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Abstract

Large Vision-Language Models (LVLMs) ex-
cel in multimodal reasoning, and have shown
impressive performance across various multi-
modal benchmarks. However, most of these
benchmarks evaluate models primarily through
multiple-choice or short-answer formats, which
do not take the reasoning process into account.
Although some benchmarks do assess the rea-
soning process, their methods are often too sim-
plistic and only examine reasoning when an-
swers are incorrect. This approach overlooks
scenarios where flawed reasoning leads to cor-
rect answers. In addition, these benchmarks do
not consider the impact of inter-modal relation-
ships on reasoning. To address this issue, we
propose RPTS-Eval, a benchmark focused on
meticulously evaluating the reasoning process
of models. RPTS-Eval comprises 374 images
and 390 reasoning instances, covering 6 types
of vision-language capabilities. We also in-
troduce a new evaluation metric called RPTS
to provide a fine-grained reflection of the rea-
soning process, which can not only indicate the
overall correctness of the reasoning but also pin-
point the specific step where the model makes
an error. We evaluated representative LVLMs
(e.g., GPT-40, Llava-Next), uncovering their
limitations in multimodal reasoning and high-
lighting the differences between open-source
and closed-source commercial LVLMs. We
believe that this benchmark will contribute to
advancing research in the field of multimodal
reasoning.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable linguistic capabilities, partic-
ularly in the task of natural language inference,
showing impressive performance(OpenAl et al.,
2024). In the real world, information is obtained
through various channels, including visual and au-
ditory, not solely through language. This realiza-
tion has led to the development of Large Vision-

Language Models (LVLMs)(Li et al., 2023; Liu
et al., 2024c¢; Alayrac et al., 2022), aimed at equip-
ping models with advanced cognitive abilities. To
enhance these models, it is crucial to assess their
reasoning abilities, which will guide further im-
provements. However, the diversity of potential
reasoning paths that lead to the same conclusion
presents a significant challenge in evaluating the
reasoning abilities of these models.

Previous research has predominantly employed
high-quality, multi-capability(Yu et al., 2023), and
challenging benchmarks(Yue et al., 2024) to evalu-
ate the reasoning abilities of models. These stud-
ies have contributed significantly to the evaluation
of model reasoning abilities. However, they of-
ten bypassed the complexity of the reasoning pro-
cess itself, instead focusing on the final answers of
the models through multiple choice and short an-
swer formats. Only a few studies, such as InfiMM-
Eval(Han et al., 2023), have incorporated the rea-
soning process into their evaluations, scoring it
when the answers were incorrect. This strategy pre-
vents misjudging correct answers due to different
expressions, but fails when correct answers are de-
rived from flawed reasoning, as show in Figure 1.
Furthermore, InfiMM-Eval assesses the reasoning
process by inputting it into a LLM, a method that
does not allow for a finer analysis of the reasoning
itself.

In the field of NLP, recent work has proposed
several methods for validating the reasoning pro-
cess ((Golovneva et al., 2023), (Prasad et al.,
2023)). These methods primarily focus on ensuring
the logical consistency of linear reasoning, where
each step must not contradict the previous steps.
However, such approaches are not well-suited for
multimodal contexts. As shown in Figure 1, the
information derived from an image may conflict
with that from text, but both can still be correct and
lead to the right answer. Furthermore, these meth-
ods do not integrate the evaluation of the reasoning



Reasoning 1:

Textual clues:
Text 1: Person A claimed that he
had just finished cutting the apple

Step 1: From the picture, it can be seen that the apple had already turned brown by the time Person A returned.
Step 2: From Text 1 and Text 2, it can be inferred that the apple should not turned brown when Person A returned.
Step 3: From Step 1 and Step 2, it can be concluded that Person A is lying.

So the answer is: Person A is lying.

and lefi, and that he was gone for
no more than 10 minutes.

Apple will turn brown after
being exposed to air for 20 minutes.

Reasoning 2:

Caption: The apple that Person

A saw when he returned.

Step 1: From the picture, it can be seen that the apple is still white by the time Person A returned.

Step 2: From Text 1 and Text 2, it can be inferred that the apple should turned brown when Person A returned.
Step 3: From Step 1 and Step 2, it can be concluded that Person A is lying.

So the answer is: Person A is lying.
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Figure 1: Comparison between Unimodal, existing Multimodal benchmarks and our RPTS-Eval. Left: The
unimodal approach is unable to handle reasoning involving conflicting information across different modalities.
Right: Current multimodal benchmarks fail to detect instances where reasoning errors are present, yet the answer

remains correct.

process with the final metric, failing to intuitively
reflect the impact of reasoning quality on the result.

[ Statement: Due to the weather, Person A needs to find another place to hold the party. ]

e A
Context:
Person A plans to host a party today, and image 0 shows the venue reserved by Person A.

Textual clues: Visual clues:
I'ext 1: The party venue manager Person B has a
knee pain today.

: Person B has rheumatism in the knee.

| - ; - J

Reasoning:

Stepl: Image 0 -> The party is held outdoors.

Step2: Text 0+ -> It will rain at the venue of the party today.

Step3: Conclusion 0 + Conclusion 1 -> Due to the weather, Person A needs to find
another venue to hold the party.

Answer: Agree ]

Figure 2: An example of RPTS-Eval.

To enhance the precision of model reasoning
analysis, we developed RPTS-Eval, a bilingual
benchmark featuring a specialized reasoning for-
mat. This benchmark comprises 374 images and
390 reasoning tasks, encompassing 6 visual lan-
guage abilities such as image comparison, spatial
awareness, and commonsense. We also define three
types of relationships between modalities in the
reasoning process: related without interference, re-
lated with interference, and unrelated. We utilized
carefully crafted examples to facilitate GPT-4 in
generating reasoning stories requiring diverse vi-
sual language abilities. Our annotators manually
refined these narratives, organizing the reasoning
into a specialized format, and selected appropriate
images via the internet and text to image model. To

ensure data quality, our staff manually annotated
these reasoning and images, verifying the rigor of
the reasoning logic. Figure 2 shows examples of
RPTS-Eval. Each data in RPTS-Eval contains four
parts: statement, context, visual clues, and textual
clues. The model needs to infer whether the con-
clusions that can be drawn from visual and textual
clues agree or disagree with the given statement.

The unique reasoning format of RPTS-Eval
structures the reasoning process as a tree with vi-
sual and textual clues as leaf nodes and the conclu-
sion as the non-leaf node, as illustrated in Figure
2. To address cases where the reasoning is flawed
yet the answer is correct, we introduce a novel eval-
uation metric: the Reasoning Process Tree Score
(RPTS). The computation of RPTS relies on the
reasoning tree and two parameters. By adjusting
these parameters, RPTS can accurately assess the
logic of the reasoning at both the global and local
levels, thus enabling precise localization of reason-
ing errors. Experimental results demonstrate the
efficacy of RPTS in these respects and highlight ex-
isting issues in open-source LVLMs. The primary
contributions of our work can be summarized as
follows:

* We develop RPTS-Eval, a new benchmark
specifically designed for the multimodal rea-
soning domain. Compare with existing bench-
marks, our benchmark focuses on the reason-
ing process and mandates a structured infer-
ence format, enabling a systematic evaluation
of reasoning abilities.



» We define three types of relationships between
modalities in reasoning, which clarify the clas-
sification of multimodal reasoning.

* We introduce a new metric, RPTS, for detect-
ing correct conclusions based on faulty reason-
ing and genuinely logical reasoning processes,
and reflecting both overall and local logic of
reasoning, achieving error localization.

* We conduct extensive experiments on our
RPTS-Eval. Results show that current open-
source LVLMs struggle to extract conclusions
for subsequent inference from images based
on existing information, and demonstrate sig-
nificant differences in model performance in
different language contexts.

2 Related Work
2.1 MLLM Evaluation Benchmarks

Classic multimodal benchmarks typically evalu-
ate specific reasoning abilities of models. For in-
stance, OK-VQA(Marino et al., 2019) evaluates a
model’s capacity to leverage external knowledge
for reasoning, while VCR(Zellers et al., 2019) fo-
cuses on human-related common sense reasoning.
To assess a model’s comprehensive abilities, re-
searchers have proposed various benchmarks, such
as MMBench(Liu et al., 2025), SEED-Bench(Li
et al., 2024), MM-VET(Yu et al., 2023), and
MMMU(Yue et al., 2024). These benchmarks scru-
tinize the reasoning abilities of models from diverse
perspectives, often employing multiple-choice or
simplified formats to facilitate the evaluation pro-
cess. InfiMM-Eval(Han et al., 2023) incorporates
the reasoning process into the evaluation, scoring
the entire reasoning process. However, it cannot
perform a more detailed analysis of the reasoning,
and its evaluation method cannot exclude cases
where incorrect reasoning leads to a correct answer.

2.2 Verify Reasoning Process

Recent studies have introduced various tech-
niques for evaluating reasoning processes.
ROSCOE(Golovneva et al., 2023) proposes a set
of quality metrics to assess reasoning from four
perspectives: semantic alignment, semantic simi-
larity, logical correctness, and semantic coherence.
ReCEval (Prasad et al., 2023) evaluates reasoning
based on two criteria: whether the reasoning steps
are correct and whether new information is derived
from the reasoning. REVEAL provides a dataset

to validate whether a model can be used to verify
the reasoning process.

3 RPTS-Eval

3.1 Data Collection

We are aimed to developing a high-quality mul-
timodal reasoning evaluation benchmark, using
a meticulously designed methodology to assess
model reasoning performance. Each sample in
RPTS-Evalcan be viewed as a multimodal reason-
ing story. Constructing such stories automatically
poses significant challenges, even GPT-4 struggles
to generate reasoning stories with sufficiently co-
herent logic. In addition, it is difficult to find suit-
able stories from online sources, and the time in-
vestment required for manually designing stories is
substantial. To address these issues, the process of
constructing data can be broadly divided into the
following steps:

Collating multimodal reasoning stories. To
reduce the difficulty of manually designing stories,
we use GPT-4 to assist annotators. First, we ask
an annotator to design a few reasoning stories and
input them into GPT-4 as examples. Following
the approach of MM-Vet(Yu et al., 2023), we then
require GPT-4 to generate reasoning stories encom-
passing six types of capabilities, based on the given
examples. We serve these stories as starting point
to lower the difficulty for annotators in designing
reasoning tasks. The six capabilities are as follow:

* Image Comparison(IC): This involves the
model comparing two images to find similar-
ities or differences. This is a fundamental
ability for humans, as we gain much informa-
tion about the real world by comparing what
we see.

* Recognition(Rec): Recognition refers to gen-
eral visual capabilities, including identifying
objects, object attributes, scenes, counting,
and various other advanced visual recognition
tasks in computer vision.

* ORC: Optical Character Recognition (OCR)
involves understanding the text in images. The
model needs to understand the text in images
to complete subsequent reasoning tasks.

» Spatial Awareness(SA): Spatial awareness
includes various spatial-related abilities, such



Related without interference
Explicit

Implicit

The apple is brown.

A has been gone for
more than 20 minutes.

The apple that Person A
saw when he returned.

‘Apple will rn brown
after being exposed to
air for 20 minutes.

The killer's head fcc
prickly to the touch

Unrelated

The party is
held outdoors.
The party can't
be held today.

Related with interference

Ais listening to music|
with headphones
A will not be complained

Person A is about for making noise.
lstening to music. 4

‘A may be complained
about making noxscx

The place where the
party is held today.

Person A has

e ” AR

A like
maximum when [listening to music.)

Ttis raining today.

@lturn the volume up to the rheumatic leg pain,

and today his leg hurts.

Figure 3: Three types of relationships between modalities. The red arrow means the relation between image and
text, and the blue arrow means the interference between them.

as understanding absolute positional relation-
ships from a fixed perspective and relative po-
sitional relationships that require perspective
transformation.

¢ Commonsense(Com): Commonsense refers
to general knowledge people have. In our
daily decisions, not all information is pre-
sented to us, we need to use our existing
knowledge to make decisions. For example,
placing a glass cup in the middle of the table
rather than on the edge. This ability requires
the model not only to know these common-
sense but also to select appropriate one based
on specific scenarios to complete reasoning
tasks.

* Math: Math ability assesses the model’s capa-
bility to use arithmetic to aid in reasoning. For
instance, if I know my best friend’s monthly
salary and his expenses for the month, I can
deduce that he might need me to buy him a
meal through simple calculations.

Constructing Data This phase involves two an-
notators, each assigned to different reasoning sto-
ries. First, the annotators need to design two reason-
ing paths based on the stories. These two reasoning
paths should use similar clues to arrive at opposite
conclusions. Then, the annotators should design
statements, contexts, visual and textual clues, rea-
soning steps, and required abilities for the data
based on the reasoning paths. Finally, the annota-
tors need to find suitable images according to their
design. The images for RPTS-Eval are sourced
from the internet and text-to-image modals.

Quality Control To ensure data quality, each
piece of data is validated by two validators. We ref-
erence InifMM-Eval(Han et al., 2023) and conduct
a comprehensive evaluation of the data based on
the following criteria:

* Logical Scoring: Carefully assess the rela-
tionship between statements, context, visual
clues, and reasoning steps, and score them to
ensure rigorous logic in the data.

* Multimodality: This criterion evaluates
whether visual clues or textual clues are un-
necessary for reasoning, filtering out samples
that can be inferred using a single modality.

* Subjectivity and Discrepancy Check: If the
problem is overly subjective or the valida-
tor’s reasoning significantly differs from the
ground truth, the data will be deleted or modi-
fied.

Missing or Redundant abilities: Validators
will judge, based on their reasoning experi-
ence, whether the annotated abilities are miss-
ing or redundant.

Multimodal Reasoning Classification To bet-
ter investigate the reasoning capabilities of multi-
modal models, we categorize the constructed data
into three types based on the relationships between
modalities during reasoning. Examples of these
three reasoning types are illustrated in Figure 3.

* related without interference: By utilizing in-
formation from one modality, it becomes pos-
sible to determine which information should
be retrieved from another modality to com-
plete the reasoning process. The relationships
between modalities are categorized into two
types: explicit and implicit. Explicit relation-
ships are defined as cases where one modality
directly indicates the information that needs
to be obtained from another modality. In con-
trast, implicit relationships involve cues from
one modality that require reasoning to infer
which information should be retrieved from
the other modality.



Statistics Percentage Statictic Percentage
Capabilities
Rec 83.08% Math 24.87%
Com 40.00% OCR 18.46%
SA 28.97% IC 5.13%
Answer
agree 50.00% disagree 50.00%
Relationship
rwoi 84.62% rwi 6.92%
unrelated 8.46%

Reasoning steps

Reasoning tree height

<2 3.85% <2 0.51%
3 42.82% 3 11.03%
4 32.56% 4 52.56%
5 13.08% 5 26.92%

>6 7.69% >6 8.67%

Table 1: Key statistics of the RPTS-Eval benchmark. As
each reasoning instance need one or more capabilities,
the sum of percentage is larger than 100%. 'rwoi’ and
‘rwi’ represent related without/with inference.

* related with interference: In addition to
the aforementioned relationships, information
from one modality can also mislead the ex-
traction of information from another modality.
This misguidance can manifest in two ways:
either by extracting irrelevant or erroneous
information from the other modality, or by
failing to extract any information from it alto-
gether.

* unrelated: The modalities are independent of
each other, and information must be retrieved
separately from each modality to complete the
reasoning process.

Translation Finally, we use GPT-4 to translate
the annotated Chinese data into English and make
manual adjustments.

In summary, our RPTS-Eval benchmark com-
prises 390 inferences linked to a total of 374 im-
ages. Table 1 depicts the distribution across mul-
tiple dimensions of RPTS-Eval. Since most tasks
require the recognition of objects in images, object
recognition capability plays a dominant role. Given
that the data is constructed with paired answers, the
two types of answers in RPTS-Eval are evenly dis-
tributed, which helps mitigate the effects of model
bias. The relationships between modalities are pri-
marily based on related without interference, as the
reasoning for the last two types are more challeng-
ing to construct. The majority of inferences can
be made within 5 steps, and when the inference is
represented as a tree, the tree height is typically

below 6.

4 Experiments

4.1 Evaluation Protocl

Reorganize Model Output Our approach aims
for more detailed evaluative reasoning by structur-
ing the reasoning process as a tree. To construct
this tree, the model is required to output reason-
ing in the "[PREMISE] + [PREMISE] -> [CON-
CLUSION]" format according to the RPTS-Eval
annotation standard, where the ’[PREMISE]’ can
be image cues, textual clues, or conclusions de-
rived from previous steps. However, existing open-
source LVLMs are not capable of strictly adhering
to this format. To solve this issue, we first use
a chain-of-thought prompt to guide the model in
generating reasoning with premises step by step.
Then, we employ GPT-4 to reformat the output of
the LVLM into the required RPTS-Eval annotation
format. Figure 4 illustrates the complete evaluation

Structured Reasoning:
1. Image 0 -> Conclusion 0
2. Text0 + Conclusion 0 -> Conclusion 1

GPT-4

Cot Reasoning:
Stepl: From Image 0...

Step2: From Text 0 and Conclusion 0,

o Answer:
agree, disagree or
o can't be determined

Accuracy

Scores:
Stepl: 08
/\/\ Step2: 09

RPTS GPT-4

1

Reasoning Tree:

Figure 4: Evaluation process for RPTS-Eval

LLM-Based Scorer Now, each reasoning step
in our approach strictly adheres to the "[PREMISE]
+ [PREMISE] -> [CONCLUSION]" format. Prior
studies (Chiang and Lee, 2023; Liu et al., 2023; Fu
et al., 2024; Bai et al., 2023b; Bitton et al., 2023;
Yu et al., 2023; Han et al., 2023) have demonstrated
GPT-4’s effectiveness in assessing model reasoning.
Therefore, we utilize GPT-4 to score reasoning, but
with a unique twist: we only evaluate individual
reasoning steps, not the entire process. This method
allows for more precise evaluations by preventing
the influence of other reasoning elements on the
scores. Before we input the reasoning into scorer,
we first preprocess the model’s reasoning by elimi-
nating redundant text clues, merging conclusions
from images, substituting unnumbered texts and
conclusions with all relevant clues and conclusions,
and removing reasoning without '[PERMISE]’. For
scoring reasoning according with image, we calcu-



late the semantic similarity of conclusions directly
derived from images against the ground truth. For
other reasoning, we input the premises and conclu-
sion into GPT-4 to assess their logical coherence.
The score given by scorer ranges from O to 1, with
higher scores indicating stronger logical reasoning.
However, as illustrated in Figure 1, there are in-
stances where the model’s selected premises may
not directly support the given conclusion, though
they may be justified within the broader reasoning
context. To address this, if the initial score is below
0.5, we re-evaluate using all text clues and previ-
ously derived conclusions as new premises, and
then applying a 0.8 penalty for incorrect premises.
We select the higher of the two scores as the final
assessment.

Reasoning Process Tree Score Considering the
unique structure of reasoning, we can model the
process as an reasoning tree, as depicted in figure
5. In this tree, the leaf nodes represent context,
visual clues and textual clues, while the non-leaf
nodes correspond to individual steps of inference.
This tree, alongside parameters « and (3, is used to
weight each inferential step. The weight assigned
to n; is defined as

w; = P (1)

where n; is the node corresponding to the i*” step
of inference, h denotes the height of n;, defined as
the number of edges on the longest path from n; to
any leaf node. The overall score of the reasoning
tree, RPTS, is calculated as

N . .
RPTS = L’} 2)

where N is the number of steps in the inference
process, and s; is the score of the i* inferential
step. By adjusting « and 3, we can finely tune
the emphasis on global versus local aspects of the
inference process. Figure 5 illustrates the scoring
outcomes under three different settings of «v and
B. In the top, « is set to 1, making RPTS reflect
the average score across all inferential steps. In the
middle, « is 0.8 and 3 is 1, focusing RPTS more
on the scores of earlier inferential steps. In the
below, « is 0 and f is 2, meaning RPTS considers
only the inference steps occurring at a tree height
of 2, essentially focusing on inferences that derive
directly from the clues.

/ iy
s2=10 & (C) s4=07 _ ~
Vi N > T P Y S PP
s1=0.1C)(T) (T) (C $3=09 =cHlsi P
. c )
| T T ws =alf=3 =1

Figure 5: Examples of different parameter settings for
RPTS. C, I and T respectively represent conclusion,
visual clue and textual clue.

4.2 Models and Evaluation Metrics

To validate the challenging nature of RPTS-Eval
and the capability of the RPTS evaluation met-
ric analysis model, we conducted experiments in
both Chinese and English across various models.
The open-source models tested include Instruct-
BLIP(Dai et al., 2024), Internval2(Chen et al.,
2024), ShareGPT4V(Chen et al., 2023), Llava-
v1.5(Liu et al., 2024a), Llava-Next(Liu et al.,
2024b) and Qwen-VL-Chat(Bai et al., 2023a), de-
tailed in Appendix A; the sole close-source model
examined is GPT-40. We evaluate the reasoning
ability of the model by combining accuracy and
RPTS, and analyze the problems of the model.

4.3 Experiment Settings

Our experiment involves both Chinese and
English languages and performs chain-of-
thought(COT)(Wei et al., 2022) reasoning on the
RPTS-Eval benchmark. All tests were performed
in a zero-shot setting using a greedy decoding
strategy to assess the models’ inferential abilities.
To optimize the COT reasoning outcomes, we
designed five Chinese prompts and seven English
prompts, selecting the most effective one from
each language for our experiments. All tests were
carried out on an NVIDIA A100 GPU.

4.4 Results and Analysis

Table 2 displays the performance of various mod-
els on RPTS-Eval. In addition to evaluating the
accuracy of the models’ inferences and their mean
RPTS scores, we applied an RPTS-based filter to
exclude cases where incorrect inferences resulted
in accurate conclusions. Specifically, we consider
the reasoning logic with an RPTS score below 0.5
to be incoherent, and therefore classify it as in-
correct. Appendix C provides two examples of
inferences that were excluded under this criterion.



Models English Chinese |
Acc  RPTST  Accyijered Acc  RPTST  Accfittered |
Llava-v1.5-7B 0.64 0.63 0.48(-0.16) 0.35 0.57 0.24(-0.12)
Llava-Next-7B 0.62 0.47 0.32(-0.29) 0.13 0.41 0.06(-0.07)
Qwen-VL-Chat 0.57 0.61 0.41(-0.16) 0.39 0.61 0.25(-0.14)
ShareGPT4V-7B | 0.58 0.56 0.38(-0.20) 0.34 0.50 0.19(-0.15)
InternVL2-8B 0.63 0.67 0.53(-0.10) 0.46 0.66 0.37(-0.08)
© Llama-32-11B | 0.68  0.68  0.56(-0.12) [ 041  0.63  029(-0.12)
InstructBLIP 0.56 0.59 0.41(-0.16) - - -
Llava-v1.5-13B 0.56 0.59 0.41(-0.15) 0.41 0.58 0.28(-0.13)
Llava-Next-13B 0.62 0.51 0.34(-0.27) 0.23 0.46 0.11(-0.12)
ShareGPT4V-13B | 0.59 0.50 0.32(-0.27) 0.35 0.58 0.26(-0.09)
 InternVL2-26B | 0.65 070  0.55(-0.10) | 0.54 074  0.45(-0.08)
 Llava-Next-34B | 0.68 071  0.60(-0.08) | 046  0.68  0.37(-0.09)
InternVL2-40B 0.74 0.76 0.67 (-0.06) | 0.57 0.75 0.52 (-0.05)
InternVL2-76B 0.73 0.79 0.70 (-0.04) | 0.60 0.77 0.57 (-0.03)
Llama-3.2-90B 0.79 0.67 0.66(-0.12) 0.56 0.77 0.52 (-0.04)
GPT-40 0.86 0.84 0.84 (-0.02) | 0.72 0.86 0.70 (-0.02)

Table 2: Results of different models on RPTS-Eval with cot prompt. We set &« = 0.9, 5 = 1 when calculate RPTS.
For each column, the highest, the second, and the third highest figures are highlighted by green, orange and

pink backgrounds. The worst, second worst, and third worst are highlighted using underline, wavy underline, and

italic, respectively. Acc: Accuracy.

The data in Table 2 reveal that all models exhibited
a decline in accuracy to varying extents, with GPT-
40 showing the least reduction. This modest de-
cline is closely associated with GPT-40’s advanced
logical capabilities. In the results of GPT-4, the
lower RPTS scores are associated with erroneous
reasoning and the model’s failure to capture certain
infomation. Conversely, the open-source models
demonstrated a lack of logical robustness in their
reasoning processes, leading to more pronounced
decreases due to often generating irrelevant or il-
logical outputs. Despite these models’ lower ac-
curacy, their RPTS scores were not significantly
impacted. We hypothesize that this is due to two
primary reasons: 1. Disconnection between the in-
ference outcomes and the intended targets. While
the models initially could reason based on the spec-
ified targets, they gradually lost focus on the targets
as the number of reasoning steps increased, result-
ing in conclusions that diverged from the intended
data targets. 2. Recurrent generation of identical
sentences. Across various sizes, the open-source
models consistently produced repetitive reasoning
that, while logically sound, failed to reach the de-
sired conclusions. These factors led to reduced
accuracy but did not substantially affect the logi-

cal integrity of the inferences, as reflected in the
relatively high RPTS scores.

Step Analysis To further identify the causes of
errors in our model, we initiated an analysis from
the perspective of inference steps. We set a = 0
and varied (8 at values of 1, 2, 3, and 4 to compute
the average RPTS score. Figure 6 displays the
relationship between RPTS scores and 3 across
two languages. As evident from the figure, with the
exception of GPT-40, RPTS scores at § = 1 are
unsatisfactory across all models. This indicates that
the models encounter issues at the initial inference
step, where conclusions are drawn directly from
the visual and textual clues, leading to subsequent
errors in reasoning. To further explore the specific
causes, we calculated the average RPTS scores
derived separately from visual and textual clues.
The results, as shown in Table 3, reveal that open-
source models still lack sufficient capabilities in
image processing. They fail to derive necessary
information from images for subsequent reasoning
tasks based on specific inferential questions.

Capability Analysis Appendix B shows the ac-
curacy of each model on six different abilities.
The majority of models exhibit relatively uniform
performance across six competencies in english.
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GPT-40
1

1V-26B

Qwen IV-40B
LN-34B IV-76B
LN-13B Lm-11B

Lm-90B

Lv-13B Lv-7B

—®—Dheta=1 —=@=Dbeta=2 beta=3 ==@=beta=4

Figure 6: RPTS scores for 5 € {1,2,3,4} and a = 0. IB: InstructBLIP;IV: InternVL2;Lv: Llava-v1.5;LN:

Llava-Next;Qwen: Qwen-VL-Chat;SG: ShareGPT4V;

English Chinese
Image Text | Image Text

IV-8B 0.50 0.76 0.54 0.94
Lv-7B 0.42 0.78 0.40 0.67

Table 3: RPTS score for drawing conclusions from
visual clues or textual clues. IB: InstructBLIP; IV: In-
ternVL2; Lm: Llama-3.2; Lv: Llava-v1.5; LN: Llava-
Next; Qwen: Qwen-VL-Chat; SG: ShareGPT4V;,

ShareGPT4V underperforms in OCR, which likely
stems from a lack of targeted training data for these
specific tasks. Surprisingly, open-source models,
regardless of their parameter sizes, do not demon-
strate particularly exceptional performance in the
task of image comparison. Moreover, there is a
significant gap between these models and GPT-
4, which can be closely attributed to the fact that
the training data used by most open-source mod-
els typically contains only a single image. Con-
versely, the performance of various open-source
models markedly declines, displaying significant

deficiencies in certain capabilities in Chinese. This
is observed despite some models, such as Llava-
Next-34B and Qwen-VL-Chat, leveraging LLM
with robust capabilities in Chinese. This trend indi-
cates that existing training methodologies fall short
in translating a model’s multimodal abilities from
English into other languages.

5 Conclusion

In this paper, we introduce RPTS-Eval, a bench-
mark specifically designed to meticulously exam-
ine the reasoning processes of models. We also de-
fine three types of relationships between modalities
in multimodal reasoning. Furthermore, we propose
a new metric, RPTS, aimed at addressing issues
where incorrect reasoning still results in correct
outcomes, thereby facilitating a detailed analysis
of model reasoning. Our results indicate that cur-
rent open-source Large Visual Language Models
struggle to derive necessary conclusions from im-
ages for subsequent reasoning. We also observed
a significant disparity in the capabilities of models
between Chinese and English contexts, suggesting
that existing training methodologies fall short in
transferring multimodal abilities from English to
other languages.

6 Limitation

The main limitation of this paper lies in the scale
of the data. Due to the lack of automated meth-
ods for constructing the multimodal reasoning



data presented in this paper, and the cost of man-
ual construction is high, resulting in a relatively
small dataset. Moreover, the relationships between
modality in the RPTS-Eval data mainly correspond
to related without interference, with insufficient
data for the other two relationship types. Addition-
ally, the proposed RPTS metric focuses solely on
the dimension of logicality, and future work may
explore evaluations across more dimensions.
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A  Models’ Detail

Architecture
Model Vision Language Other
_ InstructBLIP VITG Vicuna-13B Q-Former
InternVL2-8B InternViT-300M InternLM2-7B MLP
InternVL2-26B InternViT-6B InternLM2-20B MLP
InternVL2-40B InternViT-6B InternLM2-34B MLP

InternVL2-76B

InternViT-6B

Llama-3.2-Vision-11B
Llama-3.2-Vision-90B

Llama-Vision
Llama-Vision

Llava-v1.5-7B
Llava-v1.5-13B

Llava-Next-7B
Llava-Next-13B
Llava-Next-34B

Llama3-70B MLP
Llama3.1-11B Cross-Attention
Llama3.1-90B Cross-Attention
Vicuna-7B MLP
Vicuna-13B MLP
Vicuna-7B MLP
Vicuna-13B MLP

ShareGPT4V-7B
ShareGPT4V-13B

VIiT-L

Vicuna-7B MLP
Vicuna-13B MLP

Table 4: Open-source models’ architecture
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B Capability Accuracy



English Chinese
IC Rec OCR SA Com Math IC Rec OCR SA Com Math |

Lv-7B 040 049 047 052 053 036 | 020 025 019 026 024 022
LN-7B | 0.00 034 034 027 034 029 | 000 0.07 006 006 0.09 0.03
Qwen 050 043 040 043 046 040 | 040 028 0.15 020 028 0.27
SG-7B | 055 040 036 037 042 039 | 020 020 015 019 024 0.15

Table 5: Accuracy for each capability filtered by RPTS score. For each column, the highest, the second, and the
third highest figures are highlighted by green , orange and pink backgrounds. IB: InstructBLIP; IV: InternVL2;
Lm: Llama-3.2; Lv: Llava-v1.5; LN: Llava-Next; SG: ShareGPT4V;

C Examples of Filtered-out Reasoning
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Statement:

Person A has not violated the law.

Context:

The vehicle driven by person A is as shown in image 0.
Texture clues:

(0): Person A possesses a Category 1 driving license.
(1): Driving non-commercial vehicles with seven seats or less requires a Category 1 driver's license; otherwise, it is illegal.

(2): Driving vehicles with more than seven seats, excluding freight vehicles, requires a Category 2 driving license; otherwise, it is illegal.
(3): Operating a freight vehicle requires a Category 3 driving license; otherwise, it is illegal.

Model’s reasoning:

Image0 -> Conclusion0: The vehicle driven by Person A has more than seven seats.

Text0 -> Conclusionl: A Category 1 drivet's license is required to drive non-commercial vehicles with seven seats or less.

Conclusion0 + Conclusionl -> Conclusion2: The vehicle driven by Person A requires a Category 2 driver's license.

Textl -> Conclusion3: Operating a freight vehicle requires a Category 3 driver's license.

Conclusion0 + Conclusion3 -> Conclusion4: The vehicle driven by Person A is not a freight vehicle.

Conclusion2 + Conclusion4 -> Conclusion5: The vehicle driven by Person A does not require a Category 1, Category 2, or Category 3 driver's
license.

Conclusion5 -> Conclusion6: Person A has not violated the law by driving the vehicle shown in the image.

Rpts Scores: 0.36

Statement:

The proposal was approved.

Context:

The company is hosting a meeting where a significant proposal was put to a vote.

Image 0 depicts the scene of the voting session.

Texture clues:

(0): The participants in the meeting constitute three-fifths of the entire company's workforce.

(1): The proposal can only pass if it receives support from more than 50% of the company's total employees.

Model’s reasoning:

Image0 -> Conclusion0: According to image 0, we can infer that the proposal received support from eight participants in the meeting. Six
people have raised their hands in favor, while two have not.

Conclusion0 + Text0 -> Conclusionl: These eight participants constitute three-fifths of the company's total workforce, as stated in TextO.
Textl + Text2 -> Conclusion2: For the proposal to pass, more than 50% of the company's total employees must support it. Given that three-
fifths of the workforce participated in the meeting, the number of total employees can be calculated. Let's assume the company's total
workforce is represented by x. 3x/5 = 8 -> x = 40/3. Since 40/3 is not a whole number and the total workforce must be an integer, there may
be rounding involved. If we approximate x as 14 (nearest whole number): Three-fifths of 14 employees is approximately 8.4 (closer to 8
considering participants). For the proposal to pass, it needs more than half of the entire company's employees to agree:14/2=7. Thus, more
than 7 employees need to support the proposal.

Conclusionl + Conclusion2 -> Conclusion3: 6 supporters (as shown in Image 0) out of 14 (approx total workforce) do not meet the
requirement of more than 50% (i.e., more than 7 employees) for passing the proposal. Therefore, these textual and visual clues disagree with
the given statement.

Rpts Scores: 0.43

Figure 7: Examples of filtered sample
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