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Abstract

Despite the recent breakthroughs in language
modeling, their ability to represent numbers
is insufficient. Subword tokenization, the
standard choice for number representation,
breaks down a number into arbitrary chunks
thereby failing to explicitly capture the re-
lationship between two numbers on on the
number-line. To alleviate this shortcoming,
alternate approaches have been proposed that
modify numbers at various stages of the lan-
guage modeling pipeline. These methods can
be broadly classified into three categories that
make changes to a) the notation (e.g. scien-
tific vs decimal) b) vocabulary (e.g. introduce
anew token for numbers in range 10—100) and
¢) architectural changes to directly regress to a
desired number. The contributions of this work
are three fold — firstly, we propose vocabulary
level changes in the decoding stage and study
its behavior. Next, we study the performance
of both the proposed approach and existing
number representation schemes in the context
of masked number presentation. We find that
a carefully designed tokenization scheme is
both the simplest to implement and sufficient
i.e. with similar performance to the state-of-
the-art approach that requires making signifi-
cant architectural changes. Finally, we evalu-
ate the various number representation schemes
on the downstream task of numerical fact esti-
mation (for fermi problems) in a zero-shot set-
ting and find similar trends i.e. changes at the
tokenization level achieve near state-of-the-art
results while requiring minimal resources com-
pared to other number representation schemes.

1 Introduction

The standard practice in the language modeling
community is to process numbers in exactly
the same manner as words. This second class
treatment of numbers leads to their inaccurate
representation and therefore, limited numerical
understanding of large-scale language models
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(LMs). To illustrate, a number like $799 is
subword tokenized (Sennrich et al., 2016; Schuster
and Nakajima, 2012) as 79 and ##9. Such a
tokenization method, by construction, prevents
accurately modeling the relationship of this
number with other numbers on the number line
say, $800, as the surface forms share no common
tokens. Many alternatives have been proposed
to capture the scalar magnitude of numbers; see
survey by Thawani et al. (2021b) for further details.

All the approaches proposed to capture the
magnitude of numbers fall into one of the follow-
ing categories, corresponding to modifications to a)
notation (e.g. scientific vs decimal) b) vocabulary
(e.g. introducing new tokens that denote all num-
bers within a specified range) and c) architectural
changes (e.g. directly regressing to a number).
Table 1 shows the various approaches on a example
sentence. While all these approaches overcome the
limitations of using subword tokenization, they
present their unique challenges and trade-offs. In
this work, we study the utility of these number
representations in the decoding stage and therefore,
focus on the task of masked number prediction.

The contributions of this work are as follows:

1. We propose using a modification to the tokeniza-
tion scheme for numbers with a particular focus
on decoding (outputting) of numbers.



2. We study the utility of this approach and other
approaches to represent numbers in language
modeling in the context of masked number pre-
diction. We find that applying our tokenization
scheme leads to near state-of-the-part perfor-
mance requiring no additional pre-training or
architectural changes.

3. Finally, we evaluate the number representation
schemes on their ability to generalize to down-
stream tasks — in this case, numerical fact esti-
mation in the context of solving fermi problems
(Kalyan et al., 2021). We find trends similar to
the task of masked number prediction demon-
strating the utility of the simple yet effective
tokenization scheme in the decoding setting.

2 Methods

In this section, we dive deeper into each of the
three number representation categories and discuss
the trade-offs involved in using them.

Change of Notation. We first discuss the
most straightforward approach towards number
representation. Here, the numbers are represented
in an alternate notation — e.g. scientific notation
as opposed to decimal notation. Note that this
approach does not require changing any of the
other components of language modeling. In this
work, we consider the following variations:
Scientific. Using scientific notation in lieu of
the usual decimal notation was first proposed
by Zhang et al. (2020). In this work, we closely
follow their version with minor implementation
level changes ! Importantly, note that following
the notation change, the tokenizer nevertheless
splits it into subwords as before.

Digits: Here, the number is split into its constituent
digits or characters, e.g., 329 becomes 3 2 9. This
approach offers a consistent decomposition of
numbers into digits, as opposed to the arbitrary
tokens from subword segmentation and has been
proven effective on simple numeric probes as well
as arithmetic word problems Geva et al. (2020).
Change of Vocabulary. Unlike words, the notion
of distance or similarity is more obviously defined
for numbers in terms of their separation on the
number line, a cognitive tool that human beings
are known to intuitively used to process numeracy

1399 is written as 329 [EXP] 2. However, we find that
representing the same instead as 3229 where ‘x’ is the com-
mon English alphabet, works better in practice.

(Dehaene, 2011). This forms the basis of our
approach i.e. numbers within a specified range
are collapsed into a single token — at the cost of
precise representation of numbers. This approach
to tokenizing the number space is analogous
to stemming of words. Stemming is a simple
technique to collapse low frequency words to their
lemma in order to curtail the vocabulary size, e.g.,
playing, player and played all collapse into the
token for play. Similarly, exponent embeddings
collapse multiple numbers into a single token
covering a range of numbers.

While this approach has already been used in
the context of encoding numbers (Berg-Kirkpatrick
and Spokoyny, 2020; Thawani et al., 2021a), our
work is the first to use and study this approach
when outputting or decoding numbers.

Change in Architecture. Several recent methods
have modified the language model to emit continu-
ous values when predicting numbers. At their core,
they operate by regressing to the desired number
conditioned on the language context. See Berg-
Kirkpatrick and Spokoyny (2020) for a thorough
comparison within this class of methods. We di-
rectly compare against their best variant: Discrete
Latent Exponents, which first models the exponent
part of a number as a multinomial, and then uses it
to parameterize a truncated log normal distribution
to sample the mantissa as a continuous value.

3 Experiments

We evaluate different number decoders and evalu-
ate them on the task of masked number prediction
(MNP). Before analyzing their performance, we
first describe the datasets, models and metrics used.

Dataset and Metrics. We follow (Berg-
Kirkpatrick and Spokoyny, 2020) to finetune and
evaluate our models on three datasets — Financial
News Atrticles (FinNews), its subset containing
mostly price-based numbers (FinNews-$), and
Scientific Articles (Sci); all numbers in these
datasets lie between 1-10'6. We evaluate using
two metrics — a) Exponent Accuracy (E-Acc) that
checks whether the predicted answer is of the
same order of magnitude as the ground truth and
b) Log Mean Absolute Error (LMAE). For more
details on both the datasets and metrics, refer
(Berg-Kirkpatrick and Spokoyny, 2020).



FinNews FinNews-$ Sci
Metrics E-Acct LogMAE] | E-Acct LogMAE| | E-Acct LogMAE|
Baselines
Train-Mean 1.02 7.69 6.02 4.68 0.01 8.81
Train-Median 5.52 1.88 10.58 2.66 49.52 0.83
Train-Mode 24.23 2.02 8.13 6.30 49.52 1.00
Subword-Pad8 63.56 0.68 29.05 1.36 68.02 0.68
Notation-change
Digit-Pad17 52.23 0.93 33.04 1.37 55.12 0.91
Scientific-Pad8 52.53 0.84 NA NA 71.14 0.66
Vocabulary-change
DExp-fixed 74.40 0.65 57.14 0.93 81.16 0.51
Exp 73.70 0.60 56.99 0.92 81.32 0.44
Model-change Berg-Kirkpatrick and Spokoyny (2020)
DExp | 7456 0.50 | 57.50 0.89 | 81.17 0.39

Table 2: Order of magnitude accuracy (E-Acc) and Log Mean Absolute Error (LMAE) over the test set of three
datasets, contrasting the three degrees of freedom for improving numeracy of language models. NA denotes
subword models which were unable to emit valid numbers for at least 50% of the examples.

Baselines. Our primary baseline is the stan-
dard approach of subword tokenization. We
require each number prediction to be 8 tokens
long, with appropriate padding. Additionally, we
evaluate on three trivial baselines that make a
constant prediction corresponding to the mean,
median, and mode of all numbers present in the
training set.

Models. First, we compare against both the
approaches discussed in Sec. 2 that employ
change of notation i.e. scientific and digit, with a
padding of 8 and 17 respectively. Next, among the
approaches the introduce architectural changes, we
compare against the state-of-the-art discrete expo-
nent model (DExp) proposed by (Berg-Kirkpatrick
and Spokoyny, 2020). Finally, we compare against
two variations that introduce vocabulary level
changes — both, discretize the number line with
logarithmic-ally sized bins (with base 10). The
two variants differ in how the mantissa is chosen —
either a constant of 5 (DExp-fixed) or the log-scale
mean of the extremes of a bin (DExp), e.g. the
token 10-100 is replaced by the number 31.62.
We extend the code provided by Berg-Kirkpatrick
and Spokoyny (2020) for most of our experiments?.

Further, note that we only compare number
decoders and not the encoders — therefore,
when numbers are present in the input, standard

https://github.com/dspoka/mnm

encoding schemes are used. For approaches with
changes to vocabulary and architecture, we follow
(Berg-Kirkpatrick and Spokoyny, 2020) and use
exponent embeddings to encode numbers (with
no shared parameters with the decoder’s tokens)
and for approaches with notation changes, we use
subword tokenization.

3.1 Results

We find that the straightforward, change of notation
approaches are inferior to the subword baseline.
This is in contrast to prior work on extrapolating
the arithmetic abilities of language models by sim-
ple notation changes (Nogueira et al., 2021; Geva
et al., 2020). This result suggests that simple pre-
processing changes like changes of notation are not
sufficient for contextual understanding of numbers
for language modelling

Next, we find that while DExp model is the best
performing method, approaches that instead make
changes to the vocabulary are a close second — no-
tably, over 90% of the gain in E-Acc from subword
to DExp models for FinNews corpus, is achievable
without modelling the mantissa at all!

3.2 Downstream zero-shot transfer

Given the trends observed in masked number
prediction, we are interested in analyzing the
utility of these models on a downstream number
prediction task. For this purpose, we evaluate on
numerical fact estimation. We pick the Fermi
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Fermi-Real FinNews FinNews-$ Sci

510 egs. E-Acc 1 LogMAE| | E-Acct LogMAE| | E-Acct LogMAE|]
Sub-Pad8 26.11 2.38 16.07 3.17 25.89 2.84
Dig-Pad17 18.79 2.58 NA NA 23.27 2.87
Sci-Pad8 24.78 2.93 NA NA 20.09 2.75
DExp-fixed 32.21 2.19 24.38 242 27.29 2.42
DExp 32.21 2.13 25.06 2.51 28.19 2.40
Fermi-Syn FinNews FinNews-$ Sci

3437 egs. E-AccT LogMAE] | E-Acct LogMAE] | E-Acct LogMAE]
Sub-Pad8 28.72 2.89 19.12 3.25 38.93 2.83
Dig-Pad17 21.66 293 NA NA 40.73 2.87
Sci-Pad8 25.75 3.06 NA NA 27.05 2.76
DExp-fixed 39.08 2.61 40.85 2.42 46.86 2.52
DExp 39.22 2.44 41.36 2.44 47.60 248

Table 3: Downstream performance of our main methods over fact estimation for solving Fermi Problems. NA
denotes subword models which were unable to emit valid numbers for at least 50% of the examples.

Problems dataset (Kalyan et al., 2021), which
consists of challenging estimation problems
such as “How many tennis balls fit in a school
bus?”. Solving such questions require sestimating
numeric facts such as ‘the volume of a tennis bus’
or ‘the length of a bus.’

We evaluate each of our models on such an-
notated facts provided as part of both the real
and synthetic datasets part of the fermi problem
dataset. The task setup is of masked number
prediction as before, e.g., “the size of a tennis ball
is [MASK] cubic centimeters." We report E-Acc
and Log MAE as before, in Table 3. We find
similar trends as in 3.1 i.e. change of notation is
sufficient while vocabulary-change approaches are
closely behind approaches that make architectural
changes — highlighting that most of the gains could
be retained by simply tokenizing in number space.

4 Related Work

The NLP community has recently proposed several
ways of improving the numeracy of language
models, including architectural and notation
interventions. Several such methods are aimed at
helping LMs extrapolate easily to larger numbers
(Kim et al., 2021) or for improving their arithmetic
skills (Nogueira et al., 2021). We restrict our
analysis to the task of approximately decoding
numbers in MNP setting, which requires different
methods and metrics compared to the tasks which
require exact arithmetic skills (Thawani et al.,
2021b).

The method we highlight in this paper i.e. tok-
enization in number space, has been previously
used in different settings. Zhang et al. (2020)
probe word embeddings from BERT with similar
exponent embeddings on the task of measurement
estimation (Elazar et al., 2019). Others have shown
the benefits of using such exponent embeddings as
number encoders for language models, whether
it be for the task of masked number prediction
(Berg-Kirkpatrick and Spokoyny, 2020) or masked
word prediction (Thawani et al., 2021a). Our
work extends these results with further evidence
of the representational power gained by simply
tokenizing numbers on the number line.

5 Conclusion

Subword tokenization, the standard approach to
representing numbers leads to inaccurate numer-
ical understanding. In this work, we propose a
simple yet effective tokenization based approach
that alleviates this shortcoming. In addition, we an-
alyze number representation approaches that make
notational (e.g. scientific vs. decimal) and archi-
tectural changes. We find that the proposed tok-
enization scheme has near state-of-the-art order-
of-magnitude accuracy (74.40% vs SotA 74.56%)
while requiring minimal resources as opposed to
making architectural changes. Finally, we evaluate
these methods in a zero-short setting on the nu-
merical fact estimation task in the context of fermi
problems. We find that in this challenging setting,
the same trends hold — indicating that tokenization
is all you need to represent numbers effectively and
with minimal effort.
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