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Abstract
In the semi-supervised video object segmentation
(VOS) field, SiamMask has achieved competitive
accuracy and the fastest running speed. However,
the two-stage training procedure requires additional
manual intervention, and using only single-level
features does not maximize the rich hierarchical
feature information. This paper proposes an ef-
ficient end-to-end Siamese network for VOS. In
particular, a supervised sampling strategy is de-
signed to optimize the training procedure. Such
an optimization facilitates the training of the en-
tire model in an end-to-end manner. Moreover,
a multilevel feature aggregation module is devel-
oped to enhance feature representability and im-
prove segmentation accuracy. Experimental results
on DAVIS2016 and DAVIS2017 datasets show that
the proposed approach outperforms the SiamMask
in accuracy with similar FPS. Moreover, this ap-
proach also achieves good accuracy-speed trade-off
compared with that of other state-of-the-art VOS
algorithms.

1 Introduction
Semi-supervised video object segmentation (VOS) [Perazzi
et al., 2016], in which the ground truth information of the ob-
ject is given in the first frame, aims to find the pixel-level po-
sition of specified object(s) in a short video. This challenging
task is fundamental for high-level video analysis tasks such
as video understanding, and importantly useful in video edit-
ing [Wang et al., 2017]. VOS in the following part refers to
semi-supervised VOS.

Early VOS methods [Caelles et al., 2017; Luiten et al.,
2018] are mainly based on online learning (OL), which needs
fine-tuning on the first frame of the test video. Fine-tuning
generally leads to low frames-per-second (FPS) speed. Sub-
sequently, matching- and propagation-based methods [Chen
et al., 2018b; Oh et al., 2018; Yang et al., 2018] are proposed
for fast VOS by disregarding fine-tuning. Matching-based ap-
proaches employ a metric learning strategy to calculate sim-
ilarity maps between the features of the first frame and those
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of the current frame. By contrast, propagation-based methods
mainly exploit consistency between video frames and propa-
gate the mask of the first or the previous frame as supervision
to the current one. However, both methods suffer from sub-
optimal accuracy due to mismatching or drifting problems.
Moreover, although these offline methods are faster than the
OL-based methods, their speed remains unsatisfactory.

Providing a strong pixel-level prior mask as the guidance
in the first frame for VOS is difficult in practical applications.
Thus, finding a relatively weak prior knowledge in testing
process is crucial in facilitating a friendly human-computer
interaction process [Han et al., 2014; Song et al., 2020]. An
example of a weak prior knowledge is a boundary box, which
merely indicates the location of the target.

SiamMask [Wang et al., 2019] which has the fastest speed
at present with competitive accuracy, recently achieved good
accuracy and speed trade-off from the perspective of tracking.
This method extends the SiamRPN tracker [Li et al., 2018] by
adding a branch as postprocessing to produce the segmenta-
tion mask of the specified object. However, as illustrated in
Fig. 1 (a), the high-accuracy SiamMask with mask refine-
ment module has to be fine-tuned on a base model to avoid
excessive memory requirements. This condition results in a
two-stage training manner. Additional manual intervention is
also required in this process. That is, the base model must be
evaluated to find the optimal model parameters, and different
hyper-parameters must be set for the refined model. Thus,
additional manual interventions are inconvenient in practice.
Moreover, the mask refinement module only takes the single-
level features as input, thereby lacking rich feature represen-
tation.

In this paper, A supervised sampling strategy is proposed
to address the aforementioned flaws and reduce the training
samples in the mask refinement pathway, which significantly
reduces the memory requirements (Fig. 1 (b)). An end-to-end
framework is then constructed for VOS. Furthermore, a mul-
tilevel feature aggregation module is presented to enrich the
feature representation and aggregate multilevel upsampled
depth-wise cross-correlation feature maps [Li et al., 2019;
Zhang et al., 2016]. The segmentation performance of the
end-to-end model is boosted through the aforementioned
techniques.

In the testing process, the proposed E3SN can only re-
quire a single bounding box initialization rather than a pixel-
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Figure 1: (a): Two-stage SiamMask; (b): End-to-end E3SN. The proposed sampling strategy alleviates the training gap of SiamMask.

level object mask to specify the object and then operate on-
line without fine-tuning. Both conditions indicate the con-
venience and remarkable generalization capability of E3SN
in practical use. The experimental results on DAVIS2016
and DAVIS2017 demonstrate that the proposed E3SN outper-
forms the SiamMask and achieves competitive performance
compared with some matching- and propagation-based VOS
algorithms. However, E3SN runs considerably fast.

Overall, the main contributions of this work are listed be-
low in threefold:
• A supervised sampling strategy is proposed to allevi-

ate the training gap of SiamMask and a fast end-to-
end Siamese network is further developed for the semi-
supervised VOS task.
• A multilevel feature aggregation module is developed to

improve the segmentation performance. Multilevel cor-
relation maps computed from hierarchical backbone fea-
tures are fused to enrich features representation before
feeding into the mask refinement pathway.
• The experiments on the two benchmark datasets

demonstrate that the proposed E3SN outperforms the
SiamMask in accuracy with similar FPS. Moreover,
E3SN achieves good accuracy-speed trade-off with
bounding box initialization compared with that of other
state-of-the-art VOS algorithms.

2 Related Work
Online learning based methods. Early VOS approaches
commonly involve online learning, which comprises a fine-
tuning procedure using the first-frame ground truth. OS-
VOS [Caelles et al., 2017] adopts a pre-trained CNN for
foreground-background segmentation and fine-tunes it on the
first frame of the test video to extract a specific object.
OSVOS-S [Maninis et al., 2019] enhances the performance
with semantic information from an instance segmentation
network. PReMVOS [Luiten et al., 2018] incorporates four
different techniques, such as optical flow, re-identification,
integration with a blending algorithm, and extensive fine-
tuning, to outperform its rivals in the 2018 DAVIS Challenge.

All the aforementioned approaches achieve impressive per-
formance and prove online learning as an effective technique
for VOS. However, satisfying the requirement of sufficient

speed in real-time tasks is difficult due to the high computa-
tional cost.

Propagation based methods. Propagation-based methods
resort to previous frames to capture the temporal coherence
of sequential frames. MaskTrack [Perazzi et al., 2017] prop-
agates the segmentation mask of one frame to the next using
optical flow. OSMN [Yang et al., 2018] proposes a modu-
lator network trained to manipulate the intermediate layers
of the segmentation network. RGMP [Oh et al., 2018] in-
troduces a deep Siamese encoder-decoder network. The two
encoder streams respectively encode the video frame with the
estimated segmentation mask of the previous frame and the
ground-truth segmentation mask of the first frame beforein-
tegration of the features by a global convolution block. Al-
though the mask propagation strategy is effective for VOS,
drifting remains a major problem with the presence of fast
motions between sequential frames.

Matching based methods. Matching-based methods
solve the VOS task from the perspective of metric learning
which segments the current frame based on the pixel-wise
matching distance between the features of the current and
reference frames. PML [Chen et al., 2018b] first establishes
an embedding model with a triplet loss and represents each
pixel as an embedding vector. A kNN classifier is then de-
ployed to segment the frame. However, the point-to-point
matching strategy often introduces noise. VideoMatch [Hu
et al., 2018] uses a soft matching layer to match extracted
features and generate smooth predictions. However, the mis-
matching problem is due to the direct derivation of the final
segmentation result from the matching of embedding space.
FEELVOS [Voigtlaender et al., 2019] proposes global and
local pixel-level matching mechanisms to utilize rich infor-
mation from the first and previous frames and only calcu-
lates extreme value maps to reduce computation. This ap-
proach results in information loss in the segmentation pro-
cess. Matching-based methods achieve competitive accuracy
in comparison to OL-based methods, while the problems of
mismatching and relatively low running speed still exist.

SiamMask. SiamMask [Wang et al., 2019] recently ad-
dresses the VOS problem from a new aspect involving the lo-
cation of the target followed by segmentation. This approach
extends a tracking model [Li et al., 2018] by adding a mask
generation branch and runs an order of magnitude faster than
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that of top VOS methods with competitive accuracy. How-
ever, predicting a mask for each element of the correlation
map introduces substantial redundancy, resulting in a sepa-
rate two-stage training process. Moreover, the mask refine-
ment module considering only single-level features as input
ignores the multilevel feature information in the backbone to
obtain strong representational features for the final mask re-
finement pathway. Thus, a supervised sampling strategy is
proposed in the current study to reduce the redundancy and
realize multilevel feature aggregation to further boost the per-
formance. The proposed strategy reaches high accuracy with
fast running speed and achieves a good speed-accuracy trade-
off.

3 Methodology
The framework of E3SN is illustrated in Fig. 2. E3SN
is a fully-convolutional Siamese network with three output
branches for classification, localization and segmentation.
The proposed supervised sampling strategy reduces the sub-
stantial memory requirements and the multilevel feature ag-
gregation module generates fused features with rich represen-
tation for the mask refinement pathway to further improve
the segmentation accuracy. The adopted tracking model
SiamRPN is first introduced in the following part, and then
the proposed framework is described.

3.1 Fully-convolutional Siamese network for visual
tracking

SiamMask extends from the popular tracking system
SiamRPN [Li et al., 2018] which compares an exemplar
frame z against a larger search frame x to obtain a dense re-
sponse map. z and x are crops of different sizes centered on
the target object of different frames in the same video. The
two inputs are processed by the same CNN fθ, producing two
feature maps that are cross-correlated:

gθ(z, x) = fθ(z) ? fθ(x) (1)

Each spatial element of the response map (left-hand side of
Eq. 1) encodes the similarity between the exemplar z and the
corresponding candidate window in x. The maximum value
of the response map corresponds to the target location in the
search area x. Moreover, the region proposal network [Ren et
al., 2015] branch further improve the location performance.

3.2 E3SN
The proposed model based on SiamRPN is constructed
through extension with an extra branch and loss to build a
fast end-to-end framework for VOS. E3SN adopts a two-step
procedure for inference: locating the target region and then
predicting a binary mask for the target.

Resnet50 [He et al., 2016] is employed as the shared back-
bone network of E3SN. Meanwhile, the stride of conv4 is
reduced, and then dilated convolutions [Chen et al., 2018a]
are introduced. Thus, the backbone output has high resolu-
tion with a total stride of 8 pixels but a larger receptive field.
An extra 1 × 1 convolution layer is used to reduce the chan-
nel dimension before the depth-wise cross-correlation opera-
tion. Binary masks for the selected candidate windows of the

cross-correlation map are then predicted by a learnable re-
finement pathway hφ as shown in Fig. 2. Let mn denotes the
predicted mask corresponding to the n-th candidate window
as follows:,

mn = hφ (g
n
θ (z, x)) (2)

The mask prediction is a function of the search frame x and
the target object in z. Therefore, z can be used as a reference
to guide the segmentation process. This approach means that
different reference frames will produce different segmenta-
tion masks for x.

Mask refinement pathway. A common mask refinement
strategy is proposed to predict an accurate mask for each se-
lected sample (candidate window in correlation map). This
strateg upsamples the features layer by layer with the addition
of the high-resolution features from the backbone network to
enrich the spatial information. Fig. 3 illustrates a detailed
partial refinement process. Specifically, the unfold operation
denotes that we slide a fixed size window on the large feature
map to capture the regional feature similar to a convolution
operation without any computation and then select the feature
that corresponds to the sample location in correlation map.

Loss function. A multitask loss based on SiamRPN is de-
rived to optimize the proposed model during the training pro-
cess because E3SN is derived from the tracking model.

L = λ1 · Lcls + λ2 · Lreg + λ3 · Lmask (3)

where λ1 = λ2 = 1 and λ3 = 32 are set similar to that in
SiamMask. The classification and bounding box losses are
respectively the cross-entropy and the smooth L1 losses sim-
ilar to those defined in SiamRPN. For the mask branch, each
sample is labeled with a binary label yn ∈ {±1} and allo-
cated with a pixel-wise ground truth mask mn of size w × h,
in which mi,j

n ∈ {±1} is the label of pixel (i, j). pn is the
predicted mask. The binary logistic regression loss is adopted
as the loss function for mask prediction over all samples:

Lmask =
∑
n

1 + yn
2wh

∑
ij

log
(
1 + e−m

ij
n p

ij
n

) (4)

3.3 Supervised Sampling Strategy
SiamMask [Wang et al., 2019] proposes the second version
of SiamMask to generate high-quality object masks. This
version replaces the simple mask head with an elaborate re-
finement module comprising upsampling layers and skip con-
nections. The new refinement module improves performance.
However, the refinement module has to be fine-tuned on the
first simple model due to the training strategy that predicts a
mask for each candidate window. This fine-tuning is con-
ducted to avoid substantial memory cost, which results in
an inconvenient two-stage framework with different hyper-
parameters.

The supervised sampling strategy is proposed to build an
end-to-end framework. According to this strategy, a sample
distribution matrix is established in the data loading process.
The matrix is of the same size as the subsequent correla-
tion maps, and all the elements are initialized zero. Then,
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Figure 2: Architecture of the proposed E3SN. Multiple correlation maps are calculated on the basis of multilevel features extracted by the
shared Siamese network. A fixed number of positive and negative samples are selected from the correlation maps, and these samples are
aggregated for the final mask refinement module.

the value of each element in the matrix is changed in accor-
dance with the IOU between the corresponding window in the
search image and the target. The IOU is set positive if it is
larger than a high threshold and negative if it becomes lower
than the low threshold. Before the mask refinement pathway,
candidate windows of correlation maps based on the sample
distribution matrix are selected as positive and negative sam-
ples with a ratio of 3:1 rather than all candidate windows in
SiamMask. Only the selected samples will be upsampled to
predict the masks in the refinement pathway. Four samples
are selected for each image.

3.4 Multilevel Feature Aggregation Module

ResNet50, which produces hierarchical features in different
layers, is employed as the backbone. Features of earlier lay-
ers contain additional low-level spatial information, such as
color, shape, and texture, which are crucial for localization.
However, these layers lack semantic information. Features
of top layers have rich semantic information suitable to solve
some tricky scenes, including motion blur and substantial de-
formation in the VOS task. Aggregating these hierarchical
feature information for rich feature representation is possible
to improve the segmentation quality.

In the multilevel feature aggregation module, hierarchi-
cal features extracted from the last three residual block of
ResNet50 until conv4 are exploited. Each two extracted fea-
tures from the same layer of x and z are cross-correlated,
generating three depth-wise cross correlation maps referred
as g2(z, x), g3(z, x), and g4(z, x). These correlation feature
maps are upsampled to the same spatial resolution and then
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Figure 3: Detailed partial refinement process.

combined to one fused feature with learnable weights.

Msum =
4∑
i=2

wi−1 · Mi (5)

The weight parameters are optimized offline together with the
network. The the refinement pathway then takes the fused
feature as input to complete the mask prediction process.

4 Experiments
The implementation details and experimental setting are first
described in this section. The proposed approach is then eval-
uated on two benchmarks compared with the state-of-the-art
VOS methods. Furthermore, some qualitative segmentation
results are presented to elicit intuitive feelings. Finally, the
ablation study is performed to demonstrate the effectiveness
of the proposed module and technique.
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4.1 Implementation Details

Training. The exemplar is randomly chosen following the
setting of SiamFC [Bertinetto et al., 2016]. Image pairs are
then searched from the same video, and cropping or padding
is used to scale their size to 127×127 and 255×255. The Ima-
geNet pre-trained model is loaded as the initial parameters of
the backbone network, and SGD with an initial learning rate
of 2 × 10−3 which logarithmically decreases to 2 × 10−4 in
20 epochs. Particularly, the learning rate of the mask branch
is multiplied by 0.1. The two thresholds of sampling strat-
egy are set to 0.6 and 0.3. The proposed model is trained
on ImageNet-VID [Russakovsky et al., 2015], COCO [Lin et
al., 2014], and YouTube-VOS [Xu et al., 2018]. By contrast,
only COCO and YouTube-VOS, which have mask labels, are
useful for training the mask branch. NVIDIA TITAN RTX is
the GPU used for training and evaluation.

Inference. E3SN can accept only bounding box of the tar-
get as initialization to determine the exemplar and operate on-
line without any adaptation. During inference, the region of
target is obtained in accordance with the maximum score in
the classification branch. The mask of the selected region
is then predicted with a sigmoid and threshold of 0.5. The
predicted mask will eventually be mapped back to the corre-
sponding position in the frame.

4.2 Experimental Setting

Datasets and evaluation metrics. The performance of
E3SN is evaluated on DAVIS-2016 [Perazzi et al., 2016]
and DAVIS-2017 [Pont-Tuset et al., 2017] validation sets
for single- and multi-object segmentations, respectively. The
DAVIS 2016 validation set comprises 20 videos, and each
video sequence is annotated with a single pixel-wise object
mask. The DAVIS 2017 validation set extends the DAVIS
2016 validation set to 30 videos with multiple object annota-
tions.

The benchmark datasets only provide the pixel-level mask
initialization in the first frame, whereas the proposed method
merely requires a bounding box prior to the exemplar acquisi-
tion. Therefore, the strong mask prior to a bounding box ini-
tialization is weakened using the axis-aligned bounding rect-
angle strategy during the test phase.

For the evaluation metrics, the official performance crite-
ria are adopted for both datasets: the Jaccard index (J ) to
denote the mean intersection-over-union (mIoU) between the
predicted and the ground-truth masks and the F-measure (F)
to represent contour accuracy, including J Mean, J Recall,
F Mean, and F Recall, wherein a high value indicates good
performance.

Comparison methods. The proposed model is compared
with the following two kinds of state-of-the-art methods: on-
line methods, such as OSVOS, OnAVOS, PReMVOS and
MaskTrack; offline methods, including FAVOS [Cheng et
al., 2018], RGMP, FEELVOS, OSMN, VPN [Jampani et al.,
2017] and SiamMask, Offline methods have been the main-
stream for fast inference speed with competitive accuracy.

4.3 Evaluation Results
Quantitative Result. (1) Evaluation on DAVIS2016. Table
1 shows the quantitative performance comparisons on DAVIS
2016. The table indicates the E3SN achieves a competitive
performance of 73.0% at JMean and 69.3% at FMean with a
faster speed of 45 FPS compared with most of listed methods.
Especially for SiamMask, our proposed E3SN achieves 1.3%
higher at JMean and 1.5% at FMean with slight speed sacri-
fice. Furthermore, E3SN is almost 60 times faster in running
speed compared with that of the high-accuracy offline method
FAVOS.

Method FT M JMean JRecall FMean FRecall FPS
OnAVOS X X 86.1 96.1 84.9 89.7 0.08

PReMVOS X X 84.9 96.1 88.6 94.7 0.03
MaskTrack X X 79.7 93.1 75.4 87.1 0.08

FAVOS × X 82.4 96.5 79.5 89.4 0.8
RGMP × X 81.5 91.7 82.0 90.8 8.0

FEELVOS × X 81.1 90.5 82.2 86.6 2
OSMN × X 74.0 87.6 72.9 84.0 8.0
VPN × X 70.2 82.3 65.5 69.0 1.6

SiamMask × × 71.7 86.8 67.8 79.8 55
E3SN × × 73.0 88.3 69.3 80.9 46

Table 1: Results on DAVIS2016 validation set. FT denotes the fine-
tuning requirement of the method and M denotes mask initialization
(X) or a bounding box (×).

Method FT M JMean JRecall FMean FRecall FPS
OnAVOS X X 61.6 67.4 69.1 75.4 0.1
OSVOS X X 56.6 63.8 63.9 73.8 0.1
FAVOS × X 54.6 61.1 61.8 72.3 0.8
OSMN × X 52.5 62.8 57.1 66.1 8.0

SiamMask × × 54.3 62.8 58.5 67.5 55
E3SN × × 56.1 63.6 59.8 68.3 46

Table 2: Results on DAVIS 2017 validation set. FT denotes the fine-
tuning requirement of the method and M denotes mask initialization
(X) or a bounding box (×).

(2) Evaluation on DAVIS2017. The evaluation on
DAVIS2017 is challenging for the multiple object scenarios.
The evaluation results presented in Table 2 indicate that E3SN
achieves the JMean of 56.1% and FMean of 59.8%, which
are 1.8% and 1.3% higher than those of SiamMask, respec-
tively. Moreover, the proposed method is about six times
faster than the fast offline method OSMN.

E3SN has a good speed-accuracy trade-off compared with
that of state-of-the-art VOS methods. An end-to-end train-
able framework is constructed particularly for SiamMask to
improve its performance.
Qualitative Result. Fig. 4 presents some qualitative visual
results on DAVIS2016 and DAVIS2017. ES3N is found to
have improved segmentation performance, especially on the
edge, demonstrating the effectiveness of the multilevel fea-
ture aggregation module.

4.4 Ablation study
The contribution of the individual component of E3SN to its
functionality is discussed in this subsection.
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Figure 4: Qualitative visual results. The first column is the initialization of the first frame, and the other columns are the segmentation results
of the subsequent frames. The first four rows are results on DAVIS2016, and the last two rows are results on DAVIS2017.

Supervised Sampling Strategy. Some indicators of the
two-stage SiamMask (without sampling strategy) and the
end-to-end E3SN with only sampling strategy (E3SN only S)
are compared using the same setting to prove the effective-
ness of the proposed strategy. The results presented in Table
3 show that the accuracy of E3SN (with only sampling strat-
egy) is slightly worse than that of SiamMask but has less to-
tal training time without additional manual intervention. This
finding suggests that the proposed sampling strategy helps al-
leviate the training gap of two-stage SiamMask and the end-
to-end framework is training fast and convenient.

Method JMean FMean Training time
SiamMask 71.7 67.8 22

E3SN only S 70.8 66.3 20

Table 3: Performance comparison of the two-stage SiamMask and
the end-to-end E3SN on DAVIS2016. The training time is measured
in hours.

Method JMean FMean

E3SN only S 70.8 66.3
E3SN 73.0 69.3

Table 4: Ablation study of the feature aggregation module on
DAVIS2016.

Multilevel Feature Aggregation. E3SN and E3SN with
only sampling strategy (E3SN only S) are evaluated on
DAVIS2016 to assess the contribution of the multilevel fea-

ture aggregation module. As listed in Table 4, E3SN im-
proves the performance by 2.2% at JMean and 3.0% at
FMean through the proposed module compared with E3SN
only S.

5 Conclusion
An E3SN for semi-supervised VOS is proposed in this study.
Different from the two-stage SiamMask, which generates a
mask for each candidate window of the correlation map, the
proposed E3SN employs the supervised sampling strategy
to select useful samples for the mask refinement training.
This approach leads to a significant reduction in memory re-
quirements and facilitates the establishment of an end-to-end
framework. Furthermore, a multilevel feature aggregation
module is developed to fuse the hierarchical features to en-
rich the feature representation capability. This module helps
improve the final mask accuracy. Additionally, the proposed
model only requires a bounding box initialization instead of
a carefully crafted pixel-level mask in practice due to the
advantage of the tracking model. The experimental results
on benchmark datasets DAVIS2016 and DAVIS2017 demon-
strate that E3SN achieves a satisfactory accuracy-speed trade-
off.
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