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Abstract

Control problems are always challenging since they arise from the real-world
systems where stochasticity and randomness are of ubiquitous presence. This
naturally and urgently calls for developing efficient neural control policies for
stabilizing not only the deterministic equations but the stochastic systems as well.
Here, in order to meet this paramount call, we propose two types of controllers, viz.,
the exponential stabilizer (ES) based on the stochastic Lyapunov theory and the
asymptotic stabilizer (AS) based on the stochastic asymptotic stability theory. The
ES can render the controlled systems exponentially convergent but it requires a long
computational time; conversely, the AS makes the training much faster but it can
only assure the asymptotic (not the exponential) attractiveness of the control targets.
These two stochastic controllers thus are complementary in applications. We
also investigate rigorously the linear controller and the proposed neural stochastic
controllers in both convergence time and energy cost and numerically compare them
in these two indexes. More significantly, we use several representative physical
systems to illustrate the usefulness of the proposed controllers in stabilization of
dynamical systems.

1 Introduction

In the field of controlling dynamical systems, one of the major missions is to find efficient control
policies for stabilizing ordinary differential equations (ODEs) to targeted equilibriums. The policies
for stabilizing linear or polynomial dynamical systems have been fully developed using the standard
Lyapunov stability theory, e.g., the linear quadratic regulator (LQR) Khalil (2002) and the sum-
of-squares (SOS) polynomials through the semi-definite planning (SDP) Parrilo (2000). As for
stabilizing more general and nonlinear dynamical systems, linearization technique around the targeted
states is often utilized and thus the existing control policies are effective in the vicinity of the
targeted states (Sastry & Isidori, 1989) but likely lose efficacy in the region far away from those
states. Moreover, in real applications, the explicit forms of the controlled nonlinear systems are
often partially or completely unknown, so it is very difficult to directly design controllers only using
the Lyapunov stability theory. To overcome these difficulties, designing the controllers via training
neural networks (NNs) become one of the mainstream approaches in the community of cybernetics
(Polycarpou, 1996). Recent outstanding developments using NNs include enlarging the safe region
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(Richards et al., 2018), learning the stable dynamics (Takeishi & Kawahara, 2021), and constructing
the Lyapunov function and the control function simultaneously (Chang et al., 2019). In Kolter &
Manek (2019) a projected NN has been constructed to directely learn a stable dynamical system and
fits the observed time series data well, but it did not focus on learning a control policy to stabilize the
original dynamics. All these existing developments are formulated only for deterministic systems but
inapplicable directly to the dynamical systems described by stochastic differential equations (SDEs),
requiring us to include the stochasticity appropriately into the use of neural controls to different types
of dynamical systems.
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Figure 1: Sketches of the two frameworks of neural
stochastic controller. Both the ES and AS find control
function u with fully connected feedforward NN (FNN).

The stability theory for stochastic systems has
been systematically developed in the past sev-
eral decades. Representative contributions in
the literature include the Lyapunov-like stability
theory for SDEs Mao (2007), stabilization of
unstable states in ODEs only using noise per-
turbations Mao (1994b), and the stability in-
duced by randomly switching structures Guo
et al. (2018). Generally, for any SDEs governed
by dx = f(x)dt+g(x)dBt, control policies as
u = (uf ,ug) are introduced, which transforms
the original equations into the controlled system
dx = [f(x)+uf (x)]dt+ [g(x)+ug(x)]dBt.
Appropriate forms of control policies are able to
steer the controlled system to the equilibriums
that are unstable in the original SDEs. Tradi-
tional control methods focus on designing deter-
ministic control uf and regard noise as negative part. Innovatively, we treat noise as a beneficial part
and design stochastic control ug to achieve the stabilization.

In this article, we articulate two frameworks of neural stochastic control which can complement each
other in terms of convergence rate and the computational time of training NNs. Additionally, we
analytically investigate the convergence time and the energy cost for the classic linear control and the
proposed neural stochastic control and numerically compare them. We further extend our frameworks
to model-free case with existing data reconstruction methods. The major contributions of this article
are multi-folded, including:

• designing two frameworks of neural stochastic control, viz., the ES and the AS, and present-
ing their advantages in the stochastic control,

• providing theoretical estimation for ES/AS and classic linear control in terms of convergence
time and the energy cost,

• computing the convergence time and the energy cost of particular stochastic neural control,
• demonstrating the efficacy of the proposed stochastic neural control in important control

problems arising from representative physical systems, and we make our code available at
https://github.com/jingddong-zhang/Neural-Stochastic-Control.

1.1 Related Works

Lyapunov Method in Machine Learning The recent work Chang et al. (2019) proposed an
NN framework of learning the Lyapunov function and the linear control function simultaneously
for stabilizing ODEs. In comparison, we select several specific types of NNs which have typical
properties of the Lyapunov function. For instance, we use the input convex neural network (ICNN)
Amos et al. (2017), constructing a positively definite convex function as a neural Lyapunov function
(Kolter & Manek, 2019; Takeishi & Kawahara, 2021), and we construct the NN in a quadratic form
(Richards et al., 2018; Gallieri et al., 2019) for linear or sublinear systems where the SDP method is
often used to find the SOS-type Lyapunov function (Henrion & Garulli, 2005; Jarvis-Wloszek et al.,
2003; Parrilo, 2000).

Stochastic Stability Theory of SDEs Stochastic stability theory for SDEs have been system-
atically and fruitfully achieved in the past several decades (Kushner, 1967; Arnold, 2007; Mao,
1991, 1994a). The positive effects of stochasticity have also been cultivated in control fields (Mao
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et al., 2002; Deng et al., 2008; Caraballo et al., 2003; Appleby et al., 2008; Mao et al., 2007). These,
therefore, motivate us to develop only neural stochastic control to stabilize different sorts of dynamical
systems in this article. More stochastic stability theory for different kinds of systems are included in
Appleby et al. (2006); Appleby (2003); Caraballo & Robinson (2004); Wang & Zhu (2017).

2 Preliminaries

To begin with, we consider the SDE which is written in a general form as:

dx(t) = F (x(t))dt+G(x(t))dBt, t ≥ 0, x(0) = x0 ∈ Rd, (1)

where F : Rd → Rd is the drift function, and G : Rd → Rd×r is the diffusion function with Rd×r,
a space of d× r matrices with real entries, and Bt ∈ Rr, a r-dimensional (r-D) Brownian motion.
Without loss of generality, we set F (0) = 0 and G(0) = 0 so that x0 = 0 is a zero solution Eq. (1).

Notations. Denote by ∥ · ∥ the L2-norm for any given vector in Rd. Denote by | · | the absolute value
of a scalar number or the modulus length of a complex number number. For A = (aij), a matrix of
dimension d× r, denote by ∥A∥2F =

∑d
i=1

∑r
j=1 a

2
ij the Frobenius norm.

Assumption 2.1 (Locally Lipschitzian Continuity) For every integer n ≥ 1, there is a number
Kn > 0 such that

∥F (x)− F (y)∥ ≤ Kn∥x− y∥, ∥G(x)−G(y)∥F ≤ Kn∥x− y∥,
for any x,y ∈ Rd with ∥x∥ ∨ ∥y∥ ≤ n.

Definition 2.1 (Derivative Operator) Define the differential operator L associated with Eq. (1) by

L ≜
d∑

i=1

Fi(x)
∂

∂xi
+

1

2

d∑
i,j=1

[G(x)G⊤(x)]ij
∂2

∂xi∂xj
.

Definition 2.2 (Exponential Stability) The zero solution of Eq. (1) is said to be almost surely expo-
nentially stable, if lim supt→∞

1
t log ∥x(t;x0)∥ < 0 a.s. for all x0 ∈ Rd. Here and throughout,

a.s. stands for the abbreviation of almost surely.

Then, the following Lyapunov stability theorem will be used in the establishment of our main results.
Theorem 2.2 Mao (2007) Suppose that Assumptions 2.1 holds. Suppose further that there exist a
function V ∈ C2(Rd;R+) with V (0) = 0, constants p > 0, c1 > 0, c2 ∈ R and c3 ≥ 0, such that (i)
c1∥x∥p ≤ V (x), (ii) LV (x) ≤ c2V (x), and (iii) |∇V ⊤(x)G(x)|2 ≥ c3V

2(x) for all x ̸= 0 and
t ≥ 0. Then,

lim sup
t→∞

1

t
log ∥x(t; t0,x0)∥ ≤ −c3 − 2c2

2p
a.s.. (2)

In particular, if c3 − 2c2 > 0, the zero solution of Eq. (1) is exponentially stable almost surely.

The following asymptotic theorem also will be used in the establishment of our main results.
Theorem 2.3 Appleby et al. (2008) Suppose that Assumptions 2.1 holds. Suppose further
min∥x∥=M ∥x⊤G(x)∥ > 0 for any M > 0 and there exists a number α ∈ (0, 1) such that

∥x∥2(2⟨x, F (x)⟩+ ∥G(x)∥2F)− (2− α)∥x⊤G(x)∥2 ≤ 0, ∀x ∈ Rd. (3)

Then, the unique and global solution of Eq. (1) satisfies limt→∞ x(t,x0) = 0 a.s., and we call this
property as asymptotic attractiveness.

3 Designing Stable Stochastic Controller

Here, we assume that the zero solution of the following SDE:

dx = f(x)dt+ g(x)dBt (4)

is unstable. Note that, for any nontrivial targeted equilibrium x∗, a direct transformation y = x−x∗

can make the zero solution as the equilibrium of the transformed system. Thus, our mission is to
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stabilize the zero solution only. As such, we are to use the NNs to design the control u : Rd → Rd×r

with u(0) = 0 and apply it to Eq. (4) as

dx = f(x)dt+ [g(x) + u(x)]dBt. (5)

Since u is integrated with dBt in the controlled system (5), we regard it as a stochastic controller. In
what follows, two frameworks of neural stochastic control, the exponential stabilizer (ES) and the
asymptotic stabilizer (AS), are articulated, respectively, in Sections 3.1 and 3.2. All these control
policies are intuitively depicted in Figure 1.

3.1 Exponential Stabilizer

Once we find the Lyapunov function V and the neural controller u, making the controlled system (5)
meet all the conditions assumed in Theorem 2.2, the equilibrium 0 can be exponentially stabilized.
To this end, we first provide two different types of functions for constructing V , which actually could
be complementary in applications. Then, we design the explicit forms of control function and loss
function.

ICNN V Function. We use the ICNN (Amos et al., 2017) to represent the candidate Lyapunov
function V . This guarantees V as a convex function with respect to the input x. In order to further
make V as a true Lyapunov function, we use the following form:

z1 = σ0(W0x+ b0), zi+1 = σi(Uizi +Wix+ bi),

g(x) ≡ zk, i = 1, · · · , k − 1,

V (x) = σk+1(g(F(x))− g(F(0))) + ε∥x∥2,
(6)

as introduced in Manek & Kolter (2020). Here, Wi, bi are real-valued weights, Ui are positive
weights, σi are convex, monotonically non-decreasing activation functions in the i-th layer, ε is
a small positive constant, and F is a continuously differentiable and invertible function. In our
framework, we require V ∈ C2(Rd;R+) according to Definition 2.1; however, each activation
function σi ≡ σ in Manek & Kolter (2020) is C1 only. Thus, we modify the original function as:

d

σ(x)

d

σ′(x)

d

σ′′(x)

Figure 2: The smoothed ReLU σ(·).
σ(x) =

 0, if x ≤ 0,
(2dx3 − x4)/2d3, if 0 < x ≤ d,
x− d/2, otherwise

(7)

which not only approximates the typical ReLU activation but also becomes continuously differentiable
to the second order (see Figure 2).

Quadratic V Function. For any x ∈ Rd, let Vθ ∈ Rd be a multilayered feedforward NN of the
input x and with tanh(·) as the activation functions, where θ is the parameter vector. To meet the
condition used in Definition 2.1, we cannot use the ReLU, a non-smooth function, as the activation
function. Hence, we use the candidate Lyapunov function as:

V (x) = x⊤ [εI + Vθ(x)
⊤Vθ(x)

]
x, (8)

which was introduced in Gallieri et al. (2019). Here, ε is a small positive constant.

Control Function. We introduce a multi-layer feedforward NN (FNN), denoted by NN(x) ∈ Rr,
to design the controller u. Since we require u(0) = 0, we set u(x) ≜ NN(x) − NN(0) or
u(x) ≜ diag(x)NN(x) with r = d. Here, diag(x) is a diagonal matrix with its i-th diagonal
element as xi.

Remark 3.1 As reported in Chang et al. (2019), a single-layer NN without the bias constants in its
arguments, which degenerates as linear control, could sufficiently take effect in the stabilization of
many deterministic systems. However, this is NOT always the case for achieving the stabilization
of highly nonlinear systems or even SDEs. The following proposition with Figure 3 provides an
example, where neither the classic linear controller nor the stochastic linear controller can stabilize
the unstable equilibrium in a particular SDE. The proof of this proposition is included in Appendix
A.1.
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Proposition 3.2 Consider the following 1-D SDE:

dx(t) = x(t) log |x(t)|dt+ u(x(t))dBt, (9)

with a zero solution x∗ = 0. Then, for u(x) = kx with any k and x0 ̸= 0, x∗ = 0 is neither
exponentially stable nor of globally asymptotic attractiveness almost surely. For u(x) = 2x2, x∗ = 0
is of globally asymptotic attractiveness. For u(x) ≡ 0, the deterministic system cannot be stabilized
by any classic linear controller.

0 0.5 1.0 1.5 2.0
Time

101

104

107

1010

1013

x

k = 1, x0 = 50

k = 2, x0 = 100

k = 3, x0 = 150

0 3e−4 6e−4 9e−4 1.2e−3

Time

0

40

80

120

160 x0 = 50

x0 = 100

x0 = 150

(a) (b)

Figure 3: (a) u(x) = kx, (b) u(x) = 2x2.

Loss Function. When the learning procedure
updates the parameters in the NNs such that
the constructed V and u with the coefficient
functions, f and gu ≜ g + u, in the controlled
system (5) meet all the conditions assumed in
Theorem 2.2, the exponential stability of the
controlled system is assured. Thus, we demand
a suitable loss function to evaluate the likelihood that those conditions are satisfied. First, from
Theorem 2.2, it follows that V (x) ≥ ε∥x∥2 for all x ∈ Rd. Thus, Conditions (ii)-(iii) together with
c3 − 2c2 > 0 in Theorem 2.2 equivalently become

inf
x ̸=0

(∇V (x)⊤gu(x))
2

V (x)2
≥ b · sup

x ̸=0

LV (x)

V (x)
, b > 2. (10)

These conditions further imply that

(∇V (x)⊤gu(x))
2

V (x)2
− b · LV (x)

V (x)
≥ 0, b > 2, x ̸= 0. (11)

With these reduced conditions, we design the ES loss function for the controlled system (5) as follows.

Definition 3.1 (ES loss) Consider a candidate Lyapunov function V and a controller u for the
controlled system (5). Then, the ES loss is defined as

Lµ,b,ε(θ,u) = Ex∼µ

[
max

(
0,

b · LV (x)

V (x)
− (∇V (x)⊤gu(x))

2

V (x)2
)]
,

where the state variable x obeys the distribution µ. In practice, we consider the following empirical
loss function:

LN,b,ε(θ,u) =
1

N

N∑
i=1

max
(
0,

b · LV (xi)

V (xi)
− (∇V (xi)

⊤gu(xi))
2

V (xi)2
)
, (12)

where {xi}Ni=1 are sampled from the distribution µ = µ(Ω) and Ω is some closed domain in Rd.

For convenience, we summarize the developed framework in Algorithm 1. Here, b is a hyper-
parameter that can be adjusted as required by solving a specific problem.

Remark 3.3 In Section 5, we show numerically that the conditions reduced in (11) are sufficiently
effective for designing the ES loss. Actually, it is not necessary to design the loss function using the
conditions in (10).

Now, for controlling any nonlinear ODEs or SDEs, we design the ES according to Algorithm 1. As
such, using the ES framework can not only stabilize those unstable equilibriums (constant states)
of the given systems, but also can stabilize those unstable oscillators, e.g., the limit cycle. This
is because the solution corresponding to the oscillator can be regarded as a zero solution of the
controlled system after appropriate transformations are implemented.

Another point needs attention. During the construction of V in (6), ε∥x∥2, the L2-regularization, is
used to guarantee the positive definiteness of V . However, often in the application of the Lyapunov
stability theory, the form of ∥x∥2 is not always a suitable candidate for the Lyapunov function. It
may restrict the generalizability of using our framework, so it needs necessary adjustments. The
following example illustrates this point.
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Example 3.4 Consider a 2-D SDE as follows:{
dx1(t) = x2(t)dt,

dx2(t) = [−2x1(t)− x2(t)]dt+ x1(t)dBt.

In Appendix A.2, the zero solution of this system is validated to be exponentially stable almost surely;
however, k∥x∥2 for any k ∈ R cannot be a useful auxiliary function to identify the exact stability of
the zero solution.

To be candid, using the current framework takes a longer time for training and constructing the neural
Lyapunov function. In the next subsection, we thus establish an alternative control framework that
can reduce the training time.

3.2 Asymptotic Stabilizer

Here, in light of Theorem 2.3, we are to establish the second framework, the AS, for stabilizing
the unstable equilibrium of system (5). This framework only makes the equilibrium asymptotically
attractive almost surely. Its control function is designed in the same way as the one used in the ES
framework, whereas the loss function is differently designed.

Definition 3.2 (AS loss) Utilization of the notations used in Definition 3.1, the loss function for the
controlled system (5) with the controller u is defined as:

Lµ,α(u) = Ex∼µ

[
max

(
0, (α− 2)∥x⊤gu(x)∥2 + ∥x∥2(⟨x, f(x)⟩+ ∥gu(x)∥2F)

)]
.

Akin to Definition 3.1, we set the empirical loss function as:

LN,α(u) =
1

N

N∑
i=1

[
max

(
0, (α− 2)∥x⊤

i gu(xi)∥2 + ∥xi∥2(⟨xi, f(xi)⟩+ ∥gu(xi)∥2F)
)]
. (13)

Here, α is an adjustable parameter, which is related to the convergence time and the energy cost using
the controller u. We show in Appendix A.8 the influence of selecting different α. For convenience,
we summarize the AS framework in Algorithm 2.

4 Convergence Time and Energy Cost

The convergence time and the energy cost are the crucial factors to measure the quality of a controller
(Yan et al., 2012; Li et al., 2017; Sun et al., 2017). In this section, we provide a comparative study
between the traditional stochastic linear control and the ES/AS, the above-articulated neural stochastic
control.

To this end, we first present a theorem on the estimations of the convergence time and the energy cost
for the stochastic linear control on a general SDE.

Theorem 4.1 Consider the SDE with a stochastic linear controller as:

dx = f(x)dt+ u(x)dBt, x(0) = x0 ∈ Rd, (14)

where ⟨x, f(x)⟩ ≤ L∥x∥2 and u(x) = kx with |k| >
√
2L. Then, for ϵ < ∥x0∥, we have

E[τϵ] ≤ Tϵ =
2 log (∥x0∥/ϵ)

k2 − 2L
,

E(τϵ, Tϵ) ≤
k2∥x0∥2
k2 + 2L

[
exp

(
2(k2 + 2L) log (∥x0∥/ϵ)

k2 − 2L

)
− 1

]
,

where, for a sufficiently small ϵ > 0, we denote the stopping time by τϵ ≜ inf{t > 0 : ∥x(t)∥ = ϵ}
and denote the energy cost by

E(τϵ, Tϵ) ≜ E
( ∫ τϵ∧Tϵ

0

∥u∥2dt
)
= E

( ∫ Tϵ

0

∥u∥21{t<τϵ}dt
)
.
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The proof of this theorem is provided in Appendix A.3.1.

We further consider the case for NN controller u(x). In general, the u(x) is Lipschitz continuous
with Lipshcitz constant ku under a suitable activation function such as ReLU in NN (Fazlyab et al.,
2019; Pauli et al., 2021). Then we have the following upper bound estimation of the convergence
time and the energy cost for ES and AS, whose proofs are provided in Appendix A.3.2, A.3.3.
Theorem 4.2 (Estimation for ES) For ES stabilizer u(x) in (14) with ⟨x, f(x)⟩ ≤ L∥x∥2, ε <
∥x0∥, under the same notations and conditions in Theorem 2.2 with c3 − 2c2 > 0, we have

E[τϵ] ≤ Tϵ =
2 log (V (x0)/c1ε

p)

c3 − 2c2
,

E(τϵ, Tϵ) ≤
ku

2∥x0∥2
ku

2 + 2L

[
exp

(
2(ku

2 + 2L) log (V (x0)/c1ε
p))

c3 − 2c2

)
− 1

]
.

Theorem 4.3 (Estimation for AS) For (14) with ⟨x, f(x)⟩ ≤ L∥x∥2, ε < ∥x0∥, under
the same notations and conditions in Theorem 2.3, if the left term in (3) further satisfies
max∥x∥≥ε ∥x∥α−4(∥x∥2(2⟨x, f(x)⟩ + ∥u(x)∥2F) − (2 − α)∥x⊤u(x)∥2) = −δε < 0, then for
NN controller u(x) with Lipschizt constant ku, we have

E[τϵ] ≤ Tϵ =
2 (∥x0∥α − εα)

δε · α
,

E(τϵ, Tϵ) ≤
ku

2∥x0∥2
ku

2 + 2L

[
exp

(
2(ku

2 + 2L) (∥x0∥α − εα)

δε · α

)
− 1

]
.

Based on the theoretical results for ES and AS, we can further analyze the effects of hyperparameters
b, α and neural network structures on the convergence time and energy cost in the control process.
There are some interesting phenomena such as the monotonicity of Tε along α for AS change with
the relative relationships of ∥x0∥ and ε, this inspires us to select suitable α according to the specific
problems. We leave more discussions in Appendix A.3.4.

Now, we numerically compare the performances of the linear controller u(x) = kx and the AS
on the convergence time and the energy cost of the controls applied to system (14) with specific
configurations (see Figure 4). We numerically find that u(x) = kx can efficiently stabilize the
equilibrium for k > kc = 5.6. Without loss of generality, we fix k = 6.0, and compare the
corresponding performances. As clearly shown in Figure 4, the AS outperforms u(x) = kx from
both perspectives, the convergence speed and the energy cost. In the simulations, the energy cost
E(τϵ, Tϵ) defined above is computed in a finite-time duration as E(τϵ, T ∧ Tϵ), where T < ∞ is
selected to be appropriately large. We leave more results of the comparison study in Appendix A.5.5.
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Figure 4: The performances of system (14) with specific configurations: f(x) = x log(1 + x). (a)
u(x) = kx, k = 0.2 · j, j = 1, · · · , 50, plot log(1 + x(1)) against k. (b) Linear controller with
k = 6.0, E(τ0.1, 1) = 38, 388. (c) AS control with E(τ0.1, 1) = 1438

5 Experiments

In this section, we demonstrate the efficacy of the above-articulated frameworks of stochastic neural
control, the ES and the AS, on several representative physical systems. We also compare these
two frameworks, highlighting their advantages and weaknesses. The detailed configurations for
these experiments are included in Appendix A.5. Additional illustrative experiments are included in
Appendix A.6.

5.1 Harmonic Linear Oscillator
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Figure 5: The solid lines are obtained through averaging
the 20 sampled trajectories, while the shaded areas stand
for the variance regions.

First, consider the harmonic linear oscillator
ÿ + 2βẏ + w2y = 0, where w is the natural fre-
quency and β > 0 is the damping coefficient rep-
resenting the strength of the external force on the
vibrator (Dekker, 1981). Although this system is
exponentially stable, the system with stochastic
perturbations ÿ+(2β+ξ2)ẏ+(w2+ξ1)y = 0 be-
comes unstable even if E[ξ1(t)] = E[ξ2(t)] = 0
(Arnold et al., 1983). Now, we apply the non-
linear ES(+ICNN), the linear ES(+Quadratic),
and the nonlinear AS, respectively, to stabiliz-
ing this unstable dynamics (A.5.1) with w2 = 1,
β = 0.5, ζ1 = −3, and ζ2 = 2.15, the results
are shown in Figure 5. Indeed, we find that
the two nonlinear stochastic neural controls are more robust than the linear control, and that the
ES(+ICNN), rather than the AS, makes the controlled system more stable.

Table 1: Performance on Harmonic Linear Oscilla-
tor

Tt Ni Di Ct

ES(+ICNN) 276.385s 121 1e-9 0.459
ES(+Quadratic) 78.071s 107 0.049 3.683
AS 4.839s 184 0.027 2.027

In Table 1 we compute the training time (Tt)
used for the loss function converging to 0, the
number of iterations (Ni), the distance (Di) be-
tween the trajectory and the targeted equilibrium
at time T = 4, and the convergence time (Ct)
when the distance between the trajectory and the
targeted equilibrium is less than 0.05. The re-
sults are obtained through averaging the corresponding quantities produced by 20 randomly-sampled
trajectories and the detailed training configurations are shown in Appendix A.5.1.
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Figure 6: Comparison with existing methods.

We further provide a comparison study of our newly
proposed ES(+ICNN) with HDSCLF in (Sarkar et al.,
2020), BALSA in (Fan et al., 2020) and classic LQR
controller in controlling the harmonic linear oscillator.
Both HDSCLF and BALSA are based on the Quadratic
Program(QP), and they seek the control policy dynami-
cally for each state in the control process. By contrast, our proposed learning control policy is directly
used in the control process. Hence, our method is more efficient in the practical control problems.
The results are shown in Figure. 6 (Please see more details in Appendix A.5.1). As can be seen that
our learning control methods outperforms all others.

5.2 Stuart-Landau Equations

In this subsection, we show that our frameworks are beneficial to realizing the control and the
synchronization of complex networks. To this end, we consider the single Stuart–Landau oscillator
which is governed by the following complex-valued ODE:

Ż = (β + iγ + µ|Z|2)Z, Z ∈ C. (15)

This equation is a paradigmatic model undergoing the so-called Andronov bifurcation (Kuznetsov,
2013): Stability of the equilibrium changes and the limit cycle emerges as the parameter passes some
critical value. In what follows, we consider two cases based on system (15).

Case 1 We set β = −25, γ = 1, and µ = 1, so that system (15) has a stable equilibrium ρ = 0
and an unstable limit cycle ρ = 5. Here, Z = x + iy = ρeiθ. Now, the AS steers the dynamics to
the unstable limit cycle, as successfully shown in Figure 7. The trajectories (the left column) and
the phase orbits (the right column) of system (15), initiated from 30 randomly-selected initial states,
without control (the upper panels) and with control of the AS (the lower panels). The initial values
inside (resp., outside) the limit cycle ρ = 5 are indicated by the blue (resp., purple) pentagrams.

Case 2 Next, we consider the synchronization problem of the coupled Stuart-Landau equations.
Successful deterministic methods have been systematically developed for realizing synchronization,
including the adaptive control with time delay Selivanov et al. (2012) and the open-loop temporal
network controller Zhang & Strogatz (2021). These methods majorly depend on the technique
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Figure 7: The trajectories (the left column) and
the phase orbits (the right column) of system (15).
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Figure 8: The dynamics of the first (resp., second)
component of the coupled oscillators are shown in the
panels in the left (resp., middle) column. The dynamics
in the phase space (the right column).

of linearization in the vicinity of the synchronization manifold. Here, we show how to apply our
framework to achieving the synchronization in the coupled system. We set the corresponding
Laplace matrix L = (Ljk)n×n as

∑n
k=1 Ljk = 0, which guarantees the synchronization manifold

is an invariant manifold of the coupled system (Pecora & Carroll, 1998). Specifically, we select as
n = 20, σ = 0.01, c1 = −1.8, c2 = 4, and Ljk = δjk − 1

n , where δjk is the Kronecker function.
Then, we apply the AS to this system and realize the stabilization of the synchronous manifold, as
shown in Figure 8.

5.3 Data-Driven Pinning Control for Cell Fate Dynamics
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Figure 9: Pinning control for cell fate dynamics.

Indeed, our frameworks can be extended to the
model-free version via a combination with exist-
ing data reconstruction method. To be concrete,
we show that our framework can combine with
Neural ODEs (NODEs) (Chen et al., 2018) to
learn the control policy from time series data
for the Cell Fate system (Sun et al., 2017; Laslo
et al., 2006), which describes the interaction be-
tween two suppressors during cellular differentiation for neutrophil and macrophage cell fate choices.
The system ẋ = f(x), x = (x1, ..., x6) has three steady states: P1,2,3, where P2,3 correspond to
different cell fates and are stable and P1 represents a critical expression level connecting the two
fates and is unstable. The network structure of this 6-D system is a treemap, where one root node
x1 can stabilize itself under the original dynamic. Hence, we choose root node x2 with maximum
our degree and add pinning control on it to stabilize the system to unstable state P1. The original
trajectory that converges to P2 (left) and the controlled trajectory that converges to P1 (right) are
shown in Figure 17. The original trajectory is used to train the NODE to reconstruct the vector field
f̂ , then we use the sample of f̂ as training data to learn our stochastic pinning control. We provide
experimental details in Appendix A.5.6.

In addition to the above controlled systems, we include the other illustrative examples, the controlled
inverted pendulum, reservoir computing and the controlled Lorenz system, in Appendix A.5,A.6.

6 Conclusion and Future Works

In this article, we have proposed two frameworks of neural stochastic control for stabilizing different
types of dynamical systems, including the SDEs. We have shown that the neural stochastic control
outperforms the classic stochastic linear control in both the convergence time and the energy cost
for typical systems. More importantly, using several representative physical systems, we have
demonstrated the advantages of our frameworks and showed part of their weaknesses possibly
emergent in real applications. Also, we present some limitations of the proposed frameworks in
Appendix A.9. Moreover, we suggest several directions for further investigations: (i) acceleration of
the training process of the ES, (ii) the basin stability of the neural stochastic control (Menck et al.,
2013), (iii) the trade-off between the deterministic controller ug using the NNs and the stochastic
controller uf using the NNs, (iv) the safe learning in Robotic control with small disturbances
(Berkenkamp et al., 2017), and (v) the design of the purely data-driven stochastic neural control.
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