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Abstract

This paper surveys the application of continual001
learning in Video Visual Question Answering002
(Video VQA) to advance lifelong video under-003
standing. With the rapid progress in VQA tech-004
nologies, models perform excellently in static005
environments but face significant challenges in006
real-world scenarios, particularly catastrophic007
forgetting when encountering new tasks or do-008
mains. We systematically review the funda-009
mentals of video VQA, including the evolution010
from image to video, core architectures, and011
evaluation methods, and thoroughly explore012
how continual learning techniques are adapted013
to the video understanding domain. We analyze014
implementation strategies based on regulariza-015
tion, replay, parameter isolation, and hybrid016
methods, comparing their performance across017
different video VQA task streams. The paper018
discusses experimental evaluation frameworks,019
spanning task division (by question type, do-020
main, and video style), training protocols, and021
baseline model selection (joint training, sequen-022
tial fine-tuning, and independent training). Ad-023
ditionally, we identify current challenges such024
as long video understanding, modality imbal-025
ance, and computational efficiency concerns,026
while exploring future research directions and027
potential application scenarios. This survey028
aims to integrate recent advances, highlight029
critical trends, and provide guidance for the030
development of continual video VQA learning.031

1 Introduction032

Visual Question Answering (VQA) challenges033

models to answer natural language questions by034

grounding them in visual content. Early image-035

based VQA fused convolutional features with036

attention-based language models to reason over sin-037

gle frames (Antol et al., 2015; Goyal et al., 2017).038

Yet many applications (from autonomous driving039

to intelligent tutoring) demand understanding dy-040

namic scenes (Pandey et al., 2025).041

Video-based VQA extends this by requiring spa- 042

tiotemporal reasoning: models must recognize and 043

track objects and actions across frames, capture 044

motion cues, and integrate information over time 045

to answer complex, multi-step questions (Xu et al., 046

2017; Jang et al., 2017). State-of-the-art architec- 047

tures typically use frozen visual encoders to extract 048

frame-level features, fine-tuned token embeddings 049

for question semantics, and large pretrained lan- 050

guage models to generate answers (see Figure 1). 051

Enhanced temporal attention and cross-modal fu- 052

sion have boosted performance, but evaluation re- 053

mains confined to static datasets. 054

In real-world deployments, video distributions 055

and query types evolve: new objects appear, light- 056

ing and viewpoints shift, and question formats 057

change. Retraining VQA models from scratch is 058

costly and risks catastrophic forgetting of prior 059

capabilities. Continual (lifelong) learning ad- 060

dresses this by enabling incremental updates on 061

non-stationary data streams while preserving ear- 062

lier knowledge (Laal and Salamati, 2012). Applied 063

to video VQA, it must handle heterogeneous modal- 064

ities, maintain temporal information retention, and 065

operate under memory and compute constraints. 066

Research at the intersection of continual learn- 067

ing and VQA spans regularization-based methods 068

(e.g. EWC, MAS) (Kirkpatrick et al., 2017; Aljundi 069

et al., 2018), replay-based strategies (experience or 070

generative replay) (Rolnick et al., 2019; Shin et al., 071

2017), parameter-isolation techniques (adapters, 072

mask-based pruning)(Cheng et al., 2024; Mallya 073

et al., 2018), and emerging meta-learning (Riemer 074

et al., 2019) and prompt-based adaptations (Qian 075

et al., 2023) leveraging large-scale pretrained mod- 076

els. However, these efforts remain fragmented, 077

lacking a unified view of task formulations, bench- 078

mark splits, evaluation protocols, and open chal- 079

lenges specific to continual video VQA. 080

Through this survey, we aim to provide a clear 081

understanding of continual learning applications in 082
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Figure 1: Architecture of a common VQA framework: The visual encoder is frozen to extract robust visual features;
the token embedder is unfrozen to fine-tune task-specific linguistic representations; and the pretrained LLM is kept
frozen to leverage its strong generative capability for answer production.

video VQA, facilitate knowledge sharing among083

researchers, and offer valuable guidance for future084

work. As video data becomes increasingly preva-085

lent in real-world applications, we believe lifelong086

video understanding will emerge as a crucial fron-087

tier in artificial intelligence research.088

2 Background089

2.1 Visual Question Answering (VQA)090

Visual Question Answering (VQA) is a multimodal091

task in which a model must generate a natural lan-092

guage answer given an image or video and a cor-093

responding question (see Figure 1 for the overall094

architecture). Early work on image-based VQA095

focuses on spatial reasoning from a single frame,096

where models learn to associate visual regions097

with question tokens (e.g., (Antol et al., 2015;098

Goyal et al., 2017)). In contrast, video-based099

VQA extends this to spatiotemporal reasoning: the100

model must capture motion cues, frame-to-frame101

dependencies, and evolving contextual information102

across time (e.g., (Cai et al., 2024; Cheng et al.,103

2024; Zhang et al., 2023; Qian et al., 2023; He104

et al., 2024)).105

2.1.1 Core model architecture106

State-of-the-art video VQA models typically con-107

sist of several key components designed to han-108

dle the spatiotemporal nature of videos (P.J. and109

Kovoor, 2024):110

Multimodal Fusion Strategies. To combine tex-111

tual and visual information, multimodal fusion is112

critical. Common approaches include:113

• Early Fusion: Concatenate features from dif- 114

ferent modalities (Barnum et al., 2020) at the 115

input level to learn joint representations. 116

• Late Fusion: Independently process each 117

modality and fuse outputs or embeddings in a 118

subsequent stage (Shankar et al., 2022). 119

• Cross-Modal Attention: Use attention mech- 120

anisms for dynamic interactions between vi- 121

sion and language streams, improving context- 122

aware reasoning (Nagrani et al., 2022). 123

Spatiotemporal Reasoning Mechanisms. Effec- 124

tive reasoning over both space and time is essential: 125

• Temporal Attention and Graphs: Focus on 126

key frames or build temporal graphs to model 127

interactions across time (Khan et al., 2023). 128

• Recurrent Layers and Transformers: In- 129

tegrate LSTM/GRU units or temporal trans- 130

former blocks (Lei et al., 2019; Gao et al., 131

2022) to capture long-range dependencies. 132

• Memory Modules: Use external-memory or 133

memory-augmented networks to store and re- 134

trieve relevant past information for answering 135

questions (Bai et al., 2024; He et al., 2024). 136

2.1.2 Evaluation Metrics for VQA 137

VQA tasks can be broadly divided into open-ended 138

and multiple-choice settings. The evaluation meth- 139

ods differ depending on the question type, and ad- 140

ditional metrics may be applied based on the task’s 141

specifics. 142
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Open-Ended VQA. Evaluation of open-ended143

VQA frequently uses n-gram overlap metrics like144

BLEU (Papineni et al., 2002) or ROUGE (Lin,145

2004) to compare model outputs with reference146

answers, though these metrics have limitations for147

truly open-ended responses where various phras-148

ings can be equally correct.149

More sophisticated approaches employ seman-150

tic similarity measures using embedding models151

(like BERT) (Reimers and Gurevych, 2019; Zhang*152

et al., 2020), where correctness is determined by153

the cosine similarity between embeddings of pre-154

dicted and reference answers, with a threshold155

defining correct responses.156

Multiple-Choice VQA: In multiple-choice set-157

tings, the task is treated as a standard classification158

problem. The accuracy is computed as:159

Accuracy =
Number of correctly selected answers

Total number of questions
(1)160

Additionally, ranking metrics such as Mean Re-161

ciprocal Rank (Zhong et al., 2017) can be used if162

candidate answer ranking is important.163

2.1.3 Current Research Status164

Current research in video VQA has diversified165

along several fronts: a wide range of model ar-166

chitectures has emerged, from unified end-to-end167

networks that jointly learn spatiotemporal features168

(Gao et al., 2018) to modular pipelines in which169

individual components (e.g., feature extraction,170

temporal reasoning, question encoding) are opti-171

mized separately (Park et al., 2021); performance172

has steadily improved as newer methods leverage173

sophisticated temporal attention mechanisms and174

richer multimodal fusion strategies, often outper-175

forming simple extensions of image-based VQA176

models; nonetheless, researchers continue to grap-177

ple with key challenges, including the high compu-178

tational cost and memory footprint of processing179

long video sequences, the difficulty of maintaining180

robustness under occlusions or rapid scene tran-181

sitions, and the need to scale effectively to large,182

diverse video corpora.183

2.2 Continual Learning184

2.2.1 Basics of Continual (Lifelong) Learning185

Continual learning (Grossberg, 2012) is the186

paradigm in which a model ingests a non-stationary187

stream of tasks or data and incrementally updates188

its parameters without retraining from scratch. A189

central obstacle is catastrophic forgetting, where 190

new learning overwrites representations critical 191

for earlier tasks. Closely related is the plastic- 192

ity–stability trade-off (Grossberg, 1987): a model 193

must remain plastic enough to acquire new knowl- 194

edge yet stable enough to preserve old knowledge. 195

Other emerging challenges include handling un- 196

known task boundaries, scaling to large numbers of 197

tasks under limited memory and compute budgets, 198

and devising evaluation schemes that faithfully cap- 199

ture both learning and retention over time. 200

2.2.2 Multimodal Continual Learning 201

When applying continual learning to multimodal 202

tasks, such as Video VQA, the model must 203

jointly update across heterogeneous inputs (e.g., 204

images/video frames and text) while avoiding 205

modality-specific forgetting (Yu et al., 2024a). In 206

video QA settings, three extra requirements arise: 207

• Temporal Information Retention: preserv- 208

ing frame-to-frame dynamics and motion cues 209

so that reasoning over sequences does not de- 210

grade when new video tasks are learned. 211

• Balanced Multimodal Retention: ensuring 212

that neither the visual stream nor the language 213

stream disproportionately forgets past knowl- 214

edge. 215

• Efficiency under Lengthy Inputs: maintain- 216

ing a small memory footprint (e.g., via se- 217

lective buffering or compressed replay) and 218

low computational overhead (e.g., lightweight 219

adapters) to feasibly handle long, high- 220

resolution video clips. 221

2.2.3 Current Solution Strategies 222

Researchers have developed a variety of strate- 223

gies to address the challenges in continual learning. 224

These strategies can be broadly categorized as fol- 225

lows: 226

• Regularization-Based Methods: Methods 227

that add constraints to prevent important pa- 228

rameters from changing drastically, such as 229

EWC (Kirkpatrick et al., 2017) and MAS 230

(Aljundi et al., 2018). Recent extensions in- 231

clude Transformer Calibration (Yang et al., 232

2022) and LPC (Li et al., 2022). 233

• Replay-Based Methods: Techniques that mit- 234

igate forgetting by revisiting past samples, 235

e.g., Experience Replay (Rolnick et al., 2019) 236

and generative replay (Shin et al., 2017). 237
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• Parameter Isolation Methods: Methods that238

allocate dedicated parameters for different239

tasks, such as task-specific adapters (see e.g.,240

TL-CL (Satapara and Srijith, 2024)) and mask-241

based methods like EXSSNET (Yadav and242

Bansal, 2023).243

• Hybrid Methods: Approaches that com-244

bine the above strategies to balance stability245

and plasticity (e.g., CLIF (Jin et al., 2022)246

and Mixture-of-Experts adapters (Yu et al.,247

2024b)).248

2.2.4 Evaluation Metrics249

Continual Learning (Lifelong Learning) involves250

sequentially training on multiple tasks while re-251

taining knowledge from previous tasks. The eval-252

uation metrics are designed to capture both the253

performance on new tasks and the retention of past254

knowledge.255

• Average Accuracy (ACC): After learning 𝑇256

tasks sequentially, the overall performance is257

measured by:258

ACC =
1
𝑇

𝑇∑︁
𝑖=1

𝑅𝑇,𝑖 (2)259

where 𝑅𝑇,𝑖 denotes the test accuracy on task 𝑖260

after training up to the final task 𝑇 .261

• Average Forgetting (AF): Forgetting quanti-262

fies the degradation in performance on earlier263

tasks after learning new tasks. With overall264

forgetting computed as the average for the first265

𝑇 − 1 tasks:266

𝐹 =
1

𝑇 − 1

𝑇−1∑︁
𝑖=1

𝐹𝑖 (3)267

• Forward and Backward Transfer (FWT268

& BWT) Following Lopez–Paz (Lopez-Paz,269

2022), let 𝑅 ∈ R𝑇×𝑇 be the accuracy matrix270

where 𝑅𝑖, 𝑗 denotes the test accuracy on task271

𝑗 after training sequentially up to task 𝑖, let272

�̄� 𝑗 be the baseline (random-init) accuracy on273

task 𝑗 , and let 𝑅𝑖,𝑖 be the accuracy on task 𝑖274

immediately after learning it. Then:275

FWT =
1

𝑇 − 1

𝑇∑︁
𝑗=2

(
𝑅 𝑗−1, 𝑗 − �̄� 𝑗

)
(4)276

277

BWT =
1

𝑇 − 1

𝑇−1∑︁
𝑖=1

(
𝑅𝑇,𝑖 − 𝑅𝑖,𝑖

)
(5)278

3 Task Formulations & Paradigms in 279

Continual Learning for Video VQA 280

Continual learning in Video Visual Question An- 281

swering (Video VQA) (Zhang et al., 2023) can 282

be cast under several complementary paradigms. 283

Each paradigm defines a different way in which 284

new data or tasks arrive over time, and places dis- 285

tinct requirements on the model’s ability to retain 286

past knowledge and transfer to new scenarios. 287

3.1 Task-Incremental Learning 288

In the task-incremental setting, the model is pre- 289

sented with a sequence of distinct tasks, each 290

associated with its own question–answer distri- 291

bution (for example, counting questions, action- 292

recognition questions, or object-tracking questions) 293

(Zhang et al., 2023). At training time, each task 294

arrives with a unique identifier, and during infer- 295

ence the model is told which task it should perform. 296

The goal is to optimize performance on each task 297

in turn while avoiding catastrophic forgetting of 298

previously learned tasks. Task-incremental Video 299

VQA thus requires mechanisms for task-specific 300

parameter isolation or task-conditioned routing, so 301

that representations for new question types do not 302

overwrite those learned for earlier tasks. 303

3.2 Domain-Incremental Learning 304

Domain-incremental learning assumes a single un- 305

derlying task (e.g. the same question types and 306

answer vocabulary) but with the input video distri- 307

bution shifting over time (Cheng et al., 2024). For 308

Video VQA, this could correspond to different cam- 309

era viewpoints, lighting conditions, or video genres 310

(sports, surveillance, movies). The model is not 311

given explicit domain labels at test time, and must 312

maintain invariance to domain shifts while con- 313

tinually adapting its visual and temporal features. 314

Effective domain-incremental strategies leverage 315

domain-robust feature extraction, normalization 316

layers that adapt to new contexts, and replay or 317

alignment losses to preserve performance on ear- 318

lier video domains. 319

3.3 Class-Incremental Learning 320

In the class-incremental scenario, the set of possi- 321

ble answers grows as new classes are introduced 322

over time (Marouf et al., 2025; Chen et al., 2025). 323

For Video VQA, this might mean gradually expos- 324

ing the model to novel action verbs, object cat- 325

egories, or compositional phrases. Critically, at 326
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inference the model must classify among the en-327

tire union of all seen answer classes, without be-328

ing told which subset applies. Class-incremental329

Video VQA demands dynamic output expansions,330

balanced replay of old answer examples, and bias-331

correction techniques to prevent the model from332

over-favoring newly introduced classes.333

3.4 Online Streaming Learning334

Online streaming learning represents the335

most demanding paradigm, where individual336

video–question pairs arrive sequentially in a single337

pass and the model must update on each example338

under strict memory and compute constraints339

(Cheng et al., 2024; Zhang et al., 2024). There340

is no clear task or domain boundary, and the341

model cannot revisit past data except via a limited342

buffer. In Video VQA, streaming learning chal-343

lenges include efficient sampling of key frames,344

continual alignment of multimodal features,345

and lightweight update rules (e.g. parameter346

regularization or prototype-based updates) that347

minimize interruption while preserving long-term348

knowledge.349

4 Methodologies in Continual Learning350

for Video VQA351

Continual learning for Video VQA seeks to equip352

models with the ability to assimilate new infor-353

mation (e.g. new video domains, question types,354

or answer categories) while preserving previously355

acquired capabilities. Over the past decade, re-356

searchers have pursued several complementary357

strategies to strike this balance between stabil-358

ity and plasticity (Grossberg, 1987; Kirkpatrick359

et al., 2017). Broadly, these approaches fall into360

replay-based, regularization-based, and parameter-361

isolation methods, with recent advances in meta-362

learning and prompt-based adaptation using large363

pre-trained models (see detailed in Appendix Ta-364

ble A2). In the following subsections, we survey365

each of these paradigms, highlighting their core366

mechanisms, strengths, and challenges in the con-367

text of Video VQA.368

4.1 Replay-based Methods369

Replay-based methods mitigate forgetting by revis-370

iting past experiences, either by storing real exam-371

ples or by generating synthetic ones.372

Episodic Replay A fixed-size buffer of373

video–question–answer triplets is maintained,374

often via reservoir sampling to ensure unbiased 375

coverage of all past tasks (Lopez-Paz, 2022). 376

During training on a new task, mini-batches are 377

sampled jointly from the current stream and the 378

buffer, interleaving past examples to reinforce 379

previously learned associations between video 380

features and question semantics (Rolnick et al., 381

2019; Chaudhry et al., 2019). 382

Generative Replay Instead of storing raw ex- 383

amples, a generative model (e.g. VAE, GAN, or 384

transformer) is trained alongside the VQA model to 385

approximate the joint distribution of past video–QA 386

pairs. On each update, the generator produces 387

pseudo–examples for rehearsal, enabling the VQA 388

model to rehearse earlier tasks without explicit 389

memory of raw data. 390

4.2 Regularization-based Methods 391

Regularization methods constrain parameter up- 392

dates to preserve knowledge deemed important for 393

past tasks. 394

Parameter Importance Regularization Each 395

weight’s importance is estimated (e.g. via the Fisher 396

information matrix in EWC or path-integral mea- 397

sures in SI) after each task (Zenke et al., 2017; 398

Aljundi et al., 2018). When learning a new task, 399

changes to highly important parameters incur a 400

quadratic penalty, thus preventing drastic overwrit- 401

ing of critical features for earlier video question 402

types . 403

Distillation-based Methods Knowledge distilla- 404

tion preserves the behavior of the model on pre- 405

vious tasks by matching its output distributions 406

(soft logits) on either stored examples or generated 407

pseudo-samples. A distillation loss encourages the 408

updated model to mimic the “teacher” snapshot 409

before learning the new task, maintaining temporal 410

reasoning or object-counting capabilities acquired 411

earlier (Hinton et al., 2015). 412

4.3 Parameter-Isolation Methods 413

These methods allocate disjoint subsets of network 414

parameters to different tasks, avoiding interference 415

at the cost of increased capacity. 416

Dynamic Architectures The network dynami- 417

cally grows by adding new modules, heads, or 418

layers for each incoming task. For Video VQA, 419

this might involve task-specific attention blocks or 420

question–type adapters, while sharing a common 421
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backbone for video feature extraction (Yu et al.,422

2024b).423

Mask-based Pruning A single overparameter-424

ized network is trained once, then for each new425

task a binary mask selects a subnetwork (e.g.426

via iterative pruning or learned mask-generators).427

Masks can be switched at inference to recover task-428

specific parameters without interference (Mallya429

et al., 2018; Yadav and Bansal, 2023).430

4.4 LLM-based & Prompting Methods431

Recent advances leverage large pre-trained multi-432

modal models (e.g. CLIP, VideoBERT, Flamingo)433

with prompt tuning. Instead of fine-tuning all434

weights, only a small set of soft or discrete prompts435

is learned per task or domain (Qian et al., 2023; Cai436

et al., 2024). This allows continual expansion to437

new question formats or video genres by appending438

new prompts to guide the frozen backbone, drasti-439

cally reducing catastrophic forgetting and memory440

footprint.441

5 Datasets & Evaluation Protocols442

To rigorously assess continual learning methods443

in Video VQA, it is essential to select represen-444

tative video QA benchmarks, define appropriate445

task sequences, and adopt standardized evaluation446

procedures. In this section, we first review the447

most commonly used Video VQA datasets (as sum-448

marized in Appendix Table A1 and in Appendix449

Figure A1), then describe how to derive continual-450

learning splits and task orders, and finally point to451

the evaluation metrics defined earlier.452

5.1 Typical Video VQA Datasets453

Several large-scale datasets have become standard454

testbeds for Video VQA research. We summarize455

the key properties below:456

• MSVD-QA (Xu et al., 2017) Based on the457

MSVD video description corpus, it contains458

∼2k short clips and ∼50k QA pairs covering459

object, action, and temporal reasoning ques-460

tions.461

• MSRVTT-QA (Xu et al., 2017) Built on462

the MSR Video-to-Text dataset, it includes463

∼10k diverse web videos and ∼243k ques-464

tion–answer pairs, focusing on counting, ap-465

pearance, and transition questions.466

• TGIF-QA (Jang et al., 2017) Derived from 467

GIF clips, it provides three QA tasks 468

(FrameQA, CountQA, and ActionQA) de- 469

signed to evaluate both spatial and temporal 470

understanding over short, looped animations. 471

• ActivityNet-QA (Yu et al., 2019) Extends 472

the ActivityNet dataset with open-ended ques- 473

tions about complex, untrimmed videos, re- 474

quiring multi-step inference across longer 475

time horizons. 476

5.2 Continual Learning Splits & Task 477

Sequence Design 478

To transform a static Video VQA dataset into a 479

continual-learning benchmark, the video–QA pairs 480

must be partitioned and ordered into a sequence of 481

tasks. Common strategies include: 482

• Question-Type Split: Group QA pairs by 483

semantic category (e.g. “counting” vs. “ob- 484

ject recognition” vs. “action inference”) and 485

present each category as a separate task 486

(Zhang et al., 2023; Cai et al., 2024). 487

• Answer-Vocabulary Split: Divide the answer 488

space into disjoint subsets (e.g. colors, num- 489

bers, verbs) and introduce each subset incre- 490

mentally to simulate class-incremental learn- 491

ing (Greco et al., 2019). 492

• Domain Split: Partition videos by domain 493

factors (e.g. indoor vs. outdoor, sports vs. 494

cooking) to create domain-incremental tasks 495

where the question types remain the same 496

but the visual appearance shifts (Zhang et al., 497

2025; Cheng et al., 2024). 498

• Curriculum vs. Random Ordering: Tasks 499

may be arranged in increasing difficulty (cur- 500

riculum learning) (Yuan et al., 2022; Akl et al., 501

2024) or in a randomized sequence to evaluate 502

robustness to task order. 503

5.3 Evaluation Metrics 504

To quantitatively assess continual learning in Video 505

VQA, we summarize the following metrics defined 506

in section 2.2.4, which jointly capture a model’s 507

ability to acquire new knowledge (plasticity) and 508

to retain past knowledge (stability). 509

• Average Accuracy (ACC): This metric com- 510

putes the mean test accuracy across all tasks 511
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once the model has finished learning the en-512

tire sequence. It reflects the model’s overall513

ability to both acquire new knowledge and514

retain previously learned skills, serving as a515

single-value summary of final performance.516

• Forgetting: For each earlier task, record its517

highest accuracy at any point during training518

and compare it to its accuracy at the end of519

the sequence. The average drop across all520

tasks quantifies how much performance de-521

teriorated due to learning subsequent tasks,522

directly measuring catastrophic forgetting.523

• Backward Transfer (BWT): This measures524

how learning later tasks affects performance525

on prior tasks. Positive backward transfer526

indicates that training on new tasks has im-527

proved earlier task accuracy (beneficial syn-528

ergy), while negative backward transfer re-529

veals interference and forgetting caused by530

the new tasks.531

• Forward Transfer (FWT): This captures the532

influence that knowledge from earlier tasks533

has on learning new tasks. By comparing the534

model’s performance on each new task before535

and after any training on that task, forward536

transfer quantifies how much prior experience537

accelerates or boosts learning of future tasks,538

indicating zero-shot or few-shot transfer abil-539

ity.540

These metrics jointly measure a model’s stability541

(resistance to forgetting) and plasticity (ability to542

learn new tasks efficiently), providing a comprehen-543

sive evaluation of continual learning performance544

in Video VQA.545

6 Case Studies & Applications546

To demonstrate the practical utility of continual547

learning in Video VQA, we highlight three repre-548

sentative application scenarios.549

6.1 Real-time Video Question Answering550

Systems551

In interactive settings such as live sports com-552

mentary or multimedia customer support, mod-553

els must answer questions on streaming video554

frames with minimal latency. Continual learning555

enables these systems to update on new content556

(e.g., emerging players, novel camera angles, or557

newly defined question types), without retraining558

from scratch. Techniques like lightweight adapter 559

modules (Cheng et al., 2024) or prompt tuning 560

(Qian et al., 2023) ensure quick adaptation while 561

preserving core QA capabilities on previously seen 562

video domains. 563

6.2 Autonomous Driving & Security 564

Surveillance 565

In autonomous vehicles and surveillance platforms, 566

video streams evolve over time due to changing 567

environments, weather conditions, or novel event 568

categories (e.g., new traffic signs, unusual behav- 569

iors) (Lin et al., 2025). Continual Video VQA al- 570

lows models to incorporate these shifts, answering 571

queries such as “Is there a pedestrian in the cross- 572

walk?” or “Has the traffic light changed color?” 573

while retaining accuracy on earlier learned scenar- 574

ios. Replay-based methods with bounded memory 575

buffers and domain-robust feature extractors are 576

particularly effective at minimizing catastrophic 577

forgetting in safety-critical deployments. 578

6.3 Educational Tools & Human–Computer 579

Interaction 580

In intelligent tutoring systems and assistive inter- 581

faces, Video VQA can support interactive learning 582

by answering student questions about video lec- 583

tures, laboratory demonstrations, or instructional 584

animations (Du et al., 2024). As curricula evolve 585

(new concepts, visual experiments, or updated 586

teaching styles), continual learning ensures that the 587

QA model stays current without losing proficiency 588

on foundational topics. Regularization-based strate- 589

gies (e.g., EWC) and prompt-based adaptation fa- 590

cilitate seamless updates in educational platforms 591

with minimal human intervention. 592

7 Challenges & Open Issues 593

Although continual learning for Video VQA has 594

advanced significantly, several fundamental chal- 595

lenges and open research directions remain. 596

7.1 Long term Dependencies and Temporal 597

Modeling 598

Videos often contain long range dependencies span- 599

ning hundreds of frames, making it difficult for 600

models to maintain coherent reasoning over time. 601

Temporal modeling architectures such as transform- 602

ers or memory modules can mitigate this issue, 603

but they may scale poorly and tend to forget early 604

frames when updated on new tasks. Open questions 605

7



include designing efficient architectures that cap-606

ture extended context without excessive compute,607

and developing temporal abstraction mechanisms608

to compress video information while preserving609

crucial long term cues.610

7.2 Balancing Memory and Computational611

Costs612

Replay buffers or generative replay introduce stor-613

age and compute overhead that grows with the614

number of tasks or video length. Parameter iso-615

lation methods trade parameter efficiency against616

task coverage, but may not scale as the task se-617

quence grows. Future research should focus on618

adaptive memory management strategies (for ex-619

ample dynamic coreset selection or compression)620

and lightweight update rules (for example low rank621

adapters or prompt tuning) to achieve scalable con-622

tinual learning in resource constrained environ-623

ments.624

7.3 Multimodal Feature Alignment625

Video VQA requires aligning visual features with626

linguistic representations across tasks, yet contin-627

ual updates can disrupt previously learned align-628

ment and degrade cross task performance. Domain629

or task shifts exacerbate this misalignment, leading630

to poor retention of earlier question types. Open631

issues include developing stable multimodal em-632

bedding spaces, contrastive objectives that resist633

forgetting, and calibration techniques to maintain634

semantic consistency across evolving video and635

language distributions.636

7.4 Explainability and Safety637

As Video VQA systems are deployed in critical ap-638

plications (for example surveillance, autonomous639

driving, or healthcare), interpretability of model640

decisions and robustness to adversarial inputs be-641

come paramount. Existing continual learning meth-642

ods focus primarily on accuracy and forgetting,643

with limited attention to explainable reasoning or644

safety constraints. Future work must integrate in-645

terpretability modules (for example attention vi-646

sualization or causal reasoning traces) and certify647

safety properties (for example bounded error under648

domain shift or secure memory access) to ensure649

trustworthy Video VQA in dynamic environments.650

8 Future Directions651

Looking forward, several promising directions can652

further enhance continual learning for Video VQA.653

The proliferation of video–language foundation 654

models (e.g. VideoCLIP, Flamingo, GPT-4V) offers 655

rich spatiotemporal and semantic priors. Future 656

work should investigate tighter coupling between 657

these backbones and continual learning strategies, 658

for example by dynamically selecting which layers 659

to freeze or adapt, by designing task-specific soft 660

prompts that evolve with new data, or by leveraging 661

cross-task contrastive objectives to maintain shared 662

representation quality across sequential updates. 663

Real-world Video VQA systems demand low- 664

latency adaptation under limited memory and com- 665

pute budgets. Research should focus on event- 666

driven updates (only updating on uncertain or novel 667

examples), adaptive buffer schemes (prioritizing 668

samples with high forgetting risk), and lightweight 669

optimization techniques (such as sketching gradi- 670

ents or low-rank parameter updates) to enable scal- 671

able, real-time continual learning on edge devices. 672

9 Conclusion 673

In this survey, we have provided a systematic 674

overview of continual learning techniques applied 675

to Video Visual Question Answering. We began by 676

contrasting video VQA with its image-based coun- 677

terpart, highlighting the unique challenges posed 678

by temporal dynamics and multimodal integration. 679

We then categorized existing continual learning 680

methods into replay-based, regularization-based, 681

parameter-isolation, meta-learning, and prompt- 682

based approaches, and analyzed their strengths and 683

weaknesses in the context of Video VQA. We re- 684

viewed common benchmark datasets and outlined 685

strategies for constructing continual-learning splits 686

and evaluation protocols. Finally, we discussed 687

practical applications, identified open challenges, 688

and suggested future research directions. By syn- 689

thesizing recent advances and organizing them into 690

a coherent framework, we aim to guide researchers 691

toward the development of robust, scalable lifelong 692

video understanding systems. 693

10 Limitations 694

While this survey covers a broad spectrum of 695

methodologies and applications, several limita- 696

tions remain. First, our discussion focuses primar- 697

ily on supervised continual learning and does not 698

deeply explore unsupervised or semi-supervised 699

paradigms. Second, the benchmarks reviewed are 700

mostly medium-scale datasets; we do not evaluate 701

performance on very large or real-world video cor- 702

8



pora. Third, empirical comparisons between meth-703

ods are based on published results under heteroge-704

neous protocols, which may limit direct fairness.705

Finally, rapidly evolving foundation models and706

hardware accelerators are changing the practical707

feasibility of some approaches; our analysis may708

become outdated as new architectures and compute709

paradigms emerge.710
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Appendix Table A1: Comprehensive Comparison of Visual Question Answering Datasets

Dataset Year # Images/Videos # QA Pairs Answer Format Temporal Media Type Source Key Features

Image-based VQA Datasets

VQA v1.0 2015 204,721 images 614,163 Open-ended × Image MS COCO First large-scale VQA dataset; strong language priors

TDIUC 2017 170,000 images 1.6M+ Open-ended × Image MSCOCO A dataset for diverse, balanced, and detailed visual question answering.

VQA v2.0 2017 265,016 images 1.1M+ Open-ended × Image MS COCO Balanced with complementary images; reduced language bias

iVQA 2018 200,000 images 1.1M+ Open-ended × Image MS COCO Inverse VQA; generates questions from images and answers

VQuAD 2022 7,000 1.3M+ Open-ended × Image Synthetic Video frames with question answering in document format

Video-based VQA Datasets

MovieQA 2016 408 14,944 Multiple-choice ✓ Video Movies Includes subtitles, scripts, and plots; story understanding

TGIF-QA 2017 71,741 165,165 Multiple-choice ✓ GIFs Tumblr GIFs Repetition count, action, transition, and frame QA tasks

MovieFIB 2017 128,085 348,998 Fill-in-blank ✓ Video Movies Movie clips with fill-in-the-blank task

MarioQA 2017 13 hours 187,757 Multiple-choice ✓ Game video Mario game Gaming environment; rule-based automatic generation

MSVD-QA 2017 1,970 50,505 Open-ended ✓ Video YouTube Derived from MSVD dataset; 5 question types

MSRVTT-QA 2017 10,000 243,680 Open-ended ✓ Video YouTube Larger scale than MSVD-QA; diverse visual content

TVQA 2018 21,793 152,545 Multiple-choice ✓ Video TV shows Combines video frames and subtitles; 6 TV shows

PororoQA 2018 16,066 27,328 Open-ended ✓ Animation Cartoon Children’s cartoon; character-centric questions

LifeQA 2018 275 2,326 Multiple-choice ✓ Video Daily life Everyday activities; realistic situations

ActivityNet-QA 2019 5,800 58,000 Open-ended ✓ Video ActivityNet Long videos (avg 180s); human activities focus

Social-IQ 2019 1,250 7,500 Multiple-choice ✓ Video Social videos Social intelligence; human behavior understanding

CLEVRER 2019 20,000 305,000 Multiple-choice ✓ Synthetic Rendered physics Physical reasoning in synthetic scenes; causal understanding

TVQA+ 2019 4,200 29,383 Multiple-choice ✓ Video TV shows TVQA extension with spatial bounding box annotations

DramaQA 2020 23,928 17,983 Multiple-choice ✓ Video Korean drama Four levels of reasoning difficulty; character-centric

KnowIT VQA 2020 12,087 24,282 Multiple-choice ✓ Video TV sitcom Requires external knowledge beyond video content

How2QA 2020 22,000 44,007 Multiple-choice ✓ Video Instructional Based on instructional videos; multimodal learning

Tutorial VQA 2020 76 6,195 Open-ended ✓ Video Tutorials Instructional videos with detailed explanations

V2C-QA 2020 1,500 37,000 Open-ended ✓ Video MSRVTT Video-to-commonsense QA; requires world knowledge

NExT-QA 2021 5,440 52,044 Multiple-choice ✓ Video YouTube Causal and temporal reasoning; complex questions

AGQA 2021 9,595 192,000 Multiple-choice ✓ Video Charades Compositional reasoning; systematically generated QA

SUTD-TrafficQA 2021 10,080 62,535 Multiple-choice ✓ Video Traffic scenes Focus on traffic scenarios and accident analysis

ENV-QA 2021 23,261 85,072 Open-ended ✓ Video Environment Environmental scenes; domain-specific knowledge

Value 2021 152,600 252,400 Open-ended ✓ Video Various Human value understanding; normative reasoning

YouTube2Text-QA 2021 1,987 122,708 Open-ended ✓ Video YouTube Based on YouTube2Text corpus; natural language QA

Charades-SRL-QA 2021 9,513 71,735 Open-ended ✓ Video Charades Semantic role labeling for action understanding

ASRL-QA 2021 35,805 162,091 Open-ended ✓ Video ActivityNet Action semantic role labeling for QA

Pano-AVQA 2022 5,400 51,700 Multiple-choice ✓ 360° Video Panoramic 360-degree videos; audio-visual reasoning

Music-AVQA 2022 9,288 45,867 Multiple-choice ✓ Video+Audio Music videos Musical understanding; audio-visual integration

WebVidVQA3M 2022 3M 3M Open-ended ✓ Video Web videos Web-scale pretraining for open-domain video QA

WildQA 2022 369 916 Open-ended ✓ Video In-the-wild Uncontrolled environments; practical use cases

HowToVQA69M 2022 69,000 69M Open-ended ✓ Video HowTo100M Large-scale weakly supervised dataset from instructional videos

EgoSchema 2023 250 hours 5,000+ Multiple-choice ✓ Video Egocentric First-person perspective; procedural understanding

Video-ChatGPT 2023 100,000 100,000 Open-ended ✓ Video Various Instruction-response pairs; conversational format

FIBER 2023 2.9M 11.2M Multiple-choice ✓ Video Web videos Large-scale weakly supervised; benchmark for video reasoning

VideoInstruct100K 2024 100,000 100,000 Open-ended ✓ Video Various Diverse instruction-tuning data for video LLMs

STAR 2024 22,000 60,000+ Multiple-choice ✓ Video Various Situated reasoning in diverse scenarios
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Appendix Table A2: Comparison of Continual Learning Methods for Visual Question Answering.

Method Innovation Methodology Pros Cons

MAFED Modality-aware feature distil-
lation

Applies weighted distillation
losses on visual and textual
modalities

Mitigates modality-specific for-
getting; improves stability

Requires careful weight tuning;
increased computation

Symbolic Replay Scene graph as replay prompt Extracts scene graphs to serve
as symbolic replay for past
tasks

Low memory/storage; privacy-
friendly

Dependent on scene graph
quality; may lose fine-grained
details

QUAD Query-based Interpretable Neu-
ral Motion Planning for Au-
tonomous Driving

Query occupancy at sparse
points for planning

Efficient, interpretable, safer
driving

Depends on good trajectory
sampling

TRIPLET Decoupled multi-modal
prompt learning

Uses decoupled prompts
(across modalities and layers)
with prompt interaction strate-
gies

Enhances multi-modal fusion
and modality interaction

Complex prompt design and
training dynamics

LLM-Assisted Multi-
Teacher

Multi-teacher guidance using
LLMs

Leverages teacher models to
guide incremental learning in
surgical VQA

Utilizes strong LLM perfor-
mance; robust in high-stakes
domains

High computational cost;
domain-specific tuning

VQACL Dual-level continual learning
setting for VQA

Constructs outer (language-
driven) and inner (vision-
driven) tasks with SS/SI
feature learning

Comprehensive benchmark;
tests compositional generaliza-
tion

Complex task partitioning and
setup

One VLM to Keep it
Learning

Data-free continual learning
via pseudo-data generation

Uses VLM to generate pseudo-
data and balances old vs. new
knowledge

Eliminates data storage issues;
privacy-friendly

Variable pseudo-data quality;
delicate balancing mechanism

VLM-Assisted (Self-
Driving)

Continual VQA tailored for au-
tonomous driving

Combines VLM, selective
memory replay, distillation,
and projection layers

Suitable for safety-critical self-
driving; effective balance

Domain-specific adjustments
needed; scalability challenges

ViLCo-Bench Continual learning benchmark
for video-language tasks

Provides standard protocols
and diverse scenarios for evalu-
ation

Facilitates fair comparison; di-
verse task coverage

Complex benchmark setup;
may have limited scope

ColPro Collaborative prompt optimiza-
tion

Optimizes prompts collabora-
tively across tasks

Improves prompt efficiency
and adaptation

Requires extensive tuning; de-
tails less documented

DAM Merge adapters dynamically
for continual VidQA learning

Efficient, less forgetting,
strong domain generalization

Alleviates forgetting via distil-
lation

Relies on good router predic-
tion and adapter quality

MA-LMM Store past video info in mem-
ory for efficient long-term un-
derstanding

Handles long videos, low GPU
memory, plug-and-play

Needs careful memory com-
pression to avoid redundancy

Appendix Figure A1: This timeline graph clearly illustrates the evolution of Video VQA datasets from 2015–2024,
showing progression from basic image VQA to sophisticated video understanding benchmarks across diverse
domains.
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