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Abstract

Large Vision-Language Models (LVLMs) ex-001
cel in multimodal reasoning, and have shown002
impressive performance across various multi-003
modal benchmarks. However, most of these004
benchmarks evaluate models primarily through005
multiple-choice or short-answer formats, which006
do not take the reasoning process into account.007
Although some benchmarks do assess the rea-008
soning process, their methods are often too sim-009
plistic and only examine reasoning when an-010
swers are incorrect. This approach overlooks011
scenarios where flawed reasoning leads to cor-012
rect answers. In addition, these benchmarks do013
not consider the impact of inter-modal relation-014
ships on reasoning. To address this issue, we015
propose RPTS-Eval, a benchmark focused on016
meticulously evaluating the reasoning process017
of models. RPTS-Eval comprises 374 images018
and 390 reasoning instances, covering 6 types019
of vision-language capabilities. We also in-020
troduce a new evaluation metric called RPTS021
to provide a fine-grained reflection of the rea-022
soning process, which can not only indicate the023
overall correctness of the reasoning but also pin-024
point the specific step where the model makes025
an error. We evaluated representative LVLMs026
(e.g., GPT-4o, Llava-Next), uncovering their027
limitations in multimodal reasoning and high-028
lighting the differences between open-source029
and closed-source commercial LVLMs. We030
believe that this benchmark will contribute to031
advancing research in the field of multimodal032
reasoning.033

1 Introduction034

Large Language Models (LLMs) have demon-035

strated remarkable linguistic capabilities, partic-036

ularly in the task of natural language inference,037

showing impressive performance(OpenAI et al.,038

2024). In the real world, information is obtained039

through various channels, including visual and au-040

ditory, not solely through language. This realiza-041

tion has led to the development of Large Vision-042

Language Models (LVLMs)(Li et al., 2023; Liu 043

et al., 2024c; Alayrac et al., 2022), aimed at equip- 044

ping models with advanced cognitive abilities. To 045

enhance these models, it is crucial to assess their 046

reasoning abilities, which will guide further im- 047

provements. However, the diversity of potential 048

reasoning paths that lead to the same conclusion 049

presents a significant challenge in evaluating the 050

reasoning abilities of these models. 051

Previous research has predominantly employed 052

high-quality, multi-capability(Yu et al., 2023), and 053

challenging benchmarks(Yue et al., 2024) to evalu- 054

ate the reasoning abilities of models. These stud- 055

ies have contributed significantly to the evaluation 056

of model reasoning abilities. However, they of- 057

ten bypassed the complexity of the reasoning pro- 058

cess itself, instead focusing on the final answers of 059

the models through multiple choice and short an- 060

swer formats. Only a few studies, such as InfiMM- 061

Eval(Han et al., 2023), have incorporated the rea- 062

soning process into their evaluations, scoring it 063

when the answers were incorrect. This strategy pre- 064

vents misjudging correct answers due to different 065

expressions, but fails when correct answers are de- 066

rived from flawed reasoning, as show in Figure 1. 067

Furthermore, InfiMM-Eval assesses the reasoning 068

process by inputting it into a LLM, a method that 069

does not allow for a finer analysis of the reasoning 070

itself. 071

In the field of NLP, recent work has proposed 072

several methods for validating the reasoning pro- 073

cess ((Golovneva et al., 2023), (Prasad et al., 074

2023)). These methods primarily focus on ensuring 075

the logical consistency of linear reasoning, where 076

each step must not contradict the previous steps. 077

However, such approaches are not well-suited for 078

multimodal contexts. As shown in Figure 1, the 079

information derived from an image may conflict 080

with that from text, but both can still be correct and 081

lead to the right answer. Furthermore, these meth- 082

ods do not integrate the evaluation of the reasoning 083
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Figure 1: Comparison between Unimodal, existing Multimodal benchmarks and our RPTS-Eval. Left: The
unimodal approach is unable to handle reasoning involving conflicting information across different modalities.
Right: Current multimodal benchmarks fail to detect instances where reasoning errors are present, yet the answer
remains correct.

process with the final metric, failing to intuitively084

reflect the impact of reasoning quality on the result.085

Figure 2: An example of RPTS-Eval.

To enhance the precision of model reasoning086

analysis, we developed RPTS-Eval, a bilingual087

benchmark featuring a specialized reasoning for-088

mat. This benchmark comprises 374 images and089

390 reasoning tasks, encompassing 6 visual lan-090

guage abilities such as image comparison, spatial091

awareness, and commonsense. We also define three092

types of relationships between modalities in the093

reasoning process: related without interference, re-094

lated with interference, and unrelated. We utilized095

carefully crafted examples to facilitate GPT-4 in096

generating reasoning stories requiring diverse vi-097

sual language abilities. Our annotators manually098

refined these narratives, organizing the reasoning099

into a specialized format, and selected appropriate100

images via the internet and text to image model. To101

ensure data quality, our staff manually annotated 102

these reasoning and images, verifying the rigor of 103

the reasoning logic. Figure 2 shows examples of 104

RPTS-Eval. Each data in RPTS-Eval contains four 105

parts: statement, context, visual clues, and textual 106

clues. The model needs to infer whether the con- 107

clusions that can be drawn from visual and textual 108

clues agree or disagree with the given statement. 109

The unique reasoning format of RPTS-Eval 110

structures the reasoning process as a tree with vi- 111

sual and textual clues as leaf nodes and the conclu- 112

sion as the non-leaf node, as illustrated in Figure 113

2. To address cases where the reasoning is flawed 114

yet the answer is correct, we introduce a novel eval- 115

uation metric: the Reasoning Process Tree Score 116

(RPTS). The computation of RPTS relies on the 117

reasoning tree and two parameters. By adjusting 118

these parameters, RPTS can accurately assess the 119

logic of the reasoning at both the global and local 120

levels, thus enabling precise localization of reason- 121

ing errors. Experimental results demonstrate the 122

efficacy of RPTS in these respects and highlight ex- 123

isting issues in open-source LVLMs. The primary 124

contributions of our work can be summarized as 125

follows: 126

• We develop RPTS-Eval, a new benchmark 127

specifically designed for the multimodal rea- 128

soning domain. Compare with existing bench- 129

marks, our benchmark focuses on the reason- 130

ing process and mandates a structured infer- 131

ence format, enabling a systematic evaluation 132

of reasoning abilities. 133
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• We define three types of relationships between134

modalities in reasoning, which clarify the clas-135

sification of multimodal reasoning.136

• We introduce a new metric, RPTS, for detect-137

ing correct conclusions based on faulty reason-138

ing and genuinely logical reasoning processes,139

and reflecting both overall and local logic of140

reasoning, achieving error localization.141

• We conduct extensive experiments on our142

RPTS-Eval. Results show that current open-143

source LVLMs struggle to extract conclusions144

for subsequent inference from images based145

on existing information, and demonstrate sig-146

nificant differences in model performance in147

different language contexts.148

2 Related Work149

2.1 MLLM Evaluation Benchmarks150

Classic multimodal benchmarks typically evalu-151

ate specific reasoning abilities of models. For in-152

stance, OK-VQA(Marino et al., 2019) evaluates a153

model’s capacity to leverage external knowledge154

for reasoning, while VCR(Zellers et al., 2019) fo-155

cuses on human-related common sense reasoning.156

To assess a model’s comprehensive abilities, re-157

searchers have proposed various benchmarks, such158

as MMBench(Liu et al., 2025), SEED-Bench(Li159

et al., 2024), MM-VET(Yu et al., 2023), and160

MMMU(Yue et al., 2024). These benchmarks scru-161

tinize the reasoning abilities of models from diverse162

perspectives, often employing multiple-choice or163

simplified formats to facilitate the evaluation pro-164

cess. InfiMM-Eval(Han et al., 2023) incorporates165

the reasoning process into the evaluation, scoring166

the entire reasoning process. However, it cannot167

perform a more detailed analysis of the reasoning,168

and its evaluation method cannot exclude cases169

where incorrect reasoning leads to a correct answer.170

2.2 Verify Reasoning Process171

Recent studies have introduced various tech-172

niques for evaluating reasoning processes.173

ROSCOE(Golovneva et al., 2023) proposes a set174

of quality metrics to assess reasoning from four175

perspectives: semantic alignment, semantic simi-176

larity, logical correctness, and semantic coherence.177

ReCEval (Prasad et al., 2023) evaluates reasoning178

based on two criteria: whether the reasoning steps179

are correct and whether new information is derived180

from the reasoning. REVEAL provides a dataset181

to validate whether a model can be used to verify 182

the reasoning process. 183

3 RPTS-Eval 184

3.1 Data Collection 185

We are aimed to developing a high-quality mul- 186

timodal reasoning evaluation benchmark, using 187

a meticulously designed methodology to assess 188

model reasoning performance. Each sample in 189

RPTS-Evalcan be viewed as a multimodal reason- 190

ing story. Constructing such stories automatically 191

poses significant challenges, even GPT-4 struggles 192

to generate reasoning stories with sufficiently co- 193

herent logic. In addition, it is difficult to find suit- 194

able stories from online sources, and the time in- 195

vestment required for manually designing stories is 196

substantial. To address these issues, the process of 197

constructing data can be broadly divided into the 198

following steps: 199

Collating multimodal reasoning stories. To 200

reduce the difficulty of manually designing stories, 201

we use GPT-4 to assist annotators. First, we ask 202

an annotator to design a few reasoning stories and 203

input them into GPT-4 as examples. Following 204

the approach of MM-Vet(Yu et al., 2023), we then 205

require GPT-4 to generate reasoning stories encom- 206

passing six types of capabilities, based on the given 207

examples. We serve these stories as starting point 208

to lower the difficulty for annotators in designing 209

reasoning tasks. The six capabilities are as follow: 210

• Image Comparison(IC): This involves the 211

model comparing two images to find similar- 212

ities or differences. This is a fundamental 213

ability for humans, as we gain much informa- 214

tion about the real world by comparing what 215

we see. 216

• Recognition(Rec): Recognition refers to gen- 217

eral visual capabilities, including identifying 218

objects, object attributes, scenes, counting, 219

and various other advanced visual recognition 220

tasks in computer vision. 221

• ORC: Optical Character Recognition (OCR) 222

involves understanding the text in images. The 223

model needs to understand the text in images 224

to complete subsequent reasoning tasks. 225

• Spatial Awareness(SA): Spatial awareness 226

includes various spatial-related abilities, such 227
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Figure 3: Three types of relationships between modalities. The red arrow means the relation between image and
text, and the blue arrow means the interference between them.

as understanding absolute positional relation-228

ships from a fixed perspective and relative po-229

sitional relationships that require perspective230

transformation.231

• Commonsense(Com): Commonsense refers232

to general knowledge people have. In our233

daily decisions, not all information is pre-234

sented to us, we need to use our existing235

knowledge to make decisions. For example,236

placing a glass cup in the middle of the table237

rather than on the edge. This ability requires238

the model not only to know these common-239

sense but also to select appropriate one based240

on specific scenarios to complete reasoning241

tasks.242

• Math: Math ability assesses the model’s capa-243

bility to use arithmetic to aid in reasoning. For244

instance, if I know my best friend’s monthly245

salary and his expenses for the month, I can246

deduce that he might need me to buy him a247

meal through simple calculations.248

Constructing Data This phase involves two an-249

notators, each assigned to different reasoning sto-250

ries. First, the annotators need to design two reason-251

ing paths based on the stories. These two reasoning252

paths should use similar clues to arrive at opposite253

conclusions. Then, the annotators should design254

statements, contexts, visual and textual clues, rea-255

soning steps, and required abilities for the data256

based on the reasoning paths. Finally, the annota-257

tors need to find suitable images according to their258

design. The images for RPTS-Eval are sourced259

from the internet and text-to-image modals.260

Quality Control To ensure data quality, each261

piece of data is validated by two validators. We ref-262

erence InifMM-Eval(Han et al., 2023) and conduct263

a comprehensive evaluation of the data based on264

the following criteria:265

• Logical Scoring: Carefully assess the rela- 266

tionship between statements, context, visual 267

clues, and reasoning steps, and score them to 268

ensure rigorous logic in the data. 269

• Multimodality: This criterion evaluates 270

whether visual clues or textual clues are un- 271

necessary for reasoning, filtering out samples 272

that can be inferred using a single modality. 273

• Subjectivity and Discrepancy Check: If the 274

problem is overly subjective or the valida- 275

tor’s reasoning significantly differs from the 276

ground truth, the data will be deleted or modi- 277

fied. 278

• Missing or Redundant abilities: Validators 279

will judge, based on their reasoning experi- 280

ence, whether the annotated abilities are miss- 281

ing or redundant. 282

Multimodal Reasoning Classification To bet- 283

ter investigate the reasoning capabilities of multi- 284

modal models, we categorize the constructed data 285

into three types based on the relationships between 286

modalities during reasoning. Examples of these 287

three reasoning types are illustrated in Figure 3. 288

• related without interference: By utilizing in- 289

formation from one modality, it becomes pos- 290

sible to determine which information should 291

be retrieved from another modality to com- 292

plete the reasoning process. The relationships 293

between modalities are categorized into two 294

types: explicit and implicit. Explicit relation- 295

ships are defined as cases where one modality 296

directly indicates the information that needs 297

to be obtained from another modality. In con- 298

trast, implicit relationships involve cues from 299

one modality that require reasoning to infer 300

which information should be retrieved from 301

the other modality. 302
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Statistics Percentage Statictic Percentage

Capabilities
Rec 83.08% Math 24.87%
Com 40.00% OCR 18.46%
SA 28.97% IC 5.13%

Answer
agree 50.00% disagree 50.00%

Relationship
rwoi 84.62% rwi 6.92%

unrelated 8.46%

Reasoning steps Reasoning tree height
≤ 2 3.85% ≤ 2 0.51%
3 42.82% 3 11.03%
4 32.56% 4 52.56%
5 13.08% 5 26.92%

≥ 6 7.69% ≥ 6 8.67%

Table 1: Key statistics of the RPTS-Eval benchmark. As
each reasoning instance need one or more capabilities,
the sum of percentage is larger than 100%. ’rwoi’ and
’rwi’ represent related without/with inference.

• related with interference: In addition to303

the aforementioned relationships, information304

from one modality can also mislead the ex-305

traction of information from another modality.306

This misguidance can manifest in two ways:307

either by extracting irrelevant or erroneous308

information from the other modality, or by309

failing to extract any information from it alto-310

gether.311

• unrelated: The modalities are independent of312

each other, and information must be retrieved313

separately from each modality to complete the314

reasoning process.315

Translation Finally, we use GPT-4 to translate316

the annotated Chinese data into English and make317

manual adjustments.318

In summary, our RPTS-Eval benchmark com-319

prises 390 inferences linked to a total of 374 im-320

ages. Table 1 depicts the distribution across mul-321

tiple dimensions of RPTS-Eval. Since most tasks322

require the recognition of objects in images, object323

recognition capability plays a dominant role. Given324

that the data is constructed with paired answers, the325

two types of answers in RPTS-Eval are evenly dis-326

tributed, which helps mitigate the effects of model327

bias. The relationships between modalities are pri-328

marily based on related without interference, as the329

reasoning for the last two types are more challeng-330

ing to construct. The majority of inferences can331

be made within 5 steps, and when the inference is332

represented as a tree, the tree height is typically333

below 6. 334

4 Experiments 335

4.1 Evaluation Protocl 336

Reorganize Model Output Our approach aims 337

for more detailed evaluative reasoning by structur- 338

ing the reasoning process as a tree. To construct 339

this tree, the model is required to output reason- 340

ing in the "[PREMISE] + [PREMISE] -> [CON- 341

CLUSION]" format according to the RPTS-Eval 342

annotation standard, where the ’[PREMISE]’ can 343

be image cues, textual clues, or conclusions de- 344

rived from previous steps. However, existing open- 345

source LVLMs are not capable of strictly adhering 346

to this format. To solve this issue, we first use 347

a chain-of-thought prompt to guide the model in 348

generating reasoning with premises step by step. 349

Then, we employ GPT-4 to reformat the output of 350

the LVLM into the required RPTS-Eval annotation 351

format. Figure 4 illustrates the complete evaluation 352

process. 353

Figure 4: Evaluation process for RPTS-Eval

LLM-Based Scorer Now, each reasoning step 354

in our approach strictly adheres to the "[PREMISE] 355

+ [PREMISE] -> [CONCLUSION]" format. Prior 356

studies (Chiang and Lee, 2023; Liu et al., 2023; Fu 357

et al., 2024; Bai et al., 2023b; Bitton et al., 2023; 358

Yu et al., 2023; Han et al., 2023) have demonstrated 359

GPT-4’s effectiveness in assessing model reasoning. 360

Therefore, we utilize GPT-4 to score reasoning, but 361

with a unique twist: we only evaluate individual 362

reasoning steps, not the entire process. This method 363

allows for more precise evaluations by preventing 364

the influence of other reasoning elements on the 365

scores. Before we input the reasoning into scorer, 366

we first preprocess the model’s reasoning by elimi- 367

nating redundant text clues, merging conclusions 368

from images, substituting unnumbered texts and 369

conclusions with all relevant clues and conclusions, 370

and removing reasoning without ’[PERMISE]’. For 371

scoring reasoning according with image, we calcu- 372
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late the semantic similarity of conclusions directly373

derived from images against the ground truth. For374

other reasoning, we input the premises and conclu-375

sion into GPT-4 to assess their logical coherence.376

The score given by scorer ranges from 0 to 1, with377

higher scores indicating stronger logical reasoning.378

However, as illustrated in Figure 1, there are in-379

stances where the model’s selected premises may380

not directly support the given conclusion, though381

they may be justified within the broader reasoning382

context. To address this, if the initial score is below383

0.5, we re-evaluate using all text clues and previ-384

ously derived conclusions as new premises, and385

then applying a 0.8 penalty for incorrect premises.386

We select the higher of the two scores as the final387

assessment.388

Reasoning Process Tree Score Considering the389

unique structure of reasoning, we can model the390

process as an reasoning tree, as depicted in figure391

5. In this tree, the leaf nodes represent context,392

visual clues and textual clues, while the non-leaf393

nodes correspond to individual steps of inference.394

This tree, alongside parameters α and β, is used to395

weight each inferential step. The weight assigned396

to ni is defined as397

wi = α|β−h| (1)398

where ni is the node corresponding to the ith step399

of inference, h denotes the height of ni, defined as400

the number of edges on the longest path from ni to401

any leaf node. The overall score of the reasoning402

tree, RPTS, is calculated as403

RPTS =

∑N
i=1wisi∑N
i=1wi

(2)404

where N is the number of steps in the inference405

process, and si is the score of the ith inferential406

step. By adjusting α and β, we can finely tune407

the emphasis on global versus local aspects of the408

inference process. Figure 5 illustrates the scoring409

outcomes under three different settings of α and410

β. In the top, α is set to 1, making RPTS reflect411

the average score across all inferential steps. In the412

middle, α is 0.8 and β is 1, focusing RPTS more413

on the scores of earlier inferential steps. In the414

below, α is 0 and β is 2, meaning RPTS considers415

only the inference steps occurring at a tree height416

of 2, essentially focusing on inferences that derive417

directly from the clues.418

Figure 5: Examples of different parameter settings for
RPTS. C, I and T respectively represent conclusion,
visual clue and textual clue.

4.2 Models and Evaluation Metrics 419

To validate the challenging nature of RPTS-Eval 420

and the capability of the RPTS evaluation met- 421

ric analysis model, we conducted experiments in 422

both Chinese and English across various models. 423

The open-source models tested include Instruct- 424

BLIP(Dai et al., 2024), Internval2(Chen et al., 425

2024), ShareGPT4V(Chen et al., 2023), Llava- 426

v1.5(Liu et al., 2024a), Llava-Next(Liu et al., 427

2024b) and Qwen-VL-Chat(Bai et al., 2023a), de- 428

tailed in Appendix A; the sole close-source model 429

examined is GPT-4o. We evaluate the reasoning 430

ability of the model by combining accuracy and 431

RPTS, and analyze the problems of the model. 432

4.3 Experiment Settings 433

Our experiment involves both Chinese and 434

English languages and performs chain-of- 435

thought(COT)(Wei et al., 2022) reasoning on the 436

RPTS-Eval benchmark. All tests were performed 437

in a zero-shot setting using a greedy decoding 438

strategy to assess the models’ inferential abilities. 439

To optimize the COT reasoning outcomes, we 440

designed five Chinese prompts and seven English 441

prompts, selecting the most effective one from 442

each language for our experiments. All tests were 443

carried out on an NVIDIA A100 GPU. 444

4.4 Results and Analysis 445

Table 2 displays the performance of various mod- 446

els on RPTS-Eval. In addition to evaluating the 447

accuracy of the models’ inferences and their mean 448

RPTS scores, we applied an RPTS-based filter to 449

exclude cases where incorrect inferences resulted 450

in accurate conclusions. Specifically, we consider 451

the reasoning logic with an RPTS score below 0.5 452

to be incoherent, and therefore classify it as in- 453

correct. Appendix C provides two examples of 454

inferences that were excluded under this criterion. 455

6



Models English Chinese
Acc RPTS↑ Accfiltered Acc RPTS↑ Accfiltered

Llava-v1.5-7B 0.64 0.63 0.48(-0.16) 0.35 0.57 0.24(-0.12)
Llava-Next-7B 0.62 0.47 0.32(-0.29) 0.13 0.41 0.06(-0.07)
Qwen-VL-Chat 0.57 0.61 0.41(-0.16) 0.39 0.61 0.25(

:::::
-0.14)

ShareGPT4V-7B 0.58 0.56 0.38(-0.20) 0.34 0.50 0.19(-0.15)
InternVL2-8B 0.63 0.67 0.53(-0.10) 0.46 0.66 0.37(-0.08)
Llama-3.2-11B 0.68 0.68 0.56(-0.12) 0.41 0.63 0.29(-0.12)
InstructBLIP

::::
0.56 0.59 0.41(-0.16) - - -

Llava-v1.5-13B 0.56 0.59 0.41(-0.15) 0.41 0.58 0.28(-0.13)
Llava-Next-13B 0.62 0.51 0.34(

:::::
-0.27)

::::
0.23

:::
0.46

::::
0.11(-0.12)

ShareGPT4V-13B 0.59
:::
0.50 0.32(-0.27) 0.35 0.58 0.26(-0.09)

InternVL2-26B 0.65 0.70 0.55(-0.10) 0.54 0.74 0.45(-0.08)
Llava-Next-34B 0.68 0.71 0.60(-0.08) 0.46 0.68 0.37(-0.09)
InternVL2-40B 0.74 0.76 0.67 ( -0.06 ) 0.57 0.75 0.52 (-0.05)
InternVL2-76B 0.73 0.79 0.70 ( -0.04 ) 0.60 0.77 0.57 ( -0.03 )
Llama-3.2-90B 0.79 0.67 0.66(-0.12) 0.56 0.77 0.52 ( -0.04 )

GPT-4o 0.86 0.84 0.84 ( -0.02 ) 0.72 0.86 0.70 ( -0.02 )

Table 2: Results of different models on RPTS-Eval with cot prompt. We set α = 0.9, β = 1 when calculate RPTS.
For each column, the highest, the second, and the third highest figures are highlighted by green , orange and

pink backgrounds. The worst, second worst, and third worst are highlighted using underline,
::::
wavy

::::::::
underline, and

italic, respectively. Acc: Accuracy.

The data in Table 2 reveal that all models exhibited456

a decline in accuracy to varying extents, with GPT-457

4o showing the least reduction. This modest de-458

cline is closely associated with GPT-4o’s advanced459

logical capabilities. In the results of GPT-4, the460

lower RPTS scores are associated with erroneous461

reasoning and the model’s failure to capture certain462

infomation. Conversely, the open-source models463

demonstrated a lack of logical robustness in their464

reasoning processes, leading to more pronounced465

decreases due to often generating irrelevant or il-466

logical outputs. Despite these models’ lower ac-467

curacy, their RPTS scores were not significantly468

impacted. We hypothesize that this is due to two469

primary reasons: 1. Disconnection between the in-470

ference outcomes and the intended targets. While471

the models initially could reason based on the spec-472

ified targets, they gradually lost focus on the targets473

as the number of reasoning steps increased, result-474

ing in conclusions that diverged from the intended475

data targets. 2. Recurrent generation of identical476

sentences. Across various sizes, the open-source477

models consistently produced repetitive reasoning478

that, while logically sound, failed to reach the de-479

sired conclusions. These factors led to reduced480

accuracy but did not substantially affect the logi-481

cal integrity of the inferences, as reflected in the 482

relatively high RPTS scores. 483

Step Analysis To further identify the causes of 484

errors in our model, we initiated an analysis from 485

the perspective of inference steps. We set α = 0 486

and varied β at values of 1, 2, 3, and 4 to compute 487

the average RPTS score. Figure 6 displays the 488

relationship between RPTS scores and β across 489

two languages. As evident from the figure, with the 490

exception of GPT-4o, RPTS scores at β = 1 are 491

unsatisfactory across all models. This indicates that 492

the models encounter issues at the initial inference 493

step, where conclusions are drawn directly from 494

the visual and textual clues, leading to subsequent 495

errors in reasoning. To further explore the specific 496

causes, we calculated the average RPTS scores 497

derived separately from visual and textual clues. 498

The results, as shown in Table 3, reveal that open- 499

source models still lack sufficient capabilities in 500

image processing. They fail to derive necessary 501

information from images for subsequent reasoning 502

tasks based on specific inferential questions. 503

Capability Analysis Appendix B shows the ac- 504

curacy of each model on six different abilities. 505

The majority of models exhibit relatively uniform 506

performance across six competencies in english. 507
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Figure 6: RPTS scores for β ∈ {1, 2, 3, 4} and α = 0. IB: InstructBLIP;IV: InternVL2;Lv: Llava-v1.5;LN:
Llava-Next;Qwen: Qwen-VL-Chat;SG: ShareGPT4V;

Models English Chinese
Image Text Image Text

IV-8B 0.50 0.76 0.54 0.94
Lv-7B 0.42 0.78 0.40 0.67
LN-7B 0.36 0.52 0.22 0.58
SG-7B 0.35 0.62 0.30 0.70

Lm-11B 0.52 0.83 0.4 1.0
IB 0.40 0.69 - -

Lv-13B 0.41 0.66 0.37 0.78
LN-13B 0.36 0.57 0.29 0.73
Qwen 0.45 0.74 0.45 0.66

SG-13B 0.18 0.57 0.42 0.75
IV-26B 0.53 0.80 0.57 0.84
LN-34B 0.54 0.80 0.52 0.72
IV-40B 0.61 0.90 0.60 0.88
IV-76B 0.60 0.92 0.60 0.87
Lm-90B 0.58 0.79 0.6 0.75
GPT-4o 0.72 0.88 0.75 0.96

Table 3: RPTS score for drawing conclusions from
visual clues or textual clues. IB: InstructBLIP; IV: In-
ternVL2; Lm: Llama-3.2; Lv: Llava-v1.5; LN: Llava-
Next; Qwen: Qwen-VL-Chat; SG: ShareGPT4V;

ShareGPT4V underperforms in OCR, which likely508

stems from a lack of targeted training data for these509

specific tasks. Surprisingly, open-source models,510

regardless of their parameter sizes, do not demon-511

strate particularly exceptional performance in the512

task of image comparison. Moreover, there is a513

significant gap between these models and GPT-514

4, which can be closely attributed to the fact that515

the training data used by most open-source mod-516

els typically contains only a single image. Con-517

versely, the performance of various open-source518

models markedly declines, displaying significant519

deficiencies in certain capabilities in Chinese. This 520

is observed despite some models, such as Llava- 521

Next-34B and Qwen-VL-Chat, leveraging LLM 522

with robust capabilities in Chinese. This trend indi- 523

cates that existing training methodologies fall short 524

in translating a model’s multimodal abilities from 525

English into other languages. 526

5 Conclusion 527

In this paper, we introduce RPTS-Eval, a bench- 528

mark specifically designed to meticulously exam- 529

ine the reasoning processes of models. We also de- 530

fine three types of relationships between modalities 531

in multimodal reasoning. Furthermore, we propose 532

a new metric, RPTS, aimed at addressing issues 533

where incorrect reasoning still results in correct 534

outcomes, thereby facilitating a detailed analysis 535

of model reasoning. Our results indicate that cur- 536

rent open-source Large Visual Language Models 537

struggle to derive necessary conclusions from im- 538

ages for subsequent reasoning. We also observed 539

a significant disparity in the capabilities of models 540

between Chinese and English contexts, suggesting 541

that existing training methodologies fall short in 542

transferring multimodal abilities from English to 543

other languages. 544

6 Limitation 545

The main limitation of this paper lies in the scale 546

of the data. Due to the lack of automated meth- 547

ods for constructing the multimodal reasoning 548

8



data presented in this paper, and the cost of man-549

ual construction is high, resulting in a relatively550

small dataset. Moreover, the relationships between551

modality in the RPTS-Eval data mainly correspond552

to related without interference, with insufficient553

data for the other two relationship types. Addition-554

ally, the proposed RPTS metric focuses solely on555

the dimension of logicality, and future work may556

explore evaluations across more dimensions.557
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A Models’ Detail781

Model Architecture
Vision Language Other

InstructBLIP ViT-G Vicuna-13B Q-Former
InternVL2-8B InternViT-300M InternLM2-7B MLP
InternVL2-26B InternViT-6B InternLM2-20B MLP
InternVL2-40B InternViT-6B InternLM2-34B MLP
InternVL2-76B InternViT-6B Llama3-70B MLP
Llama-3.2-Vision-11B Llama-Vision Llama3.1-11B Cross-Attention
Llama-3.2-Vision-90B Llama-Vision Llama3.1-90B Cross-Attention
Llava-v1.5-7B ViT-L Vicuna-7B MLP
Llava-v1.5-13B ViT-L Vicuna-13B MLP
Llava-Next-7B ViT-L Vicuna-7B MLP
Llava-Next-13B ViT-L Vicuna-13B MLP
Llava-Next-34B ViT-L Yi-34B MLP
Qwen-VL-Chat ViT-bigG Qwen-7B -
ShareGPT4V-7B ViT-L Vicuna-7B MLP
ShareGPT4V-13B ViT-L Vicuna-13B MLP

Table 4: Open-source models’ architecture

B Capability Accuracy 782
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Models English Chinese
IC Rec OCR SA Com Math IC Rec OCR SA Com Math

Lv-7B 0.40 0.49 0.47 0.52 0.53 0.36 0.20 0.25 0.19 0.26 0.24 0.22
LN-7B 0.00 0.34 0.34 0.27 0.34 0.29 0.00 0.07 0.06 0.06 0.09 0.03
Qwen 0.50 0.43 0.40 0.43 0.46 0.40 0.40 0.28 0.15 0.20 0.28 0.27
SG-7B 0.55 0.40 0.36 0.37 0.42 0.39 0.20 0.20 0.15 0.19 0.24 0.15
IV-8B 0.45 0.55 0.51 0.54 0.53 0.53 0.35 0.38 0.36 0.32 0.37 0.39

Lm-11B 0.5 0.58 0.51 0.58 0.58 0.47 0.2 0.29 0.36 0.21 0.29 0.25
IB 0.25 0.42 0.43 0.45 0.42 0.36 - - - - - -

Lv-13B 0.30 0.43 0.39 0.42 0.49 0.40 0.35 0.31 0.25 0.38 0.35 0.22
LN-13B 0.05 0.37 0.33 0.40 0.36 0.27 0.05 0.14 0.10 0.11 0.14 0.12
SG-13B 0.30 0.34 0.29 0.35 0.33 0.27 0.45 0.26 0.29 0.25 0.26 0.29
IV-26B 0.40 0.57 0.63 0.53 0.57 0.63 0.10 0.48 0.54 0.45 0.48 0.43
LN-34B 0.50 0.62 0.57 0.56 0.59 0.54 0.20 0.37 0.40 0.33 0.38 0.35
IV-40B 0.50 0.69 0.69 0.65 0.69 0.71 0.45 0.55 0.51 0.42 0.47 0.54
IV-76B 0.55 0.72 0.75 0.65 0.67 0.77 0.35 0.58 0.54 0.53 0.54 0.61
Lm-90B 0.5 0.66 0.72 0.73 0.66 0.63 0.35 0.53 0.63 0.50 0.49 0.55
GPT-4o 0.95 0.85 0.89 0.80 0.83 0.84 0.95 0.85 0.89 0.80 0.83 0.84

Table 5: Accuracy for each capability filtered by RPTS score. For each column, the highest, the second, and the
third highest figures are highlighted by green , orange and pink backgrounds. IB: InstructBLIP; IV: InternVL2;
Lm: Llama-3.2; Lv: Llava-v1.5; LN: Llava-Next; SG: ShareGPT4V;

C Examples of Filtered-out Reasoning783
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Figure 7: Examples of filtered sample
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