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ABSTRACT

Accurate epidemic forecasting is crucial for outbreak preparedness, but existing
data-driven models are often brittle. Typically trained on a single pathogen, they
struggle with data scarcity during new outbreaks and fail under distribution shifts
caused by viral evolution or interventions. However, decades of surveillance data
from diverse diseases offer an untapped source of transferable knowledge. To lever-
age the collective lessons from history, we propose CAPE, the first open-source
pre-trained model for epidemic forecasting. Unlike existing time series foundation
models that overlook epidemiological challenges, CAPE models epidemic dynam-
ics as mixtures of latent population states, termed compartmental prototypes. It
discovers a flexible dictionary of compartment prototypes directly from surveil-
lance data, enabling each outbreak to be expressed as a time-varying mixture that
links observed infections to latent population states. To promote robust general-
ization, CAPE combines self-supervised pre-training objectives with lightweight
epidemic-aware regularizers that align the learned prototypes with epidemiolog-
ical semantics. On a comprehensive benchmark spanning 17 diseases and 50+
regions, CAPE significantly outperforms strong baselines in zero-shot, few-shot,
and full-shot forecasting. This work represents a principled step toward pre-trained
epidemic models that are both transferable and epidemiologically grounded.

1 INTRODUCTION

Infectious disease outbreaks pose a persistent threat to global public health and economic stabil-
ity (Nicola et al., 2020). Effective outbreak management relies on accurate epidemic forecasting—the
prediction of future cases, hospitalizations, and other critical metrics (Liu et al., 2024b; Wan et al.,
2024; Adhikari et al., 2019). A wide range of models have been developed to provide these cru-
cial forecasts, which generally fall into two categories. Mechanistic models, such as the classic
Susceptible-Infected-Recovered (SIR) (Cooper et al., 2020) approach, are grounded in epidemio-
logical principles; they divide a population into compartments that represent distinct population
states (e.g., susceptible, infectious, recovered) and use differential equations to explicitly model
flows between these states. In contrast, modern machine learning methods like LSTMs (Shahid
et al., 2020) learn complex patterns directly from historical data, offering greater flexibility without
imposing a predefined structure.

However, these data-driven forecasters are often trained for a single pathogen in a specific region.
This narrow scope makes them brittle: they face acute data scarcity during the critical early stages of
a novel outbreak, and they fail under distribution shifts induced by viral evolution, behavioral change,
or policy interventions. At the same time, decades of surveillance across diverse pathogens and
geographies remain an untapped source of transferable structure. Motivated by the success of large
pre-trained models in language, vision, and time-series domains (Zhao et al., 2023), we ask: Can
we build a large pre-trained epidemic forecaster that learns from the collective history of infectious
diseases to improve generalization and robustness?

Simply applying a general time series foundation model (Liang et al., 2024) is insufficient, as it
overlooks core epidemiological challenges: (1) Structural heterogeneity: Pathogens follow different
effective compartmental progressions (e.g., SIR vs. SEIR (He et al., 2020)), so a single fixed mecha-
nism cannot transfer broadly across diseases and regions. (2) Hidden population states: Surveillance
data records only reported infections, while important states such as exposure, susceptibility, and
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immunity are not directly observed. (3) Distribution Shifts: Interventions, behavioral changes,
and pathogen evolution induce abrupt non-stationarities, often when outbreak histories are shortest.
These properties demand powerful epidemic pre-trained models that can adapt to diverse pathogens,
disentangle hidden population states, and remain robust under shifts.

Our Solution. We introduce CAPE (CompArtment Pre-training for Epidemics), a pre-trained frame-
work that learns epidemic dynamics as a mixture of latent population states, termed compartmental
prototypes. (1) To address structural heterogeneity, rather than relying on a rigid, pre-defined
compartmental structure, CAPE discovers a flexible dictionary of latent compartments directly from
data. Each outbreak sequence is modeled as a mixture that varies in time in these prototypes, linking
observed infections to latent population states. (2) To handle hidden drivers, the learned mixtures act
as proxies for unobserved states such as susceptibility, disentangling latent population dynamics from
noisy observed case counts. (3) To address distribution shifts, CAPE employs two self-supervised
pre-training strategies to encourage robust representations that generalize under non-stationarities
and scarce data. In addition, we further propose lightweight epidemic-aware regularizers to align
learned prototypes with epidemiological semantics. Our contributions include:
(1) Pre-training framework for epidemic time series forecasting: We introduce the first open-

source pre-training framework 1 for epidemic forecasting. It learns latent compartmental pro-
totypes directly from time series, guided by several epidemic-aware losses that regularize the
model’s predictions and learned prototype representations.

(2) Comprehensive benchmark for epidemic pre-training: We assemble a diverse pre-training
and evaluation suite, spanning 17 diseases across 50+ regions for pre-training and 5 downstream
datasets covering 4 challenging settings (zero-shot, few-shot, cross-location, and cross-disease).

(3) State-of-the-art performance in diverse forecasting settings: We demonstrate the effectiveness
of our pre-trained model, which significantly outperforms existing benchmarks by an average of
6.3% lower average MSE in the full-shot setting and 10.3% lower average MSE in the few-shot
setting across all tested downstream datasets.

(4) In-depth analysis: We conduct extensive analyses to provide insights into how the learned
latent prototypes improve forecasting accuracy and show that pre-training effectively learns the
representation of diverse diseases and mitigates the impact of distribution shifts.

2 RELATED WORK AND PROBLEM DEFINITION

Epidemic Forecasting Models. Traditionally, epidemic forecasting employs models like ARIMA (Sa-
hai et al., 2020), SEIR (He et al., 2020), and VAR (Shang et al., 2021). ARIMA predicts infections by
analyzing past data and errors, SEIR models population transitions using differential equations, and
VAR captures linear inter-dependencies by modeling each variable based on past values. Recently,
deep learning models, categorized into RNN-based, MLP-based, and transformer-based, have sur-
passed these methods. RNN-based models like LSTM (Wang et al., 2020), GRU (Natarajan et al.,
2023), and more epidemic-specific models like EpiDeep Adhikari et al. (2019) and EINNs Rodrı́guez
et al. (2023) use gating mechanisms to manage information flow. MLP-based models use linear lay-
ers (Zeng et al., 2023) or multi-layer perceptrons (Borghi et al., 2021; Madden et al., 2024) for efficient
data-to-prediction mapping and physics-informed distillation Wang et al. (2021). Transformer-based
models (Wu et al., 2021; Zhou et al., 2021; 2022) apply self-attention to encode time series and
generate predictions via a decoder. However, these models are limited as they typically utilize data
from only one type of disease without considering valuable insights from diverse disease datasets.

Pre-trained Time Series Models. To enable few-shot or zero-shot capabilities, transformer-based
models often employ pre-training on large datasets, which typically use masked data reconstruc-
tion (Zerveas et al., 2021; Rasul et al., 2023) or promote alignment across different contexts (Fraikin
et al., 2023; Zhang et al., 2022; Yue et al., 2022). For example, PatchTST (Nie et al., 2022) segments
time series into patches, masks some, and reconstructs the masked segments. Larger foundational
models like MOMENT (Goswami et al., 2024) aim to excel in multiple tasks (e.g., forecasting,
imputation, classification) but require substantial data and computational resources. In epidemic
contexts, Kamarthi et al. (Kamarthi & Prakash, 2023) pre-train a model on various diseases, im-
proving downstream performance and highlighting pre-training’s potential in epidemic forecasting.
However, the complete implementation is not publicly available. Moreover, existing approaches

1https://anonymous.4open.science/r/CAPE_ICLR26-A041/
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Figure 1: (a) CAPE encoder with latent compartment prototypes; (b) Hierarchical contrasting for
temporal representations; (c) Random masking and reconstruction; (d) Optimizing the encoder
and prototype representations alternatively. (e) Epidemic-aware regularization, including losses for
monotonic and non-monotonic dynamics.

overlook hidden compartmental influence and zero-shot ability in epidemic forecasting and lack
a deep analysis of how pre-training materials impact downstream performance. In this study, we
introduce latent compartment modeling and conduct a thorough analysis of these questions (see A.6
for more discussions).

Problem Definition. Given a historical time series input: x ∈ RT×1, where T is the size of lookback
window, the goal of epidemic forecasting is to map x into target trajectories (e.g. infection rates):
y ∈ Rh, where h denotes the size of the forecast horizon. We define X and Y as the random variables
of input and target, respectively. During pre-training, a representation function gθ : RT×1 → RT×d,
where d denotes the dimension of the latent space and θ being the parameter of the model, extracts uni-
versal properties from a large collection of epidemic time series datasets Dpre = {D′

1, D
′
2, . . . , D

′
S}.

Then, a set of self-supervised tasks Tpre = {Ti}Ri=1 is defined, and each Ti transforms a sample
x ∼ Dpre into a new input-label pair: (x̃, ỹ), and optimizes a loss LTi

= Ex∼Dpre [ℓTi
(hψ(gθ(x̃)), ỹ)],

with ℓTi
being the task-specific metric and hψ the task-specific head.

3 PROPOSED METHOD

Our pre-training framework is designed to overcome the core challenges of structural heterogeneity,
hidden drivers, and distribution shifts inherent in epidemic forecasting. We address these issues
through two main contributions: (1) a flexible model architecture that learns latent compartmental
prototypes directly from observational data, and (2) a set of epidemic-aware pre-training objectives
that guide the model to learn robust, generalizable representations. We will elaborate on these
architectural and objective-based solutions in the following subsections.

3.1 MODELING LATENT COMPARTMENTAL PROTOTYPES

Temporal Backbone. Following the prior work on patch-based time series modeling (Nie et al.,
2022), we segment the input sequence of infection counts x into non-overlapping temporal patches,
x = [x1, . . . ,xC ], where each patch xc ∈ RT/C . This patching strategy enables the model to capture
local temporal patterns. A standard self-attention encoder, fenc, then processes these patches to learn
long-range temporal dependencies, producing a contextualized representation h

(l)
c = fenc(x

l
c) for

each patch c at a given layer l.

Compartmental Prototypes Learning. Different diseases exhibit different progression patterns:
some show a simple rise-and-fall in cases, while others involve additional hidden stages such as
incubation periods. In epidemiological terms, this corresponds to differences in compartmental
structures (e.g., SIR (Cooper et al., 2020) vs. SEIR (He et al., 2020)). Epidemic forecasting is
therefore challenged by structural heterogeneity and hidden population states: different structures
generate diverse dynamics, while only a subset of compartments are directly observable. Classic
compartmental models impose a rigid, pre-defined structure that cannot adapt to various types of
diseases and scenarios. To address this, we move beyond fixed models and propose a framework
that learns to represent epidemic dynamics as a dynamic mixture of latent population states, which
we term compartmental prototypes. Our approach is analogous to learning a vocabulary of core
epidemiological behaviors directly from data. Each outbreak is expressed as a time-varying mixture

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

over these prototypes. For example, during the growth phase of influenza, the model may infer that
roughly 30% observed case increases are explained by infectious-like prototypes, while the rest
reflects susceptible depletion and recovery. Formally, we initialize a set of K learnable embeddings,
E = {ek}Kk=1 ∈ RK×d, where each ek is a ”prototype” representing a basic compartment. For any
given time window (a patch c), the model’s crucial task is to determine the contributions of these
prototypes in representing the current epidemic time series. We accomplishes this by inferring a set
of mixture weights, πc = [π1,c, . . . , πK,c], using a cross-attention mechanism between the patch’s
representation h

(l)
c and the full set of prototype embeddings E:

π
(l)
k,c = Softmax

(
(W

(l)
k ek)

⊤ · (W(l)
s h(l)

c )
)
, (1)

where W(l)
k and W

(l)
s are learnable linear projections. πc quantifies the contribution of each compart-

mental prototype in representing the current patch, forming a regularized and robust representation for
forecasting. The patch representation is then updated by taking a weighted sum over the Hadamard
product (⊙) of the patch representation and the compartment embeddings. This allows the model to
modulate the observed time series data with the inferred underlying dynamics. The layer-wise update
is defined as:

x(l+1)
c = σ

(
W

(l)
f

∑K

k=1
π
(l)
k,c

[
fenc(x

(l)
c )⊙ ek

])
, (2)

where σ represents a feed-forward block containing the projection W
(l)
f . After stacking L such

layers, a final task-specific linear head, hψ, maps the resulting representations x(L) to the target
prediction ŷ = hψ(x

(L)).

3.2 SELF-SUPERVISED PRE-TRAINING

To learn robust representations that can withstand the distribution shifts and data scarcity common
in epidemics, we employ two self-supervised pre-training objectives designed to capture universal
patterns across diverse time series.

Masked Time-Series Reconstruction. We use a masked autoencoding task to teach the model the
underlying grammar of epidemic curves. By randomly masking a fraction (e.g., 30%) of the input
patches and training the model to reconstruct the original series, we force it to learn meaningful
temporal interpolations. The objective is to minimize the Mean Squared Error, Lrecon = MSE(x̂,x).
This builds resilience to the noisy and incomplete data often encountered during chaotic outbreak
periods, improving the model’s fundamental forecasting capabilities.

Contrastive Learning for Compartmental Prototypes. A key challenge during distribution shifts is
that epidemic curves can become highly non-stationary, and superficially similar patterns might arise
from vastly different underlying dynamics. To prevent our model from learning spurious correlations,
we introduce a contrastive objective that regularizes the compartmental prototype mechanism itself.
The goal is to ensure that the inferred contributions of compartments (πc) are both consistent and
discriminative. Specifically, we enforce two conditions: (1) two different augmented views of the
same time-series patch should be mapped to a similar mixture of compartmental prototypes (positive
pairs), and (2) patches from different, epidemiologically distinct contexts should be mapped to
dissimilar compartmental prototypes (negative pairs). This pushes the model to focus on the essential,
underlying dynamics captured by the prototypes, rather than overfitting to superficial noise. The
patch-wise contrastive loss is defined as:

LCL(j, c) =−X(j,c) ·X′
(j,c) + log

(∑
b∈B

exp
(
X(j,c) ·X′

(b,c)

)
+ Ij ̸=b exp

(
X(j,c) ·X(b,c)

))
+ log

(∑
t∈Ω

exp
(
X(j,c) ·X′

(j,t)

)
+ Ic ̸=t exp

(
X(j,c) ·X(j,t)

))
,

(3)

where B is the batch, Ω is the set of overlapping patches, and I is the indicator function.

3.3 EPIDEMIC-AWARE REGULARIZATION

To ensure our compartmental prototypes learn epidemiologically plausible dynamics, we introduce
three regularization terms that instill prior knowledge from classic mechanistic models. These regu-
larizers help disentangle the learned prototypes, encouraging them to represent distinct, interpretable
dynamics (e.g., monotonic vs. non-monotonic). We apply these regularizers with a small weight
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during pre-training to gently guide representation learning, and with a larger weight during fine-tuning
to specialize the model to a specific pathogen.

Monotonic Dynamics. Certain compartments, such as Susceptible or Recovered, typically exhibit
monotonic behavior (Nguyen et al., 2023). To enforce this, we introduce a monotonic loss. For a
compartment k with an expected monotonic trend, let πk = [π

(L)
k,1 , . . . , π

(L)
k,C ] be its mixture weights

sequence from the final layer. The monotonic decreasing loss is:

Lmono =
1

C − 1

C∑
c=2

ReLU(π
(L)
k,c − π

(L)
k,c−1 + ϵ), (4)

where ϵ > 0 is a small tolerance. The ReLU function penalizes only violations of the expected trend.
For an increasing trend, the terms in the parentheses are swapped. In practice, we constrain two
prototypes with increasing and decreasing monotonic penalties.

Non-monotonic Dynamics. While monotonic constraints are simple and effective for some proto-
types, the dynamics of active infections are complex and non-monotonic. Therefore, simply applying
a specific predefined pattern to such prototypes can be ineffective. Instead, we regulate their behavior
using one of the most fundamental principles in epidemiology: the basic reproduction number, R0,
which quantifies a pathogen’s intrinsic transmissibility. Our goal is to ensure that the infectious dy-
namics learned by our model correspond to a plausible R0 for the disease being modeled. To achieve
this, we introduce a method to compute a differentiable proxy for R0 directly from our model’s
learned representations. We adapt the classic Next Generation Matrix (NGM) method (Diekmann
et al., 2010), denoted as G, based on the Disease-Free Equilibrium time series input. Then, the R0

is defined as the spectral radius of G: R̂raw
0 = maxj ∥λj(G)∥, which has the following lower- and

upper-bounds (see proof in Appendix A.4.2):
σmin(F)

σmax(V)
≤ max

j
∥λj(G)∥ = max

j
∥λj(FV−1)∥ ≤ σmax(F)

σmin(V)
, (5)

where F is the Jacobian of the rates of flows from uninfected to infected classes evaluated at the
disease-free equilibrium, and V is the Jacobian of the rates of all other flows to and from infected
compartments, λj(G) are the eigenvalues of G and σmin(V) is the smallest singular value of V.
Since computing the inverse of matrix V is not always numerically stable, we approximate the lower-
and upper-bound of spectral radius via the singular value ratios σmin(F)

σmax(V) and σmax(F)
σmin(V) . Further details

are provided in Appendix A.4.1, and here we provide a pseudo code for calculating R0 in Table 1.

Algorithm 1 NGM-PROXY(R0): Differentiable R0 bounds

Require: Encoder fenc, prototypes E, estimator g, mix operator ϕ, disease d, range [Rlo
0 , R

hi
0 ].

Ensure: Estimates (R̂lo
0 , R̂

hi
0 ), loss LR0 .

1: DFE: Compute DFE embedding EDFE←fenc(XDFE) and weights π∗←softmax(EDFEE
⊤).

2: F: For each j = 1, . . . ,K, compute column F:,j ← max{0, g(ϕ(π̂(j),EDFE))− π∗}, where
π̂(j) is a small perturbation on π∗

j .
3: V: For each j = 1, . . . ,K, with πevolved ← g(ϕ(ej ,EDFE)), compute column V:,j where

Vij = max{0, πevolved
i } for i ̸= j and Vjj = 1− πevolved

j .

4: Calculate proxy bounds: R̂lo
0 ←

σmin(F)
σmax(V) , R̂hi

0 ←
σmax(F)
σmin(V) .

5: Calibrate estimates (R̂lo
0 , R̂

hi
0 )← Calibθ(R̂

lo
0 , R̂

hi
0 ) and compute the loss:

LR0
← max{0, Rlo

0 (d)− R̂hi
0 }+max{0, R̂lo

0 −Rhi
0 (d)}

6: return (R̂lo
0 , R̂

hi
0 ,LR0).

Compartment Alignment Loss. Finally, we combine the above losses into a single alignment
objective to enforce epidemiologically meaningful behavior:

Lalign = LR0
+ Lmono + Lsmooth, Lsmooth =

K∑
k=1

C−2∑
c=1

(π
(L)
k,c+2 − 2π

(L)
k,c+1 + π

(L)
k,c )

2, (6)

where Lsmooth is a smoothness regularizer that encourages gradual transitions over time.

5
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Table 1: Univariate forecasting results with horizons ranging from 1 to 16 future steps. The lookback
window length is set to 36. All models are evaluated over 25 runs, and we report the average MSE
and MAE. For CAPE, we also report the 95% confidence interval.

Dataset Horizon
Transformer-Based (w/ or w/o pre-train) CAPE

LSTM GRU Dlinear Informer Autoformer MOMENT PEM PatchTST

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Covid

1 32.290 6.749 25.222 5.739 25.799 5.476 28.412 5.778 40.465 6.837 32.026 5.029 36.163 10.136 26.824 5.159 25.841 (±0.129) 3.611 (±0.011)
2 37.001 7.449 30.856 7.165 27.023 5.873 28.550 4.773 42.969 13.338 31.661 4.123 29.278 6.121 27.306 5.652 25.413 (±0.076) 3.763 (±0.008)
4 38.129 8.449 29.928 8.065 30.143 6.407 45.663 8.595 46.000 7.960 35.21 5.319 33.545 8.002 25.756 5.139 24.631 (±0.049) 3.749 (±0.034)
8 45.500 10.680 45.337 10.595 37.733 7.393 55.651 9.945 37.424 9.758 39.633 5.940 39.577 7.547 38.908 8.998 33.003 (±0.033) 4.827 (±0.005)
16 64.599 12.553 66.860 13.476 55.767 9.259 62.572 14.306 102.196 9.165 51.948 8.116 49.299 10.175 47.110 7.704 49.838 (±0.050) 7.144 (±0.007)
Avg 43.504 9.176 39.640 9.008 35.293 6.882 44.170 8.679 53.811 9.411 38.096 5.705 37.573 8.396 33.181 6.530 31.745 (±0.063) 4.619 (±0.014)

ILI USA

1 0.196 0.130 0.221 0.138 0.177 0.123 0.898 0.394 0.805 0.391 0.310 0.169 0.303 0.210 0.332 0.216 0.174 (±0.003) 0.139 (±0.001)
2 0.281 0.156 0.322 0.167 0.224 0.148 0.395 0.229 0.806 0.399 0.328 0.176 0.328 0.193 0.283 0.180 0.192 (±0.002) 0.141 (±0.001)
4 0.444 0.197 0.588 0.211 0.305 0.183 0.909 0.400 0.868 0.403 0.434 0.211 0.507 0.243 0.431 0.257 0.299 (±0.001) 0.171 (±0.000)
8 0.549 0.225 0.771 0.258 0.469 0.234 0.929 0.426 0.899 0.427 0.511 0.222 0.519 0.271 0.497 0.265 0.469 (±0.001) 0.221 (±0.000)
16 1.515 0.332 0.946 0.287 0.595 0.269 0.690 0.351 0.970 0.410 0.709 0.259 0.682 0.324 0.651 0.311 0.650 (±0.001) 0.278 (±0.000)
Avg 0.597 0.208 0.569 0.212 0.354 0.191 0.764 0.360 0.870 0.406 0.459 0.207 0.468 0.248 0.439 0.246 0.357 (±0.001) 0.190 (±0.000)

ILI Japan

1 0.514 0.844 0.552 0.910 0.416 0.880 2.353 1.682 0.715 1.340 0.614 3.459 0.734 1.599 0.936 1.868 0.328 (±0.001) 0.982 (±0.002)
2 0.758 1.384 0.745 0.904 0.648 0.956 2.446 1.767 0.928 2.786 1.490 4.111 0.919 2.214 1.531 3.443 0.709 (±0.002) 1.206 (±0.002)
4 1.278 2.733 1.736 3.169 1.253 1.919 2.632 1.884 1.464 4.003 1.542 3.811 1.310 2.769 1.834 3.355 1.191 (±0.004) 2.029 (±0.002)
8 1.932 1.660 1.948 2.240 1.988 2.196 2.840 1.741 1.925 1.375 2.101 2.314 1.836 1.534 2.128 1.910 1.792 (±0.002) 1.088 (±0.013)
16 2.118 1.657 2.097 1.550 1.884 1.517 2.490 1.633 2.438 1.799 2.314 1.255 1.936 1.315 2.265 1.698 1.878 (±0.002) 1.163 (±0.001)
Avg 1.320 1.656 1.415 1.755 1.238 1.493 2.552 1.741 1.494 2.260 1.556 2.99 1.347 1.886 1.739 2.455 1.179 (±0.002) 1.294 (±0.004)

Measles

1 0.191 1.076 0.202 1.249 0.207 1.022 0.428 2.188 0.699 2.733 0.207 1.270 0.330 1.366 0.257 1.297 0.111 (±0.005) 0.615 (±0.004)
2 0.230 1.249 0.251 1.147 0.232 1.183 0.479 2.094 0.584 1.672 0.248 1.359 0.350 1.699 0.418 1.509 0.157 (±0.003) 1.078 (±0.002)
4 0.261 1.153 0.304 1.175 0.297 1.442 1.639 3.510 0.851 2.005 0.296 1.395 0.464 2.011 0.459 1.512 0.188 (±0.003) 1.352 (±0.001)
8 0.415 2.007 0.392 1.703 0.468 1.938 0.592 2.627 1.171 2.767 0.476 1.771 0.726 2.587 0.721 2.558 0.406 (±0.002) 2.002 (±0.000)
16 0.696 2.431 0.729 2.695 0.953 2.864 2.098 3.793 1.922 3.924 0.763 2.747 1.213 3.228 1.271 3.164 0.883 (±0.001) 2.836 (±0.000)
Avg 0.358 1.583 0.375 1.594 0.431 1.690 1.047 2.843 1.046 2.620 0.398 1.708 0.616 2.178 0.625 2.008 0.349 (±0.003) 1.576 (±0.002)

Dengue

1 0.583 1.579 0.627 1.343 0.503 1.074 0.627 1.697 1.556 2.456 0.630 1.435 0.912 1.792 2.056 2.600 0.367 (±0.011) 1.282 (±0.003)
2 0.634 1.417 0.676 1.604 0.566 1.337 0.905 2.111 1.827 2.622 0.690 1.597 0.844 1.709 0.925 1.567 0.317 (±0.006) 1.272 (±0.006)
4 0.823 2.137 0.984 1.940 0.845 1.767 1.170 2.184 2.546 2.887 0.938 1.827 1.236 2.270 1.419 2.226 0.508 (±0.003) 1.534 (±0.003)
8 1.534 2.758 1.375 2.623 1.488 2.410 1.392 2.428 3.679 3.322 1.504 2.283 1.806 2.587 1.581 2.261 1.169 (±0.004) 2.104 (±0.002)
16 2.561 3.078 2.745 2.914 2.861 3.003 3.841 3.454 4.734 3.581 2.768 2.932 2.938 3.116 4.923 3.618 2.512 (±0.003) 2.784 (±0.006)
Avg 1.227 2.194 1.281 2.085 1.252 1.918 1.587 2.375 2.868 2.973 1.306 2.015 1.547 2.295 2.181 2.454 0.975 (±0.005) 1.795 (±0.004)

Table 2: Few-shot learning results with horizons ranging from 1 to 16 future steps. The length of the
lookback window is set to 36. Each model is evaluated after being trained on 20%, 40%, 60%, and
80% of the full training data. ∆(%) stands for the relative improvement after training with 20% more
data in terms of average MSE over all horizons. The full result is shown in Appendix A.11.
Dataset CAPE PatchTST Dlinear MOMENT PEM

20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
ILI USA 2.121 1.400 0.760 0.369 0.309 2.114 1.219 0.677 0.401 0.373 2.822 1.594 0.816 0.412 0.346 3.990 1.847 0.913 0.459 0.381 2.143 1.261 0.681 0.419 0.353
∆(%) - 33.99% 45.71% 51.45% 16.26% - 42.34% 44.45% 40.77% 6.98% - 43.53% 48.78% 49.51% 16.02% - 53.69% 50.58% 49.72% 17.00% - 41.13% 46.00% 38.33% 15.76%

Dengue 13.335 6.386 2.356 1.511 0.892 13.712 7.304 2.771 1.678 0.984 15.828 8.420 2.850 1.748 1.080 15.697 7.536 2.816 1.733 1.358 12.90 7.055 2.745 1.707 0.964
∆(%) - 52.07% 63.12% 35.87% 40.95% - 46.72% 62.06% 39.43% 41.39% - 46.81% 66.15% 38.64% 38.19% - 52.00% 62.63% 38.45% 21.65% - 45.32% 61.09% 37.79% 43.51%

Measles 0.483 0.600 0.381 0.285 0.269 0.863 0.834 0.448 0.359 0.306 1.194 1.130 0.602 0.478 0.394 1.661 0.915 0.425 0.471 0.500 0.670 0.896 0.430 0.364 0.306
∆(%) - -24.22% 36.50% 25.20% 5.61% - 3.36% 46.25% 19.91% 14.81% - 5.36% 46.64% 20.63% 17.58% - 44.91% 53.55% -10.59% -6.16% - -33.87% 51.91% 15.35% 15.93%

3.4 OPTIMIZATION SCHEME

To stably train the model, we employ an alternating optimization strategy. We alternate between
freezing the main model to update the prototype embeddings E, and then freezing E to update the
main model parameters. This process is applied across two training phases. During pre-training,
we use the self-supervised objectives Lrecon and LCL, as well as the epidemic-aware regularization
Lalign, which gives Lpretrain = Lrecon +LCL +λLalign, where λ is a hyperparameter. During finetuning
on a specific type of pathogen, we adopt the forecasting loss (MSE) in place of the self-supervised
objective, giving Lfinetune = MSE(y − ŷ) + λLalign.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets. For pre-training our model and PatchTST, we manually collected 17 distinct weekly-
sampled diseases from Project Tycho (van Panhuis et al., 2018). For evaluation, we utilize five
downstream datasets covering various diseases and locations: ILI USA (Centers for Disease Control
and Prevention, 2023a), ILI Japan (National Institute of Infectious Diseases, 2023), COVID-19
USA (Dong et al., 2020), Measles England (Lau et al., 2020), and Dengue across countries (Open-
Dengue, 2023). Additionally, RSV (Centers for Disease Control and Prevention, 2023c) and
MPox (Centers for Disease Control and Prevention, 2023b) infections in the US are used to test
zero-shot performance. More details can be found in Appendix A.5.
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Preprocessing. For pre-training datasets, we aggregate the time series based on time and locations
to acquire the national-level infection trajectory. For all the datasets used in this study, we examine
the infection trajectory for all diseases and locations, and filter the time series with extremely short
observations or a large number of missing values to form a high-quality evaluation testbed. Then, we
split the datasets into train/val/test sets and perform normalization on the time series.

Baselines We adopt baseline models from the comprehensive EpiLearn toolkit (Liu et al., 2024a),
comparing our model against two categories: non-pretrained and pre-trained models. Non-pretrained
baselines including RNN-based approaches like LSTM and GRU (Wang et al., 2020; Natarajan et al.,
2023), the MLP-based model DLinear (Zeng et al., 2023), and transformer-based architectures (Wu
et al., 2021; Zhou et al., 2021; 2022). Pre-trained baselines include state-of-the-art models such as
PatchTST (Nie et al., 2022) and the time series foundation model MOMENT (Goswami et al., 2024).
We provide further comparisons with PEM (Kamarthi & Prakash, 2023) in the few-shot setting and
ARIMA (Panagopoulos et al., 2021) in the online forecasting setting in Appendix A.8. We perform
hyperparameter tuning on the learning rate and weight decay for all models. ( See A.6 for details)

Research Questions. In the following experiment, we propose and answer the following questions:
Q1: How does the latent compartment contribute to epidemic forecasting? Q2: How does the model
perform on diverse downstream datasets compared to other general time series models? Q3: How
does the model perform in the few-shot setting with fewer observations? Q4: Does the proposed
epidemic-aware regularization help? Q5: How does pre-training influence downstream performance?

4.2 SIMULATION ON MECHANISTIC MODEL

Before conducting the empirical experiment, we first validate that CAPE’s latent compartments
behave as intended under controlled simulations, which answers Q1. We constructed a simulation
dataset based on the Susceptible-Infectious-Recovered-Deceased (SIRD) model for analysis. In this
scenario, S, R, and D represent compartments with monotonic increasing or decreasing behaviors,
while I shows a single peak pattern. We initialize our model with 16 latent compartments and assign S,
I, R each with three compartment prototypes, D with two prototypes, and the rest without constraints.
As shown in Figure 2, we observe that the trend and magnitude of latent compartment contribution
roughly align with the actual compartments, which verifies the usefulness of our model.

Figure 2: Simulation on SIRD model. Left: Ground-truth
trajectory; Right: Inferred compartment contributions.

Figure 3: Downstream performance vs.
compartments distribution(See A.12).

4.3 FINE-TUNING (FULL-SHOT SETTING)

To answer Q2, we finetune our model on diverse downstream datasets and compare performance
across baselines from various designs. For non-pre-trained models, we train the entire model on
the training split, while for pre-trained models, we fine-tune a few epochs on downstream datasets
by transferring the task-specific head hψ from pre-training to the forecasting task. We evaluate
short-term and long-term performance by reporting mean MSE and MAE across horizons from 1 to
16 under 25 runs on test evaluation. From Table 1, we observe that CAPE achieves the best average
performance across all downstream datasets compared with baselines.

4.4 DATA SCARCE SCENARIO, AND ABLATION STUDY

To answer Q3 and Q4, we evaluate the models in the few-shot and zero-shot regime with limited or
no fine-tuning data, and perform ablations isolating the effects of pre-training and the epidemic-aware
regularization.
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Table 3: Zero-shot performance with a lookback
window length of 12. All results are averaged
over 4 weeks or days in the future. ∆(%) stands
for the relative improvement over the baselines.

Dataset ∆ (%) CAPE PatchTST MOMENT

ILI USA 9.26% 0.147 0.164 0.549
ILI Japan 17.06% 0.705 0.907 2.062
Measles 3.97% 0.145 0.167 0.533
MPox 20.00% 0.0004 0.0005 0.0013
Dengue (mixed) 10.17% 0.371 0.427 1.624
RSV 26.06% 0.834 1.128 1.849
Covid (daily interval) 13.80% 5.173 6.001 18.881

Table 4: Ablation study on removing pre-training
and epidemic-aware regularization. Results are
averaged over 25 runs of evaluation.

Dataset H w/o Pre-train w/o Epidemic Reg. CAPE

MSE MAE MSE MAE MSE MAE

ILI USA

1 0.148 0.114 0.180 0.144 0.174 0.139
2 0.229 0.151 0.200 0.145 0.192 0.141
4 0.409 0.202 0.297 0.171 0.299 0.171
8 0.575 0.241 0.565 0.240 0.469 0.221
16 0.640 0.289 0.652 0.278 0.650 0.278
Avg 0.400 0.199 0.379 0.196 0.357 0.190

ILI Japan

1 0.371 0.406 0.334 1.130 0.328 0.982
2 0.677 1.141 0.703 1.235 0.709 1.206
4 1.300 1.540 1.284 1.537 1.191 2.029
8 1.835 1.190 1.798 1.082 1.792 1.088
16 1.920 1.232 1.866 1.149 1.878 1.163
Avg 1.221 1.102 1.197 1.227 1.179 1.294

Few-Shot Forecasting. Predicting outbreaks of new diseases or in unfamiliar locations is difficult for
purely data-driven models with limited data, making few-shot and zero-shot forecasting essential. To
simulate this, we reduce training data to [20%, 40%, 60%, 80%] and report average MSE over 1–16
time steps (Table 2). Key observations: (a) More training data consistently improves performance.
(b) CAPE achieves the best results in most cases, showing strong few-shot capability. (c) Dlinear
underperforms at 20% data compared to epidemic-pretrained models, but surpasses MOMENT on ILI
USA and Measles when both are trained on 20%, highlighting the value of pre-training on epidemic
time series. (More details are shown in A.11).

Zero-Shot Forecasting. We evaluate CAPE in a zero-shot setting by freezing transformer-based
models with their pre-training heads. All models receive a 12-step historical input and predict the next
4 steps (Table 3). Key observations: (a) CAPE consistently outperforms baselines, confirming superior
zero-shot ability. (b) Epidemic-specific pre-training yields better results than general pre-training
(e.g., MOMENT), underscoring the importance of domain-specific data.

Ablation Study. We evaluate the contributions of CAPE’s components in Table 4. Removing
pre-training leads to the largest degradation, with average MSE increasing from 0.357 to 0.400 on
ILI USA. Also, dropping epidemic regularization hurts performance across most horizons and the
average MSE (e.g., 1.179 to 1.197 on ILI Japan). Overall, CAPE consistently achieves the lowest
errors, showing that both pre-training and epidemic regularization are important, with pre-training
providing the greater benefit.

Figure 4: Downstream performance when the
model is pre-trained with either respiratory or
non-respiratory data.
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Figure 5: DBI between the embeddings of each
pair of downstream datasets from the pre-trained
model. (See Figure 7 for visualization.).

4.5 DEEPER ANALYSIS

To answer Q5, we (i) examine the representation quality, transferability, and robustness against
distribution shift, and (ii) further explore the power of pre-training from two perspectives: compute
budget and pre-training materials.
Transferability. (a) Cross-Location: While we pre-train our model with influenza data from the
USA, the few-shot and zero-shot evaluation on the influenza outbreak in Japan also shows superior
performance, underscoring the crucial role of pre-training in enabling generalization to novel regions.
(b) Cross-Disease: While we include various types of diseases in our pre-training dataset, novel
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diseases, like COVID-19, that are unseen in the pre-training stage, are incorporated during the
downstream evaluation. The ability of our model to adapt to novel diseases is proven compared to the
version not pre-trained on the COVID dataset (Table 3), which surpasses the MOMENT that is not
pre-trained on other diseases by 72.60%.

Representation Learning. To evaluate the representation quality learned during pre-training, we
compute the DBI score of sample representations from different diseases. As shown in Figure 5 and
7, compared to PatchTST, CAPE is able to distinguish the representations from different diseases,
effectively capturing the diverse underlying dynamics of different pathogens.

Tackling Distribution Shift. We define distribution shifts as changes in infection patterns from
training to test data. We compute the Central Moment Discrepancy (CMD)(Zellinger et al., 2017)
between training and test distributions for each disease. As shown in Figure 8, compared to the
version without compartmental prototypes, CAPE achieves the lowest CMD scores, highlighting its
effectiveness in mitigating distribution shifts.

Analysis on Pre-training. (a) Impact of Compute During Pre-training. Evaluating four down-
stream datasets (Figure 3), we find that increasing pre-training epochs consistently improves perfor-
mance on the Measles dataset. Additionally, models with more compartment prototypes K perform
better as pre-training epochs increase. (b) Impact of Pre-Training Materials. We examine potential
biases in our pre-training dataset by splitting it into respiratory and non-respiratory diseases. As
shown in Figure 4, with similar volumes of pre-training data, the model performs better when the
tested disease types align with the pre-training data. However, the size of the pre-training material
has a stronger impact. (c) Impact of Pre-Training Material Scale: To explore how the pre-training
material scale affects downstream performance, we scaled the original pre-training dataset and tested
it on downstream datasets. As shown in Figure 6, a sudden performance boost is observed at around
a 60% reduction for both Measles and Dengue datasets.

5 CONCLUSION

We present CAPE, the first open-source pre-training framework for epidemic forecasting that learns
flexible latent population states, termed compartmental prototypes, to address structural heterogeneity,
hidden population states, and distribution shifts in epidemic pre-training. By designing large-scale
epidemic self-supervised objectives with lightweight epidemic-aware regularization, CAPE captures
transferable dynamics across diseases and regions. Extensive experiments demonstrate state-of-the-art
generalization in zero-shot, few-shot, and cross-disease settings. In the future, we plan to extend
CAPE to incorporate spatial dynamics for richer generalization, integrate principled approaches to
uncertainty quantification, and further enhance the interpretability of the pre-trained model, ultimately
advancing toward trustworthy and actionable epidemic forecasting.
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We have adhered to the ICLR Code of Ethics in preparing this submission. This work does
not involve human subjects, personally identifiable data, or sensitive information. All datasets
used are publicly available benchmark datasets, and we follow their respective usage and licensing
guidelines. The proposed methods are designed for advancing research in high-dimensional time
series forecasting and do not raise foreseeable risks of harm.

REPRODUCIBILITY STATEMENT

We provide an anonymous repository containing the full source code and implementation details of our
proposed CAPE at https://anonymous.4open.science/r/CAPE_ICLR26-A041/.
Detailed descriptions of model architectures, training protocols, and hyperparameters are included in
the main text and appendix. These resources are intended to ensure that all reported results can be
independently reproduced.

REFERENCES

Abdulmajeed, K., Adeleke, M., and Popoola, L. Online forecasting of covid-19 cases in nigeria using
limited data. Data in brief, 30:105683, 2020.

Adhikari, B., Xu, X., Ramakrishnan, N., and Prakash, B. A. Epideep: Exploiting embeddings for
epidemic forecasting. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 577–586, 2019.

Borghi, P. H., Zakordonets, O., and Teixeira, J. P. A covid-19 time series forecasting model based on
mlp ann. Procedia Computer Science, 181:940–947, 2021.

Centers for Disease Control and Prevention. Influenza-like illness (ili) data - usa. https://gis.
cdc.gov/grasp/fluview/fluportaldashboard.html, 2023a.

Centers for Disease Control and Prevention. Monkey pox cases data. https://www.cdc.gov/
mpox/data-research/cases/index.html, 2023b.

Centers for Disease Control and Prevention. Rsv surveillance data. https://www.cdc.gov/
rsv/php/surveillance/rsv-net.html, 2023c.

Cooper, I., Mondal, A., and Antonopoulos, C. G. A sir model assumption for the spread of covid-19
in different communities. Chaos, Solitons & Fractals, 139:110057, 2020.

Diekmann, O., Heesterbeek, J. A. P., and Roberts, M. G. The construction of next-generation matrices
for compartmental epidemic models. Journal of the royal society interface, 7(47):873–885, 2010.

Dong, E., Du, H., and Gardner, L. An interactive web-based dashboard to track covid-19 in real time.
The Lancet infectious diseases, 20(5):533–534, 2020.

Fraikin, A., Bennetot, A., and Allassonnière, S. T-rep: Representation learning for time series using
time-embeddings. arXiv preprint arXiv:2310.04486, 2023.

Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li, S., and Dubrawski, A. Moment: A family of
open time-series foundation models. arXiv preprint arXiv:2402.03885, 2024.

He, S., Peng, Y., and Sun, K. Seir modeling of the covid-19 and its dynamics. Nonlinear dynamics,
101:1667–1680, 2020.

Kamarthi, H. and Prakash, B. A. Pems: Pre-trained epidmic time-series models. arXiv preprint
arXiv:2311.07841, 2023.

Lau, M. S., Becker, A. D., Korevaar, H. M., Caudron, Q., Shaw, D. J., Metcalf, C. J. E., Bjørnstad,
O. N., and Grenfell, B. T. A competing-risks model explains hierarchical spatial coupling of
measles epidemics en route to national elimination. Nature Ecology & Evolution, 4(7):934–939,
2020.

10

https://anonymous.4open.science/r/CAPE_ICLR26-A041/
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://www.cdc.gov/mpox/data-research/cases/index.html
https://www.cdc.gov/mpox/data-research/cases/index.html
https://www.cdc.gov/rsv/php/surveillance/rsv-net.html
https://www.cdc.gov/rsv/php/surveillance/rsv-net.html


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Liang, Y., Wen, H., Nie, Y., Jiang, Y., Jin, M., Song, D., Pan, S., and Wen, Q. Foundation models for
time series analysis: A tutorial and survey. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 6555–6565, 2024.

Liu, Z., Li, Y., Wei, M., Wan, G., Lau, M. S., and Jin, W. Epilearn: A python library for machine
learning in epidemic modeling. arXiv preprint arXiv:2406.06016, 2024a.

Liu, Z., Wan, G., Prakash, B. A., Lau, M. S., and Jin, W. A review of graph neural networks
in epidemic modeling. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 6577–6587, 2024b.

Madden, W. G., Jin, W., Lopman, B., Zufle, A., Dalziel, B., E. Metcalf, C. J., Grenfell, B. T., and Lau,
M. S. Deep neural networks for endemic measles dynamics: Comparative analysis and integration
with mechanistic models. PLOS Computational Biology, 20(11):e1012616, 2024.

Natarajan, S., Kumar, M., Gadde, S. K. K., and Venugopal, V. Outbreak prediction of covid-19 using
recurrent neural network with gated recurrent units. Materials Today: Proceedings, 80:3433–3437,
2023.

National Institute of Infectious Diseases. Infectious diseases weekly report (idwr) - japan. https:
//www.niid.go.jp/niid/en/idwr-e.html, 2023.

Nguyen, M. M., Freedman, A. S., Ozbay, S. A., and Levin, S. A. Fundamental bound on epidemic
overshoot in the sir model. Journal of the Royal Society Interface, 20(209):20230322, 2023.

Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, M., and Agha, R.
The socio-economic implications of the coronavirus pandemic (covid-19): A review. International
journal of surgery, 78:185–193, 2020.

Nie, Y., Nguyen, N. H., Sinthong, P., and Kalagnanam, J. A time series is worth 64 words: Long-term
forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Obata, K., Kawabata, K., Matsubara, Y., and Sakurai, Y. Mining of switching sparse networks for
missing value imputation in multivariate time series. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 2296–2306, 2024.

OpenDengue. Dengue data across countries. https://opendengue.org/, 2023.

Panagopoulos, G., Nikolentzos, G., and Vazirgiannis, M. Transfer graph neural networks for pandemic
forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp.
4838–4845, 2021.

Pham, Q., Liu, C., Sahoo, D., and Hoi, S. C. Learning fast and slow for online time series forecasting.
arXiv preprint arXiv:2202.11672, 2022.

Qu, M., Bengio, Y., and Tang, J. Gmnn: Graph markov neural networks. In International conference
on machine learning, pp. 5241–5250. PMLR, 2019.

Rasul, K., Ashok, A., Williams, A. R., Khorasani, A., Adamopoulos, G., Bhagwatkar, R., Biloš, M.,
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A APPENDIX

A.1 POTENTIAL IMPACT

This paper advances the interdisciplinary fields of machine learning and epidemiology by enhancing
the accuracy of epidemic forecasting in data-limited settings. We outline the potential impacts as
follows:

Early Insights. We provide novel insights into how pre-training and compartment modeling improve
epidemic forecasting. Our results demonstrate that pre-training significantly enhances model accuracy,
with gains increasing as more pre-training data is incorporated. This finding paves the way for future
research to develop foundational models in epidemic analysis using larger datasets. Additionally, we
confirm the importance of accounting for both inherent disease dynamics and compartmental factors
to achieve robust forecasting performance.

Social Impact. Epidemic time series data are often sparse due to limited sampling rates, hindering
public health organizations’ ability to accurately predict infections during novel disease outbreaks.
This paper addresses this challenge by showcasing the few-shot and zero-shot forecasting capabil-
ities of pre-trained models. These capabilities can provide powerful tools for early warning and
timely intervention, ultimately supporting more effective public health responses and safeguarding
communities against emerging infectious diseases.

A.2 LIMITATIONS

While CAPE shows strong performance, it has several limitations. First, it does not currently
incorporate uncertainty estimation, which is important for risk-aware decision-making. Second, its
effectiveness may be constrained by the scale and diversity of available data. Lastly, the learned
compartment representations lack interpretability, limiting their transparency and potential for insight
in public health contexts.

A.3 USE OF LLMS

We use LLMs to check grammar and polish the language of this paper for clarity.

A.4 THEORETICAL ANALYSIS

A.4.1 INFERENCE OF R0

(1) Disease-Free Equilibrium (DFE): Calculation of F and V requires defining the population
flow, and since our framework does not utilize explicit population flows, we use the learned latent
compartment contributions, π, as a potential differentiable proxy that correlates with population,
as demonstrated in Figure 2. Specifically, we establish the compartment contributions at DFE: π∗,
which represents a scenario with no ongoing epidemic, by feeding a zero-infection time series,
XDFE ∈ RT×1, into the encoder:

π∗ =
1

C

C∑
c=1

softmax(EDFEE
T [c, :]) ∈ RK , EDFE ← fenc(XDFE), (7)

where EDFE are the weighted sum of latent compartment prototypes at the DFE.

(2) Calculation of F: The F matrix, which quantifies new infections, is estimated by applying
perturbation on each infectious compartment: Hpert,(j) = ϕ(π̂,EDFE) = (1 − α)EDFE + απ̂TE,
where α = 0.1, π̂ =

π∗+ϵj
∥π∗+ϵj∥1

and ϵj is a perturbation applied on the entry (compartment) j.
Therefore, we get the element of F via:

Fij = max(0, π
new,(j)
i − π∗

i ), πnew,(j) = g(Hpert,(j)). (8)

(3) Calculation of V: V characterizes transition rates out of infectious compartments, where Vjj
represents the total departure rate from compartment j and Vij captures transitions from compartment
j to compartment i. For each infectious compartment j, we initialize with unit mass πunit, (j) and
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acquire the updated contributions in a similar way: πevolved,(j) = g(ϕ(πunit, (j),EDFE)). Then the V
matrix elements are computed as:

Vij =

{
max(0, π

evolved,(j)
i ) if i ̸= j,

π
unit,(j)
j − π

evolved,(j)
j if i = j,

(9)

where Vij measures mass appearing in compartment i when j initially contains unit mass, and Vjj
quantifies the total rate of departure from compartment j. Finally, a linear layer is applied to align
the scale of the estimated lower- and upper-bound with the ground-truth range of R0 and the loss
is computed as: LR0

= RELU(R̂lower
0 , Rlower

0 ) + RELU(R̂upper
0 , Rupper

0 ). This NGM-based approach
provides a theoretically grounded method for computing R0 that respects the compartmental structure
while being differentiable for end-to-end training.

A.4.2 PROOF OF EQUATION 5

Setup and Preliminaries. Let V ∈ Cm×n. The (operator) 2-norm of a matrix M is

∥M∥2 = sup
x̸=0

∥Mx∥2
∥x∥2

= max
∥x∥2=1

∥Mx∥2 .

The singular values σ1(V ) ≥ · · · ≥ σr(V ) ≥ 0 (with r = rank(V )) are, by definition, the
nonnegative square roots of the eigenvalues of V ∗V (where ∗ denotes conjugate transpose), counted
with multiplicity and ordered nonincreasingly.

For any matrix M and any vector x,

σmin(M) ∥x∥2 ≤ ∥Mx∥2 ≤ σmax(M) ∥x∥2, ∥M∥2 = σmax(M).

For square M , the singular values {σi(M)}ni=1 and eigenvalues {λi(M)}ni=1 satisfy
n∏
i=1

σi(M) =
√

det(M∗M) = |detM | =
n∏
i=1

|λi(M)|.

In particular, by comparing geometric means to extrema,

σmin(M) ≤
( n∏
i=1

σi(M)
)1/n

=
( n∏
i=1

|λi(M)|
)1/n

≤ max
i
|λi(M)| = ρ(M). (P1)

Thus, for any square M ,

σmin(M) ≤ ρ(M) ≤ σmax(M) = ∥M∥2. (P2)

Theorem A.1 (Bounds for R0). Let F, V ∈ Cn×n with V invertible, and define

R0 ≡ ρ(FV −1),

where ρ(·) denotes the spectral radius, ∥ · ∥2 the operator 2-norm, and σmax(·), σmin(·) the maximal
and minimal singular values, respectively. Then R0 satisfies the bounds

σmin(F )

σmax(V )
≤ ρ(FV −1) ≤ σmax(F )

σmin(V )
.

Derivation for Lower bound.

Proof. For any compatible A,B and any unit vector x,

∥ABx∥2 ≥ σmin(A) ∥Bx∥2 ≥ σmin(A)σmin(B) ∥x∥2,
hence

σmin(AB) ≥ σmin(A)σmin(B). (S1)
Apply (S1) with A = F and B = V −1 (with V invertible):

σmin(FV −1) ≥ σmin(F )σmin(V
−1).
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Using the inversion identity for singular values,

σmin(V
−1) =

1

σmax(V )
,

we obtain

σmin(FV −1) ≥ σmin(F )

σmax(V )
. (L1)

By (P1) applied to M = FV −1, we get:

σmin(FV −1) ≤ ρ(FV −1). (L2)

Combining (L1) and (L2) yields the rigorous lower bound

σmin(F )

σmax(V )
≤ ρ(FV −1). (LB)

Derivation for Upper bound.

Proof. For any square M , ρ(M) ≤ ∥M∥2 by (P2). Thus

ρ(FV −1) ≤ ∥FV −1∥2 ≤ ∥F∥2 ∥V −1∥2 = σmax(F )
1

σmin(V )
.

Hence the rigorous upper bound is

ρ(FV −1) ≤ σmax(F )

σmin(V )
. (UB)

Final result. Putting (LB) and (UB) together, we obtain

σmin(F )

σmax(V )
≤ ρ(FV −1) ≤ σmax(F )

σmin(V )
.

A.5 PRE-TRAIN AND DOWNSTREAM DATASETS DETAILS

Due to incomplete records and limited non-U.S. data, we curated diverse, high-quality datasets
emphasizing:

• Epidemic variation: Decades of weekly data (visualization) reflect multi-wave trends and interven-
tions.

• Geographic spread: Covers 50 U.S. states and 25 non-U.S. Dengue regions.
• Climate diversity: Implicit variation (e.g., tropical Florida vs. temperate Maine).
• Data quality: Manually curated, gap-free datasets (from CDC, ProjectTycho, etc.).

We collect the rough range of R0 for each pathogen from various prior research and apply z-score
normalization for all datasets.
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Table 5: Pre-training datasets from Project Tycho with basic reproduction number (R0) ranges.

Disease Number of States Total Length Non-Respiratory R0 Range

Gonorrhea 39 37,824 Yes 1.00–1.01
Meningococcal Meningitis 37 44,890 No 0.6–1.6
Varicella 30 33,298 No 10–12
Typhoid Fever 44 89,868 Yes 2.8–7.0
Acute Poliomyelitis 47 74,070 Yes 5–7
Hepatitis B 31 34,322 Yes 1.0–3.3
Pneumonia 41 68,408 No 1.4–1.4
Hepatitis A 38 37,303 Yes 1.1–3.5
Influenza 42 61,622 No 1.2–1.6
Scarlet Fever 48 129,460 No 0.6–2.0
Smallpox 44 71,790 No 3.5–6
Tuberculosis 39 95,564 No 0.24–4.3
Measles 50 151,867 No 12–18
Diphtheria 46 112,037 No 1.7–4.3
Mumps 41 50,215 No 4–7
Pertussis 46 109,761 No 12–17
Rubella 7 6,274 No 3.4–7.0

Table 6: Statistics of the downstream datasets for evaluation.

Disease Number of Regions Sampling Rate Respiratory Total Length R0

ILI USA 1 Weekly Yes 966 1.2-1.4
ILI Japan 1 Weekly Yes 348 1.0-2.0
Measles 1 Bi-weekly Yes 1,108 12-18
Dengue 23 Mixed No 10,739 3.12-5.39
RSV 13 Weekly Yes 4,316 1-5
MPox 1 Daily No 876 1.1-2.7
COVID 16 Daily Yes 12,800 2.9-9.5

A.5.1 PRE-TRAIN DATASETS

In this study, we utilize a comprehensive collection of 17 distinct diseases from the United States,
sourced from Project Tycho. These diseases encompass both respiratory and non-respiratory cat-
egories and serve as the foundation for pre-training two transformer-based models: CAPE, and
PatchTST. The selection criteria for these datasets were meticulously chosen based on the following
factors:

Temporal Coverage and Geographic Representation: We prioritized diseases with extensive time
series data and coverage across multiple regions to ensure the models are trained on diverse and
representative datasets.

Consistent Sampling Rate: All selected datasets maintain a uniform sampling rate, which is crucial
for the effective training of transformer models that rely on temporal patterns.

Data Quantity: Diseases with larger datasets in terms of both temporal length and the number of
regions were preferred to enhance the robustness and generalizability of the models.

Among the 17 diseases, five are classified as non-respiratory, providing a balanced representation that
allows the models to learn from varied disease dynamics. Before the pre-training phase, each disease
dataset underwent a normalization process to standardize the data scales, ensuring comparability
across different diseases. Subsequently, the datasets were aggregated at the national level based on
their corresponding timestamps. The details of the pre-training datasets are summarized in Table 5.

A.5.2 DOWNSTREAM DATASETS

In addition, we collect seven datasets of different types of diseases from diverse sources for down-
stream evaluations, which are all normalized without further processing. A summary of the down-
stream datasets is shown in Table 6.

All collected diseases can be categorized into Respiratory and Non-respiratory types, which differ
in their modes of transmission:
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Respiratory. Respiratory diseases are transmitted primarily through the air via aerosols or respiratory
droplets expelled when an infected individual coughs, sneezes, or talks. These diseases predominantly
affect the respiratory system, including the lungs and throat.

Non-respiratory. Non-respiratory diseases are transmitted through various other routes such as direct
contact, vectors (e.g., mosquitoes, ticks), contaminated food or water, and sexual activities. These
diseases can affect multiple body systems and have diverse transmission pathways unrelated to the
respiratory system.

A more detailed description of each dataset is shown below:

• ILI USA (Centers for Disease Control and Prevention, 2023a): The weekly influenza-like-
illness infection was reported by the CDC in the United States. We use the national-level infection
counts from 2002 to 2020, which include various disease such as H1N1, H3N2v, etc.

• ILI Japan (National Institute of Infectious Diseases, 2023): This dataset is collected from the
Infectious Diseases Weekly Report (IDWR) in Japan, which contains national counts of weekly
influenza-like-illness infections from August 2012 to March 2019.

• Measles (Lau et al., 2020): The measles dataset contains biweekly measles infections in England
from 1906 to 1948.

• Dengue (OpenDengue, 2023): OpenDenue aims to build and maintain a database of dengue case
counts for every dengue-affected country worldwide since 1990 or earlier. We selected 23 countries
for the experiment, which reports daily to weekly infections.

• RSV (Centers for Disease Control and Prevention, 2023c): The Respiratory Syncytial Virus
(RSV) infections in the US are reported by the RSV-NET from CDC. We use the weekly infections
across 13 states from 2016 to 2024.

• MPox (Centers for Disease Control and Prevention, 2023b): The clade II MPox case trends
data in the US is reported by CDC. We use the nationwide weekly infections from 2022 to 2024.

• COVID (Dong et al., 2020): The original data is from the Novel Coronavirus Visual Dashboard
operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU
CSSE). We use the daily COVID-19 infections collected by JHU from 2020 to 2022 across 16
states.

A.6 IMPLEMENTATION DETAILS

Motivation for Our Settings. Our primary focus is on pre-training epidemic forecasting models
using temporal (time series) data rather than spatiotemporal data. This design choice is motivated by
the following considerations:

• We aim to establish the foundation for epidemic pre-training in the temporal setting, which remains
unexplored — only one prior work (Kamarthi & Prakash, 2023) addresses this area, and it also
focuses on temporal setting. As shown in Sections 4.2-4.5, we address critical questions around
generalization, few-shot/zero-shot performance, and pre-training dynamics — topics that remain
open even without spatial context.

• Temporal models are broadly applicable and more data-efficient, especially when spatial data is
unavailable or unreliable. Many real-world epidemic datasets lack well-defined spatial graphs, and
building them (e.g., from mobility or administrative data) is costly and complex, particularly at
scale. These inconsistencies also hinder fair comparisons between temporal and spatiotemporal
models.

• Our framework is extensible to spatiotemporal modeling. Specifically, the temporal input can
be replaced with graph-structured data, and the predictor can incorporate graph-based encoders.
Exploring this direction is exciting future work, but we believe temporal pre-training is a crucial
first step toward that goal.

Zero-Shot. Once pre-trained, our CAPE framework can be directly utilized for zero-shot fore-
casting, where the model remains frozen and no parameter is updated. Similar to the MOMENT
model (Goswami et al., 2024), we retain the pre-trained reconstruction head and mask the last patch
of the input to perform forecasting: ŷ = x̂[T−c:T ].

Data Splits. For the ILI USA, Measles, and Dengue datasets, we split the data into 60% training,
10% validation, and 30% test. Other datasets are divided into 40% training, 20% validation, and 40%
test. During test, we use the model checkpoint with the best validation performance.
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Model Details. We design our model by stacking 4 layers of the CAPE encoder, each with a hidden
size of 512 and 4 attention heads. For compartment representations, we incorporate 16 distinct
compartments, each encoded with a size of 512. We constrain two prototypes with monotonic
increase or decrease loss, respectively, 6 with the non-monotonic loss, and leave the rest to be
unconstrained. To ensure a fair comparison, PatchTST is configured with the same number of layers
and hidden size as our CAPE-based model. For all other baseline models, we adopt the architectures
as reported in previous studies (Wang et al., 2024a; Kamarthi & Prakash, 2023; Panagopoulos et al.,
2021).

Training Details:

• We adopt an input length of 36 (Wu et al., 2023; Wang et al., 2024b) and a patch size of 4 for
applicable models. For the compartment estimator defined in Eq. equation 1, a shared weight wk
is used for all compartment representations. All results are evaluated using Mean Squared Error
(MSE).

• CAPE follows the general EM framework, whose convergence is well-studied (Obata et al., 2024;
Qu et al., 2019; Wu, 1983). To ensure stable convergence, we use a small learning rate (1e-5) with
L2 regularization, train for 150 epochs, and select the model with the lowest validation error.

• For the training process, we pre-train CAPE and PatchTST on a single Nvidia L40 GPU. During
pre-training, we utilize only 70% of the available training data, specifically the first 70% of the
dataset for each disease category. We set the learning rate to 1× 10−5. In the CAPE pre-training
strategy, we assign a weight of 1e-5 to λ to balance the contribution of alignment loss to the whole
loss function. We use a general R0 range of 0-20 during pre-training.

• After pre-training, we fine-tune the entire model for five epochs with a changing learning rate,
weight decay, and a larger λ. We also apply the disease-specific R0 (shown in Table 6) for
supervision during this phase. The best-performing model is selected based on its performance on
the validation set. Similarly, for all baseline models, we train each until convergence and select the
optimal model based on validation set performance for the subsequent test.

A.7 COMPARTMENT INFLUENCE

We also add Gaussian noise to mixture weights (Equation 1), causing performance drops, which
highlights the importance of accurate compartment estimation:

Table 7: Model Performance under Different Noise Scales

Noise Scale (%) 5% 10% 15% 20%
MSE 0.327 0.373 0.456 0.559
MAPE 0.198 0.211 0.236 0.264

A.8 COMPARISONS WITH PEM AND ARIMA

In this section, we provide further comparisons with the Statistical model ARIMA (Panagopoulos
et al., 2021), which is configured in an online forecasting setting (Pham et al., 2022; Abdulmajeed
et al., 2020) where parameters are updated with each new sample. As shown in Table 8, ARIMA
typically outperforms CAPE in the short-term forecasting, while CAPE outperforms ARIMA in
long-term forecasting and the averaged performance.

A.9 ONLINE FORECASTING COMPARISON

We further adopted an online setting used by EINNs Rodrı́guez et al. (2023) and Epideep Adhikari
et al. (2019), where model parameters are consistently updated during forecasting. We compare the
results in Table 9.
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Table 8: Mean Squared Error (MSE) comparison between ARIMA, CAPE, and PEM models. The
lowest MSE for each horizon is marked in bold.

ILI USA ILI Japan Measles Dengue Covid
Horizon ARIMA CAPE PEM ARIMA CAPE PEM ARIMA CAPE PEM ARIMA CAPE PEM ARIMA CAPE PEM
1 0.138 0.174 0.303 0.358 0.328 0.734 0.070 0.111 0.330 0.244 0.367 0.912 33.779 25.841 36.163
2 0.203 0.192 0.328 0.772 0.709 0.919 0.120 0.157 0.350 0.373 0.317 0.844 33.199 25.413 29.278
4 0.354 0.299 0.507 1.720 1.191 1.310 0.223 0.188 0.464 0.696 0.508 1.236 32.476 24.631 33.545
8 0.702 0.469 0.519 2.991 1.792 1.836 0.481 0.406 0.726 1.736 1.169 1.806 36.567 33.003 39.577
16 1.119 0.650 0.682 2.590 1.878 1.936 1.047 0.883 1.213 4.131 2.512 2.938 42.908 49.838 49.299

Avg 0.503 0.357 0.468 1.686 1.179 1.347 0.388 0.349 0.616 1.436 0.975 1.547 35.785 31.745 37.573

Table 9: Comparison of model performance for online evaluation setting.
Datasets Horizon EXPEM EINN EpiDeep

MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

ILI USA
1 32.6287±0.5659 5.4137±0.0407 5.7119±0.0496 34.9396±0.8649 5.6884±0.0659 5.9105±0.0736 46.8892±0.5597 6.6289±0.0353 6.8474±0.0409
2 36.7515±0.8805 5.7716±0.0959 6.0619±0.0724 36.5572±1.4472 5.8143±0.1435 6.0451±0.1192 48.3728±0.5039 6.7256±0.0351 6.9550±0.0363
4 40.9876±0.5186 6.1004±0.0660 6.4020±0.0404 41.1675±0.3398 6.1796±0.0618 6.4161±0.0265 50.6746±0.1006 6.8778±0.0063 7.1186±0.0071

Measles
1 0.2042±0.1042 0.3971±0.1161 0.4364±0.1172 0.4718±0.2292 0.5851±0.1712 0.6688±0.1565 1.1160±0.0935 0.9424±0.0345 1.0555±0.0439
2 0.2581±0.0495 0.4535±0.0538 0.5054±0.0513 0.4408±0.1457 0.5702±0.0988 0.6542±0.1132 1.0842±0.0513 0.9305±0.0227 1.0410±0.0248
4 0.4384±0.0698 0.5330±0.0342 0.6600±0.0531 0.6228±0.0775 0.6710±0.0523 0.7877±0.0486 1.1505±0.0326 0.9505±0.0140 1.0725±0.0152

A.10 FULL RESULTS ON PRE-TRAIN DATASETS

In addition to evaluating the performance of the models on downstream datasets, we also provide the
in-domain evaluation results from the pre-training datasets. Recall that we used 70% data of each
disease for pre-training, here we fine-tuned the model on the 70% of each disease and evaluate both
CAPE and the pre-trained PatchTST on the rest 30% data. As shown in Table 10, CAPE consistently
outperforms PatchTST on 13/15 datasets, proving the effectiveness of our method.

A.11 FULL RESULTS FOR FEW-SHOT FORECASTING

We present the complete few-shot performance across different horizons in Table 11. While CAPE
does not achieve state-of-the-art average performance on the ILI USA dataset with limited training
data, it excels in short-term forecasting when the horizon is smaller. Since the authors of PEM (Ka-
marthi & Prakash, 2023) did not release full code, we implemented the method to the best of our
ability based on the paper description.

A.12 IMPACT OF THE COMPARTMENT DISTRIBUTION AND PRE-TRAIN EPOCHS
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Figure 9: Downstream performance vs. compartment distribution and pre-train epochs.

A.13 IMPACT OF PRE-TRAINING RATIO ON THE DOWNSTREAM DATASETS

We provide additional evaluations for CAPE on downstream datasets to analyze the impact of the
pre-training ratio. As shown in Figure 10, increasing the pre-training ratio eventually improves
downstream performance across all datasets.
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Table 10: Performance of CAPE and pre-trained PatchTST across diseases in the pre-training datasets.
The results presented is the average over horizons of 1,2,4,8,16.

Disease Method Horizon 1 Horizon 2 Horizon 4 Horizon 8 Horizon 16 Average

Mumps CAPE 0.000284 0.000290 0.000370 0.000451 0.000539 0.000387
PatchTST 0.000280 0.000310 0.000388 0.000508 0.000627 0.000423

Meningococcal Meningitis CAPE 0.063022 0.066196 0.073552 0.093547 0.108842 0.081032
PatchTST 0.054611 0.061641 0.073794 0.088404 0.096449 0.074980

Influenza CAPE 0.367677 0.510453 0.693110 0.903920 1.037177 0.702467
PatchTST 0.392925 0.644013 0.717147 0.851498 1.061066 0.733330

Hepatitis B CAPE 0.071834 0.072827 0.074606 0.077816 0.068012 0.073019
PatchTST 0.074016 0.082576 0.084535 0.085867 0.074103 0.080219

Pneumonia CAPE 0.038916 0.052092 0.082579 0.137004 0.191675 0.100453
PatchTST 0.036961 0.074596 0.096963 0.152206 0.174871 0.107119

Typhoid Fever CAPE 0.004918 0.004393 0.004552 0.005051 0.005828 0.004948
PatchTST 0.007068 0.005954 0.005906 0.006519 0.006709 0.006431

Hepatitis A CAPE 0.347792 0.349403 0.352361 0.360705 0.315496 0.345151
PatchTST 0.331339 0.349549 0.356113 0.381637 0.338067 0.351341

SCAPEet Fever CAPE 4.229920 5.258288 6.787577 10.865951 13.724634 8.173274
PatchTST 8.561295 13.564009 17.241462 19.315905 20.373520 15.811238

Gonorrhea CAPE 0.010826 0.010900 0.011246 0.011483 0.011898 0.011271
PatchTST 0.011297 0.012223 0.013411 0.013438 0.013241 0.012722

Smallpox CAPE 0.063829 0.065191 0.076199 0.098973 0.157850 0.092408
PatchTST 0.070972 0.076843 0.107076 0.124042 0.165442 0.108875

Acute Poliomyelitis CAPE 0.254014 0.394454 0.355898 0.480525 0.745428 0.446064
PatchTST 0.094695 0.134304 0.270908 0.392511 0.482426 0.274969

Diphtheria CAPE 0.006789 0.005360 0.006557 0.010682 0.014136 0.008705
PatchTST 0.011019 0.008891 0.009036 0.013048 0.015531 0.011505

Varicella CAPE 0.000119 0.000128 0.000154 0.000212 0.000245 0.000171
PatchTST 0.000109 0.000141 0.000169 0.000237 0.000296 0.000190

Tuberculosis CAPE 0.178741 0.170441 0.215367 0.177671 0.198068 0.188057
PatchTST 0.189156 0.209008 0.189944 0.204680 0.277632 0.214084

Measle CAPE 0.009626 0.010982 0.016451 0.022407 0.042980 0.020489
PatchTST 0.013008 0.012608 0.020903 0.039835 0.063844 0.030039

Table 11: Few-shot learning results with horizons ranging from 1 to 16 future steps. The length of
the lookback window is set to 36. Each model is evaluated after being trained on 20%, 40%, 60%
and 80% of the full training data.

Dataset Horizon CAPE PatchTST Dlinear MOMENT PEM
20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

ILI USA

1 1.155 0.535 0.307 0.178 0.155 1.361 0.662 0.355 0.191 0.195 1.430 1.000 0.460 0.230 0.170 2.859 1.274 0.608 0.267 0.216 1.424 0.620 0.330 0.189 0.145
2 1.396 0.925 0.465 0.220 0.200 1.389 0.806 0.489 0.234 0.264 2.210 1.090 0.660 0.280 0.220 3.242 1.709 0.695 0.342 0.271 1.463 0.829 0.434 0.256 0.210
4 1.770 1.154 0.640 0.306 0.270 1.923 1.215 0.656 0.387 0.385 2.500 1.670 0.720 0.380 0.310 3.910 1.901 0.891 0.399 0.356 1.889 1.186 0.625 0.393 0.312
8 2.611 1.912 0.978 0.519 0.404 2.713 1.623 0.833 0.544 0.535 3.510 1.970 0.980 0.530 0.450 4.706 2.013 1.120 0.615 0.482 2.649 1.690 0.966 0.580 0.573
16 3.674 2.473 1.411 0.622 0.516 3.182 1.789 1.056 0.649 0.485 4.460 2.240 1.260 0.640 0.580 5.233 2.335 1.251 0.669 0.580 3.294 1.979 1.049 0.679 0.526
Avg 2.121 1.400 0.760 0.369 0.309 2.114 1.219 0.677 0.401 0.373 2.822 1.594 0.816 0.412 0.346 3.990 1.847 0.913 0.459 0.381 2.143 1.261 0.681 0.419 0.353

Dengue

1 3.254 1.384 0.489 0.384 0.218 3.700 1.580 0.657 0.389 0.203 3.600 1.470 0.550 0.350 0.220 4.585 2.480 0.689 0.423 0.383 3.383 1.613 0.558 0.350 0.206
2 4.463 2.340 0.735 0.487 0.301 5.832 2.159 0.846 0.507 0.296 7.090 2.170 0.820 0.510 0.310 6.609 2.990 0.922 0.587 0.521 5.404 2.257 0.869 0.507 0.300
4 7.563 3.728 1.250 0.817 0.540 9.525 3.636 1.517 1.069 0.588 11.190 4.130 1.520 0.940 0.560 12.877 4.106 1.644 0.966 0.669 8.782 4.428 1.608 1.037 0.522
8 15.526 7.276 2.836 1.922 1.193 19.052 9.530 3.597 2.133 1.296 21.910 9.690 3.470 2.160 1.250 23.298 9.229 3.625 2.135 1.235 17.023 8.117 3.323 2.249 1.295
16 35.870 17.204 6.469 3.946 2.210 30.451 19.616 7.238 4.289 2.536 35.350 24.640 7.890 4.780 3.060 31.115 18.877 7.200 4.551 3.984 29.934 18.861 7.368 4.390 2.497
Avg 13.335 6.386 2.356 1.511 0.892 13.712 7.304 2.771 1.678 0.984 15.828 8.420 2.850 1.748 1.080 15.697 7.536 2.816 1.733 1.358 12.90 7.055 2.745 1.707 0.964

Measles

1 0.168 0.158 0.107 0.095 0.069 0.400 0.217 0.121 0.091 0.094 0.560 0.470 0.190 0.150 0.100 1.211 0.316 0.138 0.108 0.102 0.227 0.200 0.106 0.106 0.084
2 0.229 0.256 0.165 0.134 0.096 0.511 0.325 0.186 0.148 0.127 0.680 0.400 0.320 0.220 0.150 1.376 0.367 0.159 0.167 0.138 0.313 0.339 0.155 0.153 0.127
4 0.371 0.399 0.267 0.198 0.155 0.663 0.510 0.297 0.243 0.205 1.050 0.920 0.360 0.310 0.240 1.444 0.516 0.278 0.228 0.196 0.497 0.451 0.258 0.240 0.196
8 0.564 0.776 0.451 0.339 0.280 1.050 1.269 0.479 0.414 0.378 1.580 1.340 0.660 0.540 0.450 1.895 1.181 0.507 0.386 0.883 0.865 1.213 0.487 0.441 0.382
16 1.086 1.408 0.917 0.658 0.743 1.692 1.847 1.157 0.900 0.723 2.100 2.520 1.480 1.170 1.030 2.379 2.192 1.041 1.468 1.183 1.448 2.275 1.145 0.880 0.740
Avg 0.483 0.600 0.381 0.285 0.269 0.863 0.834 0.448 0.359 0.306 1.194 1.130 0.602 0.478 0.394 1.661 0.915 0.425 0.471 0.500 0.670 0.896 0.430 0.364 0.306
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Figure 10: Downstream performance with different ratios of pre-training datasets. The input length is
set to 36 and all MSE results are averaged over {1,2,4,8,16} future steps.

A.14 MITIGATING DISTRIBUTION SHIFT
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Figure 11: CMD scores w/ and w/o compartment estimate between train/test sets. We measure the
CMD scores based on the last embedding output by our model.

A.15 DISENTANGLING DISEASE-SPECIFIC DYNAMICS

After pre-training, both CAPE and PatchTST were frozen and applied to downstream datasets directly
to generate latent space embeddings for each sample. We then employed the Davies-Bouldin Index
(DBI) to assess the separability of these embeddings by disease. CAPE consistently achieved lower
DBI scores (we show an example in Figure 15), demonstrating a superior ability to distinguish
between different diseases in the latent space compared to PatchTST. This enhanced separability
highlights the effectiveness of CAPE’s compartment estimation and backdoor adjustment. These
mechanisms are crucial for mitigating the confounding influence of noisy, spurious, and compartment-
dependent factors (Xsp), thereby enabling the model to better isolate and represent the unique,
intrinsic, and causal disease dynamics (Xca).
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Figure 12: DBI between the embeddings of each pair of downstream datasets from the pre-trained
model. (See Figure 15).

A.16 VISUALIZATION OF THE ESTIMATED COMPARTMENTS

According to ê(l) =
∑K
k=1 ekπ

(l)
k , an aggregated compartment is the weighted sum of the learned

latent compartment representations. Therefore, the estimation shares the same latent space as the fixed
representations and we are able to visualize them using t-SNE. As shown in Figure 13, we visualize
the aggregated compartments (Estimated) as well as the learned latent compartment (Anchor) from a
CAPE model with 8 compartments.
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Figure 13: Visualization of the estimated compartment representations using t-SNE.

A.17 VISUALIZATION OF DISTRIBUTION SHIFT FOR DOWNSTREAM DATASETS

We provide a visualization of the sample distribution used in this study. Each sample has a fixed
length of 36, representing the historical infection trajectory. To better understand the distributional
differences, we use t-SNE to reduce the data to one dimension and visualize the training and test
samples using different colors. As shown in Figure 14, a significant distribution shift is visually
apparent across most datasets. To quantitatively assess the distributional differences between the
training and test sets, we calculate the Central Moment Discrepancy (CMD) score (Zellinger et al.,
2017). The CMD score measures the discrepancy between the central moments of the two distributions
up to a specified order K. For two distributions X (training set) and Xtest (test set), the CMD score is
defined as:

CMD(X,Xtest) = ∥µ1(X)− µ1(Xtest)∥2 +
K∑
k=2

∥µk(X)− µk(Xtest)∥2, (10)

where:µk(X) denotes the k-th central moment of X , defined as: µk(X) = E[(X − E[X])k], and
similarly for µk(Xtest). ∥ ·∥2 is the Euclidean norm. K is the maximum order of moments considered.
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The CMD score aggregates the differences in the mean (first moment) and higher-order moments (e.g.,
variance, skewness), providing a robust measure of the distribution shift. In our experiments, we set
K = 3 to capture up to the third-order central moments. This score quantitatively complements the
visual observations in Figure 14, offering a more comprehensive understanding of the distributional
differences between training and test sets.

Impact of Distribution Shifts. Distribution shifts between training and test datasets pose significant
challenges to the generalizability and robustness of predictive models. When the underlying data
distributions differ, models trained on the training set may struggle to maintain their performance on
the test set, leading to reduced accuracy and reliability. These discrepancies can arise from various
factors, such as temporal changes in infection patterns or geographical variations. In this paper, we
assume that the inherent infection pattern of a particular disease remains constant, and the distribution
shifts for the disease are primarily caused by the rapidly changing compartment, which results in
diverse infection patterns. In the context of epidemic modeling, such shifts are especially critical, as
they can undermine the model’s ability to accurately predict future infection trends, which is essential
for effective public health interventions.
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Figure 14: The KDE plot of training set and test set. Each sample contains an infection trajectory of
36 weeks. t-SNE is applied to visualize the distributions of both sets.

A.18 LATENT SPACE VISUALIZATION OF MEASLE AND COVID DATASETS FROM PRE-TRAINED
MODELS.

In order to demonstrate that CAPE effectively disentangles the underlying dynamics of diseases from
the influence of the compartment, we visualize the output embeddings for the Measles and COVID
datasets by projecting them into a two-dimensional space using t-SNE. Specifically, we utilize the
pre-trained model without fine-tuning on these two downstream datasets and visualize x(L), the
final-layer embeddings, as individual data points in the figure. As shown in Figure 15, CAPE (left)
visually separates the two datasets more effectively than the pre-trained PatchTST model (right). To
quantitatively evaluate the separability of the embeddings, we compute the Davies–Bouldin Index
(DBI), which is defined as:

DBI =
1

K

K∑
i=1

max
j ̸=i

(
σi + σj
∥µi − µj∥

)
, (11)

where K is the number of clusters (in this case, two: Measles and COVID), µi is the centroid of
cluster i, σi is the average intra-cluster distance for cluster i, defined as: σi = 1

|Ci|
∑

x∈Ci
∥x− µi∥,

where Ci is the set of points in cluster i, ∥µi − µj∥ is the Euclidean distance between the centroids
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of clusters i and j. The DBI measures the ratio of intra-cluster dispersion to inter-cluster separation.
Lower DBI values indicate better separability. As shown in Figure 15, CAPE achieves a significantly
lower DBI compared to PatchTST, confirming its superior ability to disentangle the underlying
disease dynamics from compartmental factors. A more complete result is shown in Figure 12.
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Figure 15: Output latent space of two pre-trained models without fine-tuning from Measle and Covid
datasets. Upper: CAPE; Lower: Pre-trained PatchTST.
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