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Abstract—With the rapid development of Location-based
Social Network (LBSN) services, a large number of Point-
Of-Interests (POIs) have been available, which consequently
raises a great demand of building personalized POI recom-
mender systems. A personalized POI recommender system
can significantly assist users to find their preferred POIs and
help POI owners to attract more customers. However, it is
very challenging to develop a personalized POI recommender
system because a user’s checkin decision making process is
very complex and could be influenced by many factors such as
social network and geographical distance. In the literature, a
variety of methods have been proposed to tackle this problem.
Most of these methods model user’s preference for POIs with
integrated approaches and consider all candidate POIs as a
whole space. However, by carefully examining a longitudinal
real-world checkin data, we find that the whole space of users’
checkins actually consists of two parts: social friend space and
user interest space. The social friend space denotes the set of
POI candidates that users’ friends have checked-in before and
the user interest space refers to the set of POI candidates that
are similar to users’ historical checkins, but are not visited by
their friends yet. Along this line, we develop separate models
for the both spaces to recommend POIs. Specifically, in social
friend space, we assume users would repeat their friends’
historical POIs due to the preference propagation through
social networks, and propose a new Social Friend Probabilistic
Matrix Factorization (SFPMF) model. In user interest space,
we propose a new User Interest Probabilistic Matrix Factoriza-
tion (UIPMF) model to capture the correlations between a new
POI and one user’s historical POIs. To evaluate the proposed
models, we conduct extensive experiments with many state-of-
the-art baseline methods and evaluation metrics on the real-
world data set. The experimental results firmly demonstrate
the effectiveness of our proposed models.

I. INTRODUCTION

Recent years have witnessed a rapid prevalence of
location-based social network (LBSN) services, such as
Foursquare, Jiepang, and Facebook Places, that can signifi-
cantly facilitate users’ outdoor activities by providing a large
number of nearby Point-of-Interests (POIs) in a real-time
fashion. A variety of user interaction data with these LBSN
services, such as searching locations, providing checkin
information, building connections among online users, have
been accumulated, which provides a good opportunity for
developing personalized POI recommender systems. Indeed,
the accurate and personalized POI recommendation is a
crucial demand in LBSN services. First, given the massive
locations, it is very difficult for users to find their preferred
ones in an efficient way. A personalized POI recommender

system would help users easily find relevant POIs without
spending too much time on searching, particularly when a
user is in a new region. Also, it is very challenging for POI
owners to deliver right POIs to various users. A personalized
POI recommender system is able to not only ease the burden,
but also attract more customers with the recommended POIs.

Although developing personalized POI recommender sys-
tems can greatly benefit both users and POI owners, it is still
a very challenging problem. In fact, a user’s checkin decision
making process is very complex and can be influenced by
many different kinds of factors. First, a user’s checkins
can be greatly influenced by a group of friends. Some of
the friends have positive impact on a user’s checkin at a
particular location, while others may influence negatively.
Even with the same group of friends, two users may be
affected by these friends in different ways. Also the distance
of a POI might have influence on user’s preference for it.
Usually a user would like to prefer a nearby POI rather than
another one far away. Thus, modeling the influence of social
friends and geographical distance on checkin behaviors
is critical for developing personalized POI recommender
systems. In addition, whether a user would check in at a
POI or not may depend on specific purpose. For instance,
when people want to have lunch, they would like to choose
those POIs relevant to food rather than sights.

In the literature, some related works have been proposed
to incorporate social influence into POI recommendations.
For example, [1] assumes that users and their friends share
the similar interests and then places a social regularization
term on learning user feature vectors. [2] proposes a geo-
social correlation model to capture four types of social
correlations of users’ checkin behaviours, i.e. local friends,
distant friends, local non-friends and distant non-friends.
On the other hand, [3] models both local and global so-
cial relations by dividing ’friend’ into two categories: one
is the friend who builds connections with each other on
LBSN and another refers to the user who has high global
reputations. [4] predicts the preference of a user for a
POI by collaborating the preferences of his friends on this
POI. Most of these methods integrate social influence and
personal interest together and model user’s preference for
POI with an integrated approach. For instance, one common
integration way is using social networks to regularize users’
interest. With such an integrated approach, all candidate
POIs are considered as a whole and a user’s preference



for one candidate POI is predicted based on an integrated
function. However, by carefully examining the real-world
checkin data, we find that users’ checkins mainly consist of
two groups of checkins. First, 30% of checkins are those
that have been checked-in by direct friends. In other words,
many users like to repeat their friends’ checkins. Second,
the rest of checkins are very similar as users’ historically
checked-in POIs. To this end, we propose to divide the whole
recommendation space into two parts: social friend space
and user interest space in this paper. The social friend space
refers to the set of POI candidates that users’ friends have
checked-in before. The user interest space denotes the set of
POI candidates that have not been visited by their friends
before, but are very similar to users’ historical checkins.
Different from previous works that use a unified model
to infer users’ preference for a POI, we develop separate
models for the two spaces.

Specifically, in social friend space, we assume that users
choose a new POI due to the preference propagation with the
visitors on this POI as the initial injectors in the whole social
network, and propose a new Social Friend Probabilistic
Matrix Factorization (SFPMF) to factorize the preference
propagation influence into user and factor feature vectors.
The checkin probability is then modeled by the overall
preference influence propagated from the initial injectors. On
the other hand, in user interest space, we suppose that user’s
decision on a new POI would be affected by his historical
POIs, and propose another User Interest Probabilistic Matrix
Factorization (UIPMF) to capture the correlations between
the new POI and his historical POIs. Furthermore, we design
two strategies for recommendations. One is novelly building
two recommender systems for the sake of the different
perspectives in two different spaces. Another is regularly
utilizing an Integrated Social Friend and User Interest model
(namely ISU) to combine them together due to their overlap.
To evaluate the proposed models, we conduct extensive
experiments with the real-world data set and compare our
models with many state-of-the-art models based on different
validation metrics. The experimental results demonstrate the
superiority of our models.

Overview. The rest of this paper is organized as follows:
In Section II, we introduce our models in details, including
model specifications and parameter estimations. Section III
demonstrates the experimental results. In Section IV, we
summarize the related works. Finally, we draw conclusion
in Section V.

II. METHODOLOGIES

Our goal is to recommend the new (unvisited) locations
for users. Based on the assumption that a new recommended
POI for one user is either one of his friends’ historical ones
or similar to his own historical ones, we divide the whole
recommendation space into social friend space and user
interest space. In this section, we first introduce the social
friend space and design a new Social Friend Probabilistic
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Figure 1: Probability of check-ins as a function of distance
of pairwise check-in distance (Left) and from home (Right).

Matrix Factorization (SFPMF) model. Then we propose an-
other novel User Interest Probabilistic Matrix Factorization
(UIPMF) model for user interest space. Finally, we present
the recommendation strategies and models’ estimations. For
the simplicity of presentation, some main mathematical
notations are shown in Table I. The terms location and
POI are used interchangeably in this paper. Friends indicate
direct friendship.

Table I: Mathematical Notations.
Symbol Description
M number of locations
N number of users
L the set of all locations
Li the set of all locations checked-in by user i
L
cj
i the set of locations that user i checked-in before

location j and have the same category as cj
Fi the set of all friends of user i
Ψj the set of all users who have checked-in location j
Θi the set of all locations checked-in by friends of user i

A. Social Friend Space

In this section, we introduce the framework of SFPMF
model, and present a P 3MF model to compute the checkin
preference propagation probability for users.

1) The SFPMF Framework: Many works have demon-
strated the importance of social network in recommender
system [1][5]. To examine the influence of friends on users’
checkin behaviors, we depict the histogram of the ratio
of checkins that repeat friends’ historical ones in Figure
2(d). There are two surprising observations: (1) Over 50%
users like to repeat those locations checked-in by their
friends prior to their first checkin at them; (2) More than
30% checkins are those that have been visited by friends.
The results exhibit an important checkin behavior trend
that users are probable to choose a POI from a set of
POIs that his friends have visited before. Therefore, we
believe the social network is a significant factor that affects
user’s decision on POIs. Furthermore, it is also crucial to
recommend a new POI for one user from a collection of
POIs having been checked-in by his friends, because it is
able to encourage users to have more checkins due to the
trust to their friends and the similar POI taste as them.
The inherent characteristics of checkin data and the evident
benefit motivate us to recommend users with their friends’
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Figure 2: (a) Relationship between social friend space and user interest space. (b) An example of user’s social networks and
checkins. The circle is user and the triangle is location. The red circle is the target user. The solid line indicates friendship
and the dashed line indicates checkin behavior. (c) An example of users checking-in the same location and their social
networks. (d) The x-axis is the ratio of checkins visited by friends; the y-axis is the number of corresponding users.

historically checked-in POIs. The problem in social friend
space can be formally defined as:

Definition 1 (Problem in Social Friend Space): Given a
set of candidate locations Θi, i.e. {l : l ∈ (∪k∈Fi

Lk)\Li)},
which have been checked-in by the friends of user i but are
new for him, the prediction is to find the location that user
i would most likely prefer to check-in at the next time.

For example, Figure 2(b) shows that the target user ui
has friends {f1, f2, f3, f4} who have checked-in locations
{l1, l2, l3, l4, l5, l6}, and these locations are never visited by
the target user before. We aim to predict the probabilities of
these POIs that he would check-in and recommend the POI
with the highest probability for him.

In social friend space, we assume one user would repeat a
location that his friends have checked-in before mainly due
to the preference propagation in the whole social network.
For each location j, the set of visitors Ψj are regarded as
checkin preference injectors. They would likely tell their
friends about this location, who might also tell their friends,
and finally ”everyone” knows. Thus, a checkin event is
propagated in the whole network in such word-of-mouth
way with these visitors as the initial preference injectors. For
example, in Figure 2(c), {f1, f2, u2, u3} are the visitors of
location l2 and will propagate the preference for this location
in the whole network. The target user ui may be influenced
by f1, f2, u2 and u3 with different probabilities. Specifically,
ui knows the location l2 from u2 likely due to (1) He hears
from u2 directly although they are not friends explicitly
in the online social network but they are real friends off
line; (2) u2 tells f6, and f6 tells him then. The weight that
the user is influenced by the checkin event about a POI
naturally determines the probability that he prefers to check-
in this POI. Based on this analysis, we propose the Social
Friend Probabilistic Matrix Factorization (SFPMF) model.
Let us define P Iiv as the probability that the preference is
propagated from the user v to the user i. Therefore the
probability that the user i chooses to check-in the location
j is obtained by:

PSij = 1−
∏
v∈Ψj

(1− P Iiv). (1)

Note that the influence cannot be simply computed as the
summation over all the influences propagated by the initial
injectors because these injectors may have correlations [6].

Different from traditional online product consuming, one
user has a very small chance to go to check-in a far away
location due to the limited transportation even though he is
interested in it. For instance, a user living at California would
not go to check-in a restaurant in New York for the sake of
long distance. In the example shown in Figure 2(b), user ui
has more chance to visit the locations in the left side than
those in the right side, because the locations in the left side
are much closer to him. Thus, a POI’s distance significantly
affects the user’s checkin decision process. Some works
[4] propose to leverage a power law distribution to model
checkin probability and distance of any pair of visited POIs
based on the observation shown in Figure 1(a). However,
computing the distance of each POI with user’s all historical
POIs is inefficient, especially when the number of POIs is
tremendous. To address this issue, we first adopt the method
in [7] to locate user’s home location from his all historical
checkins. We find that user’s checkin probability and the
distance between POI and his home also follow a power
law distribution shown in Figure 1(b). Thus let us define the
probability of a user to check-in a d-km far away POI as:

Pr(d) = a · db, (2)

where a and b are the parameters of power law distribution,
and could be learned by maximum likelihood estimation.
Then the probability of user i to check-in location j due to
the geographical influence is defined as:

PGij = Pr(d(j, hi)), (3)

where hi is the home location of user i, and d(j, hi) indicates
the distance between the POI j and the home of user i.

Then Eq. (1) is refined with the geographical influence:

PSij ∝ Pr(d(j, hi))(1−
∏
v∈Ψj

(1− P Iiv)). (4)

Specifically, we further introduce a Preference Propaga-
tion Probabilistic Matrix Factorization (P 3MF ) model to
compute the probability P Iiv in the following section.



Table II: The objective functions for the proposed two models.

argmin
X,Y

λt

N∑
i=1

N∑
v=1

Iiv(T̂iv − βXT
i Yv + (1− β)

∑
f∈Fv,−i

GvfX
T
i Yf )2 + λx||X||2F + λy ||Y ||2F (5)

argmin
U,V

λr

N∑
i=1

M∑
j=1

Iij(R̂ij − αUTi Vj + (1− α)
∑

l∈L
cj
i

SjlU
T
i Vl)

2 + λu||U ||2F + λv ||V ||2F (6)

2) The P 3MF Model: Different from traditional prob-
abilistic matrix factorization [8], we construct a user-user
matrix, where each rating Tiv indicates the preference prop-
agated from user v to user i. The observed rating Tiv is a
function of frequency that user i repeats the checkins of
his friend v, which will be discussed in Section III-D1.
Let X ∈ RZ×N and Y ∈ RZ×N be the latent user
and factor feature matrices, with column vectors Xi and
Yv representing the Z-dimensional user-specific and factor-
specific feature vectors of user i and user v, respectively.
Specifically, the factor feature vector captures the properties
of user v, such as age and activity level, and the user feature
vector indicates the user’s preference for corresponding
properties.

The process of the preference propagation from user v to
user i consists of two parts: (1) User v influences user i
directly; (2) The friends of user v (not including user i if
they are also friends) are influenced by him, and then affect
user i. To model this propagation process, we define the
predicted rating T̂iv that user i is influenced by user v as:

T̂iv = βXT
i Yv + (1− β)

∑
f∈Fv,−i

GvfX
T
i Yf , (7)

where β ∈ [0, 1] is the tuning parameter to control the
direct influence from friend v, and Fv,−i indicates the set of
friends of user v excluding user i. Gvf is the information
transmission probability from user v to his friend f . As the
connection between friends is undirected, we define Gvf as:

Gvf =
1

|Fv,−i|

It is worth noting that Gvf is different from Tfv , where the
latter one is the preference propagated from user v to user
f which contains both direct and indirect influence ways.

The rating is assumed to be drawn from a Gaussian
distribution with the mean as shown in Eq. (7) and the
precision as λt. We also place zero-mean spherical Gaussian
priors on user and factor feature vectors with the precision
as λx and λy , respectively. Therefore, based on a Maximum-
a-Posteriori (MAP) estimation, we obtain the objective func-
tion about X and Y in Eq. (5), where || · ||F denotes the
Frobenius norm, and Iiv is the indicator function that is
equal to 1 if user i checks-in a POI that his friend v checked-
in before and equal to 0 otherwise.

In P 3MF model, we address the preference propagation
influence in social network based on user’s checkin behavior.

The preference propagated from user v to user i is dependent
on the influence of himself and his friends. Recursively, the
influence of the friend is further affected by his friends.
Different from [9] which focuses on modeling the trust
propagation for the user feature vector, we directly factorize
the preference propagation influence into latent user and
factor feature vectors. In addition, the checkin preference
propagation is also affected by the geographical distance,
i.e. the closer two users live physically, the more possibly
they will interplay. Therefore, the checkin preference P Iiv
propagated from user v to user i is obtained based on T̂iv
and geographical influence in Eq. (3):

P Iiv ∝ Pr(d(hi, hv))g(T̂iv), (8)

where g(.) is logistic function to bound the value to [0, 1],
and Pr(.) is the geographical influence.

B. User Interest Space

In user interest space, we recommend users with the
POIs that have not been visited by their friends before but
are similar to their own historical checkins. Therefore, the
problem is formally defined as:

Definition 2 (Problem in Social Friend Space): Given a
set of candidate locations {l : l ∈ L \ (Θi ∪ Li)}, which
have not been checked-in by the friends of user i and are
new for him, the prediction is to find the location that user
i would most likely prefer to check-in at the next time.

Probabilistic matrix factorization factorizes the observed
rating into user and location latent space, and leverages
them for rating prediction [8]. Similarly we have a user-
location matrix, where the observed rating Rij is a function
of frequency that user i checked-in the location j. Let
U ∈ RK×N and V ∈ RK×M be the latent user and
location feature matrices, with column vectors Ui and Vj
representing the K-dimensional user-specific and location-
specific feature vectors of user i and location j, respectively.
In traditional PMF, it assumes user’s preference for a POI is
the dot product of this user’s and this POI’s latent vectors.
However, it ignores the strong correlations among user’s
all POIs. A user may prefer to choose a POI that is very
similar to his historical ones. Therefore, we propose a User
Interest Probabilistic Matrix Factorization (UIPMF) model
to characterize the user’s preference for a POI by using
his preferences for the historical POIs that have the same
category as this POI. In other words, user i has his special
preference for the POI j, and at the same time, he is also



influenced by his historical POIs that have the same category
as this POI. Thus, the predict rating denoted as R̂ij of user
i for POI j is defined as:

R̂ij = αUTi Vj + (1− α)
∑

l∈L
cj
i

SjlU
T
i Vl, (9)

where α ∈ [0, 1] is the tuning parameter. The closer a pair
of POIs are, the stronger correlation should be taken into
account for a user’s POI decision making process. Hence,
the similarity between POI j and POI l denoted as Sjl is
measured by leveraging power law property in Eq. (2) and
normalized as:

Sjl =
Pr(d(j, l))∑

p∈L
cj
i
Pr(d(j, p))

,

where d(j, l) is the distance between POI j and POI l.
Similarly, the rating is drawn from a Gaussian distribution

with the mean as shown in Eq. (9) and the precision as λr.
We also place zero-mean spherical Gaussian priors on user
and location feature vectors with the precision as λu and
λv , respectively. Therefore, the object function is obtained
through Maximum-a-Posteriori estimation in Eq. (6).

As discussed earlier, the check-in decision making process
of user i on POI j is significantly affected by the POI’s ge-
ographical distance. Thus, similar to Eq. (4), the probability
that user i prefers to check-in POI j is given as:

PUij ∝ PGij g(R̂ij), (10)

C. Strategies for POI Recommendations
In this paper, we propose that the recommendation space

could be divided into two parts: social friend space and user
interest space, and their relationship is shown in Figure 2(a).
Evidently, these two spaces might have overlap because the
POIs that friends have checked-in are also possibly similar
to users’ historical checkins. Thus, we adopt the following
two strategies for POI recommendations.
• Separated Recommendation.

We build two different recommender systems. One is
to adopt SFPMF model to recommend POIs that users’
friends have checked-in before. Another one is to adopt
UIPMF model to recommend POIs that have not been
visited by friends but are very similar to their historical
checkins.

• Integrated Recommendation.
We propose an Integrated Social Friend and User
Interest model (ISU) to integrate SFPMF model and
UIPMF model for recommendation in the whole space.
The integrated probability PRij that user i will check-in
POI j is defined as:

PRij = γPSij + (1− γ)PUij , (11)

where γ ∈ [0, 1] is the tuning parameter to align two
recommendation spaces. Specifically, PSij is computed
only on the candidate POIs that user’ friends have
checked-in, while PUij is calculated for all POIs.

D. Parameter Estimation
Both P 3MF model and UIPMF model are matrix factor-

ization based models, and their objective functions are given
in Eq. (5) and Eq. (6). Alternating Least Squares (ALS)
is a popular optimization method with accurate parameter
estimation and fast convergence rate. Thus, we utilize ALS
method to compute each latent variable by fixing the other
variables when minimizing the object function. As two
models have similar formulations, their optimizations are
also similar. The optimization process is executed as:
• Randomly initialize each variable of interest.
• Update each of them with the updating equation itera-

tively until the object function converges.
The Optimization for the P 3MF Model: For the sim-

plicity of inference, we first define the following variables:

Ỹ iv = βYv + (1 − β)
∑
f∈Fvi

GvfYf ,

wβ = β2 + (1 − β)2
∑
f∈Fvi

G2
vf ,

T̄iv = Tiv − βXT
i Yv − (1 − β)

∑
f∈Fvi

GvfX
T
i Yf ,

f(T̄iv) = βT̄iv + (1 − β)
∑
f∈Fvi

Gvf T̄if ,

where Fvi is the set of common friends of user v and i.
Then the updating equations for X and Y are obtained as:

Xi = [λxIZ + λt

N∑
v=1

IivỸ
i
v Ỹ

iT
v ]−1λt

N∑
v=1

IivTivỸ
i
v ,

Yv = [λyIZ + λt

N∑
i=1

IivwβXiX
T
i ]−1λt

N∑
i=1

Iiv[f(T̄iv) + wβX
T
i Yv]Xi.

The Optimization for the UIPMF Model: We can obtain
the similar definitions about Ṽ ij , wα, R̄ij and f(R̄ij):

Ṽ ij = αVj + (1 − α)
∑
l∈L

cj
i

SjlVl,

wα = α2 + (1 − α)2
∑
l∈L

cj
i

S2
jl,

R̄ij = Rij − αUTi Vj − (1 − α)
∑
l∈L

cj
i

SjlU
T
i Vl,

f(R̄ij) = αR̄ij + (1 − α)
∑
l∈L

cj
i

SjlR̄il.

Then the updating equations for U and V are shown as:

Ui = [λuIK + λr

M∑
j=1

Iij Ṽ
i
j Ṽ

iT
j ]−1λr

M∑
j=1

IijRij Ṽ
i
j ,

Vj = [λvIK + λr

N∑
i=1

IijwαUiU
T
i ]−1λr

N∑
i=1

Iij [f(R̄ij) + wαU
T
i Vj ]Ui.



III. EXPERIMENTAL RESULTS

In this section, we will evaluate our proposed models with
the real-world data set.

A. The Experimental Setup

Dataset. In this paper, we use Gowalla data set [10] to
evaluate the performance of our models, which contains
checkin data ranging from January 2009 to August 2010.
Each checkin record in the data set includes user ID,
location ID and timestamp, where each location has latitude,
longitude and category information. Meanwhile the data set
has undirected friendship information. Specifically, we have
the creation timestamp for each friendship, which is different
from most of data sets used in recent research works. In
addition, we remove users who have visited less than 5
locations and more than 1000 locations, and locations which
are visited by less than 5 users. The data statistics are shown
in Table III.

Table III: Statistics of Data Set.
#User #Location #Checkin Sparsity
61,578 178,062 3,257,029 0.0297%
#Train #Test #Test (SFS)1 #Test (UIS)2

2,581,882 675,147 167,546 507,601

In recommendation system, we aim to recommend those
unvisited locations for users. Therefore, we split the training
and testing data as follows: for each individual user, (1)
aggregating the checkins for each individual location; (2)
sorting the location according to the first time that user
checks in; (3) selecting the earliest 80% to train the model,
and using the next 20% as testing. With the dynamic
information, we use the social network at the end date of
training data for both training and testing. Specifically, there
are on average 8.29 friends for each user, and for those users
who have friends, there are on average 556.32 locations that
their friends have visited before. The observed rating for
SFPMF model is a function of frequency that user repeats
the checkins of his friends, and we then obtain 372, 502
ratings in the training.

Experimental Settings. In the experiments, the parameter
β, α and γ are set as 0.1, 0.8, and 0.01, respectively.
The parameters λt and λr are set as 0.0001 and the other
regularization parameters are set as 0.01. The dimensions
of latent factors (i.e. Z and K) in SFPMF and UIPMF
models are set as the same. We discuss the rating conversion
methods for MF based models in Section III-D1.

B. Evaluation Metrics
As POI recommender system only recommends the lim-

ited POIs for users, we quantitatively evaluate recommenda-
tion models in terms of top-K recommendation performance
i.e. Precision@K and Recall@K metrics. We also adopt

1We select those checkins in the test which friends have checked-in
before to evaluate models in social friend space.

2We select those checkins in the test which friends have not checked-in
before to evaluate models in user interest space.

MAP metric, the mean of the average precision (AP) over
all locations in the testing, to evaluate models’ performance.
Formally, they are defined as:

Precision@K =
1

N

N∑
i=1

Si(K) ∩ Ti
K

,

Recall@K =
1

N

N∑
i=1

Si(K) ∩ Ti
|Ti|

,

MAP =
1

N

N∑
i=1

∑M̂i
j=1 p(j)× rel(j)

|Ti|
,

where Si(K) is a set of top-K POIs recommended to user i
excluding those POIs in the training, Ti is a set of locations
that are checked-in by user i in the testing. M̂i is the number
of the returned locations in the list for user i, p(j) is the
precision of a cut-off rank list from 1 to j, and rel(j) is an
indicator function that equals to 1 if the location is appearing
in the testing, otherwise equals to 0.

C. Baseline Methods

To comparatively demonstrate the effectiveness of our
proposed models, we compare them with five recommen-
dation models: (1) USG [4], taking geographical influence,
social network and user interest into account for POI rec-
ommendation; (2) LOCABAL [3], capturing two types of
social relations, i.e. the local friends and the users with
high global reputations, for recommendation based on matrix
factorization; (3) RegPMF [1], assuming that users and their
friends share similar interests in the preference and placing
a social regularization term on learning latent user feature
vectors; (4) PMF [8] that assumes the user and location
latent vectors to be drawn from Gaussian distribution and
estimates a user’s preference for a location as the dot
product of user-specific and location-specific latent vector;
(5) UC, user-based collaborative filtering that adopts cosine
similarity as the similarity measurement between users.

D. Performance Comparisons

First, we evaluate different rating conversion methods for
MF based models, and then compare the performance of
our proposed models with baseline methods in social friend
space, user interest space and the whole recommendation
space. Finally, we elaborate the region effect in checkin data
to improve the efficiency of POI recommendation.

1) Performance Comparisons of Rating Conversion
Methods: In the literature, various rating conversion meth-
ods are proposed to fit Matrix Factorization (MF) based
models for POI recommendation due to the bias of checkin
data (i.e. majority ratings are very small and small percent-
ages of ratings are extremely high). We formally compare
the following six methods with MF based models:
• Logistic: Logistic function 1

1+(ex)−1 is commonly used
in recommendation to map each matrix entry into [0, 1].

• Exponential [11]: A mapping function 1
1+x−1 is used

to bound each matrix entry into [0, 1].
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(a) Precison@K (10-D)
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(b) Recall@K (10-D)
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(c) Precision@K (60-D)
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(d) Recall@K (60-D)

Figure 3: Performance comparisons for different rating conversions on UIPMF with different dimensions.
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(a) Precison@K (10-D)
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(b) Recall@K (10-D)
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(c) Precision@K (60-D)
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(d) Recall@K (60-D)

Figure 4: Performance comparisons for different rating conversions on PMF with different dimensions.
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(a) MAP on UIPMF
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(b) MAP on PMF

Figure 5: Performance comparisons for different rating con-
versions in terms of MAP with different dimensions.

• Binary: It has two values: 0 and 1. The rating is
assigned to 1 if user has checkin at this POI, and
assigned to 0 otherwise.

• Rescale [12]: Due to the power law distribution of user-
location checkin numbers, we could obtain a five-point
scale rating with check-in frequency: converting one
check-in to 2, two check-ins to 3, three check-ins to 4,
and four or more checkins to 5.

• MinMax [13]: It is defined as x−1
max−1 , where max is

the maximum frequency value.
• Frequency: Rating is the number of user-location

checkins.
where x is the number of user-location checkins. It is worth
to noting that for Rescale and Frequency, we use the ratings
after minus mean value to fit models; other kinds of ratings
are used to fit the models directly. Due to the limited space,
we only report the performance of different rating conversion
methods on both UIPMF and PMF in terms of precision@K,
recall@K and MAP in Figure 3, Figure 4 and Figure 5.

Based on the results, we summarize as following: (1)
Two models perform almost consistent with different rat-

Table IV: Performance comparisons in terms of MAP in
social friend space and user interest space.

Social Friend Space
SFPMF USG UC LOCABAL RegPMF PMF
0.16825 0.14947 0.11111 0.10406 0.10017 0.09689

User Interest Space
UIPMF USG UC LOCABAL RegPMF PMF
0.04538 0.02996 0.02303 0.00684 0.00666 0.00647

ing conversion methods, indicating that matrix factorization
based models will have consistent performance with differ-
ent rating conversion methods. (2) Frequency, MinMax and
Rescale perform much worse than others, suggesting the
bias in checkin data would affect the model’s performance.
Even though MinMax bounds the rating to [0, 1], many
zero ratings are possible to explain its bad performance. (3)
Logistic, Exponential and Binary methods have very similar
performance and are much superior than others. It happens
possibly because they constrain the ratings in [0, 1] to avoid
the large fluctuation of ratings. Surprisingly Binary performs
very well under this group of regularization parameters. But
we observe that this method pronely leads to over-fitting
in high dimension under other parameter settings. In the
following experiments, we will adopt logistic function as
rating conversion method to fit matrix factorization based
methods because it is widely used in recommendation and
obtains good performance. We only report the performance
with the latent factor dimension as 10 due to the similar
performance in different dimensions.

2) Performance Comparisons in Social Friend Space:
We compare our proposed SFPMF model with the baseline
methods in social friend space, where the testing checkins
are only those that friends have visited before (see Test(SFS)
in Section III-A). We first compute the probabilities for
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(a) Precison@K in social friend space
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(b) Recall@K in social friend space
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(c) Precision@K in user interest space
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(d) Recall@K in user interest space

Figure 6: Performance comparisons in terms of precision@K and recall@K in social friend space and user interest space.

each user and his candidate locations with different models,
and then recommend the top-K locations with the highest
probabilities. The candidate locations are those that users’
friends have checked-in before. The performances in terms
of Precision@K, Recall@K and MAP are shown in Figure
6(a), Figure 6(b) and at the top of Table IV.

It can be observed that all models perform consistently
with different metrics. We find that as K increases, the
precision decreases while the recall increases. Totally PMF
has the worst performance among all methods, indicating
that traditional matrix factorization is difficult to work
well on checkin data due to the difference between user’s
behaviors on products consuming and checkins. The POI
decision making process is more affected by social network
and geographical influence. Both RegPMF and LOCALBAL
perform better than PMF. Their improvements indicate that
social network is a factor affecting the performance in POI
recommender system. Leveraging the assumption that users
and their friends share similar interests does improve the rec-
ommendation accuracy. It is surprising that UC also works
well. It is possible that users’ similar interests can help to
estimate more accurate ratings in our checkin data. Although
USG takes the geographical influence, social network and
user interest into account for recommendation, it is not
as good as our proposed SFPMF model. It demonstrates
the framework of SFPMF and the modeling approach of
user’s preference propagation assist to improve the predic-
tion accuracy. Furthermore, it illustrates that utilizing the
characteristics of social network, i.e. preference propagation
from one person to another, can appropriately model user’s
checkin decision making process in social friend space.

3) Performance Comparisons in User Interest Space:
We evaluate the performance of UIPMF model versus vari-
ous baseline methods in user interest space, where the test-
ings are excluding those that are checked-in by friends in the
testing (see Test(UIS) in Section III-A). The performances
in terms of Precision@K, Recall@K and MAP are shown
in Figure 6(c), Figure 6(d) and at the bottom of Table IV.

From the results, we can see RegPMF and LOCALBAL
are only a little better than PMF, but they are much worse
than others. It shows the traditional modeling methods with
social network fail to achieve accurate recommendations in
user interest space. In this space, since users and friends

have no common checkins in the testing, social network
does not work in USG model. Hence in fact USG only
captures user’s interests and geographical influence. Its supe-
rior performance exhibits that geographical influence play an
important role in location recommendation. The significant
improvements of UIPMF compared to USG demonstrate
that utilizing user’s historical interests to seek a new POI
similar to previous ones, as well as exploiting the spatial
clustering phenomenon of checkin data are helpful for
recommendation.

4) Performance Comparisons in the Whole Recommen-
dation Space: As social friend space and user interest space
might have overlap, we can integrate them (namely ISU) to
make recommendations in the whole space. We evaluate the
performance of ISU model with baseline models in terms
of precision@K, recall@K and MAP. We do the test in the
whole testing data. The performances are reported in Table
V. We summarize the main results as the followings:

• PMF performs the worst among all the models. The
sparseness of data may be one reason why it has
such bad performance. UC performs better than PMF.
Although the data is very sparse, it might have the
tendency in our checkin data that similar users have
similar interests in the preference of POIs. Thus, UC
achieves good performance in our checkin data.

• Both RegPMF and LOCALBAL are better than PMF. It
shows social network is helpful for location prediction.
Although both of them assume users and their friends
have similar interests, they have different modeling
approaches. The better performance of LOCALBAL
than that of RegPMF reflects that considering the local
and global effect of friends is a superior approach to
utilize social network information for recommendation.

• USG obtains a better performance than LOCALBAL,
RegPMF, UC and PMF, which indicates that both social
network and geographical influence can benefit POI
recommender system. However, it is worse than our
proposed model possibly due to the weak connection
of a new POI and one user’s historical POIs. Thus it
clearly shows our models’ effectiveness.

• ISU performs much better than other baseline models,
illustrating the effectiveness of (1) modeling user’s
repeating behaviour for his friends’ historical POIs;



Table V: Performance comparisons in terms of Precision, Recall and MAP in the whole recommendation space.
Precision@5 Recall@5 Precision@8 Recall@8 Precision@10 Recall@10 Precision@15 Recall@15 MAP

ISU 0.06464 0.04784 0.05548 0.06400 0.05139 0.07312 0.04414 0.09174 0.05379
USG 0.03651 0.02916 0.03488 0.04387 0.03377 0.05255 0.03137 0.07106 0.02847
UC 0.02895 0.02330 0.02744 0.03469 0.02668 0.04159 0.02524 0.05743 0.02427

LOCABAL 0.02193 0.01426 0.01866 0.01906 0.01735 0.02198 0.01488 0.02773 0.01231
RegPMF 0.02142 0.01393 0.01846 0.01891 0.01715 0.02182 0.01448 0.02707 0.01190

PMF 0.02129 0.01389 0.01828 0.01854 0.01660 0.02063 0.01448 0.02695 0.01170

(2) capturing the influence of user’s own historical
checkins on new POIs. It also indicates that both social
network and geographical influence contribute to POI
recommendation together.

E. Additional Experiment: Efficiency with Region Effect

POI recommender system runs with the following proce-
dures: (1) computing the probabilities of all the POIs for
each individual user; (2) then recommending top-K POIs
with the highest probabilities for each one. However, in
reality the number of POIs is more than millions, as a
result it becomes very inefficient to take all the POIs as
candidates into account for each user in online system. As
user checkin activities of LBSNs exhibit a spatial clustering
phenomenon, the geographical influence plays an important
role in POI recommendation. In other words, one user has
a larger chance to check-in a nearby POI than a far away
one, which reflects a region effect. To improve the efficiency,
we only consider those POIs in a region as the candidates
when recommending top-K POIs for each user. The region is
simply defined as a circle area with a predefined radius and
user’s home location as center. As in user friend space there
are only 556.32 locations per user on average which is very
small, ISU and UIPMF have on average 177, 721.07 and
177, 265.40 candidate locations per user, respectively. Hence
we only evaluate the performance of with different region
radius shown in Table VI. The ratios of candidate POIs under
different region radius to the all POIs are reported at the top
of Table VI. Note that the number of candidates directly
reflects the efficiency of recommendation.

Based on the results, we can conclude that as the radius
increases, the performance also increases. It is possible that
users sometimes like to travel to long-distance POIs which
are out range of the candidates. Thus with the increasing
of radius, candidates will contain more true POIs and as
a result, lead to the better performance. However, even
though only the candidates in a small region are taken into
account, both ISU and UIPMF are still much better than the
baselines (see Section III-D4 and III-D3 respectively). This
motives us to improve the efficiency of recommendation by
taking the advantage of region effect. For example, in a real
system, we could define the radius as 50km for ISU model,
as a result the number of candidates is only 0.022 times
as the number of the whole POIs, which not only keeps
the good performance, but also significantly improves the
recommendation’s efficiency.

IV. RELATED WORK

Related works can be grouped into two categories. The
first category throws light on elaborating social network
information for recommendation [1][2][3][4][5][14][15][16].
For example, based on the intuition that users and their
friends will share the similar interests, [1] places a social
regularization term to constrain matrix factorization object
functions for learning more accurate user feature vectors.
[2] proposes a geo-social correlation model to capture four
types of social correlations of users’ checkin behaviours,
i.e. local friends, distant friends, local non-friends and
distant non-friends. The checkin probability is measured as
a combination of these four geo-social correlations, where
the corresponding coefficients are learned by a group of
features in a logistic regression similar fashion. On the other
hand, [3] leverages local and global social relations to assist
recommendations. Specifically, in local context, it models
the correlations between users and their friends by fitting
the similarities between them; while in global context, it
utilizes the reputation of a user in the whole social network
as the weight to fit the observed ratings. [15][4] predicts
the preference of a user for a POI by collaborating the
preferences of his friends on this POI.

The second category focuses on modeling geographical
influence for recommendation [4][17][18][19][20][21][22]
[23][24][25]. Specifically, there are several approaches to
incorporate geographical distance for location prediction.
For example, [17] discovers user’s checkin behaviour fol-
lows a two-state (home and work) mixture of Gaussian
in geographical distance, assuming a POI that user would
choose to check in is next to either his home or work place.
Instead of leveraging the fixed two-center Gaussian mixture
models, [18] further adopts the multi-center Gaussian model
to form the distribution of the distance between a visited
location and its center for each individual user. On the
other hand, [19] first utilizes the kernel density estimation
(KDE) to learn personalized checkin behaviour with POI
locations, which is much more flexible. [20] further studies a
mixture of adaptive Kernel density estimates to characterize
a distribution between checkin probability and distances at
different spatial level in order to avoid the data sparsity in
individual level for KDE. Meanwhile, [23] considers two
types of geographical characteristics: geographical neighbor-
hoods’ and regions’ effect. It assumes locations which are
nearest neighborhoods and in the same regions would share
similar user preferences. In addition, [4] proposes to use a



Table VI: Performance comparisons with different region radius. Ratio represents the ratio of candidate POIs to all POIs.
P@K and R@K represent Precision@K and Recall@K, respectively. All for ISU indicates all POIs excluding users’ training
POIs, while All for UIPMF denotes all POIs excluding users’ training POIs and those that their friends have visited before.

Region Radius (km)
5 10 25 50 80 100 200 All 5 10 25 50 80 100 200 All

ISU UIPMF
Ratio 0.007 0.010 0.016 0.022 0.026 0.028 0.037 1.000 0.007 0.010 0.0158 0.022 0.026 0.027 0.036 1.000

P@5 (%) 5.401 5.447 5.465 5.473 5.474 5.474 5.474 6.464 4.258 4.317 4.345 4.359 4.362 4.363 4.364 6.365
P@8 (%) 4.727 4.791 4.813 4.822 4.823 4.823 4.824 5.548 3.661 3.733 3.764 3.778 3.783 3.783 3.785 5.443

P@10 (%) 4.418 4.486 4.510 4.520 4.521 4.521 4.522 5.139 3.391 3.463 3.498 3.513 3.518 3.519 3.521 5.042
P@15 (%) 3.844 3.923 3.954 3.965 3.968 3.968 3.969 4.414 2.910 2.987 3.027 3.041 3.047 3.048 3.050 4.331
R@5 (%) 4.324 4.370 4.387 4.396 4.397 4.397 4.398 4.784 4.214 4.215 4.331 4.350 4.353 4.354 4.357 4.682
R@8 (%) 5.820 5.919 5.954 5.970 5.973 5.973 5.974 6.400 5.646 5.793 5.862 5.892 5.900 5.900 5.907 6.262

R@10 (%) 6.667 6.795 6.845 6.866 6.868 6.868 6.870 7.312 6.420 6.598 6.694 6.731 6.743 6.745 6.752 7.164
R@15 (%) 8.363 8.569 8.658 8.695 8.703 8.703 8.705 9.174 8.016 8.293 8.445 8.500 8.517 8.520 8.529 8.991

MAP 4.511 4.740 4.902 4.960 4.982 4.991 5.011 5.379 4.013 4.215 4.361 4.414 4.437 4.445 4.464 5.309

power law distribution to estimate the check-in probability
with the distance of any pair of visited POIs, due to the
spatial clustering phenomenon exhibited in LBSNs.

However, our work is different from these existing works.
We divide the whole recommendation space into social
friend space and user interest space, and then develop
separate models in two spaces.

V. CONCLUSION

We investigate a novel Point-of-Interest recommender
system in this paper. Specifically, we divide the recom-
mendation space into social friend space and user interest
space. In social friend space, the problem is formulated as
recommending one user with new POIs that his friends have
checked-in before. A novel SFPMF model is proposed to
factorize the preference propagation influence into user and
factor feature vectors. In user interest space, the problem is
defined as recommending one user with new POIs that have
not been visited by his friends but are very similar to his
historical ones. Then UIPMF model is developed to capture
the connection between one user’s preference for a new
POI and his preference for historically visited POIs. Finally,
experimental results on a real-world data set effectively
demonstrate the improvement of our proposed models over
several baseline methods based on many validation metrics.
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