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Abstract

Despite the recent breakthroughs in language001
modeling, their ability to represent numbers002
is insufficient. Subword tokenization, the003
standard choice for number representation,004
breaks down a number into arbitrary chunks005
thereby failing to explicitly capture the re-006
lationship between two numbers on on the007
number-line. To alleviate this shortcoming,008
alternate approaches have been proposed that009
modify numbers at various stages of the lan-010
guage modeling pipeline. These methods can011
be broadly classified into three categories that012
make changes to a) the notation (e.g. scien-013
tific vs decimal) b) vocabulary (e.g. introduce014
a new token for numbers in range 10−100) and015
c) architectural changes to directly regress to a016
desired number. The contributions of this work017
are three fold – firstly, we propose vocabulary018
level changes in the decoding stage and study019
its behavior. Next, we study the performance020
of both the proposed approach and existing021
number representation schemes in the context022
of masked number presentation. We find that023
a carefully designed tokenization scheme is024
both the simplest to implement and sufficient025
i.e. with similar performance to the state-of-026
the-art approach that requires making signifi-027
cant architectural changes. Finally, we evalu-028
ate the various number representation schemes029
on the downstream task of numerical fact esti-030
mation (for fermi problems) in a zero-shot set-031
ting and find similar trends i.e. changes at the032
tokenization level achieve near state-of-the-art033
results while requiring minimal resources com-034
pared to other number representation schemes.035

1 Introduction036

The standard practice in the language modeling037

community is to process numbers in exactly038

the same manner as words. This second class039

treatment of numbers leads to their inaccurate040

representation and therefore, limited numerical041

understanding of large-scale language models042

Degree Expected Predictions for:
of Change iPhone [MASK] costs $[MASK].

(default) iPhone 13 costs $ 79 ##9 .
Notation iPhone 13 costs $ 7 . 99 e 2 .
Vocabulary iPhone 10-100 costs $ 100-1000 .
Model iPhone 13.0000 costs $ 799.0000 .

Table 1: Multiple approaches to masked num-
ber prediction or number decoding. Color Coding:
Tokens in the vocabulary of BERT (Devlin et al., 2019) .

New tokens . Continuous-valued predictions .

(LMs). To illustrate, a number like $799 is 043

subword tokenized (Sennrich et al., 2016; Schuster 044

and Nakajima, 2012) as 79 and ##9. Such a 045

tokenization method, by construction, prevents 046

accurately modeling the relationship of this 047

number with other numbers on the number line 048

say, $800, as the surface forms share no common 049

tokens. Many alternatives have been proposed 050

to capture the scalar magnitude of numbers; see 051

survey by Thawani et al. (2021b) for further details. 052

053

All the approaches proposed to capture the 054

magnitude of numbers fall into one of the follow- 055

ing categories, corresponding to modifications to a) 056

notation (e.g. scientific vs decimal) b) vocabulary 057

(e.g. introducing new tokens that denote all num- 058

bers within a specified range) and c) architectural 059

changes (e.g. directly regressing to a number). 060

Table 1 shows the various approaches on a example 061

sentence. While all these approaches overcome the 062

limitations of using subword tokenization, they 063

present their unique challenges and trade-offs. In 064

this work, we study the utility of these number 065

representations in the decoding stage and therefore, 066

focus on the task of masked number prediction. 067

068

The contributions of this work are as follows: 069

1. We propose using a modification to the tokeniza- 070

tion scheme for numbers with a particular focus 071

on decoding (outputting) of numbers. 072
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2. We study the utility of this approach and other073

approaches to represent numbers in language074

modeling in the context of masked number pre-075

diction. We find that applying our tokenization076

scheme leads to near state-of-the-part perfor-077

mance requiring no additional pre-training or078

architectural changes.079

3. Finally, we evaluate the number representation080

schemes on their ability to generalize to down-081

stream tasks – in this case, numerical fact esti-082

mation in the context of solving fermi problems083

(Kalyan et al., 2021). We find trends similar to084

the task of masked number prediction demon-085

strating the utility of the simple yet effective086

tokenization scheme in the decoding setting.087

2 Methods088

In this section, we dive deeper into each of the089

three number representation categories and discuss090

the trade-offs involved in using them.091

092

Change of Notation. We first discuss the093

most straightforward approach towards number094

representation. Here, the numbers are represented095

in an alternate notation – e.g. scientific notation096

as opposed to decimal notation. Note that this097

approach does not require changing any of the098

other components of language modeling. In this099

work, we consider the following variations:100

Scientific. Using scientific notation in lieu of101

the usual decimal notation was first proposed102

by Zhang et al. (2020). In this work, we closely103

follow their version with minor implementation104

level changes 1 Importantly, note that following105

the notation change, the tokenizer nevertheless106

splits it into subwords as before.107

Digits: Here, the number is split into its constituent108

digits or characters, e.g., 329 becomes 3 2 9. This109

approach offers a consistent decomposition of110

numbers into digits, as opposed to the arbitrary111

tokens from subword segmentation and has been112

proven effective on simple numeric probes as well113

as arithmetic word problems Geva et al. (2020).114

Change of Vocabulary. Unlike words, the notion115

of distance or similarity is more obviously defined116

for numbers in terms of their separation on the117

number line, a cognitive tool that human beings118

are known to intuitively used to process numeracy119

1329 is written as 329 [EXP] 2. However, we find that
representing the same instead as 3x29 where ‘x’ is the com-
mon English alphabet, works better in practice.

(Dehaene, 2011). This forms the basis of our 120

approach i.e. numbers within a specified range 121

are collapsed into a single token – at the cost of 122

precise representation of numbers. This approach 123

to tokenizing the number space is analogous 124

to stemming of words. Stemming is a simple 125

technique to collapse low frequency words to their 126

lemma in order to curtail the vocabulary size, e.g., 127

playing, player and played all collapse into the 128

token for play. Similarly, exponent embeddings 129

collapse multiple numbers into a single token 130

covering a range of numbers. 131

While this approach has already been used in 132

the context of encoding numbers (Berg-Kirkpatrick 133

and Spokoyny, 2020; Thawani et al., 2021a), our 134

work is the first to use and study this approach 135

when outputting or decoding numbers. 136

137

Change in Architecture. Several recent methods 138

have modified the language model to emit continu- 139

ous values when predicting numbers. At their core, 140

they operate by regressing to the desired number 141

conditioned on the language context. See Berg- 142

Kirkpatrick and Spokoyny (2020) for a thorough 143

comparison within this class of methods. We di- 144

rectly compare against their best variant: Discrete 145

Latent Exponents, which first models the exponent 146

part of a number as a multinomial, and then uses it 147

to parameterize a truncated log normal distribution 148

to sample the mantissa as a continuous value. 149

3 Experiments 150

We evaluate different number decoders and evalu- 151

ate them on the task of masked number prediction 152

(MNP). Before analyzing their performance, we 153

first describe the datasets, models and metrics used. 154

155

Dataset and Metrics. We follow (Berg- 156

Kirkpatrick and Spokoyny, 2020) to finetune and 157

evaluate our models on three datasets – Financial 158

News Articles (FinNews), its subset containing 159

mostly price-based numbers (FinNews-$), and 160

Scientific Articles (Sci); all numbers in these 161

datasets lie between 1-1016. We evaluate using 162

two metrics – a) Exponent Accuracy (E-Acc) that 163

checks whether the predicted answer is of the 164

same order of magnitude as the ground truth and 165

b) Log Mean Absolute Error (LMAE). For more 166

details on both the datasets and metrics, refer 167

(Berg-Kirkpatrick and Spokoyny, 2020). 168

169
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FinNews FinNews-$ Sci
Metrics E-Acc ↑ LogMAE↓ E-Acc↑ LogMAE↓ E-Acc↑ LogMAE↓

Baselines
Train-Mean 1.02 7.69 6.02 4.68 0.01 8.81
Train-Median 5.52 1.88 10.58 2.66 49.52 0.83
Train-Mode 24.23 2.02 8.13 6.30 49.52 1.00
Subword-Pad8 63.56 0.68 29.05 1.36 68.02 0.68

Notation-change
Digit-Pad17 52.23 0.93 33.04 1.37 55.12 0.91
Scientific-Pad8 52.53 0.84 NA NA 71.14 0.66

Vocabulary-change
DExp-fixed 74.40 0.65 57.14 0.93 81.16 0.51
Exp 73.70 0.60 56.99 0.92 81.32 0.44

Model-change Berg-Kirkpatrick and Spokoyny (2020)
DExp 74.56 0.50 57.50 0.89 81.17 0.39

Table 2: Order of magnitude accuracy (E-Acc) and Log Mean Absolute Error (LMAE) over the test set of three
datasets, contrasting the three degrees of freedom for improving numeracy of language models. NA denotes
subword models which were unable to emit valid numbers for at least 50% of the examples.

Baselines. Our primary baseline is the stan-170

dard approach of subword tokenization. We171

require each number prediction to be 8 tokens172

long, with appropriate padding. Additionally, we173

evaluate on three trivial baselines that make a174

constant prediction corresponding to the mean,175

median, and mode of all numbers present in the176

training set.177

178

Models. First, we compare against both the179

approaches discussed in Sec. 2 that employ180

change of notation i.e. scientific and digit, with a181

padding of 8 and 17 respectively. Next, among the182

approaches the introduce architectural changes, we183

compare against the state-of-the-art discrete expo-184

nent model (DExp) proposed by (Berg-Kirkpatrick185

and Spokoyny, 2020). Finally, we compare against186

two variations that introduce vocabulary level187

changes – both, discretize the number line with188

logarithmic-ally sized bins (with base 10). The189

two variants differ in how the mantissa is chosen –190

either a constant of 5 (DExp-fixed) or the log-scale191

mean of the extremes of a bin (DExp), e.g. the192

token 10-100 is replaced by the number 31.62.193

We extend the code provided by Berg-Kirkpatrick194

and Spokoyny (2020) for most of our experiments2.195

196

Further, note that we only compare number197

decoders and not the encoders – therefore,198

when numbers are present in the input, standard199

2https://github.com/dspoka/mnm

encoding schemes are used. For approaches with 200

changes to vocabulary and architecture, we follow 201

(Berg-Kirkpatrick and Spokoyny, 2020) and use 202

exponent embeddings to encode numbers (with 203

no shared parameters with the decoder’s tokens) 204

and for approaches with notation changes, we use 205

subword tokenization. 206

3.1 Results 207

We find that the straightforward, change of notation 208

approaches are inferior to the subword baseline. 209

This is in contrast to prior work on extrapolating 210

the arithmetic abilities of language models by sim- 211

ple notation changes (Nogueira et al., 2021; Geva 212

et al., 2020). This result suggests that simple pre- 213

processing changes like changes of notation are not 214

sufficient for contextual understanding of numbers 215

for language modelling 216

Next, we find that while DExp model is the best 217

performing method, approaches that instead make 218

changes to the vocabulary are a close second – no- 219

tably, over 90% of the gain in E-Acc from subword 220

to DExp models for FinNews corpus, is achievable 221

without modelling the mantissa at all! 222

3.2 Downstream zero-shot transfer 223

Given the trends observed in masked number 224

prediction, we are interested in analyzing the 225

utility of these models on a downstream number 226

prediction task. For this purpose, we evaluate on 227

numerical fact estimation. We pick the Fermi 228

3
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Fermi-Real FinNews FinNews-$ Sci
510 egs. E-Acc ↑ LogMAE↓ E-Acc↑ LogMAE↓ E-Acc↑ LogMAE↓

Sub-Pad8 26.11 2.38 16.07 3.17 25.89 2.84
Dig-Pad17 18.79 2.58 NA NA 23.27 2.87
Sci-Pad8 24.78 2.93 NA NA 20.09 2.75
DExp-fixed 32.21 2.19 24.38 2.42 27.29 2.42
DExp 32.21 2.13 25.06 2.51 28.19 2.40

Fermi-Syn FinNews FinNews-$ Sci
3437 egs. E-Acc ↑ LogMAE↓ E-Acc↑ LogMAE↓ E-Acc↑ LogMAE↓

Sub-Pad8 28.72 2.89 19.12 3.25 38.93 2.83
Dig-Pad17 21.66 2.93 NA NA 40.73 2.87
Sci-Pad8 25.75 3.06 NA NA 27.05 2.76
DExp-fixed 39.08 2.61 40.85 2.42 46.86 2.52
DExp 39.22 2.44 41.36 2.44 47.60 2.48

Table 3: Downstream performance of our main methods over fact estimation for solving Fermi Problems. NA
denotes subword models which were unable to emit valid numbers for at least 50% of the examples.

Problems dataset (Kalyan et al., 2021), which229

consists of challenging estimation problems230

such as “How many tennis balls fit in a school231

bus?”. Solving such questions require sestimating232

numeric facts such as ‘the volume of a tennis bus’233

or ‘the length of a bus.’234

235

We evaluate each of our models on such an-236

notated facts provided as part of both the real237

and synthetic datasets part of the fermi problem238

dataset. The task setup is of masked number239

prediction as before, e.g., “the size of a tennis ball240

is [MASK] cubic centimeters." We report E-Acc241

and Log MAE as before, in Table 3. We find242

similar trends as in 3.1 i.e. change of notation is243

sufficient while vocabulary-change approaches are244

closely behind approaches that make architectural245

changes – highlighting that most of the gains could246

be retained by simply tokenizing in number space.247

4 Related Work248

The NLP community has recently proposed several249

ways of improving the numeracy of language250

models, including architectural and notation251

interventions. Several such methods are aimed at252

helping LMs extrapolate easily to larger numbers253

(Kim et al., 2021) or for improving their arithmetic254

skills (Nogueira et al., 2021). We restrict our255

analysis to the task of approximately decoding256

numbers in MNP setting, which requires different257

methods and metrics compared to the tasks which258

require exact arithmetic skills (Thawani et al.,259

2021b).260

261

The method we highlight in this paper i.e. tok- 262

enization in number space, has been previously 263

used in different settings. Zhang et al. (2020) 264

probe word embeddings from BERT with similar 265

exponent embeddings on the task of measurement 266

estimation (Elazar et al., 2019). Others have shown 267

the benefits of using such exponent embeddings as 268

number encoders for language models, whether 269

it be for the task of masked number prediction 270

(Berg-Kirkpatrick and Spokoyny, 2020) or masked 271

word prediction (Thawani et al., 2021a). Our 272

work extends these results with further evidence 273

of the representational power gained by simply 274

tokenizing numbers on the number line. 275

5 Conclusion 276

Subword tokenization, the standard approach to 277

representing numbers leads to inaccurate numer- 278

ical understanding. In this work, we propose a 279

simple yet effective tokenization based approach 280

that alleviates this shortcoming. In addition, we an- 281

alyze number representation approaches that make 282

notational (e.g. scientific vs. decimal) and archi- 283

tectural changes. We find that the proposed tok- 284

enization scheme has near state-of-the-art order- 285

of-magnitude accuracy (74.40% vs SotA 74.56%) 286

while requiring minimal resources as opposed to 287

making architectural changes. Finally, we evaluate 288

these methods in a zero-short setting on the nu- 289

merical fact estimation task in the context of fermi 290

problems. We find that in this challenging setting, 291

the same trends hold – indicating that tokenization 292

is all you need to represent numbers effectively and 293

with minimal effort. 294
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