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Abstract

Specialized reasoning language models (RLMs) have demonstrated that
scaling test-time computation through detailed reasoning traces signifi-
cantly enhances performance. Although these traces effectively facilitate
knowledge distillation into smaller, instruction-tuned models, the pre-
cise nature of transferred reasoning remains unclear. In this study, we
investigate to what extent distilled models internalize replicated stylistic
patterns during reasoning. To this end, we systematically analyze rea-
soning traces, identifying structural and lexical patterns that characterize
successful reasoning. We then introduce two new datasets — a dataset of
emergent reasoning traces and a synthetic dataset explicitly constructed to
replicate these stylistic patterns — to precisely examine their influence on
distilled models’ reasoning capabilities. We find that models trained on the
synthetic traces achieve comparable performance, indicating that distilled
reasoning abilities rely significantly on surface-level patterns. Surprisingly,
we observe an increase in performance even when the synthetic traces are
altered to lead to the wrong answer. Our findings highlight how stylistic
patterns can be leveraged to enhance LM reasoning across model families.

1 Introduction

Reasoning is fundamental to artificial intelligence, enabling systems to solve problems,
make decisions, and explain outcomes. While traditional approaches to improving lan-
guage model (LM) reasoning emphasize increased train-time compute (Kaplan et al., 2020;
Hoffmann et al., 2022), recent research highlights that scaling test-time compute through
self-refinement is similarly effective (Snell et al., 2024). This insight has inspired specialized
reasoning-focused LMs (RLMs), such as ol (OpenAl, 2024) and R1 (DeepSeek-Al et al.,
2025), which generate detailed reasoning traces of their thought process during inference.

Reasoning traces have proven effective for distillation (Schmidhuber, 1992; Hinton et al.,
2015), efficiently transferring sophisticated cognitive skills from RLMs to smaller, instruction-
tuned models (Team, 2025). Yet, the precise nature of the reasoning knowledge transferred
remains poorly understood (Allen-Zhu & Li, 2023). In particular, it is unclear whether
distilled models genuinely internalize complex reasoning abilities or replicate superficial
stylistic patterns from the original traces. This ambiguity echoes broader AI debates about
whether language models genuinely understand content or simply engage in surface-level
imitation (Bender & Koller, 2020; Bender et al., 2021; Shanahan, 2024; Mirzadeh et al., 2025).
This uncertainty leads to a fundamental question: are we genuinely enhancing the reasoning
capabilities of models, or merely teaching them to mimic domain-specific patterns that
happen to improve performance on benchmarks? Motivated by this ambiguity, we aim to
establish whether style is key to improvements in reasoning, where style is characterized
primarily by structural attributes such as trace length, lexical coherence, and backtracking
frequency, rather than comprehension itself.

To examine this, we first systematically analyze successful reasoning traces produced by
state-of-the-art RLMs, identifying recurrent structural and lexical patterns. This analysis,
guided by cognitive science frameworks that characterize critical stages in human problem-
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Style can drive improvements in reasoning

Distilling of reasonin. ST: Emergent reasoning traces set ST-HC: Synthetic reasoning traces ST-HC-W: Synthetic reasoning
9 9 with correct answers set with correct answers traces set with incorrect answers
from teacher model
via SFT on different l l
datasets § §
[ Question: How many positive integers less than 10,000 have at most two different digits? ]
Answer: 9999 Okay, so | need to figure out ... To tackle this problem, I need to ... I need to count the number of integers ..
Wait, but the problem says I missed something in my assumptions ... Wait, just to be thorough, what ..
Now, moving on to numbers with ... To verify this formula .. Another way to look at this is Using ...
— Incorrect answer Alternatively, the formula for the number .. Now | see how this connects to the number ... Putting this together, | can count .
prior to finetuning Therefore, total numbers with at most two
Answer: 927 Answer: 927 Answer: 927

Figure 1: Reasoning trace style has noticeable influence on distilled model performance.
We show how different types of reasoning traces — emergent traces with correct answers,
synthetic traces with correct answers, and synthetic traces with incorrect answers — affect
model performance after finetuning. All three approaches give the right answer due to
improved reasoning capabilities compared to base models. Pivots highlighted in bold.

solving (Newell & Simon, 1972), reveals that effective reasoning traces consistently exhibit
distinct metacognitive behaviors. These behaviors are often signaled by lexical pivots — markers
such as “Wait” or “What if” — that prompt reconsideration of assumptions or integration of
new insights.

Based on these findings, we introduce two complementary datasets explicitly designed
to clarify the role of style in improving reasoning. The first dataset, SMOLTRACES (ST),
comprises verified question-answer pairs with sophisticated reasoning traces generated
by a state-of-the-art RLM, displaying naturally emergent reasoning behaviors. The second
dataset, SMOLTRACES-HARDCODED (ST-HC), is synthetically constructed by embedding
only the structural and lexical stylistic patterns identified earlier into reasoning traces
generated by a standard LM without specialized reasoning capabilities. By comparing
models trained on these datasets through supervised fine-tuning (SFT) (Brown et al., 2020),
we evaluate how stylistic consistency influences reasoning performance. Our experiments
demonstrate that even stylistically consistent synthetic traces from a weaker model achieve
comparable downstream reasoning performance, underscoring the importance of style as a
critical factor in model training.

Further experiments contextualize these findings through targeted ablation studies, which
examine the relative importance of trace correctness versus style. Remarkably, we find that
stylistically consistent reasoning traces — even those explicitly designed to lead to incorrect
conclusions — still substantially enhance downstream reasoning performance over the base
model, as shown in figure 1. These results underscore that stylistic consistency significantly
influences LM reasoning capabilities, providing an explanation for the effectiveness of
reasoning distillation from RLMs to regular LMs.

In summary, our work makes two major contributions: (1) we demonstrate that distilled
reasoning improvements rely heavily on stylistic patterns present in reasoning traces; and
(2) we identify specific structural and lexical features indicative of successful reasoning.
Collectively, these contributions deepen our understanding of how language models per-
form reasoning tasks, and the datasets we release can serve as valuable resources for future
research into synthetic data generation and fine-tuning methodologies that explicitly target
the relationship between reasoning trace style and substance.

2 Background

Chain-of-Thought Early approaches to elicit reasoning from LMs, such as Chain-of-Thought
(CoT) (Wei et al., 2023), demonstrate that intermediate reasoning steps are key for LMs to
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Figure 2: Comparison of emergent and synthetic reasoning traces for solving the same
problem. The left side shows a reasoning trace generated by an RLM, while the right side
displays a synthetic trace created using our hard-coded template with predefined pivots.
Both approaches follow similar cognitive stages (center): problem framing, exploration, ver-
ification, and synthesis. The dashed boxes highlight examples of each stage, demonstrating
that synthetic traces can effectively replicate the style of emergent reasoning.

improve their problem-solving abilities (Zhang et al., 2022). While CoT improves perfor-
mance on reasoning tasks, it primarily focuses on generating a linear sequence of steps
towards a solution. On the other hand, RLM reasoning traces (sometimes called “long CoT”)
— which are the focus of this paper — differ from CoT as they do not just try to build toward
the solution linearly, but instead actively backtrack, verify, and explore different lines of
thinking.

Reasoning traces Reasoning traces are semi-structured textual representations that capture
a model’s thought process while working toward the solution of a problem during inference.
Here, additional tokens are generated before the final answer is given to reason about the
problem. These traces typically include explicit markers of metacognition, such as planning
statements, hypothesis testing, and self-correction. For an example of a full reasoning trace,
see appendix A. A key characteristic of effective reasoning traces is the presence of pivots,
points where the model explicitly moves between different categories of metacognition. We
delve into the specific types of pivots in section 3.1.

Finetuning on reasoning traces Recent research has demonstrated that finetuning language
models on reasoning traces significantly enhances their reasoning capabilities (Huang et al.,
2024a; Team, 2025; DeepSeek-Al et al., 2025). In this approach, detailed reasoning traces
generated by RLMs are used as training data to transfer structured reasoning behaviors
into smaller, instruction-tuned models via SFT (Min et al., 2024). Models finetuned on these
traces consistently outperform those trained only on final answers or simpler step-by-step
solutions, suggesting that the explicit structure and content of reasoning traces play a critical
role in improving model performance (Xu et al., 2025; Labs, 2025). Despite these successes,
the precise mechanisms underlying the effectiveness of reasoning trace distillation remain
unclear, particularly regarding the balance between structural stylistic cues and the cognitive
complexity of the reasoning itself.

3 Hard-coding reasoning traces to approximate emergent ones

In examining whether distilled models internalize genuine reasoning capabilities or pri-
marily benefit from structural and lexical patterns, we investigate the relationship between
style and substance in reasoning traces. Here, style encompasses the structural and lexical
features while substance refers to factual correctness and semantic content. To examine
stylistic influence, we develop a methodology that replicates the structural patterns of
successful reasoning while varying content, allowing us to assess style’s contribution to
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reasoning distillation. We hypothesize that emergent reasoning behaviors can be effec-
tively approximated by encoding the metacognitive pivots characteristic of RLM traces
into synthetic reasoning traces. We define emergent traces as those naturally produced by
RLMs after training via reinforcement learning, while synthetic traces refer to our approxima-
tions that incorporate the stylistic elements we identify as key, but originate from standard
LMs without specialized reasoning capabilities. This approach reduces reliance on costly

RLM inference! while enabling us to control stylistic components that potentially drive
performance improvements in distilled models.

3.1 Reasoning trace structure and pivot types

Trace analysis Effective reasoning traces exhibit systematic structural patterns reflective of
human-like problem-solving strategies. Cognitive science literature characterizes human
reasoning as a structured process comprising distinct stages: problem framing, hypothesis
exploration, verification, and synthesis (Newell & Simon, 1972). Guided by this framework,
we systematically analyze 17K successful reasoning traces produced by a state-of-the-art
RLM (see appendix B for details) and find that effective RLM-generated reasoning traces
consistently align with these cognitive stages. Specifically, reasoning traces begin with
explicit problem framing, restating and clarifying key aspects of the problem leading to a
plan, followed by an exploration stage in which hypotheses or potential solution paths are
considered. This is complemented by a verification stage, characterized by explicit checking
of hypotheses or intermediate results, culminating in a final synthesis, integrating insights
from earlier stages into a coherent solution.

Pivot types Crucially, effective reasoning traces are rarely linear; instead, they frequently re-
visit previous stages to correct errors, validate assumptions, or explore alternative strategies.
This non-linear metacognitive behavior is operationalized through pivots — lexical markers
signaling explicit shifts between reasoning stages. Our analysis identifies four primary pivot
categories, each aligning closely with a corresponding reasoning stage: (1) Realization pivots,
such as “Wait” or “Oh,” signal recognition of errors or oversights during the exploration
stage; (2) Verification pivots, initiated by phrases such as “Let me check,” explicitly validate
intermediate hypotheses; (3) Exploration pivots, introduced with phrases such as “What if”
or “Another approach,” prompt the consideration of alternative solution paths; and (4)
Integration pivots, typically signaled by expressions such as “Now I see how,” synthesize
previously explored ideas into a coherent final solution. We visualize what these stages look
like in practice for emergent and synthetic traces in figure 2

Our analysis reveals that successful reasoning traces commonly employ multiple pivot
types (96.1% contain at least three pivot categories, additional information per type given
in appendix B), whereas unsuccessful traces frequently lack such pivots or exhibit limited
diversity. This underscores the critical importance of structured, metacognitive transitions
in effective reasoning. Motivated by these insights, we explicitly encode these structural and
lexical patterns into a reasoning template to facilitate the generation of synthetic reasoning
traces that capture RLM-like reasoning behaviors. We show the associated prompt structure
in figure 3, which we subsequently use to guide reasoning trace generation (section 3.2),
enabling us to systematically control and isolate stylistic reasoning elements in order to
examine their impact on reasoning performance. First, the pivot categories are explicitly
defined, followed by the general stages of problem solving that they correspond to. To
generate the synthetic data, in addition to this prompt, the teacher LM is given the question
and instructions on how to format its answer.

3.2 Reasoning trace data generation

Collect seed data Initially we curate seed data consisting of questions and their correct
answers, ensuring that the accuracy of the eventual synthetic data can be verified. While
previous works on RLM distillation often focus exclusively on math (Huang et al., 2024a), we

1At time of writing, the difference in API costs per token between flagship LMs and RLMs approach
an order of magnitude from the same provider: input/output pricing of $2.50/$10.00 for GPT-40
compared to $15.00/$60.00 for ol https://openai.com/api/pricing/ [Accessed: 2025-02-21]


https://openai.com/api/pricing/
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Prompt for Structured Reasoning with Explicit Pivots

This task requires solving problems using structured, real-time reasoning, including
explicit self-monitoring and self-correction. Mimic the thought process of an agent
that regularly pauses to reconsider assumptions, verify intermediate results, explore
alternatives, and integrate findings into coherent solutions. Use explicit lexical pivots
to signal shifts in thinking or corrections to your reasoning.

When solving the problem, follow a structured reasoning trace that clearly moves
through the following stages:

1. Problem Framing: Restate the problem and identify key elements clearly.

2. Exploration: Consider one or more potential solution paths, openly weighing
alternatives.

3. Verification: Explicitly test intermediate results or assumptions; if inconsistencies
arise, pivot explicitly to clarify or correct.

4. Synthesis: Clearly integrate findings into a coherent solution, explicitly connecting
back to the original problem.

Revisit each stages as many times as necessary, backtracking in your thinking as
much as possible.

When moving from one stage to the next, do so by leveraging a pivot at the start of
your sentence to signal the shift from one reasoning stage to another. Here are the
categories of pivots with some examples:

Realization pivots (recognizing errors or oversights): “Wait—", “Oh—", “Actu-
ally—", “I missed something—".

Verification pivots (explicitly testing assumptions or results): “Let me double-
check—", “To verify—", “Checking again—".

Exploration pivots (considering alternative approaches): “What if—", “Another way
to look at this—", “Alternatively—".

Integration pivots (synthesizing different ideas or resolving contradictions): “Now I
see how—", “This connects back to—", “Putting this together—".

Use direct, concise language. Short sentences should represent your evolving
thoughts clearly. Use pivots naturally to signal shifts in reasoning, corrections,
or deeper insights. Be explicit about confusion or uncertainty when it arises.

The goal is to clearly capture the structured yet flexible process of reasoning, high-
lighting non-linear thinking and self-correction, while making the logic easy to follow
in a stream-of-conciousness style.

Figure 3: The prompt used to guide GPT-4o for generating the synthetic ST-HC dataset. This
prompt explicitly defines the four key pivot types (Realization, Verification, Exploration, Integration)
and mandates adherence to the four reasoning stages (Problem Framing, Exploration, Verification,
Synthesis) derived from our analysis of emergent RLM traces (section 3.1). Its goal is to enforce specific
stylistic patterns, including non-linear thinking and explicit self-correction, characteristic of effective
reasoning.

aim to cover a wider range of additional domains that benefit from reasoning, such as coding,
science, and logic. Specifically, for questions from several scientific domains, we select
OlympicArena (Huang et al., 2024b). For logic and coding, we select AGIEval (Zhong et al.,
2023) and LiveCodeBench v4 (Jain et al., 2024), respectively. We select NuminaMATH (LI
et al., 2024), where we randomly select a subset of 20,000 samples, and OmniMath (Gao
et al., 2024) as sources of quantitative reasoning problems for our seed data, resulting a total
of 31,586 question-answer pairs.

Generate synthetic traces We use the seed data to generate high-quality synthetic reasoning
traces via state-of-the-art RLMs and LMs. For ST, we choose R1 as, at the time of writing, it
is the best performing RLM that provides its full reasoning traces as part of its response. For
ST-HC, we choose GPT-40 as our teacher model — using the prompt structure specified in
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figure 3. We perform up to five rollouts per seed sample, discarding incorrect responses,
stopping if the model provides the correct answer. The rollouts are done in a zero-shot
manner, i.e. we provide only the question to the model and do not keep previous attempts
as context.

Filtering synthetic samples First, we filter out samples that are of short length (less than 50
tokens for the entire trace) to prioritize sample quality, as shorter samples typically contain
few pivots and are therefore not as impactful in training. In an effort to provide a fairer
comparison, we align the datasets to the same number of samples by downsizing the larger
dataset. As the final ST-HC dataset contained fewer samples (N=18,242), we downsample
the larger ST dataset to match this size, randomly removing questions not present in ST-HC
and ensuring both datasets used for finetuning contain an equal number of samples. This
results in a final 18K samples for both ST and ST-HC, each in the form of a triple (question,
reasoning trace, answer). We provide a more detailed overview of the resulting datasets in
appendix C.

3.3 Experimental details

Model finetuning We finetune a range of already instruction-tuned base LMs using our
contributed reasoning datasets. For this, we select recent models of different families and
sizes, namely: Llama 3.2 3B (Meta, 2024), Ministral 8B (Jiang et al., 2023), and Qwen2.5
32B (Qwen et al., 2025). We choose these models as they are all high performing for their
parameter count, come with open-source weights, and have permissive licenses. The
learning rate used during SFT varies for each LM in line with the model’s parameter count.
For 3B models we use a peak learning rate of 6 x 107>, for 8B models we use 4 x 1075,
and for 32B models we use 1 x 10~°. For all models we use an effective batch size of 16.
All models are trained for five epochs using a linear warmup for the first 10% of steps
followed by cosine annealing. We use the AdamW optimizer (Loshchilov & Hutter, 2019)
with B; = 0.9 and B = 0.95 and a weight decay of 1 x 10~*. Training is performed on a
system comprising 8 Nvidia H100 GPUs using bfloat16 precision.

Baselines To contextualize our findings, we evaluate (1) the base instruction-tuned model,
(2) the model after SFT on ST, and (4) the model after SFT on ST-HC. Additionally, to gauge
the impact of the particular style replication we propose versus distilling from regular CoT,
we add another baseline, where we instruct the generating LLM to think step-by-step (SBS),
following Kojima et al. (2023). We then use the resulting CoT for distillation — similarly to
how we use the emergent (ST) and synthetic (ST-HC) reasoning traces. This comprehensive
evaluation allows us to isolate the impact of our hard-coded reasoning approach across
different model sizes and compare it against the reasoning capabilities of the model itself.
For completeness, we evaluate the teacher models used to generate our datasets as well.

Evaluation To evaluate the reasoning capabilities of all models, we select challenging, widely
used benchmarks that test reasoning capabilities. These include MATHS500 (Lightman et al.,
2023), AIME2024, and GPQA (Rein et al., 2024); covering math and a range of scientific
domains. Specifically, MATH500 and AIME2024 feature 500 and 30 competition math
problems, respectively. GPQA consists of 198 questions from a range of scientific fields
such as Biology and Chemistry. We focus only on the hardest (“Diamond”) subset of this
particular dataset.

4 Results and discussion

4.1 Hard-coded reasoning results

The performance across all combinations of models and datasets evaluated in our study
is presented in table 1. Our results clearly indicate that models finetuned with structured
reasoning traces, whether emergent (ST) or synthetic (ST-HC), consistently and significantly
outperform their baseline instruction-tuned counterparts across all benchmarks. Notably,
even the smaller 3B and 8B parameter models exhibit substantial performance improve-
ments. For instance, the Llama 3.2 3B model gains over 31 absolute percentage points on
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Model Variant Params MATH500 AIME2024 GPQA (D)
Base 3B 36.4 6.7 26.3
Llama 3.2 SBS 3B 45.8 10.0 28.3
ST 3B 68.4 23.3 31.3
ST-HC 3B 64.2 16.7 29.3
Base 8B 52.8 10.0 28.8
Ministral SBS 8B 60.6 16.7 31.3
ST 8B 78.2 33.3 38.9
ST-HC 8B 77.0 33.3 34.8
Base 32B 76.8 16.7 49.0
Qwen2.5 SBS 32B 78.2 20.0 49.5
ST 32B 89.0 53.3 56.1
ST-HC 32B 834 46.7 53.0
R1 671B 96.8 76.7 71.7
Teacher Models GPT-40 - 754 13.3 53.0
GPT-40 HC - 81.2 16.7 55.1

Table 1. Performance comparison of language models finetuned on reasoning traces. We compare
base models against versions finetuned on SBS (step-by-step thinking GPT-40), ST (emergent traces
from R1), and ST-HC (synthetic traces from GPT-40 with the prompt in figure 3). This evaluates the
impact of reasoning trace style on downstream performance across model scales and benchmarks.
GPT-40 HC refers to the base LM prompted with our structure from figure 3. All results are pass@1
accuracy as a percentage.

MATH500 when finetuned on ST, and the Ministral 8B model sees its AIME2024 score more
than triple with either ST or ST-HC finetuning. These findings demonstrate that smaller
models can markedly benefit from structured reasoning finetuning, challenging previous
suggestions of minimal improvements for models of this scale (Team, 2025). Comparing
the two fine-tuning approaches, we observe that models trained on synthetic traces achieve
performance that approaches, and in some cases matches those trained on emergent RLM
traces. This demonstrates that replicating the style of reasoning, even using a less capable
teacher model guided by our prompt, is highly effective for distilling reasoning capabilities.
Finally, the results show that while generating synthetic data with a SBS prompt is beneficial
compared to the base model, there is a significant performance gap between SBS and our
ST and ST-HC methods. This demonstrates that the performance improvements are indeed
substantially driven by the specific stylistic patterns we identified, rather than solely by
distilling the generating LLM's general reasoning abilities.

When analyzing the thinking process during evaluation, we observe a clear correlation
between successful reasoning and longer reasoning traces, as illustrated in figure 4. Models
finetuned on either emergent or synthetic reasoning traces consistently produce substantially
longer outputs compared to their respective base models across all evaluation benchmarks.
This suggests that adopting and replicating a structured, elaborate reasoning style — whether
learned from emergent traces or via synthetic ones — is a key mechanism driving the
enhanced downstream reasoning capabilities we observed. Notably, figure 4 shows that
finetuning on ST yields slightly longer reasoning traces than ST-HC, which correlates with
their relative performance to one another — corroborating that a larger number of tokens
spent thinking typically correlates with improved reasoning (Muennighoff et al., 2025).

4.2 Ablative study

To further isolate the impact of reasoning style versus factual correctness, we conduct an
ablation study using two modified datasets. First, we create ST-HC-W by adapting the
synthetic ST-HC traces to retain their stylistic structure while leading to incorrect final
answers generated by GPT-4o0-mini (details given in appendix D). Second, we create ST-
NT, which contains only the question-answer pairs from the original ST data, removing
the reasoning traces entirely. The results, presented in table 2, reveal several key insights.
Models finetuned on ST-HC-W consistently outperform the base instruction-tuned models
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Figure 4: Average token count by model family and training dataset across evaluations.

across all evaluation benchmarks. This demonstrates that learning the stylistic patterns
of reasoning enhances problem-solving capabilities even when the training data’s final
conclusion is incorrect. However, ST-HC-W models perform noticeably worse than those
trained on the stylistically similar but factually correct ST-HC dataset, confirming the value
of accurate data. Unsurprisingly, models trained on ST-NT show only modest gains over
the base models, as they do not learn to generate additional thinking tokens in the style of
an RLM during inference.

These ablations confirm that while factual correctness is important for optimal performance,
the stylistic patterns inherent in reasoning traces play a critical role in enhancing the rea-
soning abilities of distilled models. Crucially, we do not claim that style alone improves
reasoning as the body of the traces still contains correct reasoning up until the answer, but
rather emphasize that style is essential for improving reasoning capabilities. Thus, unlike
traditional distillation methods relying predominantly on sample correctness, our results
suggest that explicitly transferring a specific output structure is important.

5 Related work

Language model reasoning Language model reasoning has received increasing interest in
recent years (Cobbe et al., 2021). Initially, LMs were conditioned on reasoning examples dur-
ing pretraining, post-training or in-context to improve their reasoning capabilities (Zhang
et al., 2022; Wang et al., 2023; Wei et al., 2023; Li et al., 2024), but test-time scaling (Snell
et al., 2024; Muennighoff et al., 2025) has introduced a new paradigm for improving LM
reasoning. Further, DeepSeek-Al et al. (2025) explore training RLMs with reinforcement
learning, finding that they mimic human reasoning processes like self-reflection and verifica-
tion. The resulting RLMs provide reasoning traces as training data to enhance LM reasoning
ability. Our work demonstrates that the structural and lexical patterns in these traces play a
significant role in improving reasoning performance, offering insights into what is actually
transferred during reasoning distillation.

Generalization in language models Generalization in language models implies the ability
to tackle unseen problems rather than simply reciting training data (Kang et al., 2024). LMs
struggle with problems that differ from their training distribution, often closely following
observed patterns down to individual terms (Razeghi et al., 2022). Recent research shows
LMs rely heavily on memorized patterns rather than developing generalizable reasoning
capabilities (Schwarzschild et al., 2024). This pattern-matching behavior is especially evident
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Model Variant Parameters MATH500 AIME2024 GPQA Diamond
Llama 3.2 ST-HC-W 3B 48.2 10.0 28.4
) ST-NT 3B 40.6 6.7 26.9
Ministral ST-HC-W 8B 62.8 20.0 29.9
ST-NT 8B 56.2 13.3 30.0
Qwen2.5 ST-HC-W 32B 80.2 26.7 51.3
: ST-NT 32B 78.8 20.0 49.8

Table 2. Ablation study results evaluating the distinct contributions of reasoning trace style and
answer correctness. We compare model performance after finetuning on: (1) ST-HC-W, featuring
stylistically consistent synthetic traces from ST-HC but deliberately leading to incorrect answers, and
(2) ST-NT, containing only the question-answer pairs from ST without reasoning traces. All results are
pass@1 accuracy as a percentage.

in mathematical reasoning, where LMs show variance across different instantiations of the
same question and declining performance when only numerical values change (Mirzadeh
et al., 2025). Data contamination has also been identified as a source of apparent but false
generalization (Jiang et al., 2024). Our work extends this discussion by investigating how
stylistic patterns in reasoning traces influence model performance, revealing that structural
elements of reasoning may be as important as factual content for enhancing problem-solving
capabilities.

Reasoning distillation Distillation has long been used to improve various aspects of ma-
chine learning models (Schmidhuber, 1992; Hinton et al., 2015; Sanh et al., 2020). For
reasoning tasks with verifiable solutions, researchers have implemented rejection sampling
methodologies that extract and validate advanced models’ reasoning processes (Zelikman
et al., 2022). More recently, significant performance improvements have been achieved
through SFT on synthetic datasets generated by superior LMs (Gunasekar et al., 2023).
With the emergence of RLMs, reasoning performance of instruction-tuned LMs can be
substantially enhanced by finetuning on high-quality reasoning traces (DeepSeek-Al et al.,
2025). Multiple efforts have demonstrated success in distilling RLMs via SFT on reasoning
traces that contain step-by-step thinking (Min et al., 2024; Huang et al., 2024a; Team, 2025;
Labs, 2025; Xu et al., 2025). Our work attempts to decompose what is actually being trans-
ferred during this distillation process, revealing that stylistic elements of reasoning traces
contribute significantly to performance gains independent of their factual correctness.

6 Conclusion

Our work challenges existing assumptions by demonstrating that improvements in rea-
soning capabilities in distilled language models can be driven by stylistic replication. By
analyzing reasoning traces through the lens of established principles from cognitive sci-
ence on how humans solve problems, we identified structural patterns and key lexical
markers (pivots) characteristic of effective LM reasoning. We validated these findings by
synthetically replicating the stylistic patterns found in emergent reasoning traces using a
weaker model, achieving comparable downstream reasoning performance after distillation.
Ablation studies confirmed that even reasoning traces with incorrect solutions enhance
downstream performance, highlighting the effectiveness of stylistic mimicry in distilled
models. Collectively, our results contribute to a deeper understanding of reasoning in
language models and offer practical insights into efficient finetuning strategies and data
generation practices.
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A Emergent Reasoning Trace Example

We give an example of a reasoning trace in figure 5. Here, a RLM answers a mathematical
puzzle question, initially producing an extensive reasoning trace with frequent backtracking,
followed by giving the final correct answer.

Reasoning Trace Example

Question: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of
the golf balls are blue. How many blue golf balls are there?

Reasoning: Okay, let’s see. The problem says a juggler can juggle 16 balls. Half of
them are golf balls, and half of the golf balls are blue. I need to find out how many
blue golf balls there are. Alright, let me break this down step by step.

First, the total number of balls is 16. Half of those are golf balls. So, half of 16 would
be... 16 divided by 2, which is 8. So, there are 8 golf balls. Got that down. Now, out
of these 8 golf balls, half are blue. Hmm, so again, half of 8 would be 8 divided by 2.
Let me calculate that. 8 divided by 2 is 4. So, does that mean there are 4 blue golf
balls? That seems right, but let me double-check to make sure I didn’t skip any steps
or misunderstand the question.

Wait, the problem says half of the balls are golf balls. So total balls: 16. Half are golf
balls: 8. Then half of the golf balls are blue. So half of 8 is indeed 4. So, 4 blue golf
balls. Let me just visualize this. If there are 16 balls in total, and half (so 8) are golf
balls, and of those 8 golf balls, half are blue and half are another color. So splitting 8
into two equal parts gives 4 and 4. So yes, 4 blue golf balls. That makes sense.

Is there another way to approach this problem? Maybe by using fractions. Let’s see.
Total balls = 16. Half are golf balls: so 1/2 of 16. Then half of those are blue: so 1/2
of 1/2, which is 1/4. So 1/4 of the total balls are blue golf balls. 1/4 of 16 is 4. Yep,
same answer. So whether I do it step by step or use fractions, I still get 4. That seems
consistent.

Alternatively, if I were to write equations, let’s denote total balls as T = 16. Number
of golf balls G = T / 2. Then number of blue golf balls B=G / 2. Substituting, B =
(16 / 2) / 2=8/ 2 =4. Same result. So all methods lead to 4.

I think that’s solid. Let me just check if I interpreted “half of the golf balls are blue”
correctly. The problem didn’t mention anything about the other half, but since half
of the golf balls are blue, the other half could be any other color, but that’s irrelevant
to the question. The question only asks for the number of blue golf balls, so 4 is the
answer.

Wait, just to be thorough, the problem doesn’t have any trick wording, right? Like,
when it says half of the balls are golf balls, that’s straightforward. Then half of those
golf balls are blue. So no, no tricky parts. If it had said half of the blue balls are golf
balls, that would be different, but it’s the other way around. Half of the golf balls are
blue. So straightforward.

Another check: total golf balls are 8. If 4 are blue, then 4 are not blue. That adds up
to 8. Then the other 8 balls (non-golf balls) are something else entirely. But since the
question is only about blue golf balls, we don’t need to consider those.

I think that’s all. All angles checked. So, 4 blue golf balls. Confident that’s correct.

Final Answer: The number of blue golf balls is .

Figure 5: A detailed example of mathematical problem-solving from R1 with a full reasoning
trace.

B Emergent Trace Analysis

This appendix provides quantitative details from the analysis performed on 16,710 successful
emergent reasoning traces generated by R1 model, taken from Labs (2025). This analysis
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informs the discussion of pivot types and reasoning stages in Section 3.1. On average,
these traces are substantial in length, comprising 2,713 tokens. Structurally, they contain
an average of 141.7 paragraphs. Metacognitive activity is frequent, with an average of 93.5
identified pivots occurring within each reasoning trace.

B.1 Details of Categorizing the Reasoning Trace Contents

To analyze reasoning traces, we developed a systematic approach for identifying pivots
and reasoning stages using regular expression pattern matching. For each of the four pivot
categories (Realization, Verification, Exploration, and Integration), we created comprehen-
sive regex patterns capturing lexical markers that signal metacognitive transitions — for
instance, phrases such as “Actually” for Realization pivots or “Therefore” for Integration
pivots. Similarly, we defined patterns for the four reasoning stages (Problem Framing,
Exploration, Verification, and Synthesis) based on characteristic expressions and structural
elements. We experimented with using an LM in the form of GPT-40 mini for this task but
found it to be no more performant. This framework enabled automated extraction and
quantification of reasoning elements across all 16,710 traces. While matching to regular
expressions is not a perfect way to extract this information, we found it to perform well
considering the very standardized nature of reasoning traces. We iteratively refined our
patterns over multiple rounds after manual inspection of reasoning traces by the authors,
ensuring balanced detection across all categories. Each trace was analyzed for both the
frequency of pivot occurrences and the presence of reasoning stages, allowing us to quantify
both the metacognitive transitions and the structural patterns that characterize effective
reasoning.

B.2 Pivot Analysis

Pivot Diversity A key indicator of complex reasoning is the variety of metacognitive shifts
employed. The analyzed traces show an average diversity of 3.51 distinct pivot types per
trace. Furthermore, a very high majority, 96.1% of the traces, contains at least three different
pivot categories. This high percentage strongly confirms the observation that successful
traces typically involve multiple forms of reflection and correction during the reasoning
process.

Pivot Type Frequencies The frequency and prevalence of each specific pivot type across
the dataset are summarized in Table 3. Notably, Integration and Realization pivots remain
extremely common, appearing in nearly all analyzed traces. Exploration pivots are the
least prevalent, present in 87.0% of traces, indicating consideration of alternative paths or
hypotheses does not occur as frequently.

Pivot Type  Avg. Occurrences per Trace % Traces Present

Realization 18.96 98.6%
Exploration 16.11 87.0%
Verification 1.37 89.6%
Integration 67.64 100.0%

Table 3. Frequency and prevalence of identified pivot types within the analyzed emergent reasoning
traces (N=16,710).

B.3 Reasoning Stage Analysis

The analysis also quantifies the presence of segments corresponding to the four cognitive
reasoning stages discussed in section 3.1. The difference compared to the pivot types analy-
sis is that a single reasoning stage can contain multiple pivots, even of separate types. In
this case, we ascribe the trace to the reasoning stage found at the beginning of the trace. The
average occurrences and prevalence of these stages are detailed in table 4. Synthesis stages,
often comprising multiple steps or integration points, are universally present. Problem
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Framing, Verification, and Exploration stages are all highly prevalent, appearing in the vast
majority of traces, consistent with the high frequency of their corresponding pivot types.

Reasoning Stage  Avg. Occurrences per Trace % Traces Present

Problem Framing 3.13 79.2%
Exploration 6.81 87.0%
Verification 3.34 89.6%
Synthesis 84.08 100.0%

Table 4. Frequency and prevalence of identified reasoning stages within the analyzed emergent
reasoning traces (N=16,710).

B.4 Key Insights from Analysis

The quantitative analysis reinforces the qualitative observations presented in the main paper.
Successful emergent reasoning traces consistently utilize a diverse range of pivot types,
averaging 3.51 distinct types per trace, with an overwhelming 96.1% using three or more,
indicating frequent and varied metacognitive adjustments. Furthermore, the presence and
frequency of identified reasoning stage segments, detailed in Table 4, generally align with
the cognitive science framework encompassing problem framing, exploration, verification,
and synthesis. The high prevalence of all four stage types underscores the iterative nature
of the observed reasoning process.

Data Source Number of Samples
OlympicArena (Huang et al., 2024b) 4,250
AGIEval (Zhong et al., 2023) 2,385
LiveCodeBench v4 (Jain et al., 2024) 713
NuminaMATH (LI et al., 2024) 20,000
OmniMath (Gao et al., 2024) 4,238
Total 31,586

Table 5. Composition of the seed data pool used for generating reasoning traces. The number of
samples from NuminaMATH reflects a randomly selected subset.

C Dataset Statistics

This section provides detailed statistics about the datasets created and utilized in our study,
namely the seed data pool and the derived reasoning trace datasets SMOLTRACES (ST) and
SMOLTRACES-HARDCODED (ST-HC).

C.1 Seed Data Compilation

The foundation for generating our reasoning trace datasets is a curated collection of question-
answer pairs sourced from diverse benchmarks spanning mathematics, science, logic, and
coding. As detailed in Section 3.2, we selected problems from OlympicArena (Huang et al.,
2024b), AGIEval (Zhong et al., 2023), LiveCodeBench v4 (Jain et al., 2024), NuminaMATH (LI
et al., 2024), and OmniMath (Gao et al., 2024). This process resulted in a final seed dataset
comprising 31,586 unique question-answer pairs. Table 5 presents a breakdown of the
sources contributing to this seed data pool. To ensure the integrity of our downstream
evaluations, we performed decontamination on this initial pool by removing any ques-
tions overlapping with our chosen evaluation benchmarks (MATH500, AIME2024, GPQA
Diamond).
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Statistic Dataset Values
Trace Origin ST: Emergent (R1)

ST-HC: Synthetic (GPT-40 + Hard-coded Prompt, Fig. 3)
Seed Questions Source ST: Shared Pool (Table 5, N=31,586)

ST-HC: Shared Pool (Table 5, N=31,586)

Final Number of Samples ST: 25,802 (adjusted to N=18,242 after)
ST-HC: 18,242

Filtering Applied ST: Correct Answer (up to 5 attempts), Min. Length (50
tokens)
ST-HC: Correct Answer (up to 5 attempts), Min. Length (50
tokens)

Avg. Trace Length (Tokens) ST: 2,521
ST-HC: 2,101

Avg. Pivots per Trace ST:93.4
ST-HC: 89.1

Table 6. Summary statistics for the final generated reasoning trace datasets used in fine-tuning.
Values reflect the approximately 18,250 filtered and balanced samples in each dataset (ST and ST-HC).
Average length and pivot counts are illustrative; actual values depend on the final composition.

C.2 Generated Reasoning Trace Datasets

Using the curated seed data, we generated two parallel datasets featuring detailed reasoning
traces, as described in Section 3.2. Table 6 provides a summary comparing key statistics of
the final, balanced ST and ST-HC datasets. Average trace length and pivot counts reflect
measurements across these final samples.

SMOLTRACES (ST): This dataset contains emergent reasoning traces generated by the
state-of-the-art RLM R1 (DeepSeek-Al et al., 2025). For each seed question, we prompted R1
in a zero-shot manner up to five times, retaining the first trace that yielded the correct final
answer.

SMOLTRACES-HARDCODED (ST-HC): This dataset comprises synthetic reasoning traces
generated using GPT-4o, guided by the structured prompt detailed in figure 3 (Figure 3).
This prompt enforces the inclusion of specific structural elements and lexical pivots identi-
fied in our analysis (Section 3.1). Similar to ST, generation involved up to five zero-shot
attempts per seed question, keeping the first correct trace.

Balancing: To ensure a fair comparison in finetuning experiments, we balanced the datasets
by size. As the ST-HC dataset contained fewer samples after filtering, we downsample the
larger ST dataset by randomly removing samples that are not present in the smaller dataset
until both datasets have an equal number of samples. Therefore, the final versions of both
ST and ST-HC used for finetuning contain an equal number of samples (N=18,242).

D Synthetic Traces with Wrong Answer Details

This section details the construction process for the ST-HC-W dataset, used in our ablation
study (Section 4.2) to investigate the impact of reasoning trace style independent of final
answer correctness. The goal is to create a dataset that retains the stylistic and structural
characteristics of the synthetic ST-HC traces but deliberately leads to an incorrect final
answer. First, we use the ground truth answer associated with the seed question for each
sample in ST-HC. Then, we prompt GPT-40-mini, instructing it to provide a different,
incorrect answer that is similar in format (e.g. “9.11” instead of “9.9”). We compare the
answer generated by GPT-40-mini against the known correct answer and if the generated
answer matches the correct one, we repeat the procedure.
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The resulting ST-HC-W dataset mirrors the size of ST-HC, containing 18,242 samples. Each
sample includes the original question, a reasoning trace stylistically similar to ST-HC, but
which concludes with an incorrect final answer. This construction allows for better isolation
of the effect of learning stylistic reasoning patterns during finetuning.

18



	Introduction
	Background
	Hard-coding reasoning traces to approximate emergent ones
	Reasoning trace structure and pivot types
	Reasoning trace data generation
	Experimental details

	Results and discussion
	Hard-coded reasoning results
	Ablative study

	Related work
	Conclusion
	Emergent Reasoning Trace Example
	Emergent Trace Analysis
	Details of Categorizing the Reasoning Trace Contents
	Pivot Analysis
	Reasoning Stage Analysis
	Key Insights from Analysis

	Dataset Statistics
	Seed Data Compilation
	Generated Reasoning Trace Datasets

	Synthetic Traces with Wrong Answer Details

