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ABSTRACT

In the past few years, Multimodal Large Language Models (MLLMs) have achieved
remarkable advancements in reasoning while still suffering from mistakes. Some
existing approaches on LLMs self-correct the answers without external feedback,
proven limited in reasoning. We revisit these previous approaches and propose
an improved effective strategy dubbed Self-Choose to teach MLLMs to utilize
diverse reasoning solutions to self-correct reasoning. Our approach first employs
various reasoning methods to generate candidate answers. Then, it evaluates
them by comparing the reasoning processes and candidate answers to choose the
optimal solution. Finally, it outputs the best candidate or reflects to generate an
improved solution if all the answers are deemed inaccurate. We evaluate our
method on multiple datasets with mainstream foundation models including LLaVA
and Gemini. The extensive experiments show that Self-Choose achieves consistent
improvements on different benchmarks and metrics. We hope this study will
promote future research on self-correction and its application across various tasks.

1 INTRODUCTION

In the past few years, Multimodal Large Language Models (MLLMs) have experienced unprecedented
development (Alayrac et al., 2022; Dai et al., 2023; Li et al., 2023a; Liu et al., 2023b; Zhu et al., 2024;
Reid et al., 2024; Chen et al., 2023). The great success has motivated researchers to explore and
promote the reasoning ability of MLLMs (Wang et al., 2024b; Fei et al., 2024). However, MLLMs
often suffer from mistakes in reasoning, hiding their wider applications. Although researchers
have made some progress in dealing with hallucinations (Yin et al., 2023; Gunjal et al., 2024; Li
et al., 2023b; Liu et al., 2024), these methods mainly focus on simple perception problems, e.g.,
the existence, specific quantity, position and other attributes of objects. It is rarely explored how to
effectively correct errors in complex vision reasoning problems, such as vision-question answering
involving advanced knowledge, analyzing images with weird content, and solving mathematical
problems illustrated with diagrams.

There have been many works on reasoning correction in Large Language Models (LLM) (Madaan
et al., 2023; An et al., 2023; Liu et al., 2023c; Gou et al., 2023; Welleck et al., 2023). Self-correction
is an area of research among them that has gained widespread attention (Huang et al., 2024). It
aims to only use the same model to correct answers without training or assistance from other tools.
Previous self-correction methods are mainly based on a three-step strategy, which first generates an
initial response, then evaluates it to produce feedback, and refines the response according to feedback.
However, several studies show that LLMs struggle to self-correct reasoning (Huang et al., 2024;
Stechly et al., 2023; Valmeekam et al., 2023). In this work, we focus on extending these approaches
to MLLMs and explore self-correction methods for them.

We conduct experiments on MLLMs with the self-correction method, Self-Refine (Madaan et al.,
2023; Kim et al., 2023), but it fails to correct vision reasoning. We analyze the results and find that
the model sometimes cannot properly identify problems and changes the right answer to a wrong one.
To deal with this problem, we come up with a method named Self-Review. Self-Review first uses the
model to judge whether the answer is right or wrong, then maintains the original answer if judged
as right or uses Self-Refine to correct the original answer if judged as wrong. The performance
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of Self-Review is better than Self-Refine. However, it still fails to correct answers properly. The
experiment results indicate that it is because the model cannot accurately assess the correctness of the
answer. A plausible explanation is that such prompting strategies do not provide additional useful
information, making it difficult for the model to accurately assess correctness and identify issues
solely based on its intrinsic capabilities (Huang et al., 2024).

This is analogous to the “mental set" phenomenon (Jersild, 1927), a widely studied psychological
phenomenon. It refers to the cognitive tendency to approach problems in a particular way based on
past experiences, learned behaviors, or established habits, which hinders the ability to explore diverse
approaches to find the most suitable method to solve the problem (Öllinger et al., 2008; DeCaro,
2016). Similarly, the model fails to correct itself with fixed thinking pattern.

Inspired by the above analysis, we propose an effective strategy termed Self-Choose to teach MLLMs
to explore diverse reasoning solutions to choose the optimal one. First, the MLLM uses different
reasoning methods to solve the problem and get different solutions. The distinct reasoning methods
focus on different aspects such as image understanding and text understanding, which can provide
different perspectives of insights and serve as additional useful information created by the model
itself. Then, the MLLM reviews the different solving processes of these solutions for comparison
and reflection to choose the best one, which can help judge the correctness and identify problems.
Finally, the MLLM outputs the best solution if it exists. Otherwise, the MLLM will generate a more
promising answer according to these inexact solutions.

We evaluate Self-Choose on three vision reasoning benchmarks that span diverse domains: ScienceQA
(Lu et al., 2022) for multiple-choice answering, Whoops (Bitton-Guetta et al., 2023) and MM-Vet (Yu
et al., 2023) for complicated vision-question answering. Extensive experiments show that our method
can effectively improve the reasoning answers of MLLMs such as LLaVA (Liu et al., 2023a) and
Gemini-vision (Reid et al., 2024), while other methods can not. Our method is an effective prompting
strategy to teach MLLMs to self-correct, which is plug-and-play and can be applied to black-box
MLLMs. In addition, our method does not need the assistance of other models or tools, completely
relying on the MLLM itself. It shows the potential capability of MLLMs to self-correct.

2 RELATED WORKS

Reasoning methods in MLLMs. Chain-of-Thought prompting (Wei et al., 2022; Kojima et al.,
2022) is a widely used reasoning method, which solves the problem step by step. Several works
explore the efficacy of employing Chain-of-Thought on MLLMs (Lu et al., 2022; Zhang et al., 2023b;
Wang et al., 2024a). Based on Chain-of-Thought, some multimodal reasoning methods are proposed,
which can be categorized into two types. The first type emphasizes image understanding (Mitra et al.,
2023; Zhang et al., 2024; Zhou et al., 2024; Gao et al., 2024b), while the other type focuses on text
understanding (Zheng et al., 2023). In spite of these reasoning methods, MLLMs still suffer from
mistakes when reasoning. Our work leverages comparison between different methods to facilitate
self-correcting these errors.

Correcting reasoning in LLMs. There are many different ways to correct reasoning in LLMs.
Some researchers train or fine-tune the model with the collected high-quality data (Huang et al., 2023;
Liu et al., 2023c; An et al., 2023). Some train a corrector to help correct reasoning (Welleck et al.,
2023). While others correct reasoning without training with the assistance of other models or tools
(Zhang et al., 2023a; Pan et al., 2023; Peng et al., 2023). Different from them, some works use the
same LLM to self-correct completely relying on itself. Self-Refine (Madaan et al., 2023) uses the
same model to provide feedback for its output and uses it to refine the output, iteratively. However, it
performs poorly on reasoning tasks. Several studies indicate that LLMs struggle with self-correcting
reasoning (Huang et al., 2024; Stechly et al., 2023; Valmeekam et al., 2023; Liang et al., 2023).
However, self-correcting reasoning on MLLMs is less explored. We conduct experiments applying
self-correction techniques originally designed for LLMs to MLLMs, only to discover that such
techniques fail to facilitate self-correction in reasoning for MLLMs. To deal with it, we propose an
effective approach to teach MLLMs to self-correct like humans.
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Figure 1: Pipelines of different methods to self-correct: Self-Refine, Self-Review, and Self-Choose.
Self-Refine finds problems and refines answers according to the feedback iteratively. Self-Review
first judges the correctness of the answer, then keeps the original answer if judged as right or improves
the answer with Self-Refine. Self-Choose compares and reflects on the solving processes and answers
of different reasoning methods. It chooses the best answer if it exists, otherwise generates a more
promising answer according to solving processes and answers of different reasoning methods.

3 PRELIMINARIES

3.1 SELF-REFINE

Self-Refine (Madaan et al., 2023) is a widely used method of self-correction, which uses the same
LLM to provide feedback for its output and uses it to refine itself, iteratively. The strategy of Self-
Refine consists of three steps: 1. prompt the model to perform an initial answer, which also serves as
the result for standard prompting; 2. prompt the model to find problems of its previous answer and
produce feedback; 3. prompt the model to answer the original question again with the feedback to get
the improved answer.

Although Self-Refine improves performance on diverse tasks, such as sentiment reversal, dialogue
response, code readability, and so on, it struggles to self-correct reasoning. Several works have shown
that LLMs cannot self-correct reasoning in the way of Self-Refine (Huang et al., 2024; Stechly et al.,
2023; Valmeekam et al., 2023). We extend their experiments on MLLMs to explore the ability of
MLLMs to self-correct. However, we similarly observe a decrease in performance after Self-Refine.
The experiment details can be found in Section 5.4. We analyze the experiment results of Self-Refine,
and find that step 2 may mislead the model to nitpick in originally correct answers and fail to identify
the real problem. This misguides the model to revise the right answer into a wrong one according to
the problem found in step 2.

3.2 SELF-REVIEW

To deal with the problems of Self-Refine, we come up with another strategy named Self-Review.
The strategy is three-step: 1. prompt the model to perform an initial answer; 2. prompt the model to
review the initial answer and determine whether it is right or wrong; 3. if the model judges the initial
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answer as right, keep the original answer. Otherwise, use steps 2 and 3 in Self-Refine to correct the
initial answer. Step 2 in Self-Review is executed multiple times to take a majority vote. Although
Self-Review achieves overall better results than Self-Refine, it still cannot improve original answers
effectively. We observe that MLLMs are not able to reliably assess the correctness of answers.
Detailed experiment results are shown in Section 5.4. Appendix F and G show some examples of
Self-Refine and Self-Review, respectively.

4 METHOD

Although Self-Refine and Self-Review do not work, we still believe that there may be an effective
way to self-correct reasoning for MLLMs. So why do these prompting strategies fail to self-correct
reasoning? A feasible explanation is that the designed prompt strategy may not provide any additional
useful information for answering the question, making it difficult for the model to properly self-correct
solely based on its inherent fixed thinking pattern. Introducing internal feedback can be regarded
as adding an additional prompt, which may bias the model toward generating a response tailored to
this combined input. It could potentially divert the model from producing the optimal response to
the initial prompt, thereby leading to a degradation in performance (Huang et al., 2024). From the
above analysis, it can be inferred that introducing additional useful information may assist the model
to self-correct reasoning. A natural idea would be to leverage other tools or human supervision to
provide supplementary messages to aid in model correction (Zhang et al., 2023a; Pan et al., 2023;
Peng et al., 2023). However, this is not our goal. We aim to design an effective strategy to self-correct
reasoning completely relying on the model itself.

This dilemma of self-correction is analogous to the psychological phenomena of “mental set". It
refers to the cognitive tendency to approach problems in a particular way based on past experiences,
learned behaviors, or established habits. In practice, there are usually many different ways and usually
one optimal one to solve a problem. However, the mental set hinders diverse thinking to find the most
suitable method to solve it.

We make the following analysis on ScienceQA and observe this theory also applies to MLLMs. Using
the same model to answer the question three times, if there is one right answer, it is considered correct.
We find that with the fixed reasoning method, only 1558 and 1594 answers are correct for LLaVA
and Gemini, respectively. While with three distinct reasoning methods, 1624 and 1755 questions are
correctly answered for LLaVA and Gemini. It indicates that there may be an optimal method for a
single problem. If the model can identify the best solution among different methods, it may achieve
more improvement. Therefore, we design a novel prompting strategy to teach MLLMs to choose the
best reasoning solution, named Self-Choose.

Given an image and a text question, Self-Choose first uses different reasoning methods to answer
the question to get candidate answers and solving processes. These methods focus on different
aspects, such as image understanding and text understanding. Then it reflects by comparing the
solving processes of candidate answers and finally chooses the best candidate answer. However, there
may not be a right answer among the candidate answers. So we add the choice that all candidate
answers are incorrect. In this situation, the model will be forced to generate a more promising answer
according to these wrong candidate answers and their solving processes. The solving processes and
answers obtained from various reasoning methods can provide the model with different perspectives
for comparison. This is equivalent to the model creating additional useful information by itself, which
can assist the model in better assessing the correctness of the answers and identifying issues. We do
not adopt the strategy of Self-Refine when generating the more promising answer, in order to avoid
the problems discussed in Section 3 and reduce token costs and complexity. All prompts used in
Self-Choose are presented in a zero-shot manner. Self-Choose can serve as a training-free prompting
strategy to teach MLLMs to self-correct without any assistance of any other models or tools, which
is plug-and-play and applicable to black-box MLLMs. Figure 1 shows the pipelines of the three
self-correction strategies, Self-Refine, Self-Review and Self-Choose. Next, we describe our method
in more detail.

Generate solving processes and candidate answers. Given an input which contains an image
ximg and a text question xtxt, and a MLLM M, Self-Choose selects n reasoning methods {Fi

| i = 0, 1, ..., n − 1} to guide the model M to generate n corresponding solving processes {si |
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i = 0, 1, ..., n− 1}.
si = M(ximg;xtxt|Fi), i = 0, 1, ..., n− 1. (1)

where F0 represents standard prompting method and s0 = None. According to the solving process
si, the model M outputs the candidate answer yi corresponding to the reasoning method Fi.

yi = M(ximg;xtxt, si|Fi), i = 0, 1, ..., n− 1. (2)

Reflect and choose the best candidate answer. Next, Self-Choose uses the same model M to
compare and reflect on the solving processes and candidate answers, and finally choose the best
candidate answer. Given a prompt pcho guiding the model M to choose the best candidate answer,
the model M compares and analyzes the pairs of the solving process and candidate answer {(si,yi)
| i = 0, 1, ..., n− 1}, and finally outputs its choice number c. However, there may not be an accurate
candidate answer. Therefore, we add another choice number n to the model M. If the model M
infers that all candidate answers are wrong, it is forced to output the choice number n. After the
above process, the model M outputs its choice, as shown in Equation 3.

c = M(ximg;xtxt, (s0,y0), (s1,y1), ..., (sn−1,yn−1),pcho), c ∈ {0, 1, ..., n}. (3)

Find another more promising answer. If the model M infers there is no accurate candidate
answer, i.e., c = n, Self-Choose gives a prompt pgen to guide the model M to find another more
promising solution ygen according to the inaccurate solving processes and candidate answers, as
shown in Equation 4.

ygen = M(ximg;xtxt, (s0,y0), (s1,y1), ..., (sn−1,yn−1),pgen). (4)
Algorithm 1 provides a comprehensive summary of the procedural steps involved in Self-Choose.

Algorithm 1 Self-Choose algorithm

Require: input image ximg , text question xtxt, model M,
n reasoning methods {F0,F1, ...,Fn−1}, prompts {pcho,pgen}

1: for iteration i = 0, 1, ..., n− 1 do
2: si = M(ximg;xtxt|Fi) ▷ Solving process (Equation 1)
3: yi = M(ximg;xtxt, si|Fi) ▷ Candidate answer (Equation 2)
4: end for
5: c = M(ximg;xtxt, (s0,y0), ..., (sn−1,yn−1),pcho) ▷ Choice number (Equation 3)
6: if c ∈ {0, 1, ..., n− 1} then
7: y = yc

8: else
9: ygen = M(ximg;xtxt, (s0,y0), ..., (sn−1,yn−1),pgen) ▷ Improved answer (Equation 4)

10: end if
11: y = ygen

12: return y

5 EXPERIMENTS

5.1 MODELS

LLaVA-1.6-13b. LLaVA (Liu et al., 2023b) is a powerful MLLM in the architecture that features a
simple linear projection mapping visual features of the input image into a shared embedding space
with the LLM language tokens. LLaVA-1.5 (Liu et al., 2023a) is an improved version of LLaVA (Liu
et al., 2023b) and achieves state-of-the-art on many benchmarks. Recently, a new version, LLaVA-1.6,
has been released. We use LLaVA-v1.6-vicuna-13b to test different self-correction methods.

Gemini-Vision. Gemini models (Team et al., 2023; Reid et al., 2024) build on top of Transformer
decoders (Vaswani et al., 2017) that are enhanced with improvements in architecture and model
optimization to enable stable training at scale and optimized inference on Google’s Tensor Processing
Units. Gemini models are operated as a black-box system, requiring the use of an application
programming interface (API) to access. We test on "gemini-pro-vision" of Gemini API with default
settings.
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5.2 BENCHMARKS

ScienceQA. Science Question Answering (ScienceQA) (Lu et al., 2022) is a benchmark on multi-
modal multiple-choice questions with diverse science topics and annotations of their answers with
corresponding lectures and explanations. We use all data containing images in the test split of
ScienceQA, which comprises 2017 image-question pairs.

WHOOPS. WHOOPS (Bitton-Guetta et al., 2023) is a benchmark for visual commonsense com-
prised of purposefully commonsense-defying images created by designers using publicly-available
image generation tools such as Stable Diffusion (Rombach et al., 2022). This benchmark emphasizes
testing MLLM’s understanding and reasoning ability towards weird images. We test our method on
the vision-question answering split of WHOOPS, which contains 500 images and 3362 questions. Re-
sults are evaluated with the metric BERT Matching (BEM) (Bulian et al., 2022), which approximates
a reference answer to a candidate answer given a question using a language model score (Kenton &
Toutanova, 2019).

MM-Vet. MM-Vet (Yu et al., 2023) is a benchmark that examines MLLMs on complicated multi-
modal reasoning tasks. It focuses on the integration of different core vision-language capabilities,
including recognition, OCR, knowledge, language generation, spatial awareness, and math. MM-Vet
uses an LLM to evaluate the consistency of the MLLM responses and labeled answers, allowing
MLLMs to provide open-ended responses without being constrained by specific formats. MM-Vet
consists of 200 images and 218 questions. We utilize GPT-4 (Achiam et al., 2023) to evaluate the
outputs of MLLMs.

5.3 REASONING METHODS

IO. Input / output (IO) Standard Prompting (Brown et al., 2020) is the standard mode of prompting.
It just inputs the images and text questions and other given information to the model. The model
directly outputs an answer based on the given question and available information.

CCoT. Compositional Chain-of-Thought (CCoT) Prompting (Mitra et al., 2023) is a zero-shot
Chain-of-Thought prompting method that utilizes scene graphs to extract compositional knowledge
to assist MLLM in compositional visual reasoning. Specifically, CCoT first instructs MLLM to
systematically generate a scene graph of the input image in JSON format. The scene graph is requested
to include three key properties of the image: the objects, their attributes, and the relationships between
them. Then MLLM is prompted with the original task prompt, image and the corresponding scene
graph to generate an answer. CCoT enhances the model’s capability for visual understanding.

DDCoT. Duty-Distinct Chain-of-Thought (DDCoT) Prompting (Zheng et al., 2023) first prompts
MLLM to deconstruct the input question into a sequence of basic sub-questions, breaking the complex
reasoning chain into simple steps. Another LLM is forced to answer the sub-questions that can be
answered without visual information while MLLM should answer the others. Finally, LLM integrates
the sub-questions and sub-answers as supplementary information to give an answer to the original
question. As our goal is to design a self-correct method completely depending on MLLM itself, we
just prompt MLLM to generate sub-questions and simultaneously answer them, and finally give an
answer according to these pieces of information related to the original question. DDCoT encourages
the model to focus more on the text question and improves the model’s ability of text understanding.

5.4 RESULTS

In this section, we present the experiment results of Self-Refine, Self-Review and Self-Choose in
detail, all along with two other methods, Multi-Agent Debate (MAD) (Liang et al., 2023) and Meta-
Reasoning Prompting (MRP) (Gao et al., 2024a). Self-Choose is tested on the three benchmarks,
ScienceQA, Whoops, and MM-Vet, with LLaVA-1.6-13b and Gemini-Vision. Other methods are
tested on the benchmark ScienceQA. They all fail to effectively self-correct reasoning.
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Round

Method Model 0 1 2 3 4 5

Self-Refine LLaVA-1.6-13b 67.63 63.41 62.96 63.01 61.87 62.47
Gemini-Vision 76.20 51.46 73.08 55.08 70.25 56.02

Self-Review LLaVA-1.6-13b 67.63 67.18 67.28 67.33 67.38 67.23
Gemini-Vision 76.20 73.67 73.82 73.97 73.92 74.22

Table 1: Accuraies of LLaVA and Gemini on ScienceQA with Self-Refine and Self-Review.

Figure 2: Left: Distributions of the accuracy changes in the answers of Self-Review. No Change: The
answer remains unchanged. Right to Wrong: A right answer is changed to a wrong one. Wrong to
Right: A wrong answer is changed to a right one. Wrong to Wrong: A wrong answer is changed
but remains incorrect. Right: Distributions of the correctness judgment of Self-Review. Truth ✓,
Judged ✓: An answer is right and judged as right. Truth ✓, Judged ✗: An answer is right but judged
as wrong. Truth ✗, Judged ✓: An answer is wrong but judged as right. Truth ✗, Judged ✗: An answer
is wrong and judged as wrong.

5.4.1 SELF-REFINE

The accuracy and the number of rounds of Self-Refine are reported in Table 1. “Round 0” represents
using standard prompting without self-correction. It can be found that the model’s performance drops
after using Self-Refine, no matter how many rounds it takes. The reasoning accuracy does not steadily
improve as the number of rounds increases. Figure 2 summarizes the results of changes in answers
after a round of Self-Refine. We can take the results of LLaVA-1.6-13b as an example. It can be
observed that 76% of answers remain unchanged after self-correction. While among other answers,
the model is more likely to modify a correct answer to an incorrect one than to revise an incorrect
answer to a correct one, resulting in the failure of Self-Refine.

5.4.2 SELF-REVIEW

Table 1 reports the results of Self-Review. “Rounds” in Table 1 represents the number of majority
votes to judge the correctness of answers. Although Self-Review achieves overall better results than
Self-Refine, it still cannot improve original answers effectively. Figure 2 summarizes the distribution
of correctness in model judgment. For instance, if the original answer is actually right and the model
judges it is right, or the original answer is actually wrong and the model judges it is wrong, it indicates
the model makes a correct judgment. Otherwise, it is an incorrect judgment. We observe that there
are 32.67% of judgments are incorrect on LLaVA and 27.86% on Gemini-Vision. This indicates that
MLLMs (at least for LLaVA and Gemini) are unable to directly judge the correctness of their answers
properly. Therefore, Self-Refine and Self-Review cannot effectively self-correct reasoning, and may
even lead to a degradation in performance.
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Model IO CCoT DDCoT MAD-D MAD-E MRP

LLaVA-1.6-13b 67.63 67.72 66.73 60.44 64.75 67.23
Gemini-Vision 76.20 76.40 78.98 65.84 69.96 77.39

Table 2: Accuracy of IO, CCoT, DDCoT, MAD-D, MAD-E, and MRP on ScienceQA, MAD-D:
MAD in discriminative mode, MAD-E: MAD in extractive mode.

Model LLaVA-1.6-13b Gemini-Vision

Benchmark ScienceQA WHOOPS MM-Vet ScienceQA WHOOPS MM-Vet

IO 67.63 62.20 46.16±0.14 76.20 68.34 58.80±0.37
CCoT 67.72 62.53 47.78±0.22 76.40 68.01 60.56±0.27
DDCoT 66.73 60.89 41.66±0.42 78.98 63.08 57.72±0.21
IO - SC 67.87 - - 76.85 - -
CCoT - SC 68.42 - - 76.80 - -
DDCoT - SC 68.12 - - 79.77 - -
Self-Choose 68.86 62.65 48.28±0.22 80.02 69.12 62.84±0.19

Table 3: Main results of different reasoning methods and Self-Choose on ScienceQA, WHOOPS,
MM-Vet benchmarks. We use GPT-4 to evaluate the results on MM-Vet five times, and show GPT-4
Score in the form of “mean ± standard deviation”. The best result is in bold. More details can be
found in Appendix D.

5.4.3 MAD AND MRP

MAD sets the LLM instances to play different roles as affirmative and negative sides to debate with
each other, which can alleviate the issue of self-reflection in LLMs. A judge model is assigned to
determine the final solution. In the discriminative mode, the judge chooses the side it supports. In the
extractive mode, it summarizes their opinions to give a final answer. MRP is an approach similar to
ours, which uses a long system prompt to guide LLMs to first choose the most suitable prompting
method, and then solve the problem. We set MRP to choose from the same 3 candidate methods as
Self-Choose to make a fair comparison.

Table 2 reports the accuracy of different basic prompting methods, along with MAD and MRP.
Experiment results show that MAD gets worse performance both on LLaVA and Gemini. On LLaVA,
MRP performs worse than IO. On Gemini, it achieves better performance than IO while worse than
DDCoT, which is consistent with its experiments on LLMs (Gao et al., 2024a). It indicates that MRP
can not choose the most optimal method before solving the problem. Otherwise, it would achieve
better performance than all candidate methods.

5.4.4 SELF-CHOOSE

We compare Self-Choose with IO, CCoT, DDCoT, and these with Self-Consistency (SC) (Wang et al.,
2023). SC calls the model three times to vote for the most repeated answer. We do not test SC on
WHOOPS and MM-Vet, as they are open-ended Q&A but SC is only applicable to problems where
the final results are numbers, options, etc. Experiment results of LLaVA-1.6-13b and Gemini-Vision
in different methods are shown in Table 3. The performance of these three reasoning methods varies
across different benchmarks and metrics. Taking the results of Gemini-Vision as an example, CCoT
outperforms IO and DDCoT on MM-Vet, while DDCoT achieves the highest accuracy among the
three reasoning methods on ScienceQA. Nonetheless, no matter which reasoning method is employed,
the performance is enhanced after Self-Choose. Our method also outperforms SC and can be applied
to various open-ended Q&A scenarios. This proves the effectiveness of our method compared to other
self-correction methods, which can compare different reasoning solutions and choose the optimal
one, as the example shown in Figure 3.

5.5 ABLATION STUDY

We perform a comprehensive ablation study on LLaVA. Detailed results are shown in Table 4 and 5.
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Figure 3: Example of Self-Choose. IO and CCoT generate wrong answers, while the solving process
of CCoT is correct. DDCoT provides the correct solving process and answer. By reflecting and
comparing these solving processes and candidate answers, Self-Choose chooses the right candidate
and outputs the correct answer.

Benchmark ScienceQA WHOOPS MM-Vet

All IO 67.87 61.97 46.18±0.04
All CCoT 68.27 62.47 48.46±0.29
All DDCoT 67.33 61.5 39.68±0.19

w/o choice n 67.87 62.43 46.94±0.37
w/o processes si 68.81 62.00 43.52±0.24
Generate 66.78 55.98 41.16±0.29
Self-Choose 68.86 62.65 48.28±0.22

Table 4: Results of the ablation study. AII IO: Replace all three reasoning methods with IO. AII
CCoT: Replace all three reasoning methods with CCoT. AII DDCoT: Replace all three reasoning
methods with DDCoT. w/o choice n: Remove the choice number n. w/o processes si: Remove the
solving processes si in Equation 3 and 4. Generate: Generate an answer without choosing the best
candidate answer. The best result is in bold and the suboptimal is underlined.

Replace the three reasoning methods with the same one. In this ablation study, we replace the
three reasoning method with the same one on the model LLaVA-1.6-13b, i.e., covert (F0,F1,F2) to
(Fj ,Fj ,Fj | j ∈ {0, 1, 2}). In the same way, the model outputs the choice number of the best answer
among the three candidate answers generated in the same reasoning method. If none of candidate
answers is accurate, the model is forced to generate a more promising answer according to these
inaccurate candidate answers. Self-Choose achieves the best performance on ScienceQA, WHOOPS
and the highest BEM on MM-Vet, which proves that Self-Choose can effectively improve answers
through reflecting and comparing the solving processes and candidate answers of different reasoning
methods. What’s more, the model is forced to output solving processes with long tokens when using
complex reasoning methods. Concatenating solving processes as context information also introduces
more token consumption. Therefore, Self-Choose is more efficient than replacing different reasoning
methods with the same one.

Remove the choice number n. We test the performance that the model only chooses the best
candidate answer, without generating a more promising answer if candidate answers are all inaccurate,
i.e., removing the choice number n. It gets worse results compared to Self-Choose. The results
indicate that it is necessary to incorporate the choice number n to generate a more promising answer
if all candidate answers are deemed inaccurate. This offers a chance to improve answers when all
reasoning methods fail to produce right answers.

Remove the solving processes si. We conduct experiments to verify the necessity of solving
processes si when choosing the best candidate answer. Without solving processes, Self-Choose fails
to choose the best candidate and gets worse performance.

Generate an answer without choosing the best candidate answer. We evaluate the performance
that the model only generates an improved answer according to candidate answers without choosing
the best candidate answer, i.e., executing Equation 4 by replacing pgen with another prompt p∗

gen.
pgen tells the model all candidate answers are inaccurate while p∗

gen does not. The performance
mainly drops down in this setting. We observe that the model trends to generate an answer different
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Setting

Round N (1) (2) (3) (4) (5)

1 68.86 68.72 68.77 68.77 -
3 68.86 68.77 68.77 68,72 68.72
5 68.96 68.77 68.77 68.77 -

Table 5: Accuracy of LLaVA on ScienceQA with different settings and rounds.

from candidate answers. However, in the majority of cases, it exists the correct answer in candidate
answers. Therefore, the strategy of Self-Choose is better as it forces the model to generate an
improved answer only when all candidate answers are judged as wrong.

Other settings for Equation 4. we design five different settings to further analyze the last step to
generate a more promising answer (Equation 4). Here are the specific settings:

• (1) Generate a more promising answer N times by reviewing wrong candidate answers, then
choose the best one among them.

• (2) Divide the last step into two steps. Find the problems of wrong candidate answers at first,
then generate a more promising answer according to the problems. This will be repeated N
times, then choose the best promising answer.

• (3) Change the prompt pgen to CCoT. Generate a scene graph at first by reviewing wrong
candidate answers, then answer the question according to the scene graph. This will be
repeated N times, then choose the best one.

• (4) Change the prompt pgen to DDCoT. Deconstruct the question down to sub-questions and
get sub-answers by reviewing wrong candidate answers, then answer the question according
to sub-questions and sub-answers. This will be repeated N times, then choose the best one.

• (5) Generate a more promising answer with the original prompt pgen, CCoT and DDCoT,
respectively. Replace candidate answers with them and repeat the process of Self-Debate,
until it succeeds to choose the best candidate answer. We set the maximum number of
rounds to N , and force the model to choose the best one at the maximum round.

Table 5 summarizes the results with different settings and rounds. It shows that there is no need to
design complex instructions for the last step, the original prompt pgen in our paper is the best setting.
This may have similar reasons to the failure of Self-Refine. What’s more, the performance will gain
minor improvement as the round N increases.

Extend Self-Choose to natural language domain. Our method is initially designed for MLLMs,
which utilizes diverse reasoning solutions focusing on different aspects such as image understanding
and text understanding. However, its core idea can also be applied to natural language domain. We
extent experiments on LLMs, and surprisingly find Self-Choose can also successfully help LLMs
self-correct reasoning. Please refer to Appendix E for more details.

6 CONCLUSION

We propose Self-Choose: an effective prompting approach to teach MLLMs to self-correct like
humans. Our approach entirely relies on a single model to correct reasoning, without the assistance of
any additional tools or models, and does not require training or fine-tuning. Self-Choose compares the
reasoning processes and outcomes of different reasoning methods to select the best answer or generate
improved solutions based on the processes and results of various reasoning methods. Experiments on
three reasoning benchmarks implemented on LLaVA-1.6-13b and Gemini-Vision demonstrate that
our method can truly and effectively self-correct reasoning. We hope that our work will provide new
insights into self-correction on reasoning and foster research in this area.
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A SOCIAL IMPACT

We propose an effective prompting strategy, Self-Choose, to self-correct reasoning without external
feedback, which can be applied to black-box MLLMs. Our research can facilitate the exploration
of the potential of MLLMs, leveraging the models’ intrinsic capabilities for self-correction and
self-improvement. It is significant to study self-correction because we cannot always rely on stronger
models to help with correction. For example, how can we find a more powerful model to correct the
strongest model? A feasible strategy is to introduce human supervision to assist models in correcting
errors. Nevertheless, this may be time-consuming and laborious. What’s more, can we still effectively
supervise when the model is stronger than humans? So how can we correct the most powerful model?
An intuitive approach is to teach the models to self-correct. We hope that our research will provide
insights into reasoning self-correction and stimulate further research in this area. What’s more, our
approach could also be replicated and applied to LLMs, potentially enhancing their capacity for
self-correction. However, it is difficult to guard against the potential misuse of this technology by
malefactors for illicit activities.

B LIMITATIONS

The main limitation of Self-Choose is that the base model should have a certain level of reasoning
ability. If the model’s reasoning capabilities are weak, with extensive errors across a multitude of tasks
and reasoning methods, then it will be challenging to enhance its performance using Self-Choose.
Although our method is capable of effectively self-correcting reasoning, it occasionally falls short, as
demonstrated by the failure case illustrated in Figure 14. This may be because, although this method
is capable of correcting reasoning errors, it may not be effective for issues related to the model’s
cognitive limitations. For instance, if the model is not aware of the existence of the platypus and
mistakenly identifies it as a duck, it cannot rectify its understanding to recognize the animal as such
through self-correction.

C IMPLEMENTATION DETAILS

In our experiments, we set the temperature of LLaVA-1.6-13b to 0.3, which encourages the model
to generate answers with relatively high certainty, while still ensuring a level of diversity. We run
the model on two Tesla-V100 GPUs. When testing each method on the benchmark ScienceQA, we
prompt the MLLM to also provide the rationale behind its choices instead of just forcing the MLLM
to output the option only. Self-Choose can more effectively reflect on the responses of each method,
as it provides reasons rather than isolated options. The prompt is “Only one option is correct. Please
choose the right option and explain why you choose it. You must answer in the following format. For
example, if the right answer is A, you should answer: The answer is A. Because ...”.

Due to the inherent mechanisms of MLLM, the output of the model M may contain nonsensical
sentences or not conform to the stipulated format. To mitigate this issue, we set up some templates to
extract the choice number in the model response, which is noted as φ. If the model output contains
nonsensical sentences or is not in the stipulated format, φ will return None. We implement a
repetitive generation process, continuing until the choice number is successfully extracted or the
iteration count exceeds a predetermined threshold T . If the number of iterations reaches T but
φ(c) = None, then sample an element at random from the set {0, 1, ..., n} and assign it to c.

To facilitate comprehension, in Section 5, we designate F0 as the representative of standard prompting.
However, in the design of our prompts, we utilize the numerical notation from 1 to n to denote
the reasoning processes and answers of various reasoning methods. This is more in tune with the
conventions of human communication and the structure of internet text.
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D MORE DETAILED EXPERIMENT RESULTS

Figure 4 summarizes the distributions of the accuracy changes in the answers of Self-Choose on
the benchmark ScienceQA. The majority retains the original answers. Compared to the number of
right answers that are incorrectly altered to a wrong one, more wrong answers are corrected to the
right ones. For example, 1.54% of original answers of LLaVA-1.6-13b are incorrectly changed from
right to wrong, while 2.73% of original answers are correctly changed from wrong to right. For
Gemini-Vision, 0.55% of original answers are incorrectly changed from right to wrong, while 4.36%
are correctly changed from wrong to right. With more wrong answers being properly corrected, the
reasoning performance is improved.

Figure 4: Distributions of the accuracy changes in the answers of Self-Choose on the benchmark
ScienceQA. No Change: The answer remains unchanged. Right to Wrong: A right answer is changed
to a wrong one. Wrong to Right: A wrong answer is changed to a right one. Wrong to Wrong: A
wrong answer is changed but remains incorrect.

Table 6 and 7 summarize the accuracy of results on the benchmark ScienceQA with LLaVA-1.6-13b
and Gemini-Vision, respectively. Self-Choose performs well in the three aspects, especially in natural
science. Self-Choose achieves the highest accuracy in natural science and social science, performing
the best overall.

Total Natural Science Social Science Language Science

IO 67.63 (1364 / 2017) 66.58 (805 / 1209) 68.72 (525 / 764) 77.27 (34 / 44)
CCoT 67.72 (1366 / 2017) 65.84 (796 / 1209) 69.90 (534 / 764) 81.81 (36 / 44)
DDCoT 66.73 (1346 / 2017) 66.67 (806 / 1209) 66.23 (506 / 764) 77.27 (34 / 44)
Self-Choose 68.86 (1389 / 2017) 67.91 (821 / 1209) 69.90 (534 / 764) 77.27 (34 / 44)

Table 6: Detailed results on the benchmark ScienceQA with LLaVA-1.6-13b.

Total Natural Science Social Science Language Science

IO 76.20 (1537 / 2017) 70.05 (847 / 1209) 85.34 (652 / 764) 86.36 (38 / 44)
CCoT 76.40 (1541 / 2017) 69.98 (846 / 1209) 85.86 (656 / 764) 88.64 (39 / 44)
DDCoT 78.98 (1593 / 2017) 73.37 (887 / 1209) 86.91 (664 / 764) 95.45 (42 / 44)
Self-Choose 80.02 (1614 / 2017) 75.27 (910 / 1209) 86.91 (664 / 764) 90.90 (40 / 44)

Table 7: Detailed results on the benchmark ScienceQA with Gemini-Vision.
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Table 8 and 9 summarize the GPT-4 Score in the six parts of MM-Vet with LLaVA-1.6-13b and
Gemini-Vision, respectively. Our method improves the performance in multiple aspects compared
with other reasoning methods. Specifically, Self-Choose with Gemini-Vision achieves the best GPT-4
Score on OCR, Know, Gen, Spat and the suboptimal GPT-4 Score on Math and Rec, performing
the best in total. For each question, some reasoning methods may provide incorrect solutions, while
others may generate correct ones. Self-Choose selects the most likely correct answer by comparing
the solving processes and answers of these methods, thus enhancing the performance compared to
each method.

Total OCR Know Gen Spat Math Rec

IO 46.16±0.14 42.74±0.30 37.60±0.47 40.66±0.29 43.32±0.34 26.50±0.00 48.80±0.19
CCoT 47.78±0.22 43.94±0.36 39.8±0.65 43.04±0.55 44.38±0.44 30.40±00 50.26±0.31
DDCoT 41.66±0.42 38.04±0.61 31.36±0.81 33.68±0.90 41.50±0.24 30.08±0.16 43.24±0.47
Self-Choose 48.28±0.22 45.34±0.30 39.04±0.24 42.48±0.50 48.28±0.34 26.50±0.00 50.98±0.33

Table 8: Details of GPT-4 Score on the benchmark MM-Vet with LLaVA-1.6-13b. OCR: Optical
character recognition. Know: Knowledge. Vision-question answering that covers various knowledge-
related capabilities, including social and visual commonsense knowledge. Gen: Language generation.
Spat: Spatial awareness. Math: Written equations or problems in the wild. Rec: Visual recognition.

Total OCR Know Gen Spat Math Rec

IO 58.80±0.37 55.44±0.45 63.40±0.71 42.54±0.48 38.42±0.90 65.48±0.44 54.76±2.74
CCoT 60.56±0.27 58.80±0.30 62.58±0.49 48.24±0.44 44.58±0.46 65.04±0.17 56.78±1.79
DDCoT 57.72±0.21 54.82±0.40 59.32±0.52 45.76±0.34 41.64±0.45 60.56±0.52 58.80±0.00
Self-Choose 62.84±0.19 61.26±0.05 64.48±0.46 51.50±0.19 48.08±0.20 65.06±0.14 57.32±1.56

Table 9: Details of GPT-4 Score on the benchmark MM-Vet with Gemini-Vision.
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E EXPERIMENTS ON NATURAL LANGUAGE DOMAIN

We extend experiments with GPT-4o-mini-2024-07-18 (Open AI, 2024) on the test split of GSM8K
(Cobbe et al., 2021), which contains diverse grade school math problems. We randomly sample 250
samples, and adopt three reasoning methods: IO (just output the result), Chain-of-Thought (Wei et al.,
2022), and Least-to-Most (Zhou et al., 2023). Self-Choose outperforms other methods, as shown in
Table 10.

Model IO CoT Least-to-Most Self-Choose

GPT-4o-mini 31.2 92.8 93.2 94.8

Table 10: Accuracy of each method on GSM8K.

What’s more, we test 5 high school math problems on the website of MathGPT (Tomorrow Advancing
Life, 2023), which Self-Refine and Self-Review all fail to self-correct. Our method succeeds to correct
original answers in all problems. Figure 5 shows an example. These demonstrate the superiority and
generality of our method. We believe that our method can be widely applied in more scenarios.

Self-ReviewSelf-Refine Self-Choose

√

×

×

×

×

×

×

×

√

Figure 5: Example on MathGPT.
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F EXAMPLES IN SELF-REFINE

Figure 6: Example of Self-Refine on the benchmark ScienceQA.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 7: Example of Self-Refine on the benchmark ScienceQA.
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G EXAMPLES IN SELF-REVIEW

Figure 8: Example of Self-Review on the benchmark ScienceQA.

Figure 9: Example of Self-Review on the benchmark ScienceQA.
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Figure 10: Example of Self-Review on the benchmark ScienceQA.
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H EXAMPLES OF SELF-CHOOSE

Figure 11: Example of Self-Choose on the benchmark ScienceQA.
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Figure 12: Example of Self-Choose on the benchmark WHOOPS.
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Figure 13: Example of Self-Choose on the benchmark MM-Vet.
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Figure 14: Failure case of Self-Choose on the benchmark ScienceQA.
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I PROMPTS

In this section, we show the prompts of Self-Refine, Self-Review, CCoT, DDCoT, Self-Choose, and
prompts using in Section 5.5. “Answer:” represents the response of the MLLM.

Figure 15: Prompts of Self-Refine.

Figure 16: Prompts of Self-Review.
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Figure 17: Prompts of CCoT.
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Figure 18: Prompts of DDCoT.
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Figure 19: Prompts of Self-Choose.
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Figure 20: Prompts of removing the choice number n in Section 5.5.
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Figure 21: Prompts of generating an answer without choosing the best candidate answer in Section
5.5.
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