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DSSD: Efficient Edge-Device Deployment and Collaborative Inference via
Distributed Split Speculative Decoding
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Abstract
In order to maintain satisfactory inference
accuracy while improving overall inference
speed, speculative decoding (SD) has been inte-
grated into the edge-device inference frameworks
[10]–[12]. Following the idea of SD, the SLM
on an end device generates a multi-token draft se-
quence, which undergoes parallel verification by
the in-edge LLM with a single inference step (also
called a verification step). The parallel verifica-
tion significantly accelerates inference compared
to traditional sequential generation while preserv-
ing high accuracy through the rejection of diver-
gent draft tokens and subsequent content. How-
ever, as the input and output tokens are shared
between devices and the cloud, this framework
still inevitably raises significant privacy concerns.

1. Introduction
Large language models (LLMs) have revolutionized nat-
ural language processing, enabling powerful applications
such as conversational agents, machine translation, and code
generation. Despite their capabilities, deploying LLM faces
significant challenges across both devices and cloud envi-
ronments. On devices, stringent constraints such as limited
memory capacity, restricted battery life, and insufficient
computational power hinder the adoption of traditional LLM
frameworks. Cloud-based deployments, while benefiting
from scalable computational resources, suffers from unpre-
dictable network latency and jitter. In addition, the inherent
mobility of end-users can lead to frequent connectivity dis-
ruptions, making continuous access to cloud-based services
unreliable.

To address these challenges, researchers have proposed a
collaborative edge-device architecture that strategically de-
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ploys a small language model (SLM) on the device while
offloading the large language model (LLM) to a base station
(BS) or edge server (Ding et al., 2024; Hao et al., 2024).
In (Ding et al., 2024), a router trained to predict query diffi-
culty and desired quality level enables cost-efficient assign-
ment of queries to either the small or large model. In (Hao
et al., 2024), a cost-aware draft-verification approach was
employed. By tuning a predefined threshold pt for the gen-
erated token probability, a controllable performance-cost
trade-off was achieved.

However, these studies improves efficiency with a compro-
mise of LLM inference accuracy. Therefore, speculative
decoding (SD) was taken into account, where a small “draft”
model to generate γ candidate tokens autoregressively, and
then a big “target ” model to verify these draft tokens in
parallel (Leviathan et al., 2023; Chen et al., 2023). In this
way, the inefficiency of autoregressive token generation
was mitigated without sacrificing the quality of inference.
Furthermore, a distributed speculative decoding (DSD)
architecture was first introduced in (Zhao et al., 2024) with
the draft model for token generation on the device and the
target model for verification at the edge. The author trys
to optimize the number of tokens generated by SLM to
minimize delay and power consumption, taking uplink and
downlink transmission into consideration.

Nevertheless, this hybrid deployment approach is con-
strained by communication bottlenecks: for each token,
the device must transmit a full vocabulary distribution to
the BS/edge server for LLM verification, resulting in a com-
munication payload linearly dependent on vocabulary size.
In (Oh et al., 2024), the author proposed to skip uplink trans-
missions and LLM inference on tokens likely to be accepted.
This improves token throughput but still at the expense of
inference accuracy.

Building on previous works, we offer our solution: a dis-
tributed split speculative decoding (DSSD) framework.
Specifically, SLM and LLM are still deployed on device and
at edge, respectively. But the verification phase of SD was
further split and distributed across the device and edge.
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