. – 94.4% 0.946 – 83.1% 0.846 – 91.0% 0.905 – 94.7% 0.947 – 90.0% 0.909

DeepFRC w/o S.R. 5.8 95.3% 0.955 17.7 89.2% 0.903 5.3 94.5% 0.945 3.3 93.3% 0.933 28.8 90.0% 0.900
DeepFRC w/o C.N. 7.3 – – 136.0 – – 14.8 – – 6.5 – – 37.7 – –

Sensitivity Analysis. We assess DeepFRC’s robustness to the choice of basis family and size K
across five real datasets in Figure 4. The left panel shows performance is stable across basis types
(Fourier, B-spline, polynomial). We attribute this robustness to two factors: (a) joint training adapts

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

alignment to the inductive biases of each basis, and (b) class-aware registration loss guides the model
toward discriminative structures, reducing basis-specific limitations. The right panel shows that
increasing K improves performance up to around K = 100, after which it plateaus. We believe this
invariance arises from (a) upstream registration reducing functional variability, and (b) downstream
layers adaptively re-weighting or pruning redundant basis functions.

Figure 4: Left: Sensitivity to basis family. “F": Fourier; “B": B-spline; “P": Polynomial. Right:
Sensitivity to number of basis functions K.

5 DISCUSSION

Computational Efficiency. DeepFRC offers significant computational advantages during inference,
with an average runtime of 60s on our real-world datasets—dramatically faster than the traditional
registration method DTW (1000s) and competitive with deep baselines like TTN (15s) and SrvfRegNet
hybrids (90–100s). This efficiency is achieved by eschewing pairwise dynamic programming.
Although training time is on par with other deep models, DeepFRC achieves superior accuracy,
striking an excellent trade-off between performance and computational cost.

Robustness to Noise and Reconstruction Accuracy. We evaluate robustness by injecting Gaussian
noise (σ = 0, 0.05, 0.10, 0.20) into synthetic data and measuring reconstruction quality via the
Pearson correlation between true and estimated basis coefficients. As shown in Table A3, DeepFRC
maintains high correlation under low-to-moderate noise, outperforming TTN and exhibiting greater
stability than SrvfRegNet. Even under high noise (σ = 0.20), its performance degrades gracefully
while surpassing competitors, indicating that the smooth basis representation and joint optimization
confer strong resilience.

Scalability to Large and Small Data. DeepFRC scales efficiently to large datasets with O(Nn)
complexity (Section 2.5). On the augmented Symbol dataset (100 ×), it achieves near-raw per-
formance (ATV=4.8, F1-score=0.944 vs. 4.8, 0.959). Simulations under sparse data conditions
(samples, time points, or both) confirm robust classification, though registration requires sequence
length n ≥ 100 for reliability (Table A4, Appendix E.5).

Robustness to Missing Data. We evaluated DeepFRC’s tolerance to missing observations by
randomly removing 5-10% of data points from half of each real-world dataset (Section 4.2), imputing
gaps via Fourier splines (Wahba, 1990). Under identical hyperparameters, DeepFRC achieved
comparable registration and classification performance to complete data (Figure A5, Appendix E.5).

6 CONCLUSION

We introduced DeepFRC, a unified framework for joint functional registration and classification with
theoretical guarantees and comprehensive empirical validation. DeepFRC consistently outperforms
state-of-the-art baselines and remains robust across real-world and simulated settings with noise,
missing values, and scale variation. While empirically invariant to the choice of basis functions, its
theoretical underpinnings remain open. A key limitation is reduced performance on highly volatile
trajectories, where the objective is sensitive to rapid directional changes. Future work will focus on
adaptive architectures and robust loss designs that explicitly capture signal complexity to enhance
generalization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ACKNOWLEDGMENTS

We used DeepSeek and ChatGPT to polish the language and improve the clarity of this manuscript.

REFERENCES

C. Chen and A. Srivastava. Srvfregnet: Elastic function registration using deep neural networks. In
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pp. 4457–4466, 2021.

G. Claeskens, B. W. Silverman, and L. Slaets. A multiresolution approach to time warping achieved
by a bayesian prior-posterior transfer fitting strategy. Journal of the Royal Statistical Society:
Series B, 72(5):673–694, 2010.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303–314, Dec 1989. ISSN 1435-568X. doi: 10.1007/BF02551274.

P. K. Diederik and B. Lei. Adam: a method for stochastic optimization. International Conference on
Learning Representations, 2015.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, and Xiaoli Li. Tslanet: Rethinking
transformers for time series representation learning. In International Conference on Machine
Learning, 2024.

F. Ferraty and P. Vieu. Nonparametric Functional Data Analysis: Theory and Practice. Springer
Science & Business Media, 2006.

Ken-Ichi Funahashi. On the approximate realization of continuous mappings by neural networks. Neu-
ral Networks, 2(3):183–192, 1989. ISSN 0893-6080. doi: https://doi.org/10.1016/0893-6080(89)
90003-8.

P. Hall, D. S. Poskitt, and B. Presnell. A functional data analytic approach to signal discrimination.
Technometrics, 43:1–9, 2000.

M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic gradient
decent. Proceedings of the 33rd International Conference on Machine Learing, 48:1225–1234,
2016.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):
251–257, 1991. ISSN 0893-6080. doi: https://doi.org/10.1016/0893-6080(91)90009-T.

L. Ilya and H. Frank. Decoded weight decay regularization. International Conference on Learning
Representations, 2019.

T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj. Real-time motor fault detection by 1-d
convolutional neural networks. IEEE Transactions on Industrial Electronics, 63(11):7067–7075,
2016.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. International Conference on Machine Learning, pp. 448–456, 2015.

G. M. James. Generalized linear models with functional predictors. Journal of the Royal Statistical
Society: Series B, 64:411–432, 2002.

S. Kiranyaz, T. Ince, and M. Gabbouj. Real-time patient-sepcific ecg classification by 1-d convolu-
tional neural networks. IEEE Trans. Biomed. Eng., 63(3):664–675, 2016.

S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman. 1d convolutional neural
networks and applications: A survey. Mechanical Systems and Signal Processing, 151:107398,
2021.

A. Kneip and T. Gasser. Statistical tools to analyze data representing a sample of curves. Annals of
Statistics, 20(3):1266–1305, 1992.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

A. Kneip and J. O. Ramsay. Combining registration and fitting for functional models. Journal of the
American Statistical Association, 103(483):1155–1165, 2008.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. Communications of the ACM, 60(6):84–90, 2017.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–444, 2015.

X. Leng and H.-G. Müller. Time ordering of gene co-expression. Biostatistics, 7:569–584, 2006.

X. Liu and M. C. K. Yang. Simultaneous curve registration and clustering for functional data.
Computational Statistics & Data Analysis, 53(4):1361–1376, 2009.

S. Lohit, Q. Wang, and P. Turaga. Temporal transformer networks: Joint learning of invariant and
discriminative time warping. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12426–12435, 2019.

Y. Lu, R. Herbei, and S. Kurtek. Bayesian registration of functions with a gaussian process prior.
Journal of Computational and Graphical Statistics, 26:894–904, 2017.

Mohammad Malekzadeh, Richard G. Clegg, Andrea Cavallaro, and Hamed Haddadi. Mobile sensor
data anonymization. In Proceedings of the International Conference on Internet of Things Design
and Implementation, IoTDI ’19, pp. 49–58, 2019. ISBN 978-1-4503-6283-2.

J. S. Marron, J. O. Ramsay, L. M. Sangalli, and A. Srivastava. Functional data analysis of amplitude
and phase variation. Statistical Science, 30(4):468–484, 2015.

J. Matuk, K. Bharath, O. Chkrebtii, and S. Kurtek. Bayesian framework for simultaneous registration
and estimation of noisy, sparse and fragmented functional data. Journal of American Statistics and
Association, 117(540):1964–1980, 2022.

H.-G. Müller. Functional modelling and classification of longitudinal data. Scandinavian Journal of
Statistics, 32:223–240, 2005.

J. Nagi, F. Ducatelle, G. A. D. Caro, D. Ciresan, U. Meier, A. Giusti, F. Nagi, J. Schmidhuber, and
L. M. Gambardella. Maxpooling convolutional neural networks for vision-based hand gesture
recognition. IEEE International Conference on Signal and Image Processing Applications, pp.
342–347, 2011.

J. Ramsay and B. Silverman. Applied Functional data analysis: Methods and Case Studies. Springer,
1st edition, 2002.

J. Ramsay and B. Silverman. Functional data analysis. Springer, 2nd edition, 2005.

J. O. Ramsay and X. Li. Curve registration. Journal of the Royal Statistical Society: Series B, 60(2):
351–363, 1998.

Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken word
recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):43–49, 1978.

M. Sokolova and G. Lapalme. A systematic analysis of performance measures for classification tasks.
Information Processing & Management, 45(4):427–437, 2009.

A. Srivastava and E. P. Klassen. Functional and shape data analysis. Springer, 2016.

A. Srivastava, W. Wu, S. Kurtek, E. Klassen, and J. S. Marron. Registration of functional data using
fisher-rao metric. arXiv 1103.3817, 2011.

M.B. Stinchcombe. Neural network approximation of continuous functionals and continuous functions
on compactifications. Neural Networks, 12(3):467–477, 1999. ISSN 0893-6080. doi: https:
//doi.org/10.1016/S0893-6080(98)00108-7.

L. Tang, P. Zeng, J. Q. Shi, and W.-S. Kim. Model-based joint curve registration and classification.
Journal of Applied Statistics, 2022. doi: https://doi.org/10.1080/02664763.2021.2023118.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

R. Tang and H.-G. Müller. Pairwise curve synchronization for functional data. Biometrika, 95:
875–889, 2008.

B. Thind, Kevin K. S. Mutani, and J. Cao. Neural networks as functional classifiers. arXiv:2010.04305,
pp. 1–9, 2020.

J. D. Tucker, W. Wu, and A. Srivastava. Generative models for functional data using phase and
amplitude separation. Computational Statistics & Data Analysis, 61:50–66, 2013.

G. Wahba. Splines Models for Observational Data. CBMS-NSF Regional Conference Series in
Applied Mathematics, 1st edition, 1990.

J.-L. Wang, J.-M. Chiou, and H.-G. Müller. Review of functional data analysis. Annual Review of
Statistics and Its application, 3:257–295, 2016.

K. Wang and T. Gasser. Alignment of curves by dynamic time warping. Annals of Statistics, 25(3):
1251–1276, 1997.

S. Wang and G. Cao. Multiclass classification for multidimensional functional data through deep
neural networks. Electronic Journal of Statistics, 18:1248–1292, 2024.

S. Wang, G. Cao, and Z. Shang. Deep neural network classifier for multidimensional functional data.
Scandinavian Journal of Statistics, pp. 1–20, 2023.

L. Yann, B. Yoshua, and H. Geoffrey. Deep learning. Nature, 521(7553):436–444, 2015.

J. Yao, J. Mueller, and J. L. Wang. Deep learning for functional data analysis with adaptive basis
layers. Proceedings of the 38th International Conference on Machine Learing, 2021.

Dmitry Yarotsky. Universal approximations of invariant maps by neural networks, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A OBJECTIVE FUNCTION GRADIENT

By the chain rule, the gradient of the objective function with respect to any θ ∈ Θ is derived as
follows:

∂L(Θ)

∂θ
=


2
C∑
j=1

∑
i∈{yi=j}

(
Qi(γi)

)⊺
· ∂Qi(γi)

∂γi
· ∂γi

∂θ

N(j) − β
N

N∑
i=1

C∑
j=1

yij
ψij

· ∂ψij

∂θ , θ ∈ Θ1,

− β
N

N∑
i=1

C∑
j=1

yij
ψij

· ∂ψij

∂θ , θ ∈ Θ2.

(A.1)

Here, the gradient of the warped SRVF with respect to the warping function γi is given by:

∂Qi(γi)

∂γi
[k] = q̇i(γi(tik))

√
γ̇(tik) + qi(γi(tik))

γ̈(tik)

2
√
γ̇(tik)

, k = 1, . . . , n. (A.2)

When computing the gradient of L1(Θ1) with respect to the warped SRVF (Qi(γi)), the mean SRVF
(Q̄(j)) is treated as constant, updated using the arithmetic mean of the warped SRVF from the previous
iteration (Chen & Srivastava, 2021). For θ ∈ Θ1, the gradient ∂γi∂θ can be expressed as the product
of gradients from integration, fully connected layers, and the 1D-CNN module. Similarly, ∂ψij

∂θ is
derived from the gradient of l2 fully connected layers, interpolation, integration, and the 1D-CNN
module (Yann et al., 2015). For θ ∈ Θ2, ∂ψij

∂θ involves the gradient from fully connected layers in the
prediction module (Yann et al., 2015).

B MODEL SELECTION OF DEEPFRC

The model’s hyperparameters include the size of basis functions K, loss-related parameters {α, β},
and training-related parameters (such as epoch size E, batch size, and learning rate, denoted by vector
η). For the basis representation module, we set K = 100 with a Fourier basis, and the sensitivity
analysis will be studied in real data analysis. To select the other hyperparameters, we follow the
procedure proposed by Wang et al. (2023): the dataset {(x(ti), yi)}Ni=1 is firstly split into two subsets
with a 4:1 ratio. For each combination of hyperparameters, the model is trained by minimizing
Ltrain (Eq. (9)) on the larger subset, and testing error Ltest is computed on the smaller subset. The
combination minimizing Ltest is selected.

In the 1D-CNN module of our model, we fixed the setting of the network structure (set l1 = 4, and
set kernel sizes as 3-3-3 and the channel dimensions as 16-32-64 for the three hidden convolutional
layers). To improve efficiency, robustness, and interpretability, we apply max-pooling (Nagi et al.,
2011) and 1D batch normalization (Ioffe & Szegedy, 2015) after each layer to downsample inputs
and stabilize training, and use global averaging (Krizhevsky et al., 2017) followed by the final fully
connected layer to further reduce features and noise. In the classifier module, we set l2 = 3 and
nodes number n = (8, 4). The above configuration for 1D-CNN module and the fully connected
neural network classifier is widely used Chen & Srivastava (2021); Lohit et al. (2019), and works
well across all the datasets in this paper.

C PROOF OF THEOREM 3.1

For simplicity, we assume ti =
(
0
T , · · · ,

T
T

)
, where [0, T] is the observed time range, in the following

proof. Consider the function f(x) =
√
x, which is continuous on [0, 1]. For any ε > 0, there exists

δ1 > 0 such that for all |x1 − x2| < δ1, we have
∣∣√x1 −√

x2
∣∣ < ε. Similarly, since q is continuous,

for any ε > 0, there exists δ2 > 0 such that for all |x1 − x2| < δ2, we have |q(x1)− q(x2)| < ε.

Let G be the domain of the neural network’s output function, and Γ be the domain of the alignment
functions γ. Denote Φ : G → Γ as the mapping from the neural network output to the alignment
functions. Since both input and output of the network are discrete, we consider values only at discrete
points. We define g(k)i = gi

(
k
T

)
to maintain consistency between discrete vectors and continuous

functions. The mapping is defined as:

τi 7→ γ̃i 7→ γi,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

γ̃i

(
k

T

)
=

∑k
s=0

(
τ
(s)
i

)2
∑T
s=0

(
τ
(s)
i

)2 , γi

(
k

T

)
=

∑k
s=0 γ̃

(s)
i∑T

s=0 γ̃
(s)
i

.

Let τi be such that Φ(τi) = γi. Since Φ(tτi) = Φ(τi) for all t ̸= 0, we can assume, without loss of
generality, that ∥gi∥2 = 1.

By the approximation property of convolutional neural networks (Yarotsky, 2018) and classical
universal approximation results (Cybenko, 1989; Funahashi, 1989; Hornik, 1991; Stinchcombe,
1999), for any δ4 > 0, there exists a neural network NNΘ with parameters Θ such that

sup
i

∥NNΘ(xi)− τi∥2 < δ4.

Let τ̂i = NNΘ(xi). We now aim to show that for sufficiently small |τi − τ̂i|, we also have |γi − γ̂i|
sufficiently small.

∣∣∣∣γ̃i(kT
)
− ˆ̃γi

(
k

T

)∣∣∣∣ =
∣∣∣∣∣
∑k
s=0 τ

2
i

(
s
T

)∑T
s=0 τ

2
i

(
s
T

) − ∑k
s=0 τ̂

2
i

(
s
T

)∑T
s=0 τ̂

2
i

(
s
T

) ∣∣∣∣∣
≤

∣∣∣∣∣
∑k
s=0 τ

2
i

(
s
T

)∑T
s=0 τ

2
i

(
s
T

) − ∑k
s=0 τ̂

2
i

(
s
T

)∑T
s=0 τ

2
i

(
s
T

) ∣∣∣∣∣+
∣∣∣∣∣
∑k
s=0 τ̂

2
i

(
s
T

)∑T
s=0 τ

2
i

(
s
T

) − ∑k
s=0 τ̂

2
i

(
s
T

)∑T
s=0 τ̂

2
i

(
s
T

) ∣∣∣∣∣
≤

k∑
s=0

(
τi

(s
T

)
+ τ̂i

(s
T

))
δ4 + (1 + δ4)

2 (2 + δ4)δ4
(1− δ4)2

≤
k∑
s=0

(
τi

(s
T

)
+ τ̂i

(s
T

))
δ4 + 27δ4 =M

(1)
k δ4.

Therefore, we have

∥γ̃i − ˆ̃γi∥2 ≤

√√√√ T∑
k=0

M1
k =M

(1)
−1 δ4.

By Hölder’s inequality ∥f∥2 ≤ ∥f∥1 ≤
√
T + 1∥f∥2, we have

∥γ̃i − ˆ̃γi∥1 ≤
√
T + 1M

(1)
−1 δ4.

Note that ∥γ̃i∥1 ≥ γ̃i
(
T
T

)
= 1. On the other hand, for γi, we have∣∣∣∣γi(kT

)
− γ̂i

(
k

T

)∣∣∣∣ =
∣∣∣∣∣
∑k
s=0 γ̃i

(
s
T

)∑T
z=0 γ̃i

(
z
T

) − ∑k
s=0

ˆ̃γi
(
s
T

)∑T
z=0

ˆ̃γi
(
z
T

) ∣∣∣∣∣
=

∣∣∣∣∣
∑k
s=0 γ̃i

(
s
T

)∑T
z=0 γ̃i

(
z
T

) − ∑k
s=0 γ̃i

(
s
T

)∑T
z=0

ˆ̃γi
(
z
T

) + ∑k
s=0

ˆ̃γi
(
s
T

)∑T
z=0

ˆ̃γi
(
z
T

) − ∑k
s=0

ˆ̃γi
(
s
T

)∑T
z=0 γ̃i

(
z
T

) ∣∣∣∣∣
≤

∣∣∣∣∣
∑k
s=0 γ̃i

(
s
T

)∑T
z=0 γ̃i

(
z
T

) − ∑k
s=0

ˆ̃γi
(
s
T

)∑T
z=0 γ̃i

(
z
T

) ∣∣∣∣∣+
∣∣∣∣∣
∑k
s=0

ˆ̃γi
(
s
T

)∑T
z=0 γ̃i

(
z
T

) − ∑k
s=0

ˆ̃γi
(
s
T

)∑T
z=0

ˆ̃γi
(
z
T

) ∣∣∣∣∣
≤

∣∣∣∣∣∣
∑k
s=1

(
γ̃i
(
s
T

)
− ˆ̃γi

(
s
T

))
∑T
z=0 γ̃i

(
z
T

)
∣∣∣∣∣∣+ ∥ˆ̃γi∥1

∣∣∣∣∣∣
∑k
s=0

(
ˆ̃γi
(
s
T

)
− γ̃i

(
s
T

))(∑T
z=0 γ̃i

(
z
T

))(∑T
z=0

ˆ̃γi
(
z
T

))
∣∣∣∣∣∣

≤
k
√
T + 1M

(1)
−1 δ4

∥γ̃i∥1
+
(
∥γ̃i∥1 +

√
T + 1M

(1)
−1 δ4

) δ4

∥hi∥1
(
∥γ̃i∥1 −

√
T + 1M

(1)
−1 δ4

)
≤M

(2)
k δ4 for some M (2)

k .

Such that we have

∥γi − γ̂i∥2 ≤

√√√√ T∑
k=0

M
(2)
k :=M

(2)
−1 δ4.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Recall that Qi(γi)
(
k
T

)
= (qi ◦ γi

(
k
T

)
) ·
√
γ̇i
(
k
T

)
. Using the conditions that qi and γi are bounded,

we can bound the difference between Qi(γi) and Qi(γ̂i) by:∣∣∣∣Qi(γi)(kT
)
−Qi(γ̂i)

(
k

T

)∣∣∣∣
≤

∣∣∣∣∣qi ◦ γi
(
k

T

)
·

(√
γ̇i

(
k

T

)
−

√
˙̂γi

(
k

T

))∣∣∣∣∣+
∣∣∣∣∣
√

˙̂γi

(
k

T

)
·
(
qi ◦ γi

(
k

T

)
− qi ◦ γ̂i

(
k

T

))∣∣∣∣∣
≤ sup

t
|qi(t)| ·

∣∣∣∣∣
√
γ̇i

(
k

T

)
−

√
˙̂γi

(
k

T

)∣∣∣∣∣+ sup
t

√
γ̇i(t) ·

∣∣∣∣qi(γi(kT
))

− qi

(
γ̂i

(
k

T

))∣∣∣∣ .
We use

γ̂i(k+1
T)−γ̂i(k−1

T)
2
T

to approximate the derivative for γ̂i, so we have∣∣∣∣γ̇i(kT
)
− ˙̂γi

(
k

T

)∣∣∣∣ ≤
∣∣∣∣∣γ̇i
(
k

T

)
−
γi
(
k+1
T

)
− γi

(
k−1
T

)
2
T

∣∣∣∣∣+
∣∣∣∣∣γi
(
k+1
T

)
− γi

(
k−1
T

)
2
T

−
γ̂i
(
k+1
T

)
− γ̂i

(
k−1
T

)
2
T

∣∣∣∣∣
≤

∣∣∣∣∣γ̇i
(
k

T

)
−
γi
(
k+1
T

)
− γi

(
k−1
T

)
2
T

∣∣∣∣∣+ T sup
k

∣∣∣∣γi(kT
)
− γ̂i

(
k

T

)∣∣∣∣ .
For 0 < δ3 < 1, there exists a T > 0 such that:∣∣∣∣∣γ̇i

(
k

T

)
−
γi
(
k+1
T

)
− γi

(
k−1
T

)
2
T

∣∣∣∣∣ < δ3, ∀k.

Here we can choose δ3 < δ1
2 , δ2 = min{δ2, δ12T }, and δ4 < δ2. Then, we have∣∣∣∣∣

√
γ̇i

(
k

T

)
−

√
˙̂γi

(
k

T

)∣∣∣∣∣ < ε,

∣∣∣∣qi ◦ γi(kT
)
− qi ◦ γ̂i

(
k

T

)∣∣∣∣ < ε,

such that ∣∣∣∣Qi(γi)(kT
)
−Qi(γ̂i)

(
k

T

)∣∣∣∣ ≤M
(3)
−1 ε, where M (3)

−1 is a constant.

This means at each fixed point kT , the difference between Qi(γi) and Qi(γ̂i) is bounded by M (3)
−1 ε,

and it is straightforward to have

∥Qi(γi)−Qi(γ̂i)∥2 ≤
√
TM3

−1ε.

We finally get

∆Qreg(γ
∗, γ̂) = |Qreg(γ

∗)−Qreg(γ̂)|

=

∣∣∣∣∣∣
C∑
j=1

1

N (j)

∑
i∈{yi=j}

∥Qi(γ∗i)−Q
(j)∥2 −

C∑
j=1

1

N (j)

∑
i∈{yi=j}

∥Qi(γ̂i)− Q̂
(j)

∥2
∣∣∣∣∣∣

≤
C∑
j=1

1

N (j)

∑
i∈{yi=j}

∣∣∣∣∥Qi(γ∗i)−Q
(j)∥2 − ∥Qi(γ̂i)− Q̂

(j)

∥2
∣∣∣∣ .

We now simplify 1
N(j)

∑
i∈{yi=j}

∣∣∣∣∥Qi(γ∗i)−Q
(j)∥2 − ∥Qi(γ̂i)− Q̂

(j)

∥2
∣∣∣∣ as

1

N (j)

∑
i∈{yi=j}

∣∣∥ai∥22 + ∥c∥22 + 2⟨ai, bi⟩+ 2⟨bi, c⟩+ 2⟨ai, c⟩
∣∣ ,

where ai = Qi(γi)−Qi(γ̂i), bi = Qi(γ̂i)−Q
(j)
, c = Q

(j) − Q̂
(j)

.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

By the Cauchy-Schwarz inequality: ⟨x, y⟩ ≤ ∥x∥2∥y∥2, we have ∥ai∥2 ≤
√
TM

(3)
−1 ε, and ∥c∥2 =∥∥∥ 1

N(j)

∑
i∈{yi=j} ai

∥∥∥
2
≤

√
TM

(3)
−1 ε. We also have ∥bi∥2 ≤M (4) due to the boundness of qi and γi.

Thus, we have∣∣∣∣∣∣ 1

N (j)

∑
i∈{yi=j}

∥Qi(γi)−Q
(j)∥22 −

1

N (j)

∑
i∈{yi=j}

∥Qi(γ̂i)− Q̂
(j)

∥22

∣∣∣∣∣∣ ≤ 4T
(
M

(3)
−1

)2
ε2+4

√
TM3

−1M
(4)ε.

Therefore, it is straightforward to have

∆Qreg(γ
∗, γ̂) ≤ 4CT

(
M

(3)
−1

)2
ε2 + 4C

√
TM

(3)
−1M

(4)ε.

D PROOF OF THEOREM 3.3

Based on Theorem 2 from Yao et al. (2021), we only need to verify that the loss function and its
gradient are both Lipschitz continuous. Since the mean SRVF (Q̄(j)’s) are treated as constants
when computing their gradients, and we have the condition that there exists ϵ0 > 0, such that
|Q̄(u) − Q̄(v)| ≥ ϵ0 for 1 ≤ u < v ≤ C, we can omit the term

∑
1≤u<v≤C α∥Q̄(u) − Q̄(v)∥−1, and

simplify the loss function of DeepFRC for any individual as

l(f̂Θ(xi), yi) =

C∑
j=1

∥Qi −Q
(j)∥1{i∈{yi=j}} −

C∑
j=1

yij logψij .

The loss function is obviously continuous for ψij ≥ ϵ0, as 1
z is continuous everywhere except at zero.

Similar to Eqs. (A.1) and (A.2), the gradient of l with respect to any θ ∈ Θ can be easily derived.
These gradients can be expressed as products of gradients from ReLU, max pooling, etc., which are
Lipschitz continuous. We note that both the 1D linear interpolation and a Fourier basis expansion in
the stage of spectral representation in DeepFRC satisfy the Lipschitz continuity condition. Therefore,
the theorem follows directly from Theorem 3.8 in Hardt et al. (2016).

E EXPERIMENTAL DETAILS

E.1 EVALUATION METRICS

Registration Metrics:

• Registration Error (∆Qreg): This metric, defined within the EFDA framework, quantifies the
discrepancy between the estimated warping γ̂ and the ground-truth γ∗. It is applicable only to
simulated datasets where γ∗ is known. Lower values indicate better alignment.
• Adjusted Total Variance (ATV): For both simulated and real-world data, we use ATV
to assess alignment without ground-truth warping functions. It is defined as: ATV =
1

(C2)

∑
1≤u<v≤C

TVuv

d(mean(x̃u),mean(x̃v))
, where TVuv (Chen & Srivastava, 2021) is the total variation

between classes u and v, and mean(x̃) is the mean function of the aligned curves. ATV accounts
for inter-class distance, making it suitable for evaluating alignment of similar classes. Lower ATV
indicates better alignment.

Reconstruction Metric:

• Coefficient Correlation (ρ): To evaluate the recovery of the underlying smooth process, we compute
Pearson’s correlation ρ(c∗, ĉ) between the true (c∗) and estimated (ĉ) Fourier basis coefficients. This
metric is used only in simulations where c∗ is accessible. Higher values indicate better reconstruction.

Classification Metrics:

• Accuracy (ACC): The proportion of correctly classified samples.
• Macro-averaged F1-score: Provides a balanced measure of performance across classes, especially
important for imbalanced datasets (Sokolova & Lapalme, 2009).

Higher values for both ACC and F1-score indicate superior classification performance.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E.2 DESCRIPTION OF SIMULATED DATASETS

We construct a balanced two-class functional dataset {xi(t), yi}Ni=1, where each function xi(t) for
t ∈ [0, 1] is generated by composing amplitude and phase components. The amplitude function is
defined as the sum of two Gaussian bumps:

zi(t | ai, µ, σi) = ai · exp
(
−1

2

(t− µ)2

σ2
i

)
,

where ai and σi are independently drawn from uniform distributions, and µ is a fixed constant. To
introduce phase variation, we define a warping function γi(t) as

γi(t) =

{
exp(bit)−1
exp(bi)−1 , if bi ̸= 0,

t, if bi = 0,
with bi ∼ U(−1.5, 1.5).

Such constructions are widely used for modeling functional data with phase variability (Kneip &
Ramsay, 2008; Tucker et al., 2013). We then generate each function as:

xi(t) =

{∑2
j=1 zi(γi(t) | a

(0j)
i , µ(0j), σ

(0j)
i), if yi = 0,∑2

j=1 zi(γi(t) | a
(1j)
i , µ(1j), σ

(1j)
i), if yi = 1,

where the parameters {a(cj)i , µ(cj), σ
(cj)
i }2j=1 for c = 0, 1 are summarized in in the following table.

We simulate N = 6000 functions, each evaluated at 1000 time points. We split the balanced dataset
into training, validation, and test sets with sizes 1600, 400, and 4000, respectively.

Table A1: Parameter setting for simulated data
Index (01) (02) (11) (12)

ai 13 + U(−0.5, 0.5) 12.5 + U(−1, 1) 12 + U(−1, 1) 13 + U(−1.5, 1.5)
µ 0.250 0.715 0.225 0.695
σi 0.06 + U(−0.003, 0.003) 0.075 + U(−0.003, 0.003) 0.06 + U(−0.003, 0.003) 0.1 + U(−0.003, 0.003)

Figure A1: Visualization of alignment by DeepFRC on simulated test data, with evaluation metrics
ρ = 0.976, ∆Qreg = 0.056, ATV=0.504, ACC = 1.000 and F1-score = 1.000.

E.3 DESCRIPTION OF REAL DATASETS

The first four time series datasets are one-dimensional functional data, from the UCR Time Series
Classification Archive (www.timeseriesclassification.com), and the last dataset is three-dimensional
functional data, from Kaggle (www.kaggle.com):

The Wave dataset (Liu & Yang, 2009) consists of eight simple gestures generated using accelerometers,
collected through a particular procedure. For a participant, gestures are gathered when they hold a
device and repeat certain gestures multiple times during a time period. The dataset includes X, Y,
and Z dimensions with 8 classes. Here, we selected the X dimension and classes 2 and 8 for the

17

https://www.timeseriesclassification.com/index.php
https://www.kaggle.com/datasets
https://www.timeseriesclassification.com/description.php?Dataset=UWaveGestureLibraryX

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

experiment. There are 1120 samples with label partition 591/529, and the train/validation/test split is
320/80/720, with each sample having 315 time points.

The Yoga dataset consists of images of two actors (one male, one female) transitioning between yoga
poses in front of a green screen. The task is to classify the images based on the actor’s gender. Each
image was transformed into a one-dimensional series by measuring the distance from the outline of
the actor to the center. The dataset contains 3300 samples with label partition 1770/1530, and the
train/validation/test split is 800/200/2300. Each sample has 426 time points.

The Symbol dataset involves 13 participants, who were asked to replicate a randomly appearing
symbol. There were 3 possible symbols, creating a total of 6 classes, and each participant made
approximately 30 attempts. The dataset contains X-axis motion data recorded during the process
of drawing the shapes. We conduct experiments on both the 2-class and 3-class cases using the
Symbol dataset. In the 2-class case, there are 343 samples with label partition 182/167, and the
train/validation/test split is 115/28/200. In the 3-class case, there are 510 samples with label partition
182/167/161, and the train/validation/test split is 168/42/300. Each sample has 398 time points.

The MotionSense (Malekzadeh et al., 2019) dataset involves multivariate time-series signals recorded
from smartphone sensors during six daily activities performed by 24 participants. From this dataset,
we selected three signal channels (G.x, G.y and G.z) from two actions (walk and jog) to construct a
binary classification task, containing 80 samples with 200 time points each. The train/validation/test
split is 56/8/16.

E.4 INTRODUCTION OF BASELINES

Here we provide a brief introduction of the compared baseline methods:

• TTN (Lohit et al., 2019): A method for joint alignment and classification of discrete time series but
does not account for curve smoothness.

• SrvfRegNet (Chen & Srivastava, 2021): An unsupervised method that aligns raw functional data
via a 1D CNN.

• FCNNraw: A model that discretizes raw functional data into a vector, inputting it into a fully
connected neural network.

• FCNNfourier: A model that transforms the functional data into Fourier basis coefficients and then
feeds the resulting vector into a fully connected neural network.

• FuncNN (Thind et al., 2020): A model that inputs entire functional curves directly into a fully
connected neural network.

• ADAFNN (Yao et al., 2021): A model that inputs entire functional curves, adapting the bases
during learning.

• TSLANet (Eldele et al., 2024): A model that inputs entire functional curves, with ASB (Adaptive
Spectral Blocks) and ICB (Interactive Convolutional Blocks) as core structure.

E.5 MODEL IMPLEMENTATION DETAILS ON REAL DATA

For all real-world datasets, the functional input is Z-score standardized entry-wise based on the
mean function and standard deviation. To handle missing values (such as NAs) in the functional
input, we use the BasisSmoother function from the skfda.preprocessing.smoothing
module in Python to impute missing values. All of these baseline models are trained until the best
performance is achieved. All the experiments are conducted on NVIDIA GeForce RTX 3090 32G.
The details of implementation for all models are provided as follows:

• The DeepFRC network is implemented as a PyTorch neural network. The hyperparameter
settings for DeepFRC are shown in Table A2. In the discussion of stability with respect to basis
expansion for DeepFRC, we compute Fourier, B-spline, and Polynomial scores as follows: The
Fourier scores are obtained using the fast Fourier transform function rfft from torch.nn.fft,
extracting the first 100 scores. The B-spline scores are derived from the cubic B-spline basis with 98
knots uniformly distributed over the interval [0, 1], resulting in exactly 100 B-spline basis functions.
The Polynomial scores are obtained using the Chebyshev polynomial orthogonal basis, taking the

18

https://www.timeseriesclassification.com/description.php?Dataset=Yoga
https://www.timeseriesclassification.com/description.php?Dataset=Symbols
https://www.kaggle.com/datasets/malekzadeh/motionsense-dataset/data

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table A2: Hyperparameter setting for DeepFRC on four real datasets
Case α β lrreg lrclass

Wave 3000 50 1e-3 1e-3
Yoga 600 15 1e-3 5e-4

Symbol (2 classes) 300 15 1e-3 1e-3
Symbol (3 classes) 10 10 1e-3 1e-3

MotionSense 15 1 1e-3 1e-3

first 100 Chebyshev polynomial functions. The B-spline and Polynomial scores are both calculated
using the BasisSmoother function from the skfda.preprocessing.smoothing module
in Python.
• The model SrvfRegNet processes functional data through a learnable pre-warping block with
three 1D convolutional layers (16, 32, 64 channels, kernel size 3, ReLU/BatchNorm/pooling),
followed by a fully connected linear layer to generate warping functions. It applies time warping
by minimizing the SRVF loss under an MSE criterion. The input data is the full functional data
requiring alignment. The output of this network is the time-warping function that can generate aligned
functional data. We use the default architecture for the models SrvfRegNet.
• Both FCNNraw and FCNNfourier have the same architecture: a 3-layer MLP, with the input layer
consisting of n observations or 100 Fourier scores (by default), followed by hidden layers with
dimensions [16, 8], and finally outputting the classification results. Each layer is equipped with Layer
Normalization, the ReLU activation function, and a dropout rate of 0.1. The input of FCNNraw is
the raw data, while the input of FCNNfourier is derived from the first 100 Fourier coefficients of the
functional data.
• The models FuncNN and ADAFNN both take the entire curve as input. FuncNN uses a manually
chosen basis expansion, while ADAFNN employs an adaptively learned basis layer for representing
curve data. We use the default architecture for the models FuncNN and ADAFNN.
• The model TSLANet takes univariate or multivariate time series as input, first processing them via
patch segmentation and positional embedding to retain temporal order. Its core structure consists
of Adaptive Spectral Blocks (for dependency capture and denoising) and Interactive Convolutional
Blocks. We use the default architecture for the model TSLANet.
• A note on handling multidimensional functional data is necessary. Models including DeepFRC,
TTN, TSLANet, and FuncNN natively support such inputs. For other baselines, we implemented the
following adaptations: SrvfRegNet was extended to process multidimensional data analogously
to DeepFRC. For FCNNraw and ADAFNN, we concatenated signals from all channels into a single
one-dimensional vector. For FCNNfourier, we used the concatenated basis expansion coefficients
from each channel as the model input.

Figure A2: Training loss vs. epochs by DeepFRC across the five real-life datasets.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure A3: Visualization comparison of alignment performance by DeepFRC, TTN and SrvfRegNet
across three two-class real datasets

Figure A4: Visualization comparison of alignment performance by DeepFRC, TTN and SrvfRegNet
on MotionSense dataset in 3 channels G.x, G.y and G.z.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure A5: Performance of DeepFRC with different missing rates for raw data across five real-world
datasets.

Table A3: Representation coefficients correlation on different noise level on synthetic data
Noise level ε ∼ N(0, σ2)

Model σ = 0 σ = 0.05 σ = 0.10 σ = 0.20

DeepFRC 0.983 0.982 0.979 0.969
TTN 0.541 0.529 0.501 0.490

SrvfRegNet 0.969 0.966 0.961 0.950

Table A4: Robustness under data scarcity. N and n represent sample size and sequence length,
respectively.

Sparse samples (n = 1000) Sparse time points (N = 6000) Sparse samples and time points (N,n)
Evaluation N = 200 N = 100 N = 50 n = 200 n = 100 n = 50 (200, 200) (100, 100) (50, 50)

ATV 0.580 0.784 0.867 0.605 2.105 2.571 1.097 2.454 12.492
ACC 100.0% 100.0% 100.0% 100.0% 99.3% 98.2% 100.0% 95.0% 80.0%

F1-score 1.000 1.000 1.000 1.000 0.992 0.980 1.000 0.947 0.750

21

	Introduction
	Motivation
	Related Work
	Contributions

	The Model
	Neural Deformation Operator for Time Warping
	Spectral Representation of Aligned Functions
	Classifier Network
	Objective: Contrastive Geometric Alignment and Classification
	Optimization, Model Selection and Computational Complexity

	Theoretical Analysis
	Experiments
	Simulation
	Real Data Application

	Discussion
	Conclusion
	Objective Function Gradient
	Model Selection of DeepFRC
	Proof of Theorem 3.1
	Proof of Theorem 3.3
	Experimental Details
	Evaluation Metrics
	Description of Simulated Datasets
	Description of Real Datasets
	Introduction of Baselines
	Model Implementation Details on Real Data

