

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PRE-TRAINING EPIDEMIC TIME SERIES FORECASTERS WITH COMPARTMENTAL PROTOTYPES

Anonymous authors

Paper under double-blind review

ABSTRACT

Accurate epidemic forecasting is crucial for outbreak preparedness, but existing data-driven models are often brittle. Typically trained on a single pathogen, they struggle with data scarcity during new outbreaks and fail under distribution shifts caused by viral evolution or interventions. However, decades of surveillance data from diverse diseases offer an untapped source of transferable knowledge. To leverage the collective lessons from history, we propose CAPE, the first open-source pre-trained model for epidemic forecasting. Unlike existing time series foundation models that overlook epidemiological challenges, CAPE models epidemic dynamics as mixtures of latent population states, termed *compartmental prototypes*. It discovers a flexible dictionary of compartment prototypes directly from surveillance data, enabling each outbreak to be expressed as a time-varying mixture that links observed infections to latent population states. To promote robust generalization, CAPE combines self-supervised pre-training objectives with lightweight epidemic-aware regularizers that align the learned prototypes with epidemiological semantics. On a comprehensive benchmark spanning 17 diseases and 50+ regions, CAPE significantly outperforms strong baselines in zero-shot, few-shot, and full-shot forecasting. This work represents a principled step toward pre-trained epidemic models that are both transferable and epidemiologically grounded.

1 INTRODUCTION

Infectious disease outbreaks pose a persistent threat to global public health and economic stability (Nicola et al., 2020). Effective outbreak management relies on accurate epidemic forecasting—the prediction of future cases, hospitalizations, and other critical metrics (Liu et al., 2024b; Wan et al., 2024; Adhikari et al., 2019). A wide range of models have been developed to provide these crucial forecasts, which generally fall into two categories. **Mechanistic models**, such as the classic Susceptible-Infected-Recovered (SIR) (Cooper et al., 2020) approach, are grounded in epidemiological principles; they divide a population into *compartments* that represent distinct *population states* (e.g., susceptible, infectious, recovered) and use differential equations to explicitly model flows between these states. In contrast, modern **machine learning** methods like LSTMs (Shahid et al., 2020) learn complex patterns directly from historical data, offering greater flexibility without imposing a predefined structure.

However, these data-driven forecasters are often trained for a single pathogen in a specific region. This narrow scope makes them brittle: they face acute data scarcity during the critical early stages of a novel outbreak, and they fail under distribution shifts induced by viral evolution, behavioral change, or policy interventions. At the same time, decades of surveillance across diverse pathogens and geographies remain an untapped source of transferable structure. Motivated by the success of large pre-trained models in language, vision, and time-series domains (Zhao et al., 2023), we ask: *Can we build a large pre-trained epidemic forecaster that learns from the collective history of infectious diseases to improve generalization and robustness?*

Simply applying a general time series foundation model (Liang et al., 2024) is insufficient, as it overlooks core epidemiological challenges: (1) *Structural heterogeneity*: Pathogens follow different effective compartmental progressions (e.g., SIR vs. SEIR (He et al., 2020)), so a single fixed mechanism cannot transfer broadly across diseases and regions. (2) *Hidden population states*: Surveillance data records only reported infections, while important states such as exposure, susceptibility, and

immunity are not directly observed. (3) *Distribution Shifts*: Interventions, behavioral changes, and pathogen evolution induce abrupt non-stationarities, often when outbreak histories are shortest. These properties demand powerful epidemic pre-trained models that can adapt to diverse pathogens, disentangle hidden population states, and remain robust under shifts.

Our Solution. We introduce CAPE (CompArtment Pre-training for Epidemics), a pre-trained framework that learns epidemic dynamics as a mixture of latent population states, termed **compartmental prototypes**. (1) To address structural heterogeneity, rather than relying on a rigid, pre-defined compartmental structure, CAPE discovers a flexible dictionary of latent compartments directly from data. Each outbreak sequence is modeled as a mixture that varies in time in these prototypes, linking observed infections to latent population states. (2) To handle hidden drivers, the learned mixtures act as proxies for unobserved states such as susceptibility, disentangling latent population dynamics from noisy observed case counts. (3) To address distribution shifts, CAPE employs two self-supervised pre-training strategies to encourage robust representations that generalize under non-stationarities and scarce data. In addition, we further propose lightweight epidemic-aware regularizers to align learned prototypes with epidemiological semantics. Our contributions include:

- (1) **Pre-training framework for epidemic time series forecasting:** We introduce the first open-source pre-training framework ¹ for epidemic forecasting. It learns latent compartmental prototypes directly from time series, guided by several epidemic-aware losses that regularize the model’s predictions and learned prototype representations.
- (2) **Comprehensive benchmark for epidemic pre-training:** We assemble a diverse pre-training and evaluation suite, spanning 17 diseases across 50+ regions for pre-training and 5 downstream datasets covering 4 challenging settings (zero-shot, few-shot, cross-location, and cross-disease).
- (3) **State-of-the-art performance in diverse forecasting settings:** We demonstrate the effectiveness of our pre-trained model, which significantly outperforms existing benchmarks by an average of 6.3% lower average MSE in the full-shot setting and 10.3% lower average MSE in the few-shot setting across all tested downstream datasets.
- (4) **In-depth analysis:** We conduct extensive analyses to provide insights into how the learned latent prototypes improve forecasting accuracy and show that pre-training effectively learns the representation of diverse diseases and mitigates the impact of distribution shifts.

2 RELATED WORK AND PROBLEM DEFINITION

Epidemic Forecasting Models. Traditionally, epidemic forecasting employs models like ARIMA (Sahai et al., 2020), SEIR (He et al., 2020), and VAR (Shang et al., 2021). ARIMA predicts infections by analyzing past data and errors, SEIR models population transitions using differential equations, and VAR captures linear inter-dependencies by modeling each variable based on past values. Recently, deep learning models, categorized into RNN-based, MLP-based, and transformer-based, have surpassed these methods. RNN-based models like LSTM (Wang et al., 2020), GRU (Natarajan et al., 2023), and more epidemic-specific models like EpiDeep Adhikari et al. (2019) and EINNs Rodríguez et al. (2023) use gating mechanisms to manage information flow. MLP-based models use linear layers (Zeng et al., 2023) or multi-layer perceptrons (Borghi et al., 2021; Madden et al., 2024) for efficient data-to-prediction mapping and physics-informed distillation Wang et al. (2021). Transformer-based models (Wu et al., 2021; Zhou et al., 2021; 2022) apply self-attention to encode time series and generate predictions via a decoder. However, these models are limited as they typically utilize data from only one type of disease without considering valuable insights from diverse disease datasets.

Pre-trained Time Series Models. To enable few-shot or zero-shot capabilities, transformer-based models often employ pre-training on large datasets, which typically use masked data reconstruction (Zerveas et al., 2021; Rasul et al., 2023) or promote alignment across different contexts (Fraikin et al., 2023; Zhang et al., 2022; Yue et al., 2022). For example, PatchTST (Nie et al., 2022) segments time series into patches, masks some, and reconstructs the masked segments. Larger foundational models like MOMENT (Goswami et al., 2024) aim to excel in multiple tasks (e.g., forecasting, imputation, classification) but require substantial data and computational resources. In epidemic contexts, Kamarthi et al. (Kamarthi & Prakash, 2023) pre-train a model on various diseases, improving downstream performance and highlighting pre-training’s potential in epidemic forecasting. However, the complete implementation is not publicly available. Moreover, existing approaches

¹https://anonymous.4open.science/r/CAPE_ICLR26-A041/

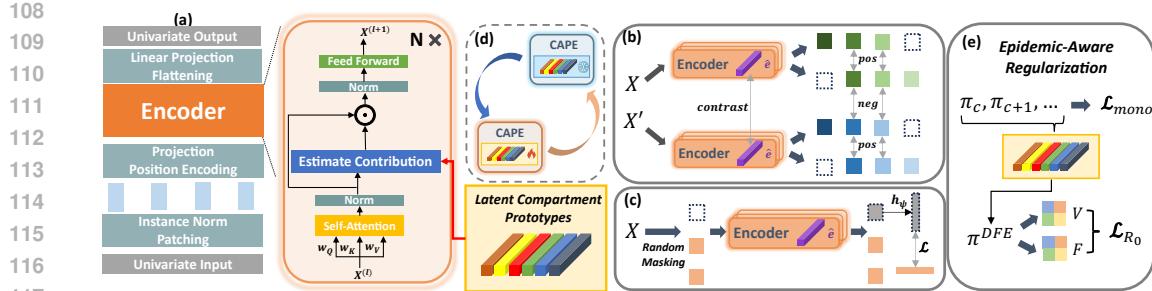


Figure 1: (a) CAPE encoder with latent compartment prototypes; (b) Hierarchical contrasting for temporal representations; (c) Random masking and reconstruction; (d) Optimizing the encoder and prototype representations alternatively. (e) Epidemic-aware regularization, including losses for monotonic and non-monotonic dynamics.

overlook hidden compartmental influence and zero-shot ability in epidemic forecasting and lack a deep analysis of how pre-training materials impact downstream performance. In this study, we introduce latent compartment modeling and conduct a thorough analysis of these questions (see A.6 for more discussions).

Problem Definition. Given a historical time series input: $\mathbf{x} \in \mathbb{R}^{T \times 1}$, where T is the size of lookback window, the goal of epidemic forecasting is to map \mathbf{x} into target trajectories (e.g. infection rates): $\mathbf{y} \in \mathbb{R}^h$, where h denotes the size of the forecast horizon. We define X and Y as the random variables of input and target, respectively. During pre-training, a representation function $g_\theta : \mathbb{R}^{T \times 1} \rightarrow \mathbb{R}^{T \times d}$, where d denotes the dimension of the latent space and θ being the parameter of the model, extracts universal properties from a large collection of epidemic time series datasets $\mathcal{D}_{\text{pre}} = \{D'_1, D'_2, \dots, D'_S\}$. Then, a set of self-supervised tasks $\mathcal{T}_{\text{pre}} = \{\mathcal{T}_i\}_{i=1}^R$ is defined, and each \mathcal{T}_i transforms a sample $\mathbf{x} \sim \mathcal{D}_{\text{pre}}$ into a new input-label pair: $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$, and optimizes a loss $\mathcal{L}_{\mathcal{T}_i} = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{\text{pre}}} [\ell_{\mathcal{T}_i}(h_\psi(g_\theta(\tilde{\mathbf{x}})), \tilde{\mathbf{y}})]$, with $\ell_{\mathcal{T}_i}$ being the task-specific metric and h_ψ the task-specific head.

3 PROPOSED METHOD

Our pre-training framework is designed to overcome the core challenges of *structural heterogeneity*, *hidden drivers*, and *distribution shifts* inherent in epidemic forecasting. We address these issues through two main contributions: (1) a flexible model architecture that learns latent compartmental prototypes directly from observational data, and (2) a set of epidemic-aware pre-training objectives that guide the model to learn robust, generalizable representations. We will elaborate on these architectural and objective-based solutions in the following subsections.

3.1 MODELING LATENT COMPARTMENTAL PROTOTYPES

Temporal Backbone. Following the prior work on patch-based time series modeling (Nie et al., 2022), we segment the input sequence of infection counts \mathbf{x} into non-overlapping temporal patches, $\mathbf{x} = [\mathbf{x}_1, \dots, \mathbf{x}_C]$, where each patch $\mathbf{x}_c \in \mathbb{R}^{T/C}$. This patching strategy enables the model to capture local temporal patterns. A standard self-attention encoder, f_{enc} , then processes these patches to learn long-range temporal dependencies, producing a contextualized representation $\mathbf{h}_c^{(l)} = f_{\text{enc}}(\mathbf{x}_c^l)$ for each patch c at a given layer l .

Compartmental Prototypes Learning. Different diseases exhibit different progression patterns: some show a simple rise-and-fall in cases, while others involve additional hidden stages such as incubation periods. In epidemiological terms, this corresponds to differences in compartmental structures (e.g., SIR (Cooper et al., 2020) vs. SEIR (He et al., 2020)). Epidemic forecasting is therefore challenged by *structural heterogeneity* and *hidden population states*: different structures generate diverse dynamics, while only a subset of compartments are directly observable. Classic compartmental models impose a rigid, pre-defined structure that cannot adapt to various types of diseases and scenarios. To address this, we move beyond fixed models and propose a framework that learns to represent epidemic dynamics as a *dynamic mixture of latent population states*, which we term **compartmental prototypes**. Our approach is analogous to learning a vocabulary of core epidemiological behaviors directly from data. Each outbreak is expressed as a time-varying mixture

162 over these prototypes. For example, during the growth phase of influenza, the model may infer that
 163 roughly 30% observed case increases are explained by infectious-like prototypes, while the rest
 164 reflects susceptible depletion and recovery. Formally, we initialize a set of K learnable embeddings,
 165 $\mathbf{E} = \{\mathbf{e}_k\}_{k=1}^K \in \mathbb{R}^{K \times d}$, where each \mathbf{e}_k is a "prototype" representing a basic compartment. For any
 166 given time window (a patch c), the model's crucial task is to determine the contributions of these
 167 prototypes in representing the current epidemic time series. We accomplish this by inferring a set
 168 of mixture weights, $\boldsymbol{\pi}_c = [\pi_{1,c}, \dots, \pi_{K,c}]$, using a cross-attention mechanism between the patch's
 169 representation $\mathbf{h}_c^{(l)}$ and the full set of prototype embeddings \mathbf{E} :

$$\pi_{k,c}^{(l)} = \text{Softmax} \left((\mathbf{W}_k^{(l)} \mathbf{e}_k)^\top \cdot (\mathbf{W}_s^{(l)} \mathbf{h}_c^{(l)}) \right), \quad (1)$$

170 where $\mathbf{W}_k^{(l)}$ and $\mathbf{W}_s^{(l)}$ are learnable linear projections. $\boldsymbol{\pi}_c$ quantifies the contribution of each compartmental
 171 prototype in representing the current patch, forming a regularized and robust representation for
 172 forecasting. The patch representation is then updated by taking a weighted sum over the Hadamard
 173 product (\odot) of the patch representation and the compartment embeddings. This allows the model to
 174 modulate the observed time series data with the inferred underlying dynamics. The layer-wise update
 175 is defined as:

$$\mathbf{x}_c^{(l+1)} = \sigma \left(\mathbf{W}_f^{(l)} \sum_{k=1}^K \pi_{k,c}^{(l)} [f_{enc}(\mathbf{x}_c^{(l)}) \odot \mathbf{e}_k] \right), \quad (2)$$

176 where σ represents a feed-forward block containing the projection $\mathbf{W}_f^{(l)}$. After stacking L such
 177 layers, a final task-specific linear head, h_ψ , maps the resulting representations $\mathbf{x}^{(L)}$ to the target
 178 prediction $\hat{\mathbf{y}} = h_\psi(\mathbf{x}^{(L)})$.

184 3.2 SELF-SUPERVISED PRE-TRAINING

185 To learn robust representations that can withstand the *distribution shifts* and data scarcity common
 186 in epidemics, we employ two self-supervised pre-training objectives designed to capture universal
 187 patterns across diverse time series.

188 **Masked Time-Series Reconstruction.** We use a masked autoencoding task to teach the model the
 189 underlying grammar of epidemic curves. By randomly masking a fraction (e.g., 30%) of the input
 190 patches and training the model to reconstruct the original series, we force it to learn meaningful
 191 temporal interpolations. The objective is to minimize the Mean Squared Error, $\mathcal{L}_{\text{recon}} = \text{MSE}(\hat{\mathbf{x}}, \mathbf{x})$.
 192 This builds resilience to the noisy and incomplete data often encountered during chaotic outbreak
 193 periods, improving the model's fundamental forecasting capabilities.

194 **Contrastive Learning for Compartmental Prototypes.** A key challenge during distribution shifts is
 195 that epidemic curves can become highly non-stationary, and superficially similar patterns might arise
 196 from vastly different underlying dynamics. To prevent our model from learning spurious correlations,
 197 we introduce a contrastive objective that regularizes the compartmental prototype mechanism itself.
 198 The goal is to ensure that the inferred contributions of compartments ($\boldsymbol{\pi}_c$) are both consistent and
 199 discriminative. Specifically, we enforce two conditions: (1) two different augmented views of the
 200 same time-series patch should be mapped to a similar mixture of compartmental prototypes (positive
 201 pairs), and (2) patches from different, epidemiologically distinct contexts should be mapped to
 202 dissimilar compartmental prototypes (negative pairs). This pushes the model to focus on the essential,
 203 underlying dynamics captured by the prototypes, rather than overfitting to superficial noise. The
 204 patch-wise contrastive loss is defined as:

$$\begin{aligned} \mathcal{L}_{\text{CL}}(j, c) = & - \mathbf{X}_{(j,c)} \cdot \mathbf{X}'_{(j,c)} + \log \left(\sum_{b \in B} \exp (\mathbf{X}_{(j,c)} \cdot \mathbf{X}'_{(b,c)}) + \mathbb{I}_{j \neq b} \exp (\mathbf{X}_{(j,c)} \cdot \mathbf{X}_{(b,c)}) \right) \\ & + \log \left(\sum_{t \in \Omega} \exp (\mathbf{X}_{(j,c)} \cdot \mathbf{X}'_{(j,t)}) + \mathbb{I}_{c \neq t} \exp (\mathbf{X}_{(j,c)} \cdot \mathbf{X}_{(j,t)}) \right), \end{aligned} \quad (3)$$

205 where B is the batch, Ω is the set of overlapping patches, and \mathbb{I} is the indicator function.

211 3.3 EPIDEMIC-AWARE REGULARIZATION

212 To ensure our compartmental prototypes learn epidemiologically plausible dynamics, we introduce
 213 three regularization terms that instill prior knowledge from classic mechanistic models. These
 214 regularizers help disentangle the learned prototypes, encouraging them to represent distinct, interpretable
 215 dynamics (e.g., monotonic vs. non-monotonic). We apply these regularizers with a small weight

216 during pre-training to gently guide representation learning, and with a larger weight during fine-tuning
 217 to specialize the model to a specific pathogen.
 218

219 **Monotonic Dynamics.** Certain compartments, such as Susceptible or Recovered, typically exhibit
 220 monotonic behavior (Nguyen et al., 2023). To enforce this, we introduce a monotonic loss. For a
 221 compartment k with an expected monotonic trend, let $\pi_k = [\pi_{k,1}^{(L)}, \dots, \pi_{k,C}^{(L)}]$ be its mixture weights
 222 sequence from the final layer. The monotonic decreasing loss is:

$$223 \quad \mathcal{L}_{\text{mono}} = \frac{1}{C-1} \sum_{c=2}^C \text{ReLU}(\pi_{k,c}^{(L)} - \pi_{k,c-1}^{(L)} + \epsilon), \quad (4)$$

226 where $\epsilon > 0$ is a small tolerance. The ReLU function penalizes only violations of the expected trend.
 227 For an increasing trend, the terms in the parentheses are swapped. In practice, we constrain two
 228 prototypes with increasing and decreasing monotonic penalties.

229 **Non-monotonic Dynamics.** While monotonic constraints are simple and effective for some proto-
 230 types, the dynamics of active infections are complex and non-monotonic. Therefore, simply applying
 231 a specific predefined pattern to such prototypes can be ineffective. Instead, we regulate their behavior
 232 using one of the most fundamental principles in epidemiology: the **basic reproduction number**, R_0 ,
 233 which quantifies a pathogen’s intrinsic transmissibility. Our goal is to ensure that the infectious dy-
 234 namics learned by our model correspond to a plausible R_0 for the disease being modeled. To achieve
 235 this, we introduce a method to compute a differentiable proxy for R_0 directly from our model’s
 236 learned representations. We adapt the classic Next Generation Matrix (NGM) method (Diekmann
 237 et al., 2010), denoted as \mathbf{G} , based on the Disease-Free Equilibrium time series input. Then, the R_0
 238 is defined as the spectral radius of \mathbf{G} : $\hat{R}_0^{\text{raw}} = \max_j \|\lambda_j(\mathbf{G})\|$, which has the following lower- and
 239 upper-bounds (see proof in Appendix A.4.2):

$$240 \quad \frac{\sigma_{\min}(\mathbf{F})}{\sigma_{\max}(\mathbf{V})} \leq \max_j \|\lambda_j(\mathbf{G})\| = \max_j \|\lambda_j(\mathbf{F}\mathbf{V}^{-1})\| \leq \frac{\sigma_{\max}(\mathbf{F})}{\sigma_{\min}(\mathbf{V})}, \quad (5)$$

241 where \mathbf{F} is the Jacobian of the rates of flows from uninfected to infected classes evaluated at the
 242 disease-free equilibrium, and \mathbf{V} is the Jacobian of the rates of all other flows to and from infected
 243 compartments, $\lambda_j(\mathbf{G})$ are the eigenvalues of \mathbf{G} and $\sigma_{\min}(\mathbf{V})$ is the smallest singular value of \mathbf{V} .
 244 Since computing the inverse of matrix \mathbf{V} is not always numerically stable, we approximate the lower-
 245 and upper-bound of spectral radius via the singular value ratios $\frac{\sigma_{\min}(\mathbf{F})}{\sigma_{\max}(\mathbf{V})}$ and $\frac{\sigma_{\max}(\mathbf{F})}{\sigma_{\min}(\mathbf{V})}$. Further details
 246 are provided in Appendix A.4.1, and here we provide a pseudo code for calculating R_0 in Table 1.
 247

248 **Algorithm 1** NGM-PROXY(R_0): Differentiable R_0 bounds

249 **Require:** Encoder f_{enc} , prototypes \mathbf{E} , estimator g , mix operator ϕ , disease d , range $[R_0^{\text{lo}}, R_0^{\text{hi}}]$.
 250 **Ensure:** Estimates $(\hat{R}_0^{\text{lo}}, \hat{R}_0^{\text{hi}})$, loss \mathcal{L}_{R_0} .
 251 1: **DFE:** Compute DFE embedding $\mathbf{E}_{\text{DFE}} \leftarrow f_{\text{enc}}(\mathbf{X}_{\text{DFE}})$ and weights $\pi^* \leftarrow \text{softmax}(\mathbf{E}_{\text{DFE}} \mathbf{E}^\top)$.
 252 2: **F:** For each $j = 1, \dots, K$, compute column $\mathbf{F}_{:,j} \leftarrow \max\{0, g(\phi(\hat{\pi}^{(j)}, \mathbf{E}_{\text{DFE}})) - \pi^*\}$, where
 253 $\hat{\pi}^{(j)}$ is a small perturbation on π_j^* .
 254 3: **V:** For each $j = 1, \dots, K$, with $\pi^{\text{evolved}} \leftarrow g(\phi(\mathbf{e}_j, \mathbf{E}_{\text{DFE}}))$, compute column $\mathbf{V}_{:,j}$ where
 255 $V_{ij} = \max\{0, \pi_i^{\text{evolved}}\}$ for $i \neq j$ and $V_{jj} = 1 - \pi_j^{\text{evolved}}$.
 256 4: Calculate proxy bounds: $\hat{R}_0^{\text{lo}} \leftarrow \frac{\sigma_{\min}(\mathbf{F})}{\sigma_{\max}(\mathbf{V})}$, $\hat{R}_0^{\text{hi}} \leftarrow \frac{\sigma_{\max}(\mathbf{F})}{\sigma_{\min}(\mathbf{V})}$.
 257 5: Calibrate estimates $(\hat{R}_0^{\text{lo}}, \hat{R}_0^{\text{hi}}) \leftarrow \text{Calib}_\theta(\hat{R}_0^{\text{lo}}, \hat{R}_0^{\text{hi}})$ and compute the loss:
 258

$$259 \quad \mathcal{L}_{R_0} \leftarrow \max\{0, R_0^{\text{lo}}(d) - \hat{R}_0^{\text{hi}}\} + \max\{0, \hat{R}_0^{\text{lo}} - R_0^{\text{hi}}(d)\}$$

260 6: **return** $(\hat{R}_0^{\text{lo}}, \hat{R}_0^{\text{hi}}, \mathcal{L}_{R_0})$.

264 **Compartment Alignment Loss.** Finally, we combine the above losses into a single alignment
 265 objective to enforce epidemiologically meaningful behavior:

$$266 \quad \mathcal{L}_{\text{align}} = \mathcal{L}_{R_0} + \mathcal{L}_{\text{mono}} + \mathcal{L}_{\text{smooth}}, \quad \mathcal{L}_{\text{smooth}} = \sum_{k=1}^K \sum_{c=1}^{C-2} (\pi_{k,c+2}^{(L)} - 2\pi_{k,c+1}^{(L)} + \pi_{k,c}^{(L)})^2, \quad (6)$$

267 where $\mathcal{L}_{\text{smooth}}$ is a smoothness regularizer that encourages gradual transitions over time.
 268

270 Table 1: Univariate forecasting results with horizons ranging from 1 to 16 future steps. The lookback
 271 window length is set to 36. All models are evaluated over 25 runs, and we report the average MSE
 272 and MAE. For CAPE, we also report the 95% confidence interval.

273 274 275 276 277 278	279 280 281 282 283 284 285 286 287 288 289 290 291 292 293	294 295 296 297 298	Transformer-Based (w/ or w/o pre-train)																CAPE					
			Dataset		Horizon		LSTM		GRU		Dlinear		Informer		Autoformer		MOMENT		PEM		PatchTST		CAPE	
			MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE		
Covid	1	32.290	6.749	25.222	5.739	25.794	5.476	28.412	5.778	40.465	6.837	32.026	5.029	36.163	10.136	26.824	5.159	25.841 (±0.129)	3.611 (±0.011)					
	2	37.001	7.449	30.856	7.165	27.023	5.873	28.550	4.773	42.969	13.338	31.661	4.123	29.278	6.121	27.306	5.652	25.413 (±0.076)	3.763 (±0.008)					
	4	38.129	8.449	29.928	8.065	30.143	6.407	45.663	8.595	46.000	7.960	35.21	5.319	33.545	8.002	25.756	5.139	24.631 (±0.049)	3.749 (±0.034)					
	8	45.500	10.680	45.337	10.595	37.733	7.393	55.651	9.945	37.424	9.758	39.633	5.940	39.577	7.547	38.908	8.999	33.003 (±0.033)	4.827 (±0.005)					
	16	64.599	12.553	66.860	13.476	55.767	9.259	62.572	14.306	102.196	9.165	51.948	8.116	49.299	10.175	47.110	7.704	49.838 (±0.050)	7.144 (±0.007)					
ILI USA	Avg	43.504	9.176	39.640	9.008	35.293	6.882	44.170	8.679	53.811	9.411	38.096	7.375	37.573	8.396	33.181	6.530	31.745 (±0.063)	4.619 (±0.014)					
	1	0.196	0.130	0.221	0.138	0.177	0.123	0.894	0.394	0.805	0.391	0.310	0.169	0.303	0.210	0.332	0.216	0.174 (±0.003)	0.139 (±0.001)					
	2	0.281	0.156	0.322	0.167	0.224	0.148	0.395	0.229	0.806	0.399	0.328	0.176	0.328	0.193	0.283	0.180	0.192 (±0.002)	0.141 (±0.001)					
	4	0.444	0.197	0.588	0.211	0.305	0.183	0.909	0.400	0.868	0.403	0.434	0.211	0.507	0.243	0.431	0.257	0.299 (±0.001)	0.171 (±0.000)					
	8	0.549	0.225	0.771	0.258	0.469	0.234	0.929	0.426	0.899	0.427	0.511	0.222	0.519	0.271	0.497	0.265	0.469 (±0.001)	0.221 (±0.000)					
ILI Japan	Avg	1.515	0.332	0.946	0.287	0.595	0.269	0.690	0.351	0.970	0.410	0.709	0.259	0.682	0.324	0.651	0.311	0.650 (±0.001)	0.278 (±0.000)					
	1	0.597	0.208	0.569	0.212	0.354	0.191	0.764	0.360	0.870	0.406	0.459	0.207	0.468	0.248	0.439	0.246	0.357 (±0.001)	0.190 (±0.000)					
	2	0.758	1.384	0.745	0.904	0.648	0.956	2.446	1.767	0.928	2.786	1.490	4.111	0.919	2.214	1.531	3.443	0.709 (±0.002)	1.206 (±0.002)					
	4	1.278	2.733	1.736	1.169	1.253	1.919	2.632	1.884	1.464	4.003	1.542	3.811	1.310	2.769	1.834	3.355	1.191 (±0.004)	2.029 (±0.002)					
	8	1.932	1.660	1.948	2.240	1.988	2.196	2.840	1.741	1.925	1.375	2.101	2.314	1.836	1.534	2.128	1.910	1.792 (±0.002)	1.088 (±0.013)					
Measles	16	2.118	1.657	2.097	1.550	1.884	1.517	2.490	1.633	2.438	1.799	2.314	1.255	1.936	1.315	2.265	1.698	1.878 (±0.002)	1.163 (±0.001)					
	Avg	1.320	1.656	1.415	1.755	1.238	1.493	2.552	1.741	1.494	2.260	1.556	2.99	1.347	1.886	1.739	2.455	1.179 (±0.002)	1.294 (±0.004)					
	1	0.191	1.076	0.202	1.249	0.207	1.022	0.428	2.188	0.699	2.733	0.207	1.270	0.330	1.366	0.257	1.297	0.111 (±0.005)	0.615 (±0.004)					
	2	0.230	1.249	0.251	1.147	0.232	1.183	0.479	2.094	0.584	1.672	0.248	1.359	0.350	1.699	0.418	1.509	0.157 (±0.003)	1.078 (±0.002)					
	4	0.261	1.153	0.304	1.175	0.297	1.442	1.639	3.510	0.851	2.005	0.296	1.395	0.464	2.011	0.459	1.512	0.188 (±0.003)	1.352 (±0.001)					
Dengue	8	0.415	2.007	0.392	1.703	0.468	0.938	0.592	2.627	1.171	2.767	0.476	1.771	0.726	2.587	0.721	2.558	0.406 (±0.002)	2.002 (±0.000)					
	16	0.696	2.431	0.729	2.695	0.953	2.864	2.094	3.793	1.922	3.924	0.763	2.747	2.123	3.228	1.271	3.164	0.883 (±0.001)	2.836 (±0.000)					
	Avg	0.358	1.583	0.375	1.594	0.431	1.690	1.047	2.843	1.046	2.620	0.398	1.708	0.616	2.178	0.625	2.008	0.349 (±0.003)	1.576 (±0.002)					
	1	0.583	1.579	0.627	1.343	0.503	1.074	0.627	1.697	1.556	2.456	0.630	1.435	0.912	1.792	2.056	2.600	0.367 (±0.011)	1.282 (±0.003)					
	2	0.634	1.417	0.676	1.604	0.566	1.337	0.905	2.111	1.827	2.622	0.690	1.597	0.844	1.709	0.925	1.567	0.317 (±0.006)	1.272 (±0.006)					
Measles	4	0.823	2.137	0.984	1.940	0.845	1.767	1.170	2.184	2.546	2.887	0.938	1.827	1.236	2.270	1.419	2.226	0.508 (±0.003)	1.534 (±0.003)					
	8	1.534	2.758	1.375	2.623	1.488	2.410	1.392	2.428	3.679	3.322	1.504	2.283	1.806	2.587	1.581	2.261	1.169 (±0.004)	2.104 (±0.002)					
	16	2.561	3.078	2.745	2.914	2.861	3.003	3.841	3.454	4.734	3.581	2.768	2.932	2.938	3.116	4.923	3.618	2.512 (±0.003)	2.784 (±0.006)					
	Avg	1.227	2.194	1.281	2.085	1.252	1.918	1.587	2.375	2.868	2.973	1.306	2.015	1.547	2.295	2.181	2.454	0.975 (±0.005)	1.795 (±0.004)					
	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			

Table 2: Few-shot learning results with horizons ranging from 1 to 16 future steps. The length of the lookback window is set to 36. Each model is evaluated after being trained on 20%, 40%, 60%, and 80% of the full training data. $\Delta(\%)$ stands for the relative improvement after training with 20% more data in terms of average MSE over all horizons. The full result is shown in Appendix A.11.

299 300 301 302	303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 779 780 781 782 783 784 785 786 787 788 789 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 809 810 811 812 813 814 815 816 817 818 819 819 820

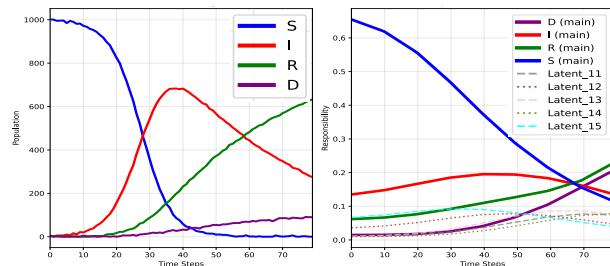
324 **Preprocessing.** For pre-training datasets, we aggregate the time series based on time and locations
 325 to acquire the national-level infection trajectory. For all the datasets used in this study, we examine
 326 the infection trajectory for all diseases and locations, and filter the time series with extremely short
 327 observations or a large number of missing values to form a high-quality evaluation testbed. Then, we
 328 split the datasets into train/val/test sets and perform normalization on the time series.

329 **Baselines** We adopt baseline models from the comprehensive *EpiLearn* toolkit (Liu et al., 2024a),
 330 comparing our model against two categories: *non-pretrained* and *pre-trained* models. *Non-pretrained*
 331 baselines including RNN-based approaches like LSTM and GRU (Wang et al., 2020; Natarajan et al.,
 332 2023), the MLP-based model DLinear (Zeng et al., 2023), and transformer-based architectures (Wu
 333 et al., 2021; Zhou et al., 2021; 2022). *Pre-trained* baselines include state-of-the-art models such as
 334 PatchTST (Nie et al., 2022) and the time series foundation model MOMENT (Goswami et al., 2024).
 335 We provide further comparisons with PEM (Kamarthi & Prakash, 2023) in the few-shot setting and
 336 ARIMA (Panagopoulos et al., 2021) in the online forecasting setting in Appendix A.8. We perform
 337 hyperparameter tuning on the learning rate and weight decay for all models. (See A.6 for details)

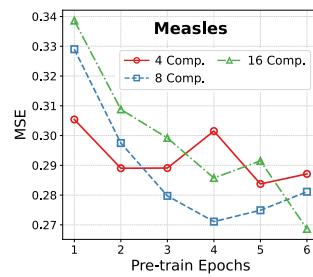
338 **Research Questions.** In the following experiment, we propose and answer the following questions:
 339 **Q1:** How does the latent compartment contribute to epidemic forecasting? **Q2:** How does the model
 340 perform on diverse downstream datasets compared to other general time series models? **Q3:** How
 341 does the model perform in the few-shot setting with fewer observations? **Q4:** Does the proposed
 342 epidemic-aware regularization help? **Q5:** How does pre-training influence downstream performance?

343 4.2 SIMULATION ON MECHANISTIC MODEL

344 Before conducting the empirical experiment, we first validate that CAPE’s latent compartments
 345 behave as intended under controlled simulations, which answers **Q1**. We constructed a simulation
 346 dataset based on the Susceptible-Infectious-Recovered-Deceased (SIRD) model for analysis. In this
 347 scenario, S, R, and D represent compartments with monotonic increasing or decreasing behaviors,
 348 while I shows a single peak pattern. We initialize our model with 16 latent compartments and assign S,
 349 I, R each with three compartment prototypes, D with two prototypes, and the rest without constraints.
 350 As shown in Figure 2, we observe that the trend and magnitude of latent compartment contribution
 351 roughly align with the actual compartments, which verifies the usefulness of our model.



362 Figure 2: Simulation on SIRD model. Left: Ground-truth
 363 trajectory; Right: Inferred compartment contributions.



362 Figure 3: Downstream performance vs.
 363 compartments distribution(See A.12).

364 4.3 FINE-TUNING (FULL-SHOT SETTING)

365 To answer **Q2**, we finetune our model on diverse downstream datasets and compare performance
 366 across baselines from various designs. For non-pre-trained models, we train the entire model on
 367 the training split, while for pre-trained models, we fine-tune a few epochs on downstream datasets
 368 by transferring the task-specific head h_ψ from pre-training to the forecasting task. We evaluate
 369 short-term and long-term performance by reporting mean MSE and MAE across horizons from 1 to
 370 16 under 25 runs on test evaluation. From Table 1, we observe that CAPE achieves the best average
 371 performance across all downstream datasets compared with baselines.

372 4.4 DATA SCARCE SCENARIO, AND ABLATION STUDY

373 To answer **Q3** and **Q4**, we evaluate the models in the few-shot and zero-shot regime with limited or
 374 no fine-tuning data, and perform ablations isolating the effects of pre-training and the epidemic-aware
 375 regularization.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 3: Zero-shot performance with a lookback window length of 12. All results are averaged over 4 weeks or days in the future. $\Delta(\%)$ stands for the relative improvement over the baselines.

Dataset	Δ (%)	CAPE	PatchTST	MOMENT
ILI USA	9.26%	0.147	0.164	0.549
ILI Japan	17.06%	0.705	0.907	2.062
Measles	3.97%	0.145	0.167	0.533
MPox	20.00%	0.0004	0.0005	0.0013
Dengue (mixed)	10.17%	0.371	0.427	1.624
RSV	26.06%	0.834	1.128	1.849
Covid (daily interval)	13.80%	5.173	6.001	18.881

Few-Shot Forecasting. Predicting outbreaks of new diseases or in unfamiliar locations is difficult for purely data-driven models with limited data, making few-shot and zero-shot forecasting essential. To simulate this, we reduce training data to [20%, 40%, 60%, 80%] and report average MSE over 1–16 time steps (Table 2). Key observations: (a) More training data consistently improves performance. (b) CAPE achieves the best results in most cases, showing strong few-shot capability. (c) Dlinear underperforms at 20% data compared to epidemic-pretrained models, but surpasses MOMENT on ILI USA and Measles when both are trained on 20%, highlighting the value of pre-training on epidemic time series. (More details are shown in A.11).

Zero-Shot Forecasting. We evaluate CAPE in a zero-shot setting by freezing transformer-based models with their pre-training heads. All models receive a 12-step historical input and predict the next 4 steps (Table 3). Key observations: (a) CAPE consistently outperforms baselines, confirming superior zero-shot ability. (b) Epidemic-specific pre-training yields better results than general pre-training (e.g., MOMENT), underscoring the importance of domain-specific data.

Ablation Study. We evaluate the contributions of CAPE’s components in Table 4. Removing pre-training leads to the largest degradation, with average MSE increasing from 0.357 to 0.400 on ILI USA. Also, dropping epidemic regularization hurts performance across most horizons and the average MSE (e.g., 1.179 to 1.197 on ILI Japan). Overall, CAPE consistently achieves the lowest errors, showing that both pre-training and epidemic regularization are important, with pre-training providing the greater benefit.

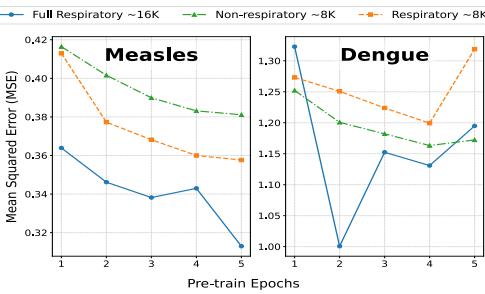


Figure 4: Downstream performance when the model is pre-trained with either respiratory or non-respiratory data.

4.5 DEEPER ANALYSIS

To answer **Q5**, we (i) examine the representation quality, transferability, and robustness against distribution shift, and (ii) further explore the power of pre-training from two perspectives: compute budget and pre-training materials.

Transferability. **(a) Cross-Location:** While we pre-train our model with influenza data from the USA, the few-shot and zero-shot evaluation on the influenza outbreak in Japan also shows superior performance, underscoring the crucial role of pre-training in enabling generalization to novel regions. **(b) Cross-Disease:** While we include various types of diseases in our pre-training dataset, novel

Table 4: Ablation study on removing pre-training and epidemic-aware regularization. Results are averaged over 25 runs of evaluation.

Dataset	H	w/o Pre-train		w/o Epidemic Reg.		CAPE
		MSE	MAE	MSE	MAE	
ILI USA	1	0.148	0.114	0.180	0.144	0.174 0.139
	2	0.229	0.151	0.200	0.145	0.192 0.141
	4	0.409	0.202	0.297	0.171	0.299 0.171
	8	0.575	0.241	0.565	0.240	0.469 0.221
	16	0.640	0.289	0.652	0.278	0.650 0.278
ILI Japan	Avg	0.400	0.199	0.379	0.196	0.357 0.190
	1	0.371	0.406	0.334	1.130	0.328 0.982
	2	0.677	1.141	0.703	1.235	0.709 1.206
	4	1.300	1.540	1.284	1.537	1.191 2.029
	8	1.835	1.190	1.798	1.082	1.792 1.088
Covid	16	1.920	1.232	1.866	1.149	1.878 1.163
	Avg	1.221	1.102	1.197	1.227	1.179 1.294

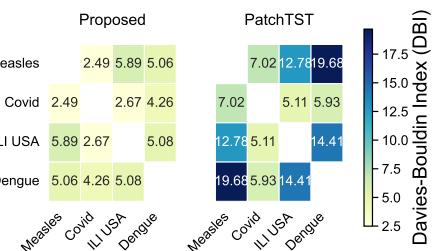


Figure 5: DBI between the embeddings of each pair of downstream datasets from the pre-trained model. (See Figure 7 for visualization.).

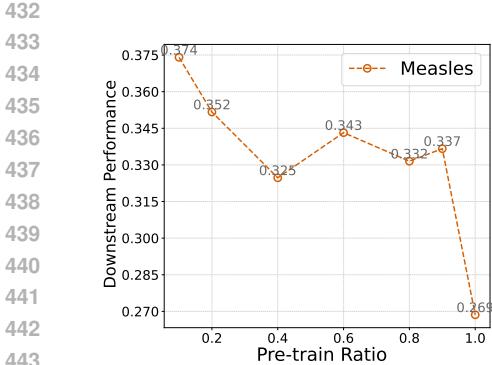


Figure 6: Downstream performance across pre-training ratios. More datasets are in A.13.

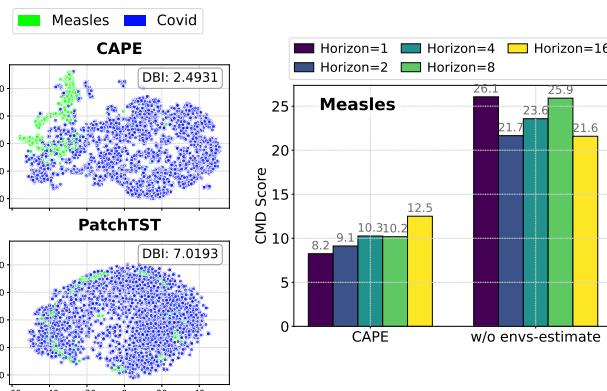


Figure 7: Representation learned by CAPE w/o compartment estimate between vs. PatchTST after pre-training.

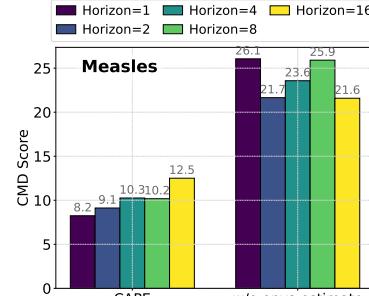


Figure 8: CMD scores w/ and w/o envs-estimate between CAPE and w/o envs-estimate. (A.14)

diseases, like COVID-19, that are unseen in the pre-training stage, are incorporated during the downstream evaluation. The ability of our model to adapt to novel diseases is proven compared to the version not pre-trained on the COVID dataset (Table 3), which surpasses the MOMENT that is not pre-trained on other diseases by 72.60%.

Representation Learning. To evaluate the representation quality learned during pre-training, we compute the DBI score of sample representations from different diseases. As shown in Figure 5 and 7, compared to PatchTST, CAPE is able to distinguish the representations from different diseases, effectively capturing the diverse underlying dynamics of different pathogens.

Tackling Distribution Shift. We define distribution shifts as changes in infection patterns from training to test data. We compute the Central Moment Discrepancy (CMD)(Zellinger et al., 2017) between training and test distributions for each disease. As shown in Figure 8, compared to the version without compartmental prototypes, CAPE achieves the lowest CMD scores, highlighting its effectiveness in mitigating distribution shifts.

Analysis on Pre-training. **(a) Impact of Compute During Pre-training.** Evaluating four downstream datasets (Figure 3), we find that increasing pre-training epochs consistently improves performance on the Measles dataset. Additionally, models with more compartment prototypes K perform better as pre-training epochs increase. **(b) Impact of Pre-Training Materials.** We examine potential biases in our pre-training dataset by splitting it into respiratory and non-respiratory diseases. As shown in Figure 4, with similar volumes of pre-training data, the model performs better when the tested disease types align with the pre-training data. However, the size of the pre-training material has a stronger impact. **(c) Impact of Pre-Training Material Scale:** To explore how the pre-training material scale affects downstream performance, we scaled the original pre-training dataset and tested it on downstream datasets. As shown in Figure 6, a sudden performance boost is observed at around a 60% reduction for both Measles and Dengue datasets.

5 CONCLUSION

We present CAPE, the first open-source pre-training framework for epidemic forecasting that learns flexible latent population states, termed compartmental prototypes, to address structural heterogeneity, hidden population states, and distribution shifts in epidemic pre-training. By designing large-scale epidemic self-supervised objectives with lightweight epidemic-aware regularization, CAPE captures transferable dynamics across diseases and regions. Extensive experiments demonstrate state-of-the-art generalization in zero-shot, few-shot, and cross-disease settings. In the future, we plan to extend CAPE to incorporate spatial dynamics for richer generalization, integrate principled approaches to uncertainty quantification, and further enhance the interpretability of the pre-trained model, ultimately advancing toward trustworthy and actionable epidemic forecasting.

486
487
ETHICS STATEMENT488
489
490
491
492

We have adhered to the ICLR Code of Ethics in preparing this submission. This work does not involve human subjects, personally identifiable data, or sensitive information. All datasets used are publicly available benchmark datasets, and we follow their respective usage and licensing guidelines. The proposed methods are designed for advancing research in high-dimensional time series forecasting and do not raise foreseeable risks of harm.

493
494
REPRODUCIBILITY STATEMENT
495496
497
498
499
500

We provide an anonymous repository containing the full source code and implementation details of our proposed CAPE at https://anonymous.4open.science/r/CAPE_ICLR26-A041/. Detailed descriptions of model architectures, training protocols, and hyperparameters are included in the main text and appendix. These resources are intended to ensure that all reported results can be independently reproduced.

501
502
REFERENCES
503504
505
Abdulmajeed, K., Adeleke, M., and Popoola, L. Online forecasting of covid-19 cases in nigeria using limited data. *Data in brief*, 30:105683, 2020.
506
507
Adhikari, B., Xu, X., Ramakrishnan, N., and Prakash, B. A. Epideep: Exploiting embeddings for epidemic forecasting. In *Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 577–586, 2019.
508
509
Borghi, P. H., Zakordonets, O., and Teixeira, J. P. A covid-19 time series forecasting model based on mlp ann. *Procedia Computer Science*, 181:940–947, 2021.
510
511
Centers for Disease Control and Prevention. Influenza-like illness (ili) data - usa. <https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html>, 2023a.
512
513
Centers for Disease Control and Prevention. Monkey pox cases data. <https://www.cdc.gov/mopo/data-research/cases/index.html>, 2023b.
514
515
Centers for Disease Control and Prevention. Rsv surveillance data. <https://www.cdc.gov/rsv/php/surveillance/rsv-net.html>, 2023c.
516
517
Cooper, I., Mondal, A., and Antonopoulos, C. G. A sir model assumption for the spread of covid-19 in different communities. *Chaos, Solitons & Fractals*, 139:110057, 2020.
518
519
Diekmann, O., Heesterbeek, J. A. P., and Roberts, M. G. The construction of next-generation matrices for compartmental epidemic models. *Journal of the royal society interface*, 7(47):873–885, 2010.
520
521
Dong, E., Du, H., and Gardner, L. An interactive web-based dashboard to track covid-19 in real time. *The Lancet infectious diseases*, 20(5):533–534, 2020.
522
523
Fraikin, A., Bennetot, A., and Allassonnière, S. T-rep: Representation learning for time series using time-embeddings. *arXiv preprint arXiv:2310.04486*, 2023.
524
525
Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li, S., and Dubrawski, A. Moment: A family of open time-series foundation models. *arXiv preprint arXiv:2402.03885*, 2024.
526
527
He, S., Peng, Y., and Sun, K. Seir modeling of the covid-19 and its dynamics. *Nonlinear dynamics*, 101:1667–1680, 2020.
528
529
Kamarthi, H. and Prakash, B. A. Pems: Pre-trained epidemic time-series models. *arXiv preprint arXiv:2311.07841*, 2023.
530
531
Lau, M. S., Becker, A. D., Korevaar, H. M., Caudron, Q., Shaw, D. J., Metcalf, C. J. E., Bjørnstad, O. N., and Grenfell, B. T. A competing-risks model explains hierarchical spatial coupling of measles epidemics en route to national elimination. *Nature Ecology & Evolution*, 4(7):934–939, 2020.

540 Liang, Y., Wen, H., Nie, Y., Jiang, Y., Jin, M., Song, D., Pan, S., and Wen, Q. Foundation models for
 541 time series analysis: A tutorial and survey. In *Proceedings of the 30th ACM SIGKDD Conference*
 542 *on Knowledge Discovery and Data Mining*, pp. 6555–6565, 2024.

543

544 Liu, Z., Li, Y., Wei, M., Wan, G., Lau, M. S., and Jin, W. Epilearn: A python library for machine
 545 learning in epidemic modeling. *arXiv preprint arXiv:2406.06016*, 2024a.

546 Liu, Z., Wan, G., Prakash, B. A., Lau, M. S., and Jin, W. A review of graph neural networks
 547 in epidemic modeling. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge*
 548 *Discovery and Data Mining*, pp. 6577–6587, 2024b.

549

550 Madden, W. G., Jin, W., Lopman, B., Zufle, A., Dalziel, B., E. Metcalf, C. J., Grenfell, B. T., and Lau,
 551 M. S. Deep neural networks for endemic measles dynamics: Comparative analysis and integration
 552 with mechanistic models. *PLOS Computational Biology*, 20(11):e1012616, 2024.

553 Natarajan, S., Kumar, M., Gadde, S. K. K., and Venugopal, V. Outbreak prediction of covid-19 using
 554 recurrent neural network with gated recurrent units. *Materials Today: Proceedings*, 80:3433–3437,
 555 2023.

556

557 National Institute of Infectious Diseases. Infectious diseases weekly report (idwr) - japan. <https://www.niid.go.jp/niid/en/idwr-e.html>, 2023.

558

559 Nguyen, M. M., Freedman, A. S., Ozbay, S. A., and Levin, S. A. Fundamental bound on epidemic
 560 overshoot in the sir model. *Journal of the Royal Society Interface*, 20(209):20230322, 2023.

561

562 Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, M., and Agha, R.
 563 The socio-economic implications of the coronavirus pandemic (covid-19): A review. *International*
 564 *journal of surgery*, 78:185–193, 2020.

565 Nie, Y., Nguyen, N. H., Sinthong, P., and Kalagnanam, J. A time series is worth 64 words: Long-term
 566 forecasting with transformers. *arXiv preprint arXiv:2211.14730*, 2022.

567

568 Obata, K., Kawabata, K., Matsubara, Y., and Sakurai, Y. Mining of switching sparse networks for
 569 missing value imputation in multivariate time series. In *Proceedings of the 30th ACM SIGKDD*
 570 *Conference on Knowledge Discovery and Data Mining*, pp. 2296–2306, 2024.

571

572 OpenDengue. Dengue data across countries. <https://opendengue.org/>, 2023.

573

574 Panagopoulos, G., Nikolentzos, G., and Vazirgiannis, M. Transfer graph neural networks for pandemic
 575 forecasting. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp.
 4838–4845, 2021.

576

577 Pham, Q., Liu, C., Sahoo, D., and Hoi, S. C. Learning fast and slow for online time series forecasting.
 578 *arXiv preprint arXiv:2202.11672*, 2022.

579

580 Qu, M., Bengio, Y., and Tang, J. Gmnn: Graph markov neural networks. In *International conference*
 581 *on machine learning*, pp. 5241–5250. PMLR, 2019.

582

583 Rasul, K., Ashok, A., Williams, A. R., Khorasani, A., Adamopoulos, G., Bhagwatkar, R., Biloš, M.,
 584 Ghonia, H., Hassen, N., Schneider, A., et al. Lag-llama: Towards foundation models for time series
 585 forecasting. In *R0-FoMo: Robustness of Few-shot and Zero-shot Learning in Large Foundation*
 586 *Models*, 2023.

587

588 Rodríguez, A., Cui, J., Ramakrishnan, N., Adhikari, B., and Prakash, B. A. Einns: epidemiologically-
 589 informed neural networks. In *Proceedings of the AAAI conference on artificial intelligence*,
 590 volume 37, pp. 14453–14460, 2023.

591

592 Sahai, A. K., Rath, N., Sood, V., and Singh, M. P. Arima modelling & forecasting of covid-19 in
 593 top five affected countries. *Diabetes & metabolic syndrome: clinical research & reviews*, 14(5):
 1419–1427, 2020.

594

595 Shahid, F., Zameer, A., and Muneeb, M. Predictions for covid-19 with deep learning models of lstm,
 596 gru and bi-lstm. *Chaos, Solitons & Fractals*, 140:110212, 2020.

594 Shang, A. C., Galow, K. E., and Galow, G. G. Regional forecasting of covid-19 caseload by
595 non-parametric regression: a var epidemiological model. *AIMS public health*, 8(1):124, 2021.
596

597 van Panhuis, W. G., Cross, A., and Burke, D. S. Project tycho 2.0: a repository to improve the
598 integration and reuse of data for global population health. *Journal of the American Medical
599 Informatics Association*, 25(12):1608–1617, 2018.

600 Wan, G., Liu, Z., Lau, M. S., Prakash, B. A., and Jin, W. Epidemiology-aware neural ode with
601 continuous disease transmission graph. *arXiv preprint arXiv:2410.00049*, 2024.

602

603 Wang, D., Zhang, S., and Wang, L. Deep epidemiological modeling by black-box knowledge
604 distillation: an accurate deep learning model for covid-19. In *Proceedings of the AAAI Conference
605 on Artificial Intelligence*, volume 35, pp. 15424–15430, 2021.

606 Wang, P., Zheng, X., Ai, G., Liu, D., and Zhu, B. Time series prediction for the epidemic trends
607 of covid-19 using the improved lstm deep learning method: Case studies in russia, peru and iran.
608 *Chaos, Solitons & Fractals*, 140:110214, 2020.

609

610 Wang, Y., Wu, H., Dong, J., Liu, Y., Long, M., and Wang, J. Deep time series models: A comprehen-
611 sive survey and benchmark. *arXiv preprint arXiv:2407.13278*, 2024a.

612 Wang, Y., Wu, H., Dong, J., Liu, Y., Long, M., and Wang, J. Deep time series models: A comprehen-
613 sive survey and benchmark. 2024b.

614

615 Wu, C. J. On the convergence properties of the em algorithm. *The Annals of statistics*, pp. 95–103,
616 1983.

617

618 Wu, H., Xu, J., Wang, J., and Long, M. Autoformer: Decomposition transformers with auto-
619 correlation for long-term series forecasting. *Advances in neural information processing systems*,
620 34:22419–22430, 2021.

621

622 Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., and Long, M. Timesnet: Temporal 2d-variation modeling
623 for general time series analysis. In *International Conference on Learning Representations*, 2023.

624

625 Yue, Z., Wang, Y., Duan, J., Yang, T., Huang, C., Tong, Y., and Xu, B. Ts2vec: Towards universal
626 representation of time series. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
627 volume 36, pp. 8980–8987, 2022.

628

629 Zellinger, W., Grubinger, T., Lughofer, E., Natschläger, T., and Saminger-Platz, S. Central moment
630 discrepancy (cmd) for domain-invariant representation learning. *arXiv preprint arXiv:1702.08811*,
631 2017.

632

633 Zeng, A., Chen, M., Zhang, L., and Xu, Q. Are transformers effective for time series forecasting? In
634 *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 11121–11128, 2023.

635

636 Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., and Eickhoff, C. A transformer-based
637 framework for multivariate time series representation learning. In *Proceedings of the 27th ACM
638 SIGKDD conference on knowledge discovery & data mining*, pp. 2114–2124, 2021.

639

640 Zhang, X., Zhao, Z., Tsiligkaridis, T., and Zitnik, M. Self-supervised contrastive pre-training for time
641 series via time-frequency consistency. *Advances in Neural Information Processing Systems*, 35:
642 3988–4003, 2022.

643

644 Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z.,
645 et al. A survey of large language models. *arXiv preprint arXiv:2303.18223*, 2023.

646

647 Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., and Zhang, W. Informer: Beyond efficient
648 transformer for long sequence time-series forecasting. In *Proceedings of the AAAI conference on
649 artificial intelligence*, volume 35, pp. 11106–11115, 2021.

650

651 Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., and Jin, R. Fedformer: Frequency enhanced
652 decomposed transformer for long-term series forecasting. In *International conference on machine
653 learning*, pp. 27268–27286. PMLR, 2022.

648 A APPENDIX
649650 A.1 POTENTIAL IMPACT
651

652 This paper advances the interdisciplinary fields of machine learning and epidemiology by enhancing
653 the accuracy of epidemic forecasting in data-limited settings. We outline the potential impacts as
654 follows:

655 **Early Insights.** We provide novel insights into how pre-training and compartment modeling improve
656 epidemic forecasting. Our results demonstrate that pre-training significantly enhances model accuracy,
657 with gains increasing as more pre-training data is incorporated. This finding paves the way for future
658 research to develop foundational models in epidemic analysis using larger datasets. Additionally, we
659 confirm the importance of accounting for both inherent disease dynamics and compartmental factors
660 to achieve robust forecasting performance.

661 **Social Impact.** Epidemic time series data are often sparse due to limited sampling rates, hindering
662 public health organizations' ability to accurately predict infections during novel disease outbreaks.
663 This paper addresses this challenge by showcasing the few-shot and zero-shot forecasting capabilities
664 of pre-trained models. These capabilities can provide powerful tools for early warning and
665 timely intervention, ultimately supporting more effective public health responses and safeguarding
666 communities against emerging infectious diseases.

667 A.2 LIMITATIONS
668

669 While CAPE shows strong performance, it has several limitations. First, it does not currently
670 incorporate uncertainty estimation, which is important for risk-aware decision-making. Second, its
671 effectiveness may be constrained by the scale and diversity of available data. Lastly, the learned
672 compartment representations lack interpretability, limiting their transparency and potential for insight
673 in public health contexts.

674 A.3 USE OF LLMs
675

676 We use LLMs to check grammar and polish the language of this paper for clarity.

677 A.4 THEORETICAL ANALYSIS
678679 A.4.1 INFERENCE OF R_0
680

681 **(1) Disease-Free Equilibrium (DFE):** Calculation of \mathbf{F} and \mathbf{V} requires defining the population
682 flow, and since our framework does not utilize explicit population flows, we use the learned latent
683 compartment contributions, $\boldsymbol{\pi}$, as a potential *differentiable proxy that correlates with population*,
684 as demonstrated in Figure 2. Specifically, we establish the compartment contributions at DFE: $\boldsymbol{\pi}^*$,
685 which represents a scenario with no ongoing epidemic, by feeding a zero-infection time series,
686 $\mathbf{X}_{\text{DFE}} \in \mathbb{R}^{T \times 1}$, into the encoder:

$$687 \boldsymbol{\pi}^* = \frac{1}{C} \sum_{c=1}^C \text{softmax}(\mathbf{E}_{\text{DFE}} \mathbf{E}^T [c, :]) \in \mathbb{R}^K, \quad \mathbf{E}_{\text{DFE}} \leftarrow f_{\text{enc}}(\mathbf{X}_{\text{DFE}}), \quad (7)$$

688 where \mathbf{E}_{DFE} are the weighted sum of latent compartment prototypes at the DFE.

689 **(2) Calculation of \mathbf{F} :** The \mathbf{F} matrix, which quantifies new infections, is estimated by applying
690 perturbation on each infectious compartment: $\mathbf{H}_{\text{pert},(j)} = \phi(\hat{\boldsymbol{\pi}}, \mathbf{E}_{\text{DFE}}) = (1 - \alpha) \mathbf{E}_{\text{DFE}} + \alpha \hat{\boldsymbol{\pi}}^T \mathbf{E}$,
691 where $\alpha = 0.1$, $\hat{\boldsymbol{\pi}} = \frac{\boldsymbol{\pi}^* + \boldsymbol{\epsilon}_j}{\|\boldsymbol{\pi}^* + \boldsymbol{\epsilon}_j\|_1}$ and $\boldsymbol{\epsilon}_j$ is a perturbation applied on the entry (compartment) j .
692 Therefore, we get the element of \mathbf{F} via:

$$693 F_{ij} = \max(0, \pi_i^{\text{new},(j)} - \pi_i^*), \quad \boldsymbol{\pi}^{\text{new},(j)} = g(\mathbf{H}_{\text{pert},(j)}). \quad (8)$$

694 **(3) Calculation of \mathbf{V} :** \mathbf{V} characterizes transition rates out of infectious compartments, where V_{jj}
695 represents the total departure rate from compartment j and V_{ij} captures transitions from compartment
696 j to compartment i . For each infectious compartment j , we initialize with unit mass $\boldsymbol{\pi}^{\text{unit},(j)}$ and

702 acquire the updated contributions in a similar way: $\pi^{\text{evolved},(j)} = g(\phi(\pi^{\text{unit},(j)}, \mathbf{E}_{\text{DFE}}))$. Then the V
 703 matrix elements are computed as:

704

$$705 \quad 706 \quad 707 \quad V_{ij} = \begin{cases} \max(0, \pi_i^{\text{evolved},(j)}) & \text{if } i \neq j, \\ \pi_j^{\text{unit},(j)} - \pi_j^{\text{evolved},(j)} & \text{if } i = j, \end{cases} \quad (9)$$

708 where V_{ij} measures mass appearing in compartment i when j initially contains unit mass, and V_{jj}
 709 quantifies the total rate of departure from compartment j . Finally, a linear layer is applied to align
 710 the scale of the estimated lower- and upper-bound with the ground-truth range of R_0 and the loss
 711 is computed as: $\mathcal{L}_{R_0} = \text{RELU}(\hat{R}_0^{\text{lower}}, R_0^{\text{lower}}) + \text{RELU}(\hat{R}_0^{\text{upper}}, R_0^{\text{upper}})$. This NGM-based approach
 712 provides a theoretically grounded method for computing R_0 that respects the compartmental structure
 713 while being differentiable for end-to-end training.

714 **A.4.2 PROOF OF EQUATION 5**

715 **Setup and Preliminaries.** Let $V \in \mathbb{C}^{m \times n}$. The (operator) 2-norm of a matrix M is

716

$$717 \quad 718 \quad 719 \quad \|M\|_2 = \sup_{x \neq 0} \frac{\|Mx\|_2}{\|x\|_2} = \max_{\|x\|_2=1} \|Mx\|_2.$$

720 The *singular values* $\sigma_1(V) \geq \dots \geq \sigma_r(V) \geq 0$ (with $r = \text{rank}(V)$) are, by definition, the
 721 nonnegative square roots of the eigenvalues of V^*V (where $*$ denotes conjugate transpose), counted
 722 with multiplicity and ordered nonincreasingly.

723 For any matrix M and any vector x ,

724

$$\sigma_{\min}(M) \|x\|_2 \leq \|Mx\|_2 \leq \sigma_{\max}(M) \|x\|_2, \quad \|M\|_2 = \sigma_{\max}(M).$$

725 For square M , the singular values $\{\sigma_i(M)\}_{i=1}^n$ and eigenvalues $\{\lambda_i(M)\}_{i=1}^n$ satisfy

726

$$727 \quad 728 \quad \prod_{i=1}^n \sigma_i(M) = \sqrt{\det(M^*M)} = |\det M| = \prod_{i=1}^n |\lambda_i(M)|.$$

729 In particular, by comparing geometric means to extrema,

730

$$731 \quad 732 \quad \sigma_{\min}(M) \leq \left(\prod_{i=1}^n \sigma_i(M) \right)^{1/n} = \left(\prod_{i=1}^n |\lambda_i(M)| \right)^{1/n} \leq \max_i |\lambda_i(M)| = \rho(M). \quad (\text{P1})$$

733 Thus, for any square M ,

734

$$\sigma_{\min}(M) \leq \rho(M) \leq \sigma_{\max}(M) = \|M\|_2. \quad (\text{P2})$$

735 **Theorem A.1** (Bounds for R_0). *Let $F, V \in \mathbb{C}^{n \times n}$ with V invertible, and define*

736

$$R_0 \equiv \rho(FV^{-1}),$$

737 where $\rho(\cdot)$ denotes the spectral radius, $\|\cdot\|_2$ the operator 2-norm, and $\sigma_{\max}(\cdot), \sigma_{\min}(\cdot)$ the maximal
 738 and minimal singular values, respectively. Then R_0 satisfies the bounds

739

$$740 \quad 741 \quad \boxed{\frac{\sigma_{\min}(F)}{\sigma_{\max}(V)} \leq \rho(FV^{-1}) \leq \frac{\sigma_{\max}(F)}{\sigma_{\min}(V)}}.$$

742 **Derivation for Lower bound.**

743 *Proof.* For any compatible A, B and any unit vector x ,

744

$$745 \quad \|ABx\|_2 \geq \sigma_{\min}(A) \|Bx\|_2 \geq \sigma_{\min}(A) \sigma_{\min}(B) \|x\|_2,$$

746 hence

747

$$\sigma_{\min}(AB) \geq \sigma_{\min}(A) \sigma_{\min}(B). \quad (\text{S1})$$

748 Apply (S1) with $A = F$ and $B = V^{-1}$ (with V invertible):

749

$$\sigma_{\min}(FV^{-1}) \geq \sigma_{\min}(F) \sigma_{\min}(V^{-1}).$$

756 Using the inversion identity for singular values,
 757

$$758 \quad 759 \quad \sigma_{\min}(V^{-1}) = \frac{1}{\sigma_{\max}(V)},$$

760 we obtain
 761

$$762 \quad 763 \quad \boxed{\sigma_{\min}(FV^{-1}) \geq \frac{\sigma_{\min}(F)}{\sigma_{\max}(V)}}. \quad (L1)$$

765 By (P1) applied to $M = FV^{-1}$, we get:
 766

$$768 \quad \sigma_{\min}(FV^{-1}) \leq \rho(FV^{-1}). \quad (L2)$$

769 Combining (L1) and (L2) yields the rigorous lower bound
 770

$$771 \quad 772 \quad \boxed{\frac{\sigma_{\min}(F)}{\sigma_{\max}(V)} \leq \rho(FV^{-1})}. \quad (LB)$$

773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147

810 Table 5: Pre-training datasets from Project Tycho with basic reproduction number (R_0) ranges.
811

Disease	Number of States	Total Length	Non-Respiratory	R_0 Range
Gonorrhea	39	37,824	Yes	1.00–1.01
Meningococcal Meningitis	37	44,890	No	0.6–1.6
Varicella	30	33,298	No	10–12
Typhoid Fever	44	89,868	Yes	2.8–7.0
Acute Poliomyelitis	47	74,070	Yes	5–7
Hepatitis B	31	34,322	Yes	1.0–3.3
Pneumonia	41	68,408	No	1.4–1.4
Hepatitis A	38	37,303	Yes	1.1–3.5
Influenza	42	61,622	No	1.2–1.6
Scarlet Fever	48	129,460	No	0.6–2.0
Smallpox	44	71,790	No	3.5–6
Tuberculosis	39	95,564	No	0.24–4.3
Measles	50	151,867	No	12–18
Diphtheria	46	112,037	No	1.7–4.3
Mumps	41	50,215	No	4–7
Pertussis	46	109,761	No	12–17
Rubella	7	6,274	No	3.4–7.0

825
826 Table 6: Statistics of the downstream datasets for evaluation.
827

Disease	Number of Regions	Sampling Rate	Respiratory	Total Length	R_0
ILI USA	1	Weekly	Yes	966	1.2–1.4
ILI Japan	1	Weekly	Yes	348	1.0–2.0
Measles	1	Bi-weekly	Yes	1,108	12–18
Dengue	23	Mixed	No	10,739	3.12–5.39
RSV	13	Weekly	Yes	4,316	1–5
MPox	1	Daily	No	876	1.1–2.7
COVID	16	Daily	Yes	12,800	2.9–9.5

834
835
836 A.5.1 PRE-TRAIN DATASETS
837

838 In this study, we utilize a comprehensive collection of 17 distinct diseases from the United States,
839 sourced from Project Tycho. These diseases encompass both respiratory and non-respiratory cat-
840 egories and serve as the foundation for pre-training two transformer-based models: **CAPE**, and
841 **PatchTST**. The selection criteria for these datasets were meticulously chosen based on the following
842 factors:

843 **Temporal Coverage and Geographic Representation:** We prioritized diseases with extensive time
844 series data and coverage across multiple regions to ensure the models are trained on diverse and
845 representative datasets.

846 **Consistent Sampling Rate:** All selected datasets maintain a uniform sampling rate, which is crucial
847 for the effective training of transformer models that rely on temporal patterns.

848 **Data Quantity:** Diseases with larger datasets in terms of both temporal length and the number of
849 regions were preferred to enhance the robustness and generalizability of the models.

850 Among the 17 diseases, five are classified as non-respiratory, providing a balanced representation that
851 allows the models to learn from varied disease dynamics. Before the pre-training phase, each disease
852 dataset underwent a normalization process to standardize the data scales, ensuring comparability
853 across different diseases. Subsequently, the datasets were aggregated at the national level based on
854 their corresponding timestamps. The details of the pre-training datasets are summarized in Table 5.

855
856 A.5.2 DOWNSTREAM DATASETS
857

858 In addition, we collect seven datasets of different types of diseases from diverse sources for down-
859 stream evaluations, which are all normalized without further processing. A summary of the down-
860 stream datasets is shown in Table 6.

861 All collected diseases can be categorized into **Respiratory** and **Non-respiratory** types, which differ
862 in their modes of transmission:

864 **Respiratory.** Respiratory diseases are transmitted primarily through the air via aerosols or respiratory
 865 droplets expelled when an infected individual coughs, sneezes, or talks. These diseases predominantly
 866 affect the respiratory system, including the lungs and throat.

867 **Non-respiratory.** Non-respiratory diseases are transmitted through various other routes such as direct
 868 contact, vectors (e.g., mosquitoes, ticks), contaminated food or water, and sexual activities. These
 869 diseases can affect multiple body systems and have diverse transmission pathways unrelated to the
 870 respiratory system.

871 A more detailed description of each dataset is shown below:

- 873 • **ILI USA (Centers for Disease Control and Prevention, 2023a):** The weekly influenza-like-
 874 illness infection was reported by the CDC in the United States. We use the national-level infection
 875 counts from 2002 to 2020, which include various disease such as H1N1, H3N2v, etc.
- 876 • **ILI Japan (National Institute of Infectious Diseases, 2023):** This dataset is collected from the
 877 Infectious Diseases Weekly Report (IDWR) in Japan, which contains national counts of weekly
 878 influenza-like-illness infections from August 2012 to March 2019.
- 879 • **Measles (Lau et al., 2020):** The measles dataset contains biweekly measles infections in England
 880 from 1906 to 1948.
- 881 • **Dengue (OpenDengue, 2023):** OpenDengue aims to build and maintain a database of dengue case
 882 counts for every dengue-affected country worldwide since 1990 or earlier. We selected 23 countries
 883 for the experiment, which reports daily to weekly infections.
- 884 • **RSV (Centers for Disease Control and Prevention, 2023c):** The Respiratory Syncytial Virus
 885 (RSV) infections in the US are reported by the RSV-NET from CDC. We use the weekly infections
 886 across 13 states from 2016 to 2024.
- 887 • **MPox (Centers for Disease Control and Prevention, 2023b):** The clade II MPox case trends
 888 data in the US is reported by CDC. We use the nationwide weekly infections from 2022 to 2024.
- 889 • **COVID (Dong et al., 2020):** The original data is from the Novel Coronavirus Visual Dashboard
 890 operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU
 891 CSSE). We use the daily COVID-19 infections collected by JHU from 2020 to 2022 across 16
 892 states.

893 A.6 IMPLEMENTATION DETAILS

895 **Motivation for Our Settings.** Our primary focus is on pre-training epidemic forecasting models
 896 using temporal (time series) data rather than spatiotemporal data. This design choice is motivated by
 897 the following considerations:

- 898 • We aim to establish the foundation for epidemic pre-training in the temporal setting, which remains
 899 unexplored — only one prior work (Kamarthi & Prakash, 2023) addresses this area, and it also
 900 focuses on temporal setting. As shown in Sections 4.2-4.5, we address critical questions around
 901 generalization, few-shot/zero-shot performance, and pre-training dynamics — topics that remain
 902 open even without spatial context.
- 903 • Temporal models are broadly applicable and more data-efficient, especially when spatial data is
 904 unavailable or unreliable. Many real-world epidemic datasets lack well-defined spatial graphs, and
 905 building them (e.g., from mobility or administrative data) is costly and complex, particularly at
 906 scale. These inconsistencies also hinder fair comparisons between temporal and spatiotemporal
 907 models.
- 908 • Our framework is extensible to spatiotemporal modeling. Specifically, the temporal input can
 909 be replaced with graph-structured data, and the predictor can incorporate graph-based encoders.
 910 Exploring this direction is exciting future work, but we believe temporal pre-training is a crucial
 911 first step toward that goal.

912 **Zero-Shot.** Once pre-trained, our CAPE framework can be directly utilized for zero-shot fore-
 913 casting, where the model remains frozen and no parameter is updated. Similar to the MOMENT
 914 model (Goswami et al., 2024), we retain the pre-trained reconstruction head and mask the last patch
 915 of the input to perform forecasting: $\hat{y} = \hat{x}_{[T-c:T]}$.

916 **Data Splits.** For the ILI USA, Measles, and Dengue datasets, we split the data into 60% training,
 917 10% validation, and 30% test. Other datasets are divided into 40% training, 20% validation, and 40%
 918 test. During test, we use the model checkpoint with the best validation performance.

918
 919 **Model Details.** We design our model by stacking 4 layers of the CAPE encoder, each with a hidden
 920 size of 512 and 4 attention heads. For compartment representations, we incorporate 16 distinct
 921 compartments, each encoded with a size of 512. We constrain two prototypes with monotonic
 922 increase or decrease loss, respectively, 6 with the non-monotonic loss, and leave the rest to be
 923 unconstrained. To ensure a fair comparison, PatchTST is configured with the same number of layers
 924 and hidden size as our CAPE-based model. For all other baseline models, we adopt the architectures
 925 as reported in previous studies (Wang et al., 2024a; Kamarthi & Prakash, 2023; Panagopoulos et al.,
 926 2021).

927 **Training Details:**

928 • We adopt an input length of 36 (Wu et al., 2023; Wang et al., 2024b) and a patch size of 4 for
 929 applicable models. For the compartment estimator defined in Eq. equation 1, a shared weight w_k
 930 is used for all compartment representations. All results are evaluated using Mean Squared Error
 (MSE).

931 • CAPE follows the general EM framework, whose convergence is well-studied (Obata et al., 2024;
 932 Qu et al., 2019; Wu, 1983). To ensure stable convergence, we use a small learning rate (1e-5) with
 933 L2 regularization, train for 150 epochs, and select the model with the lowest validation error.

934 • For the training process, we pre-train CAPE and PatchTST on a single Nvidia L40 GPU. During
 935 pre-training, we utilize only 70% of the available training data, specifically the first 70% of the
 936 dataset for each disease category. We set the learning rate to 1×10^{-5} . In the CAPE pre-training
 937 strategy, we assign a weight of 1e-5 to λ to balance the contribution of alignment loss to the whole
 938 loss function. We use a general R_0 range of 0-20 during pre-training.

939 • After pre-training, we fine-tune the entire model for five epochs with a changing learning rate,
 940 weight decay, and a larger λ . We also apply the disease-specific R_0 (shown in Table 6) for
 941 supervision during this phase. The best-performing model is selected based on its performance on
 942 the validation set. Similarly, for all baseline models, we train each until convergence and select the
 943 optimal model based on validation set performance for the subsequent test.

944 A.7 COMPARTMENT INFLUENCE

945 We also add Gaussian noise to mixture weights (Equation 1), causing performance drops, which
 946 highlights the importance of accurate compartment estimation:

947 Table 7: Model Performance under Different Noise Scales

948

949 Noise Scale (%)	950 5%	951 10%	952 15%	953 20%
954 MSE	0.327	0.373	0.456	0.559
955 MAPE	0.198	0.211	0.236	0.264

956 A.8 COMPARISONS WITH PEM AND ARIMA

957 In this section, we provide further comparisons with the Statistical model ARIMA (Panagopoulos
 958 et al., 2021), which is configured in an online forecasting setting (Pham et al., 2022; Abdulmajeed
 959 et al., 2020) where parameters are updated with each new sample. As shown in Table 8, ARIMA
 960 typically outperforms CAPE in the short-term forecasting, while CAPE outperforms ARIMA in
 961 long-term forecasting and the averaged performance.

962 A.9 ONLINE FORECASTING COMPARISON

963 We further adopted an online setting used by EINNs Rodríguez et al. (2023) and Epideep Adhikari
 964 et al. (2019), where model parameters are consistently updated during forecasting. We compare the
 965 results in Table 9.

972 Table 8: Mean Squared Error (MSE) comparison between ARIMA, CAPE, and PEM models. The
 973 lowest MSE for each horizon is marked in bold.
 974

975 Horizon	976 ILI USA			977 ILI Japan			978 Measles			979 Dengue			980 Covid		
	981 ARIMA	982 CAPE	983 PEM	984 ARIMA	985 CAPE	986 PEM	987 ARIMA	988 CAPE	989 PEM	990 ARIMA	991 CAPE	992 PEM	993 ARIMA	994 CAPE	995 PEM
1	0.138	0.174	0.303	0.358	0.328	0.734	0.070	0.111	0.330	0.244	0.367	0.912	33.779	25.841	36.163
2	0.203	0.192	0.328	0.772	0.709	0.919	0.120	0.157	0.350	0.373	0.317	0.844	33.199	25.413	29.278
4	0.354	0.299	0.507	1.720	1.191	1.310	0.223	0.188	0.464	0.696	0.508	1.236	32.476	24.631	33.545
8	0.702	0.469	0.519	2.991	1.792	1.836	0.481	0.406	0.726	1.736	1.169	1.806	36.567	33.003	39.577
16	1.119	0.650	0.682	2.590	1.878	1.936	1.047	0.883	1.213	4.131	2.512	2.938	42.908	49.838	49.299
Avg	0.503	0.357	0.468	1.686	1.179	1.347	0.388	0.349	0.616	1.436	0.975	1.547	35.785	31.745	37.573

Table 9: Comparison of model performance for online evaluation setting.

983 Datasets	984 Horizon	985 EXPFM			986 EINN			987 EpiDeep		
		988 MSE	989 MAE	990 RMSE	991 MSE	992 MAE	993 RMSE	994 MSE	995 MAE	996 RMSE
ILI USA	1	32.6287±0.5659	5.4137±0.0407	5.7119±0.0496	34.9396±0.8649	5.6884±0.0659	5.9105±0.0736	46.8892±0.5597	6.6289±0.0353	6.8474±0.0409
	2	36.7515±0.8805	5.7716±0.0959	6.0619±0.0724	36.5572±1.4472	5.8143±0.1435	6.0451±0.1192	48.3728±0.5039	6.7256±0.0351	6.9550±0.0363
	4	40.9876±0.5186	6.1004±0.0660	6.4020±0.0404	41.1675±0.3398	6.1796±0.0618	6.4161±0.0265	50.6746±0.1006	6.8778±0.0063	7.1186±0.0071
Measles	1	0.2042±0.1042	0.3971±0.1161	0.4364±0.1172	0.4718±0.2292	0.5851±0.1712	0.6688±0.1565	1.1160±0.0935	0.9424±0.0345	1.0555±0.0439
	2	0.2581±0.0495	0.4535±0.0538	0.5054±0.0513	0.4408±0.1457	0.5702±0.0988	0.6542±0.1132	1.0842±0.0513	0.9305±0.0227	1.0410±0.0248
	4	0.4384±0.0698	0.5330±0.0342	0.6600±0.0531	0.6228±0.0775	0.6710±0.0523	0.7877±0.0486	1.1505±0.0326	0.9505±0.0140	1.0725±0.0152

997 A.10 FULL RESULTS ON PRE-TRAIN DATASETS

998 In addition to evaluating the performance of the models on downstream datasets, we also provide the
 999 in-domain evaluation results from the pre-training datasets. Recall that we used 70% data of each
 1000 disease for pre-training, here we fine-tuned the model on the 70% of each disease and evaluate both
 1001 CAPE and the pre-trained PatchTST on the rest 30% data. As shown in Table 10, CAPE consistently
 1002 outperforms PatchTST on 13/15 datasets, proving the effectiveness of our method.
 1003

1004 A.11 FULL RESULTS FOR FEW-SHOT FORECASTING

1005 We present the complete few-shot performance across different horizons in Table 11. While CAPE
 1006 does not achieve state-of-the-art average performance on the ILI USA dataset with limited training
 1007 data, it excels in short-term forecasting when the horizon is smaller. Since the authors of PEM (Ka-
 1008 marthi & Prakash, 2023) did not release full code, we implemented the method to the best of our
 1009 ability based on the paper description.
 1010

1011 A.12 IMPACT OF THE COMPARTMENT DISTRIBUTION AND PRE-TRAIN EPOCHS

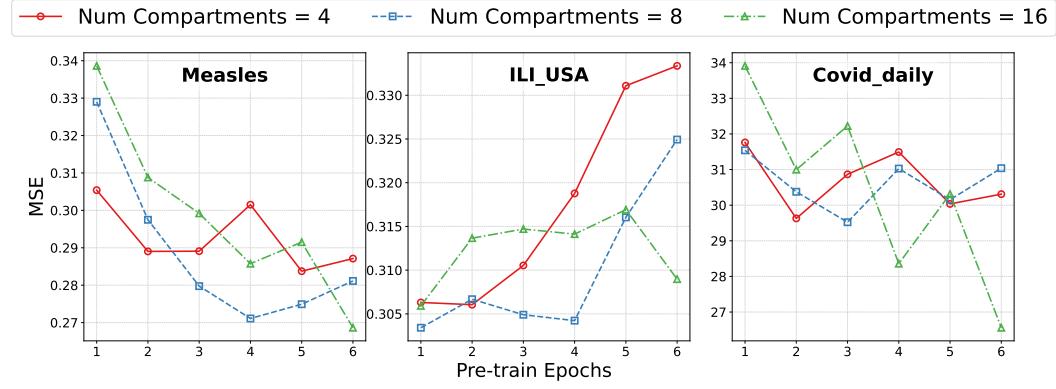


Figure 9: Downstream performance vs. compartment distribution and pre-train epochs.

1021 A.13 IMPACT OF PRE-TRAINING RATIO ON THE DOWNSTREAM DATASETS

1022 We provide additional evaluations for CAPE on downstream datasets to analyze the impact of the
 1023 pre-training ratio. As shown in Figure 10, increasing the pre-training ratio eventually improves
 1024 downstream performance across all datasets.
 1025

Table 10: Performance of CAPE and pre-trained PatchTST across diseases in the pre-training datasets. The results presented is the average over horizons of 1,2,4,8,16.

Disease	Method	Horizon 1	Horizon 2	Horizon 4	Horizon 8	Horizon 16	Average
Mumps	CAPE	0.000284	0.000290	0.000370	0.000451	0.000539	0.000387
	PatchTST	0.000280	0.000310	0.000388	0.000508	0.000627	0.000423
Meningococcal Meningitis	CAPE	0.063022	0.066196	0.073552	0.093547	0.108842	0.081032
	PatchTST	0.054611	0.061641	0.073794	0.088404	0.096449	0.074980
Influenza	CAPE	0.367677	0.510453	0.693110	0.903920	1.037177	0.702467
	PatchTST	0.392925	0.644013	0.717147	0.851498	1.061066	0.733330
Hepatitis B	CAPE	0.071834	0.072827	0.074606	0.077816	0.068012	0.073019
	PatchTST	0.074016	0.082576	0.084535	0.085867	0.074103	0.080219
Pneumonia	CAPE	0.038916	0.052092	0.082579	0.137004	0.191675	0.100453
	PatchTST	0.036961	0.074596	0.096963	0.152206	0.174871	0.107119
Typhoid Fever	CAPE	0.004918	0.004393	0.004552	0.005051	0.005828	0.004948
	PatchTST	0.007068	0.005954	0.005906	0.006519	0.006709	0.006431
Hepatitis A	CAPE	0.347792	0.349403	0.352361	0.360705	0.315496	0.345151
	PatchTST	0.331339	0.349549	0.356113	0.381637	0.338067	0.351341
SCAPEet Fever	CAPE	4.229920	5.258288	6.787577	10.865951	13.724634	8.173274
	PatchTST	8.561295	13.564009	17.241462	19.315905	20.373520	15.811238
Gonorrhea	CAPE	0.010826	0.010900	0.011246	0.011483	0.011898	0.011271
	PatchTST	0.011297	0.012223	0.013411	0.013438	0.013241	0.012722
Smallpox	CAPE	0.063829	0.065191	0.076199	0.098973	0.157850	0.092408
	PatchTST	0.070972	0.076843	0.107076	0.124042	0.165442	0.108875
Acute Poliomyelitis	CAPE	0.254014	0.394454	0.355898	0.480525	0.745428	0.446064
	PatchTST	0.094695	0.134304	0.270908	0.392511	0.482426	0.274969
Diphtheria	CAPE	0.006789	0.005360	0.006557	0.010682	0.014136	0.008705
	PatchTST	0.011019	0.008891	0.009036	0.013048	0.015531	0.011505
Varicella	CAPE	0.000119	0.000128	0.000154	0.000212	0.000245	0.000171
	PatchTST	0.000109	0.000141	0.000169	0.000237	0.000296	0.000190
Tuberculosis	CAPE	0.178741	0.170441	0.215367	0.177671	0.198068	0.188057
	PatchTST	0.189156	0.209008	0.189944	0.204680	0.277632	0.214084
Measle	CAPE	0.009626	0.010982	0.016451	0.022407	0.042980	0.020489
	PatchTST	0.013008	0.012608	0.020903	0.039835	0.063844	0.030039

Table 11: Few-shot learning results with horizons ranging from 1 to 16 future steps. The length of the lookback window is set to 36. Each model is evaluated after being trained on 20%, 40%, 60% and 80% of the full training data.

Dataset	Horizon	CAPE					PatchTST					Dlinear					MOMENT					PEM				
		20%	40%	60%	80%	100%	20%	40%	60%	80%	100%	20%	40%	60%	80%	100%	20%	40%	60%	80%	100%	20%	40%	60%	80%	100%
ILI USA	1	1.155	0.535	0.307	0.178	0.155	1.361	0.662	0.355	0.191	0.195	1.430	1.000	0.460	0.230	0.170	2.859	1.274	0.608	0.267	0.216	1.424	0.620	0.330	0.189	0.145
	2	1.396	0.925	0.465	0.208	0.200	1.389	0.682	0.484	0.238	0.264	2.218	1.000	0.660	0.280	0.220	3.245	1.709	0.695	0.342	0.262	1.463	0.829	0.434	0.256	0.210
	4	1.770	1.191	0.610	0.306	0.200	1.770	0.850	0.567	0.318	0.215	3.215	1.000	0.670	0.310	0.240	3.145	1.781	0.701	0.359	0.285	1.483	0.866	0.453	0.273	0.212
	8	2.611	1.912	0.978	0.519	0.404	2.713	1.623	0.833	0.544	0.535	3.510	1.970	0.980	0.530	0.450	3.706	2.013	1.120	0.615	0.482	2.649	1.690	0.966	0.580	0.573
	16	3.674	2.473	1.411	0.622	0.516	3.182	1.789	1.056	0.649	0.485	4.460	2.240	1.260	0.640	0.580	5.233	2.335	1.251	0.669	0.580	3.294	1.979	1.049	0.679	0.526
	Avg	2.121	1.400	0.760	0.369	0.309	2.114	1.219	0.677	0.401	0.373	2.822	1.594	0.810	0.412	0.346	3.999	1.847	0.913	0.459	0.381	2.143	1.261	0.681	0.419	0.353
Dengue	1	3.254	1.384	0.487	0.384	0.218	3.700	1.580	0.657	0.389	0.203	3.600	1.470	0.558	0.350	0.220	4.585	2.480	0.689	0.423	0.383	3.383	1.613	0.558	0.350	0.206
	2	4.463	2.340	0.735	0.487	0.301	5.832	2.159	0.846	0.507	0.296	7.000	2.170	0.820	0.510	0.310	6.609	2.990	0.922	0.587	0.521	5.404	2.257	0.869	0.507	0.300
	4	7.563	3.728	1.250	0.871	0.540	9.525	3.636	1.517	1.067	0.588	11.190	4.130	1.520	0.940	0.560	12.877	4.106	1.644	0.966	0.620	8.782	4.409	1.608	0.737	0.522
	8	15.571	7.276	2.766	1.922	1.020	21.592	2.153	2.309	1.203	2.000	31.090	5.150	2.150	1.690	1.250	22.255	5.173	2.255	1.373	1.317	13.700	5.595	2.368	1.170	0.955
	16	35.870	17.204	6.469	3.946	2.210	30.451	19.616	7.238	4.289	2.536	35.350	24.640	7.890	4.780	3.060	31.115	18.877	3.200	4.551	3.984	29.934	18.861	7.368	4.309	2.497
	Avg	13.335	6.386	2.356	1.511	0.892	13.712	7.304	2.771	1.676	0.984	15.828	8.420	2.858	1.748	1.089	15.697	7.536	2.816	1.733	1.358	12.90	7.055	2.745	1.707	0.964
Measles	1	0.168	0.158	0.107	0.095	0.069	0.400	0.217	0.121	0.091	0.094	0.560	0.470	0.190	0.150	0.100	1.211	0.316	0.138	0.108	0.102	0.227	0.200	0.106	0.106	0.084
	2	0.229	0.256	0.167	0.134	0.098	0.511	0.325	0.186	0.148	0.127	0.680	0.400	0.320	0.220	0.150	1.376	0.367	0.159	0.167	0.138	0.313	0.339	0.155	0.153	0.127
	4	0.371	0.399	0.267	0.198	0.155	0.663	0.510	0.297	0.243	0.205	1.050	0.920	0.360	0.310	0.240	1.444	0.516	0.278	0.228	0.196	0.497	0.451	0.258	0.240	0.196
	8	0.564	0.776	0.451	0.339	0.280	1.050	1.269	0.479	0.414	0.378	1.580	1.340	0.660	0.540	0.450	1.895	1.181	0.507	0.386	0.883	0.865	1.213	0.487	0.441	0.382
	16	1.086	1.408	0.917	0.658	0.743	1.692	1.847	1.157	0.900	0.723	2.100	2.520	1.480	1.170	1.030	2.379	2.192	1.041	1.468	1.183	1.448	2.275	1.145	0.880	0.740
	Avg	0.483	0.600	0.381	0.285	0.269	0.363	0.384	0.448	0.359	0.306	1.194	1.130	0.662	0.478	0.394	1.661	0.915	0.425	0.471	0.500	0.670	0.696	0.430	0.364	0.306

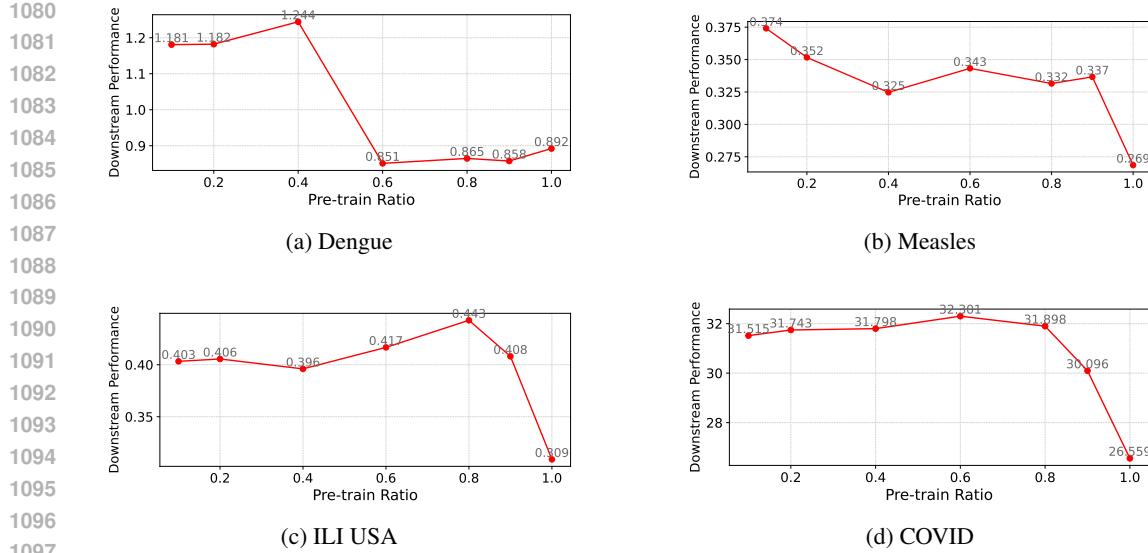


Figure 10: Downstream performance with different ratios of pre-training datasets. The input length is set to 36 and all MSE results are averaged over $\{1, 2, 4, 8, 16\}$ future steps.

A.14 MITIGATING DISTRIBUTION SHIFT

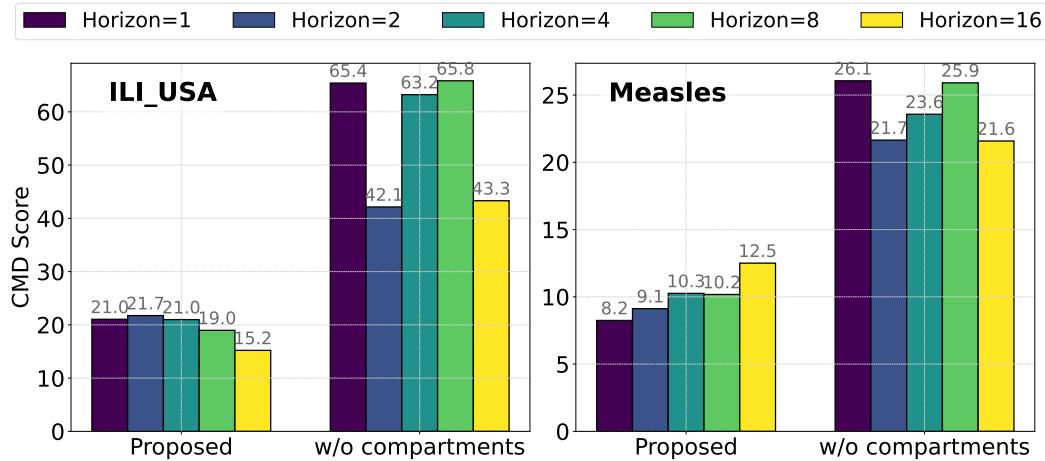


Figure 11: CMD scores w/ and w/o compartment estimate between train/test sets. We measure the CMD scores based on the last embedding output by our model.

A.15 DISENTANGLING DISEASE-SPECIFIC DYNAMICS

After pre-training, both CAPE and PatchTST were frozen and applied to downstream datasets directly to generate latent space embeddings for each sample. We then employed the Davies-Bouldin Index (DBI) to assess the separability of these embeddings by disease. CAPE consistently achieved lower DBI scores (we show an example in Figure 15), demonstrating a superior ability to distinguish between different diseases in the latent space compared to PatchTST. This enhanced separability highlights the effectiveness of CAPE’s compartment estimation and backdoor adjustment. These mechanisms are crucial for mitigating the confounding influence of noisy, spurious, and compartment-dependent factors (X_{sp}), thereby enabling the model to better isolate and represent the unique, intrinsic, and causal disease dynamics (X_{ca}).

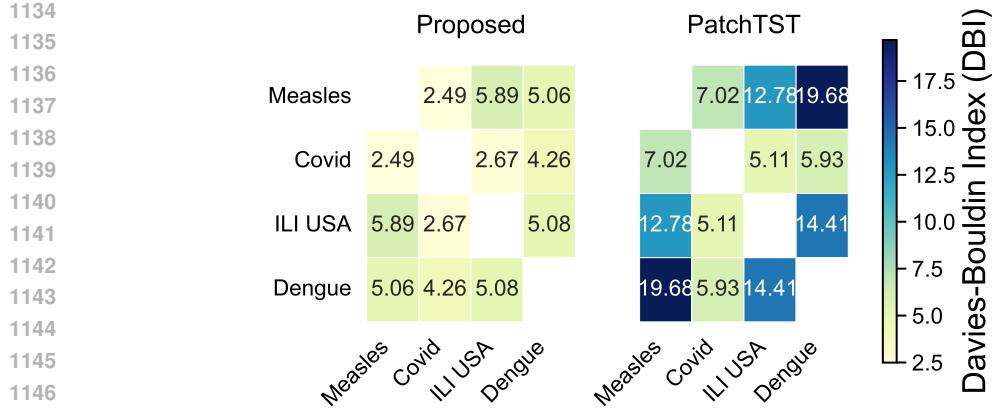


Figure 12: DBI between the embeddings of each pair of downstream datasets from the pre-trained model. (See Figure 15).

A.16 VISUALIZATION OF THE ESTIMATED COMPARTMENTS

According to $\hat{\mathbf{e}}^{(l)} = \sum_{k=1}^K \mathbf{e}_k \pi_k^{(l)}$, an aggregated compartment is the weighted sum of the learned latent compartment representations. Therefore, the estimation shares the same latent space as the fixed representations and we are able to visualize them using t-SNE. As shown in Figure 13, we visualize the aggregated compartments (Estimated) as well as the learned latent compartment (Anchor) from a CAPE model with 8 compartments.

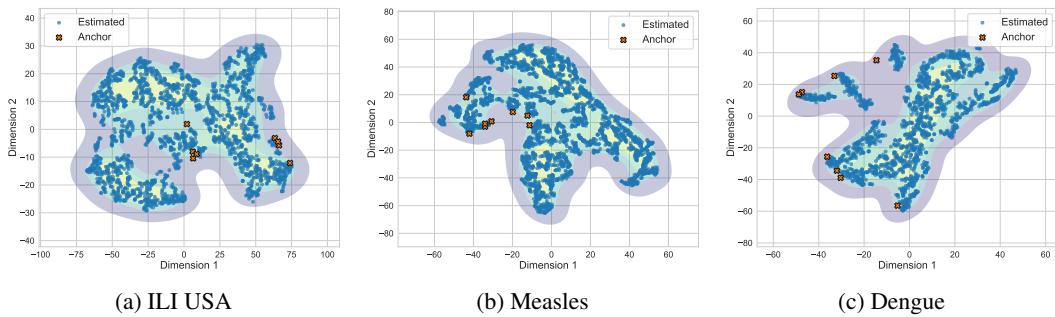


Figure 13: Visualization of the estimated compartment representations using t-SNE.

A.17 VISUALIZATION OF DISTRIBUTION SHIFT FOR DOWNSTREAM DATASETS

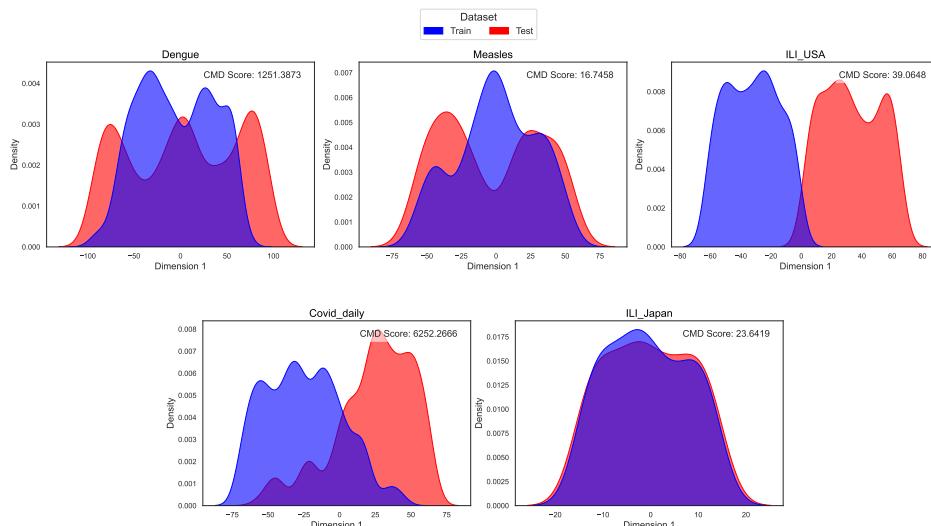
We provide a visualization of the sample distribution used in this study. Each sample has a fixed length of 36, representing the historical infection trajectory. To better understand the distributional differences, we use t-SNE to reduce the data to one dimension and visualize the training and test samples using different colors. As shown in Figure 14, a significant distribution shift is visually apparent across most datasets. To quantitatively assess the distributional differences between the training and test sets, we calculate the Central Moment Discrepancy (CMD) score (Zellinger et al., 2017). The CMD score measures the discrepancy between the central moments of the two distributions up to a specified order K . For two distributions X (training set) and X_{test} (test set), the CMD score is defined as:

$$\text{CMD}(X, X_{\text{test}}) = \|\mu_1(X) - \mu_1(X_{\text{test}})\|_2 + \sum_{k=2}^K \|\mu_k(X) - \mu_k(X_{\text{test}})\|_2, \quad (10)$$

where: $\mu_k(X)$ denotes the k -th central moment of X , defined as: $\mu_k(X) = \mathbb{E}[(X - \mathbb{E}[X])^k]$, and similarly for $\mu_k(X_{\text{test}})$. $\|\cdot\|_2$ is the Euclidean norm. K is the maximum order of moments considered.

1188 The CMD score aggregates the differences in the mean (first moment) and higher-order moments (e.g.,
 1189 variance, skewness), providing a robust measure of the distribution shift. In our experiments, we set
 1190 $K = 3$ to capture up to the third-order central moments. This score quantitatively complements the
 1191 visual observations in Figure 14, offering a more comprehensive understanding of the distributional
 1192 differences between training and test sets.

1193 **Impact of Distribution Shifts.** Distribution shifts between training and test datasets pose significant
 1194 challenges to the generalizability and robustness of predictive models. When the underlying data
 1195 distributions differ, models trained on the training set may struggle to maintain their performance on
 1196 the test set, leading to reduced accuracy and reliability. These discrepancies can arise from various
 1197 factors, such as temporal changes in infection patterns or geographical variations. In this paper, we
 1198 assume that the inherent infection pattern of a particular disease remains constant, and the distribution
 1199 shifts for the disease are primarily caused by the rapidly changing compartment, which results in
 1200 diverse infection patterns. In the context of epidemic modeling, such shifts are especially critical, as
 1201 they can undermine the model’s ability to accurately predict future infection trends, which is essential
 1202 for effective public health interventions.



1221 Figure 14: The KDE plot of training set and test set. Each sample contains an infection trajectory of
 1222 36 weeks. t-SNE is applied to visualize the distributions of both sets.

1224 A.18 LATENT SPACE VISUALIZATION OF MEASLE AND COVID DATASETS FROM PRE-TRAINED 1225 MODELS.

1227 In order to demonstrate that CAPE effectively disentangles the underlying dynamics of diseases from
 1228 the influence of the compartment, we visualize the output embeddings for the Measles and COVID
 1229 datasets by projecting them into a two-dimensional space using t-SNE. Specifically, we utilize the
 1230 pre-trained model without fine-tuning on these two downstream datasets and visualize $\mathbf{x}^{(L)}$, the
 1231 final-layer embeddings, as individual data points in the figure. As shown in Figure 15, CAPE (left)
 1232 visually separates the two datasets more effectively than the pre-trained PatchTST model (right). To
 1233 quantitatively evaluate the separability of the embeddings, we compute the Davies–Bouldin Index
 1234 (DBI), which is defined as:

$$1236 \text{DBI} = \frac{1}{K} \sum_{i=1}^K \max_{j \neq i} \left(\frac{\sigma_i + \sigma_j}{\|\mu_i - \mu_j\|} \right), \quad (11)$$

1239 where K is the number of clusters (in this case, two: Measles and COVID), μ_i is the centroid of
 1240 cluster i , σ_i is the average intra-cluster distance for cluster i , defined as: $\sigma_i = \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} \|\mathbf{x} - \mu_i\|$,
 1241 where C_i is the set of points in cluster i , $\|\mu_i - \mu_j\|$ is the Euclidean distance between the centroids

1242 of clusters i and j . The DBI measures the ratio of intra-cluster dispersion to inter-cluster separation.
 1243 Lower DBI values indicate better separability. As shown in Figure 15, CAPE achieves a significantly
 1244 lower DBI compared to PatchTST, confirming its superior ability to disentangle the underlying
 1245 disease dynamics from compartmental factors. A more complete result is shown in Figure 12.
 1246

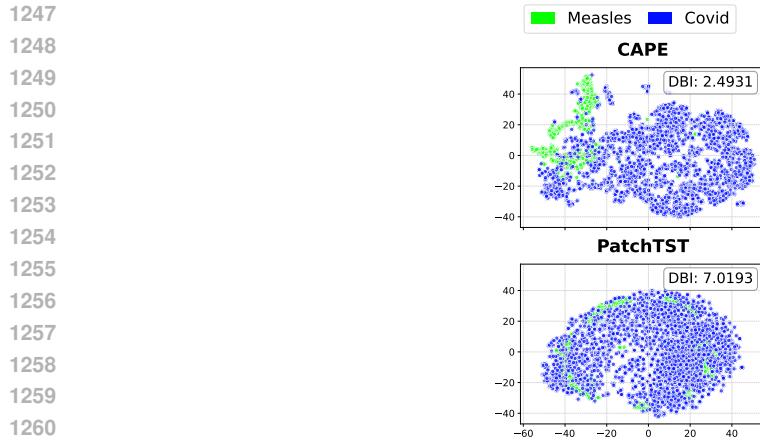


Figure 15: Output latent space of two pre-trained models without fine-tuning from Measle and Covid datasets. Upper: CAPE; Lower: Pre-trained PatchTST.