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Abstract

Iterated reference games—in which players repeatedly pick out novel referents us-
ing language—present a test case for agents’ ability to perform context-sensitive
pragmatic reasoning in multi-turn linguistic environments. We tested humans and
vision—language models on trials from iterated reference games, varying the given
context in terms of amount, order, and relevance. Without relevant context, models
were above chance but substantially worse than humans. However, with relevant
context, model performance increased dramatically over trials. Few-shot refer-
ence games with abstract referents remain a difficult task for machine learning
models.

1 Introduction

Recent advances in machine learning have produced multi-turn conversational agents, which are a
public face of artificial intelligence [[II]. The utility of conversational agents depends on capacities
including natural language understanding, world knowledge, and instruction following [[]. Further-
more, success in multi-turn conversation requires the underlying language model to respond to the
user’s message appropriately given the preceding context, which in turn requires the language model
to retain relevant contextual information and use it to interpret new messages.

Such multi-turn interactions are a core feature of human communication: shared conversational his-
tory supports a shared system of semantic meaning [B, 8. lterated reference games are a common
experimental paradigm for studying this type of communication. In these paradigms, a describer
produces a description of a referent such that a matcher can correctly select the referent from a set
of options. Games repeat over multiple rounds, typically resulting in the emergence of convention-
alised referring expressions over repeated descriptions of the same referent [5]. These experiments
demonstrate that humans dynamically adapt to their conversational partners, creating ad hoc context-
and/or partner-specific meanings and conventions [5-7].

Conversations—whether human—-human or human—Al—require their participants to use contextual
information to understand the meanings of utterances. A system with the ability to do this would
show two behavioural signatures: (1) the ability to interpret linguistic meaning pragmatically and
(2) sensitivity to contextual information [8—I4]. In this work, we employ iterated reference games
as a minimal test case to investigate whether state-of-the-art open vision—language models (VLMs)
reason pragmatically about referring expressions given varying types of prior context, and how their
sensitivity to context compares to that of humans. Iterated reference games have previously been
used to study Al systems for both generation and comprehension of descriptions, but this domain
continues to prove challenging for Al systems, especially for generation with abstract images [T,
9, 06].
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Figure 1: A. Overview of the experimental structure for the original interactive games in Boyce et
al. [[Z]. B. User interface for each trial in the experiments with naive participants.

2 Methods

All model data and code are available on Github at https://github.com/benpry/
vim-tg-context/tree/coginterp.

2.1 Dataset

We used an iterated reference game dataset from Boyce et al. [[Z]. In each game, players saw a grid of
12 tangram images (Figure MA). On each trial, one player (the describer), saw one image highlighted.
The describer described a target image to the other players via chatbox so that the matchers could
each select the target image from the 12 options. Each game had 2—6 players, who played 6 rounds
of 12 trials each (one trial for each image).

Here we use ten of these games, which were subsequently used by Boyce et al. [9] to test for context
sensitivity in naive human matchers. Naive matchers read transcripts of the conversations between
the players in the original games and then made a selection of what image was being describer
(Figure MB). Naive matchers received feedback on whether they were correct, but were not told the
correct answer if their response was incorrect. Each participant saw all trials from one game, in an
order that varied based on condition. Boyce et al. [J] collected participants in the yoked condition
(N =99) and the shuffled condition (N = 97). We collected additional human data on Prolific in
the backward (N = 89) and random (/N = 107) conditions (described in Section I3) using the same
procedure.

2.2 Experiment setup

Our experiments with VLMs aimed to match the naive human setup. We evaluated the instruction-
tuned versions of four leading open-weights VLMs of different sizes: Qwen 2.5 VL 32B [I7],
Gemma 3 27B [I¥], Llama 3.2 11B [[Y], and Kimi VL A3B [0]. Models were given a general
system prompt describing the task setup, followed by the set of 12 tangram image options labeled
A through L presented as a single image. The exact prompt and image are included in Appendix [Al.
Models were then given the context of all preceding trials formatted as a chat history, with the user
supplying the text written by participants and the model serving as the assistant providing the target
tangram, denoted A through L; note that models were given the correct target (unlike humans). Fi-
nally, the description for the test trial was provided, and the model log probabilities for the tokens
A through L were obtained. We renormalised the log probabilities using a softmax, and treated the
probability assigned to the correct target as the model’s accuracy.

2.3 Context conditions

Do VLMs make use of context to the same extent, and in the same way, as humans? We considered
eight conditions varying the amount and type of in-context trials seen by the model (Table ).

The conditions varied in their fidelity to the context experienced by actual human participants in
the original iterated reference games. Four conditions contained trials drawn from a single original
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Table 1: Conditions of in-context trials seen by models. Columns indicate whether the in-context
trials are from the same original game as the test trial, whether the in-context trials are all from the
same original game, what the order of the in-context trials is, and whether the tangram in the test
trial occurs in the in-context trials.

Condition Nipials Original game  Same game  Trial order ~ Same tangram seen
Yoked 720 Y Y Original Y
Shuffled 7056 Y Y Permuted Y
Backward 720 Y Y Reversed Y
Ablated 720 Y Y Original N
Other-within 6480 N Y Original Y
Other-across 6480 N N Original Y
Random 7704 N N Permuted Y
No context 720 N N None N

game. The yoked, shuffled, and backward conditions presented all the trials in the original game,
in the original order, a permuted order, or the reversed order respectively. The ablated condition
presented the trials in the original order, but in-context trials containing the same target tangram as
the test trial were removed. Two other conditions involved in-context trials sampled from different
original games than the test trial. The other-within condition drew all in-context trials from a single
different original game than the test trial, whereas the other-across condition drew in-context trials
randomly from all other original games. We also included a random condition that fully shuffled
across games and trial orders. Finally, we had a baseline condition of no context, in which no
in-context trials were presented.

3 Results
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Figure 2: Matcher accuracy across all conditions and matcher types (both human and model), with
best-fit LOESS curves, shown by repetition number as seen by the matcher, except for the no context
condition where repetition number is from the original game. Error bars indicate bootstrapped 95%
confidence intervals. Dashed lines indicate the chance level (0.083).

Our first question was whether models are able to perform ad hoc pragmatic reference resolution
in this abstract, out-of-domain context. Results from all models and conditions, along with com-
parative human data from the original reference games [[Z] and from naive humans [J], are shown
in Figure D. All models demonstrated above-chance accuracy on the task across all conditions, but
without context, models were only slightly above chance. In the random condition, model perfor-
mance improved as the number of in-context examples increased, suggesting some adaptation to



the task. In contrast, naive humans’ performance was relatively high even in the first repetition and
remained steady over time. In the absence of conversational history, models appear to have much
worse “intuition” for interpreting pragmatic references to tangram images than humans.

Our second question was how models would perform with relevant conversational history. The
yoked, shuffled, and backward conditions show how model performance was affected by the amount
and order of contextual information. Performance in the shuffled condition was generally poorer
than in the yoked condition, matching the trend of naive humans. Models were more accurate in
the backward condition than in the shuffled condition, unlike humans, suggesting that working back-
wards from conventions to earlier and less conventionalised expressions may be easier for models
than for humans. While humans outperformed models on the first trials seen, models were able to
rapidly exploit the conversational history to achieve ~0.8 accuracy. These disparities suggest that
VLMs may be worse at zero- or few-shot novel task performance than humans, but are able to learn
relatively quickly with sufficient examples.

Within-game context was critical to models. When we varied the relevance of the context by drawing
the conversational history from a different game or games (other-within and other-across), models
had much lower accuracy of 0.3 — 0.5. This lower performance compared to yoked, shuffled, and
backwards suggests that model improvement with relevant context is not simply adaptation to the
task. Rather, the boost depends on the context and the test trial coming from the same original
game. The convention reached by one game is not necessarily predicted by the context from other
games. Performance was also low in the ablated condition, implying that experience with the test
trial tangram itself is crucial to understand a convention, which is not systematically inferrable from
the other tangram conventions, even from the same game.
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Figure 3: Comparison between naive human accuracy and model accuracy, with best-fit linear re-
gressions. Shaded regions indicate bootstrapped 95% confidence intervals. Dashed lines indicate
perfect calibration (y = x).

To determine whether models generally show the same pattern of difficulties as humans, we also
compared model and naive human performance at the trial level (Figure B). Models were relatively
poorly calibrated, with weak correlations between model and human performance (yoked model r
=.10 — .27, human split-half r = .42 [.32, .50]; backward model r = .23 — .40, human split-half r =
.48 [.40, .56]; see Appendix B for more details). Models may not have the same factors affecting
their performance as humans, resulting in a lack of trial-wise similarity.

Across models, Gemma 3 was the best performing model across most conditions. Interestingly,
Qwen 2.5’s performance diverged from the other VLMs in the yoked, shuffled, and backward condi-
tions, performing much worse in later rounds; we speculate this finding is due to the longer context
lengths in later rounds, which Qwen 2.5 may be worse at handling.

Additional analyses on item-level effects, condition-wise correlations, and errors are shown in Ap-
pendix B, and additional results from a no-image, text-only paradigm are shown in Appendix O.

4 Discussion

Multi-turn conversation is a key aspect of human communication and a challenge for Al agents. We
demonstrated that state-of-the-art open-weights VLMs were able to perform ad hoc pragmatic rea-
soning across multiple turns of a reference game. We found that models were sensitive to the amount,



order, and relevance of contextual information, showing rapid improvement when in-context exam-
ples came from the same source game and included the target image. This performance reflects a
capacity for flexible meaning construction in a range of different contexts.

Nonetheless, models displayed different patterns of performance than humans and showed weak
trial-wise calibration to human accuracies. Our results align with previous work on in-context learn-
ing, where increasing the number of in-context examples improved model performance, especially
on difficult tasks [2ZT1-23]. While humans do show practice effects, these effects are typically much
smaller. The differential sensitivity to quantity and type of context between humans and models
could suggest different approaches to the task. For example, models can (theoretically) exactly re-
trieve previous trial descriptions, whereas humans have more limited working memories and may
need to use compression or other strategies to recall appropriate description—referent mappings.

While we tested humans and models on the same stimuli and some of the same stimulus orders, the
models received more informative feedback than humans. Models received the correct answers for
the in-context examples, while humans only learnt if their selections were correct; this disparity may
have contributed to differences in performance (see Section B)). Additionally, we tested a limited
set of abstract stimuli as a representative example; generalisability to other (e.g., naturalistic) stimuli
sets is left to future work.

Overall, reference games with abstract referents remain a difficult task for machine learning models,
particularly in the few-shot setting [T, [3]. Our results point to the important role of contextual
information, but also highlight ways in which current VLMs are overly sensitive to context. Further
work is needed to more comprehensively characterise the role of prompt engineering, causal and
attentional factors underlying context use, and humans’ own sensitivity to context. Furthermore, our
study focused on interpretation, but generating appropriate descriptions is a yet harder task that is
worth exploring. These directions will help us to build language models that are flexible but robust,
and that can adapt to a range of tasks and settings as humans do.

References

[1] OpenAl, Introducing ChatGPT, https://openai.com/index/chatgpt/, Mar. 2024.

[2] S. Guan, H. Xiong, J. Wang, J. Bian, B. Zhu, and J.-g. Lou, Evaluating LLM-based Agents
Sfor Multi-Turn Conversations: A Survey, Mar. 2025. DOI: 10.48550/arXiv.2503.22458.
arXiv: 2503.22458 [cs]l.

[3] H. H. Clark, Using Language. Cambridge: Cambridge University Press, 1996, 1ISBN: 978-0-
511-62053-9.

[4] B. Geurts, “Common Ground in Pragmatics,” in The Stanford Encyclopedia of Philosophy,
E. N. Zalta and U. Nodelman, Eds., Winter 2024, Metaphysics Research Lab, Stanford Uni-
versity, 2024.

[5] H. H. Clark and D. Wilkes-Gibbs, “Referring as a collaborative process,” Cognition, vol. 22,
no. 1, pp. 1-39, Feb. 1986. DO1: 10.1016/0010-0277(86)90010-7.

[6] R. D. Hawkins et al., From partners to populations: A hierarchical Bayesian account of
coordination and convention, Dec. 2021. DOI: 10 . 48550 / arXiv . 2104 . 05857. arXiv:
2104.05857 [csll.

[7]1 V. Boyce, R. Hawkins, N. D. Goodman, and M. C. Frank, Interaction structure constrains the
emergence of conventions in group communication, 2024.

[8] R.D.Hawkins, M. Sano, N. D. Goodman, and J. E. Fan, “Visual resemblance and interaction
history jointly constrain pictorial meaning,” Nature Communications, vol. 14, no. 1, p. 2199,
Apr. 2023, 1SSN: 2041-1723. DOI: 10.1038/541467-023-37737—Wu.

[9] V. Boyce, B. Prystawski, A. W. M. Tan, and M. C. Frank, “Idiosyncratic but not opaque:
Linguistic conventions formed in reference games are interpretable by naive humans and
vision—language models,” in Proceedings of the Annual Meeting of the Cognitive Science
Society, vol. 47, 2025.

[10] S. Junker and S. ZarrieSS, “SceneGram: Conceptualizing and Describing Tangrams in Scene
Context,” in Findings of the Association for Computational Linguistics: ACL 2025, W. Che,
J. Nabende, E. Shutova, and M. T. Pilehvar, Eds., Vienna, Austria: Association for Computa-
tional Linguistics, Jul. 2025, pp. 23 976-23 992, ISBN: 979-8-89176-256-5. DOI: 10.18653/
v1/2025.findings-acl.1229.


https://doi.org/10.48550/arXiv.2503.22458
https://arxiv.org/abs/2503.22458
https://doi.org/10.1016/0010-0277(86)90010-7
https://doi.org/10.48550/arXiv.2104.05857
https://arxiv.org/abs/2104.05857
https://doi.org/10.1038/s41467-023-37737-w
https://doi.org/10.18653/v1/2025.findings-acl.1229
https://doi.org/10.18653/v1/2025.findings-acl.1229

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. O. Gul and Y. Artzi, “CoGen: Learning from Feedback with Coupled Comprehension
and Generation,” in Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, Y. Al-Onaizan, M. Bansal, and Y.-N. Chen, Eds., Miami, Florida, USA:
Association for Computational Linguistics, Nov. 2024, pp. 12966-12 982. boI: 10. 18653/
v1/2024.emnlp-main.721.

Y. Hua and Y. Artzi, “Talk Less, Interact Better: Evaluating In-context Conversational Adap-
tation in Multimodal LLMs,” in First Conference on Language Modeling, Aug. 2024.

Z. Chen, M. O. Gul, Y. Chen, G. Geng, A. Wu, and Y. Artzi, “Retrospective Learning from
Interactions,” in Proceedings of the 63rd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), W. Che, J. Nabende, E. Shutova, and M. T. Pile-
hvar, Eds., Vienna, Austria: Association for Computational Linguistics, Jul. 2025, pp. 24 580—
24 606, 1ISBN: 979-8-89176-251-0. DOI: 10.18653/v1/2025.acl-1ong.1200.

S. Sravanthi, M. Doshi, P. Tankala, R. Murthy, R. Dabre, and P. Bhattacharyya, “PUB: A Prag-
matics Understanding Benchmark for Assessing LLMs’ Pragmatics Capabilities,” in Findings
of the Association for Computational Linguistics: ACL 2024, L.-W. Ku, A. Martins, and V.
Srikumar, Eds., Bangkok, Thailand: Association for Computational Linguistics, Aug. 2024,
pp- 12075-12097. po1: 10.18653/v1/2024 . findings-acl.719.

A. Ji et al., “Abstract Visual Reasoning with Tangram Shapes,” in Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing, Y. Goldberg, Z.
Kozareva, and Y. Zhang, Eds., Abu Dhabi, United Arab Emirates: Association for Computa-
tional Linguistics, Dec. 2022, pp. 582—-601. DO1: 10.18653/v1/2022. emnlp-main. 38.

Z. Wang, W. Li, P. Kaliosis, O. Rambow, and S. E. Brennan, “LLVLMs are Bad at Overhearing
Human Referential Communication,” in Findings of the Association for Computational Lin-
guistics: EMNLP 2025, Suzhou: Association for Computational Linguistics, Sep. 2025. DOI:
10.48550/arXiv.2509.11514.

S. Bai et al., “Qwen2.5-vl technical report,” arXiv preprint arXiv:2502.13923, 2025.
Gemma Team et al., “Gemma 3 technical report,” arXiv preprint arXiv:2503.19786, 2025.

Llama Team, Llama 3.2: Revolutionizing edge Al and vision with open, customizable models,
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/, 2024.

Kimi Team et al., Kimi-VL Technical Report, Jun. 2025. DOI: 10. 48550/ arXiv . 2504 .

J. Chen, L. Chen, C. Zhu, and T. Zhou, “How Many Demonstrations Do You Need for In-
context Learning?” In Findings of the Association for Computational Linguistics: EMNLP
2023, H. Bouamor, J. Pino, and K. Bali, Eds., Singapore: Association for Computational
Linguistics, Dec. 2023, pp. 11 149-11159. po1: 10.18653/v1/2023. findings-emnlp.
745,

R. Agarwal et al., “Many-Shot In-Context Learning,” in Advances in Neural Information
Processing Systems, vol. 37, Dec. 2024, pp. 76 930-76 966.

Y. Jiang, J. Irvin, J. H. Wang, M. A. Chaudhry, J. H. Chen, and A. Y. Ng, Many-Shot In-
Context Learning in Multimodal Foundation Models, Oct. 2024. DOI: 10 . 48550/ arXiv .
240509798, arXiv: 2405.09798 [cs]l.

N. Kriegeskorte, M. Mur, and P. Bandettini, “Representational similarity analysis - connecting
the branches of systems neuroscience,” Frontiers in Systems Neuroscience, vol. 2, 2008, ISSN:
1662-5137.

P. Rahmanzadehgervi, L. Bolton, M. R. Taesiri, and A. T. Nguyen, Vision language models
are blind: Failing to translate detailed visual features into words, Mar. 2025. DO1: 10. 48550/
arXiv. 7407 06587. arXiv: 2407.06581 [csll.

S. Chen et al., Why Is Spatial Reasoning Hard for VLMs? An Attention Mechanism Perspec-
tive on Focus Areas, Mar. 2025. DOI: 10.48550/arXiv.2503.01773. arXiv: 20301773
Lcsl.

A. Vo, K.-N. Nguyen, M. R. Taesiri, V. T. Dang, A. T. Nguyen, and D. Kim, Vision Language
Models are Biased, May 2025. DOI: 10.48550/arXiv.2505.23941l. arXiv: 250523941
[csT.


https://doi.org/10.18653/v1/2024.emnlp-main.721
https://doi.org/10.18653/v1/2024.emnlp-main.721
https://doi.org/10.18653/v1/2025.acl-long.1200
https://doi.org/10.18653/v1/2024.findings-acl.719
https://doi.org/10.18653/v1/2022.emnlp-main.38
https://doi.org/10.48550/arXiv.2509.11514
https://doi.org/10.48550/arXiv.2504.07491
https://doi.org/10.48550/arXiv.2504.07491
https://arxiv.org/abs/2504.07491
https://doi.org/10.18653/v1/2023.findings-emnlp.745
https://doi.org/10.18653/v1/2023.findings-emnlp.745
https://doi.org/10.48550/arXiv.2405.09798
https://doi.org/10.48550/arXiv.2405.09798
https://arxiv.org/abs/2405.09798
https://doi.org/10.48550/arXiv.2407.06581
https://doi.org/10.48550/arXiv.2407.06581
https://arxiv.org/abs/2407.06581
https://doi.org/10.48550/arXiv.2503.01773
https://arxiv.org/abs/2503.01773
https://arxiv.org/abs/2503.01773
https://doi.org/10.48550/arXiv.2505.23941
https://arxiv.org/abs/2505.23941
https://arxiv.org/abs/2505.23941

A Additional methodological details

A.1 Prompt

The following text was used as the system prompt for all language model generations.

You will be presented with a list of messages between people
playing a reference game, where the describer has to get
the matcher to choose a shape from a set of shapes. Your
goal is to guess which of the shapes the describer is
trying to get the matcher to choose. The shapes, with their

labels, are shown in the image.

Please answer with just the letter corresponding to the image
you think the describer is trying to get the matcher to
choose.

The image shown in Figure B was included with this prompt.
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Figure 4: The image that was presented to the vision-language models, containing all 12 tangram
shapes with their letter labels.

B Additional analyses

B.1 Role of original trial number

Four conditions displayed trials in a different order than the original games: shuffled, backward,
random, and no context. To understand the effect of the original trial number, we replotted matcher
performance for these conditions by original repetition number in Figure B; note that the results for
the no context condition are identical to those in Figure O as they were shown by original repetition
number in that plot. The general worsening performance over rounds across these conditions sug-
gests that increasing conventionalisation in human referring expressions leads to more idiosyncratic
expressions (as in [J]) that are harder to resolve. Interestingly, humans (and some models) showed
highest performance in the second repetition (rather than the first). This phenomenon suggests
that there might be a trace of practice effects in human describers, whereby they exhibit increas-
ing systematisation from the first to the second repetition, before exhibiting conventionalisation of
expressions.

B.2 Model-human comparisons

Correlation values between models and naive humans, as well as human split-half correlations, are
shown in Table . For the shuffled and random conditions, we averaged accuracies for each original
trial prior to calculating correlations. Human split-half correlations were computable only for yoked
and backward conditions, in which multiple participants saw the same trials in the exact same order.
We also note that the human split-half correlations are likely underestimated as some splits did
not have the whole set of original trials in each split, and thus had some dropped trials. Overall,
models were less similar to humans than humans were to other humans in the yoked and backward
conditions; we hypothesise that the same would be true for the shuffled and random conditions if
appropriate data were available.
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Table 2: Human split-half correlations and model-human correlations for the yoked, shuffled, back-
ward, and random conditions. Human split-half correlations show the mean and 95% confidence
interval over 1000 random splits.

r
Condition Human split-half Qwen 2.5 VL Gemma3 Llama3.2 Kimi VL
Yoked 42 1[.32, .50] 10 .20 25 27
Shuffled — .28 34 .38 37
Backward .48 [.40, .56] 23 31 40 .35
Random — .61 .58 .55 57

B.3 Item-wise variation

Figure B shows the item-wise performance for all matchers and conditions. Figure B provides the
grid of tangrams shown to the models, with correspondence between tangrams and letter labels.

Both naive humans and models display large item-wise variation, with the magnitude of this vari-
ation sometimes exceeding that due to repetition number, matcher, or condition, replicating the
item-wise variation found by Boyce et al. [0]. Item-wise variation appears to be largest for the other-
within and other-across conditions, suggesting that some tangrams may be relatively more nameable
or distinguishable than others, allowing for higher accuracy even without coherent context. There
appears to be some shared variance across models, such that the mean accuracy for each item is
somewhat consistent across models for each condition, although each model also has particular id-
iosyncrasies and biases (e.g., Gemma 3 appears to be especially accurate for tangrams A and E
compared to other models).

B.4 Learning analyses

To investigate the potential role of feedback, we visualised matcher accuracy from the second rep-
etition onward as a function of whether the matcher selected correctly in the previous repetition of
the same tangram, as shown in Figure [I. We quantised previous repetition accuracy by determin-
ing whether the argmax of the probabilities was the target tangram for models, and by determining
whether any matcher selected correctly for the original-game humans; naive human performance
was already binarised.
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strapped 95% confidence intervals. Dashed lines indicate the chance level (0.083).
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Figure 7: Trial accuracy as a function of previous-repetition accuracy for the same tangram across
matchers for the yoked, shuffled, backward, and random conditions. Error bars indicate bootstrapped
95% confidence intervals. Dashed lines indicate the chance level (0.083).

The random condition replicated the overall accuracy curves in Figure I since the prior context
did not provide any relevant cues as for subsequent test trials, both models and humans performed
similarly regardless of whether the previous trial was correct or not.

In the yoked, shuffled, and backward conditions, for both humans and models, when matchers an-
swered a previous repetition correctly, there were also very likely to answer the next repetition
correctly, with accuracy > 0.7 (except for Qwen 2.5 in the yoked condition). However, the pattern of
results was different when matchers answered a previous repetition incorrectly. In this case, models
were generally able to learn from previous mistakes in the yoked and shuffled condition (again, ex-
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Figure 8: Correlation in confusion matrices across conditions for all models.

cept for Qwen 2.5), whereas naive humans were at about 0.5 accuracy—in other words, they were
able to correct their previous mistakes only approximately half the time.

Some of this discrepancy may have been due to the fact that models received the correct target for
all previous trials, whereas naive humans only received feedback about whether they had selected
correctly (i.e., they knew the correct tangram only when they had selected it correctly themselves).
Future work can more fully characterise the role of feedback by either allowing naive humans to
know the correct tangram if they answered incorrectly, or by presenting models with only selection
correctness feedback. We note also that the construct of “learning” is slightly disanalogous between
humans and models, since humans experienced trials sequentially whereas models did not. Evaluat-
ing models in a true multi-turn setting would help to more closely align the experiment setups.

B.5 Correlation analyses

Drawing inspiration from representational similarity analysis [24], we conducted a correlation anal-
ysis over the confusion matrices for each model across conditions. We constructed confusion matri-
ces for each model—-condition combination by taking the mean of the probability distributions across
trials for each target tangram. We then calculated the Pearson’s correlation among the confusion
matrices for all conditions. The resultant correlograms are shown in Figure B. These correlograms
demonstrate relatively high correlations across conditions for all models (all » > .83), except for
the ablated condition (r = .16 — .87) and the no context condition (r = .04 — .80). Furthermore, all
models show a similar pattern of correlations, with the yoked, shuffled, and backward conditions
clustering together, the other-within, other-across, and random conditions clustering together, and
the ablated and no context conditions being the most distinct from the other conditions. This pattern
of results partly reflects the differences in overall performance across the different conditions, but
also supports the idea that relevance is a crucial organising dimension of the content of contextual
information.

B.6 Error analyses

We conducted an error analysis to investigate possible factors driving differences between model
and human performance. We used model and naive human responses in the random condition, in
which there was limited relevant context, although we note that our method could be applied to
other conditions as well. We estimated the discrepancy between model and human performance
by calculating the difference between model and human accuracy for each unique trial, averaging
across all models and runs. Then, we lemmatised the message texts in each trial, and estimated the
means and 95% confidence intervals of the model-human discrepancy for each unique lemma across
all trials in which that lemma occurred. We recentred these discrepancy scores by subtracting the
grand mean in discrepancy across all trials (-0.186), and determined the significance of the centred
discrepancy (CD) estimates by calculating whether the 95% confidence intervals contained zero.
These CD values reflected whether models were better or worse than average, in comparison to
humans. We also filtered down to lemmas that occurred in at least 4 games and in at least 20 trials
(i.e., their discrepancies were not due to a small number of idiosyncratic games). The CD values for
selected lemmas are shown in Figure B.

10



bent4 g
stand '
lean 4
facing o
Sit

2due]s

hand °
leg 4 e |
foot 4 —e—
body 4 —e———
arm - —e—
—e——
—e——
—e—

ued Apoq

knee 4
face
head

1
1
1
1
1
1
1
1
1
1
1
1
1
ear D

straight *
behind ——
up ——e——+
in4 —_—e——
right - —e—
back A
out 4
front 4
bottom -
on A
left 4
down A
at4
side
top

Lemma

leneds

shape -
square o
diamond -
triangle A

adeys

person -
man -

guy 1
rabbit -

skater
bunny 4

uosiad

bkl

osiw

—e——i
T T

0.2 01 0.0 0.1
Centred discrepancy (model — human)

Figure 9: Centred discrepancy in model versus human accuracies in the random condition for se-
lected lemmas, categorised by semantic categories. Error bars indicate 95% confidence intervals.
Dashed line indicates zero (i.e., discrepancy equal to the grand mean). Empty/filled points indicate
whether the confidence intervals do/do not include zero respectively.
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Figure 10: Matcher accuracy across all conditions and models using text input only, with best-
fit LOESS curves, shown by repetition number as seen by the matcher, except for the no context
condition where repetition number is from the original game. Error bars indicate bootstrapped 95%
confidence intervals. Dashed lines indicate the chance level (0.083).

Manual inspection of the resulting estimates suggested that there were very few lemmas for which
centred discrepancy was positive; the only such lemma that occurred in at least 4 games was “bunny”.
Conversely, there were 39 lemmas for which centred discrepancy was negative and which occurred
in at least 4 games. Two notable groups of such lemmas were body parts (e.g., “hand”, “leg”, “foot”,
“arm”), and some prepositions and direction words (e.g., “behind”, “up”, “right”). Together, these
discrepancies suggest that models were worse than humans at interpreting non-literal tangram parts
and their relations. Intriguingly, models were not worse than average for several general person-
related words (e.g., “person”, “man”, “guy”), shape words (e.g., “shape”, “triangle”, “square”, “di-
amond”), and some other spatial terms (e.g., “left”, “down”, “side”, “top”). This contrast suggests
that models were average at interpreting more literal tangram parts and their relations, as well as

more general or holistic humanoid descriptions.

C Additional results

C.1 Image-text vs. text-only performance

Previous studies with VLMs have suggested that they underutilise visual information due to atten-
tional issues or bias from prior linguistic knowledge [Z5-277]. To investigate the extent to which
VLMs were using the tangram images to perform pragmatic reasoning, we also ran all models using
a prompt that did not include the tangram images. Model accuracies are shown in Figure [, and the
difference in accuracy between the text-only and the image—text paradigms is shown in Figure [T.

All models showed near- or at-chance performance in the first repetition (across all conditions) and
in the no context condition when no images were shown, suggesting that they were in fact using
visual information to resolve pragmatic references. Models also generally performed worse without
images than with images, although the change in performance varied across models—notably, Llama
3.2 performance in fact improved in most cases. This pattern of results suggests that some models
(especially Llama 3.2) were primarily using the text information to select the correct match; this
finding corroborates results from Hua et al. [TZ7], showing that when images are shuffled from trial
to trial, VLMs exhibit little to no learning over repetitions.
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Figure 11: Difference in accuracy between the text-only and image—text paradigms across all condi-
tions and models. Error bars indicate bootstrapped 95% confidence intervals. Dashed lines indicate
no difference.
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