Under review as a conference paper at ICLR 2026

FROM COMPRESSION TO EXPRESSION:
A LAYERWISE ANALYSIS OF IN-CONTEXT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In-context learning (ICL) enables large language models (LLMs) to adapt to new
tasks without weight updates by learning from demonstration sequences. While
ICL shows strong empirical performance, its internal representational mechanisms
are not yet well understood. In this work, we conduct a statistical geometric analy-
sis of ICL representations to investigate how task-specific information is captured
across layers. Our analysis reveals an intriguing phenomenon, which we term Lay-
erwise Compression-Expression: early layers progressively produce compact and
discriminative representations that encode task information from the input demon-
strations, while later layers express these representations to incorporate the query
and generate the prediction. This phenomenon is observed consistently across di-
verse tasks and a range of contemporary LLLM architectures. We demonstrate that
it has important implications for ICL performance—improving with model size
and the number of demonstrations—and for robustness in the presence of noisy
examples. To further understand the effect of the compact task representation, we
propose a bias-variance decomposition and provide a theoretical analysis showing
how attention mechanisms contribute to reducing both variance and bias, thereby
enhancing performance as the number of demonstrations increases. Our findings
reveal an intriguing layerwise dynamic in ICL, highlight how structured represen-
tations emerge within LLMs, and showcase that analyzing internal representations
can facilitate a deeper understanding of model behavior.

1 INTRODUCTION

In-context learning (ICL) (Brown et al., 2020; Dong et al., |2022) has emerged as a powerful ca-
pability of large language models(LLMs), allowing them to perform new tasks by conditioning on
a few input-output examples without weight updates. Despite being trained solely for next-token
prediction, LLMs exhibit strong empirical performance across a wide range of NLP tasks through
this mechanism. For example, pretrained LLMs can make correct predictions based on a sequence
of input-separation-output pairs that encode semantic mappings. Given the same query token, the
model can make different predictions based on the task defined by the demonstrations, such as d and
C for the following two tasks,

(a—=bb—=c,c—=?7), (a— A b— B, c—7) (D
~——— —_——
Next Letter To Uppercase

Recent research has advanced several theoretical perspectives on explaining why ICL
works—viewing ICL as posterior inference (Xie et al.| [2021), implicit meta-learning (Chen et al.,
2021), internal optimization (Von Oswald et al.,|2023)) or mechanistic interpretations(Olsson et al.,
2022). However, the underlying mechanism of how LLMs distinguish different tasks and use this
information to guide their output remains unclear for ICL. To address this gap, we focus on the
hierarchical feature learning across layers and formulate the following research question:

How do LLMs extract and differentiate task information from shallow to deep layers
during in-context learning?

To investigate how task-specific information evolves across layers, we conduct a statistical geometric
analysis of ICL representations across multiple tasks. Specifically, we consider a set of 7" ICL tasks,

Under review as a conference paper at ICLR 2026

Compression Expression 1.0
102
0.8
> 10! ~- TDNV 06%
E —@— Task Vector Accuracy 5
= —A— Early-exit Accuracy | 4§
0
10 0.2
0.0
1 -1
o1 5 9 13 17 21 25 29
Layers

Figure 1: Layer-wise compression to expression in ICL representations. TDNV first decreases then
increases from shallow to deep layers, splitting the model into compression and expression stages.
During the compression stage, task vector accuracy increases as task information is progressively
extracted from demonstration pairs. During the expression stage, early-exit accuracy increases as
output information is progressively decoded based on the input query. Refer to Appendix |G| for
detailed explanation of task vector and early-exit accuracy.

each associated with a distribution D; for input-output pairs. Then for each task ¢, we randomly
sample K input-output pairs (also referred to as demonstrations) from D;, which are combined
with a query to form an ICL instance. We construct multiple such instances per task following this
procedure. To quantify how the model compresses task information in its internal representations,
we examine two key aspects: (1) how instances from the same task are clustered together, and
(2) how instances from different tasks are distinguished from each other. Our analysis reveals an
intriguing phenomenon, which we term the Layerwise Compression-Expression, summarized as:

Layerwise Compression-Expression Phenomenon

LLMs exhibiting ICL capabilities organize their layers into two parts with distinct be-
haviors: a compression part and an expression part. The early layers, comprising the
compression part, progressively produce compact and discriminative representations that
capture task information from the input demonstrations. The later layers, forming the
expression part, apply these compact representations to the query to generate the output.

Specifically, we introduce a metric called Task-Distance Normalized Variance (TDN Vﬂ that mea-
sures the ratio of within-task variance to between-task distance: within-task variance indicates how
well the representation from the same task are compressed, while between-task distance reflects
the separation from different tasks. A lower TDNV indicates that representations of the same task
samples are similar and representations of different task samples are distinguishable. Thus, TDNV
serves as an effective method of how well the task information is compressed. By measuring TDNV
across transformer layers, we can track how the model progressively encodes and transforms task
information throughout its architecture.

As shown in Figure[T} TDNV first decreases and then increases from shallow to deep layers, splitting
the model into compression and expression stages. To further support our hypothesis, we measure
task vector accuracy (Hendel et al., 2023) and early-exit accuracy (Xin et al., |2020; [Jiang et al.,
2024b) across layers to track task-specific and output-specific information. Task vector accuracy
measures zero-shot ICL performance when injecting intermediate layer hidden states extracted un-
der ICL settings. Early-exit accuracy measures performance by directly applying the final-layer
classifier to intermediate hidden states. During compression, task vector accuracy increases while
early-exit accuracy remains low, indicating that the model is compressing representations to en-
code task information. During expression, task vector accuracy decreases while early-exit accuracy
rapidly increases, indicating that the model begins to incorporate query information and decode
output-specific representations. As we show, this behavior has important implications for ICL per-
formance and robustness.

"Following a similar conceptual framework to Class-Distance Normalized Variance (CDNV) (Galanti et al.,
2021) by viewing each task as a class.

Under review as a conference paper at ICLR 2026

Contributions. Our main contributions can be summarized as follows:

* By analyzing the hidden representations of ICL, we conceptualize and extensively examine the
Layerwise Compression-Expression phenomenon. Our results show that it is prevalent across
model architectures (transformer and state-space models) and task domains (symbolic, language
understanding and multimodality), and emerges during the training process.

* We show that larger models and more demonstrations lead to more compressed task representa-
tions, explaining why larger models and longer contexts yield better performance. To further un-
derstand the compressed representation, we propose a bias-variance decomposition and provide a
theoretical analysis showing how attention mechanisms contribute to reducing both variance and
bias, thereby enhancing performance as the number of demonstrations increases.

* We show that noisy demonstrations result in less compressed representations and a corresponding
drop in performance. However, the representations remain distinguishable with a certain amount
of noise, which helps explain the robustness of ICL. Moreover, we find that errors in early demon-
strations can be suppressed by later examples, and that errors in later demonstrations lead to less
compressed representations than those in early ones. This highlights the recency effect (Kossen
et al., 2024} |Yu & Ananiadou, 2024) and the key role of later demonstrations.

* Motivated by our analysis, we propose task-vector contrastive fine-tuning method to further com-
press task vectors and reduce TDNV. Fine-tuning GPT-2 models on symbolic ICL tasks with this
approach yields 20% improvement on average in task-vector accuracy over standard finetuning.

Significance of the Finding. Our analysis provides a new perspective on why decoder-only LLMs
trained for next-token prediction can serve as flexible architectures for a wide range of tasks. Despite
lacking an explicit bottleneck layer, these models exhibit behavior reminiscent of encoder-decoder
architectures: early layers distill task information from demonstrations into compact representations,
while later layers decode these representations into query-specific outputs. The compression stage
aligns with the Information Bottleneck (IB) principle (Saxe et al., [2019; Kawaguchi et al.| [2023)),
which posits that efficient neural representations are achieved by compressing inputs to retain only
task-relevant information while discarding redundant or irrelevant details. However, standard 1B
theory focuses exclusively on the compression phase and is primarily developed in the context of
classification problems. Our work also provides justification for previous pruning studies (Men
et al.| 2024} |Luo et al.||2025), which show that deeper layers tend to be more redundant and can be
safely skipped, whereas skipping earlier layers often results in significant performance degradation.

2 RELATED WORKS

Layerwise Representations. Prior works (Ben-Shaul & Dekel, [2022; [Fang et al.,2021; Wang et al.,
2023b; Rangamani et al.| [2023; |[He & Su, 2024} Zhou et al., |2025) investigated the role of differ-
ent layers in feature learning. They revealed that in classification task, intermediate layer features
become increasingly linearly separable and exhibit Neural Collapse (N C), indicating monotonic
feature compression with depth. In contrast, we hypothesize that decoder-only ICL models fol-
low a dual process where shallow layers compress information and deeper layers re-express it, and
intermediate layers achieve maximal compression.

In-Context Learning Interpretability. Numerous studies have investigated the mechanisms un-
derlying ICL (Xie et al., |2021} |Chen et al., 2021; Von Oswald et al., 2023; Dai et al., [2022; |Ahn
et al., 2023} (Olsson et al., 2022)), spanning perspectives of Bayesian inference, meta-learning, and
optimization. Our work instead analyzes through layer-wise representations. In addition, |Doimo
et al.| (2024) examine the geometry of ICL representations by clustering intermediate features ac-
cording to semantic subjects of input, whereas our findings differ by focusing on the underlying
tasks induced by input—output pairs.

Task Representations. Various compact representations capture ICL tasks, including task vec-
tor (Hendel et al., [2023)), function vector (Todd et al.l 2023)), and state vector (L1 et al., [2024),
which guide model behavior by injecting hidden states. Other works explore compositional and
latent-space manipulation (Shao et al., 2023; |Liu et al.l [2023b). Prior studies focus on single-task
representations, whereas we provide a layer-wise geometric analysis of representations.

A more comprehensive discussion of the related works can be found in Appendix

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

In this section, we first formally set up the layer-wise representations of in context learning in Sec-

tion [3.1] followed by introducing the metrics for measuring within-task compression of features at
each layer in Section

3.1 PROBLEM SETUP

Layerwise ICL Representations. For ICL task, we are given (i) K demonstrations, denoted as
Sk = {s1, 82, ..., Sk}, where each demonstration s; = (x) — yi) consists of an input token x,
a separator token ”—>”, and a label token y;; and (47) a query input X = (z, —). We refer to the
demonstration-query pair (Sk, X) as an ICL instance. An LLM f performs ICL by processing the
instance (Sg, X)) as a next-token prediction task. Let Z) & R4*P denote the hidden representa-
tions at layer ¢ for the instance, where p denotes the sequence length and d represents the dimension
of the hidden representation. The layerwise update with f is performed as

ZUD = 0 (Z29), fort=0,1,...,L—1, (2)

where fy) : R¥*P — R4*P denotes the transformation—such as self-attention and a multi-layer
perceptron in a Transformer—within the ¢-th layer, parameterized by 6(*).

For autoregressive models, the final prediction is produced by applying a classifier on the represen-
tation of the last separation token in the final layer Z (L) which predicts the label y, of the query
input. Since this token summarizes the entire context, we use its hidden representation as the ICL
representation at layer ¢, denoted by Y to simplify the notation. This vector is also referred to

as the task vector in (Hendel et al., 2023)). Throughout the remainder of this paper, we use R
analyze layer-wise behavior and information encoding in the ICL process.

3.2 METRIC FOR REPRESENTATION COMPRESSION

To analyze how models distinguish between different tasks, we consider 71" ICL tasks, each with
a task-specific data distribution {D;}_;. For each task ¢, we sample N ICL instances of form
(Sk, X) from D;. For each instance, we use the hidden representation of the last token at layer ¢ as

the representation of the inputs, denoted as hEZt) € R for the i-th instance from task .

The study of feature compression and discrimination (Yu et al., [2020; |Papyan et al., 2020; |[Zhu
et al.| 2021} Zhai et al.,|2020; |Galanti et al.| 2021} Jiang et al.,|2023)) has recently gained significant
attention in representation learning. Inspired by this line of work, we analyze how models compress
task information in their internal representations by examining two key aspects.

* We quantify how samples from the same task cluster together by using the within-task variance

N N
(¢ —(¢ 1
varf”) = E ||hizt) - hi)||§» where hi = N > hizt) 3)
N i=1

It measures how well representations from the same task are compressed toward their task mean.
Specifically, when this value decreases, it indicates that features within each task are more tightly
compressed around their respective means.

¢ To quantify how effectively samples from different tasks are distinguished from each other, we

use the between-task distance of two tasks ¢ and ¢’ as ||EE ht, [|3. It measures the distance
between the centers of different tasks and the features of each task become more separable as this
distance increases.

We then use a metric inspired by the class-distance normalized variance used in classification tasks
Galanti et al.[(2021)), referred to as Task-Distance Normalized Variance (TDNV) here to measure
the ratio of within-task variance to between-task distance:

L& Vargé) + Var(()
TDNV Z Z — Ve e [L). 4)
t=1¢=1 2||h —hy ||
t'#t

The decrease of TDNV indicates more compressed and discriminated feature for the ICL task.

Under review as a conference paper at ICLR 2026

=@— DeepSeek-Coder 7B
101! GPT-) 6B

LLaMA3.2 3B 102
== Pythia 2.8B
== Mamba 2.8B

TDNV

ckpt-000(Random)
ckpt-001

=% ckpt-002

10°% —4= ckpt-010

== ckpt-358(Final)

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Layer Layer

i
10° v ‘\\“

Figure 2: Layerwise TDNV of different model Figure 3: Layerwise TDNV during training pro-
architectures, including decoder-only trans- cess. The phenomenon emerges and intensifies
formers and state-space models. with training progress.

4 LAYERWISE COMPRESSION-EXPRESSION DYNAMIC

In this section, we examine the dynamics of layer-wise representation under the ICL setting, a phe-
nomenon we termed Layerwise Compression-Expression. The subsequent sections validate and ex-
plore this phenomenon in detail across various conditions. Specifically, Section .T] demonstrates
that it occurs universally across different architectures and tasks. Next, we analyze key factors influ-
encing this phenomenon, including model size (Section[4.2)) and demonstration noise (Section [4.3)).

4.1 PREVALENCE OF LAYERWISE COMPRESSION-EXPRESSION

To validate whether Layerwise Compression-Expression is a general mechanism of ICL, we evaluate
it across different LLM model architectures and tasks. Unless otherwise specified, we use Deepseek-
coder-7B (Guo et al., [2024) as our default model. For each task, we sample N = 100 instances,
setting the default number of demonstrations to K = 15.

Universality across model architectures. Following Hendel et al.| (2023), we first evaluate the
algorithmic domain, including 5 tasks (copy letter, next letter, to uppercase, previous letter and next
2 letter). Detailed descriptions of all tasks are provided in Appendix [A] As shown in Figure [2]
the TDNV metric consistently exhibits a U-shaped trend—first decreasing then increasing—across
two distinct architectural families: (i) Decoder-only transformers, including Llama3 (Grattafiori
et al.,2024), Pythia (Biderman et al., [2023)), GPT-J (Wang & Komatsuzaki, 2021) and Deepseek-
coder (Guo et al.l 2024). (i¢) State-space models, specifically Mamba (Gu & Dao, 2023). This
phenomenon holds even in the absence of attention, as evidenced by Mamba, indicating that the
mechanism is not specific to the transformer architecture.

Universality across task domains. To evaluate the generality of the phenomenon beyond algorith-
mic settings, we examine three additional task categories: (z) Symbolic ICL. We adopt the linguistic,
translation, and knowledge domains from Hendel et al.| (2023)), where TDNV consistently exhibits a
U-shaped trend (Figure[d). (i7) Language Understanding ICL. Beyond only short phrases, we eval-
uated TDNV on a natural language dataset with longer sentences. Each sentence can be analyzed
across multiple attributes: length, semantic polarity, tense, sentence type, subject person, and entity
type. We adopt Llama3 8B (Grattafiori et al., 2024)) to predict the attribute label (e.g., positive or
negative) for a query sentence based provided demonstrations with labels of a specific attribute (e.g.,
semantic polarity). As shown in Figure[5] the TDNV also exhibits a U-shaped trend, with the most
compressed representation shifting to a later layer (around layer 28), indicating that longer sentences
require more layers for effective task compression. (¢¢7) Multimodality ICL. We further extend to
a vision—language setting using a 2-D shape dataset, where each image contains a shape with four
attributes (color, shape, size, texture). We adopt the Qwen-VL (Bai et al., 2023) model to predict
the attribute label (e.g., red or green) for a query image based provided demonstrations with labels
of a specific attribute (e.g., color). As shown in Figure [6] the TDNV metric again exhibits a U-
shaped curve. Across all settings, increasing the in-context length K leads to more compact internal
representations with lower TDNV values. Complete task specifications are provided in Appendix [A]

Emergence during training. To verify that the phenomenon emerges only in trained models and
not in randomly initialized ones, we evaluate on the Amber models of LLM360 family (Liu et al.,

Under review as a conference paper at ICLR 2026

z %\
=
o a%a

F 100/ —e— Linguistic
Translation
—a— Knowledge

0 10 20 30
Layer Layer Layer

Figure 4: Symbolic ICL. Figure 5: Language Under- Figure 6: Multimodality ICL.
standing ICL.

2023c)), which provide intermediate checkpoints throughout the training process. As shown in Fig-
ure [3] models with random initialization exhibit flat TDNV values across all layers, indicating no
structure of information compression. As training proceeds, the TDNV curve transitions into a
distinct U-shape curve. This suggests the phenomenon only emerges as a result of training.

4.2 SCALING UP MODEL SIZE LEADS TO MORE COMPRESSION

To explore how model size influences information compression, we analyze Pythia models ranging
from 14M to 410M parameters in terms of both layerwise TDNV and performance (as shown in
Figure [7). We evaluate ICL performance from two perspectives: (1) the regular few-shot setting,
referred to as ICL, and (2) the task-vector (TV) setting—i.e., zero-shot ICL using a task vector
patched from the best-performing layer { identified under the few-shot setting—referred to as TV
ICL. Higher accuracy in either setting indicates better performance. Additionally, we report zero-
shot accuracy without any task-vector information, referred to as the baseline. We find that larger
models tend to produce more compressed and discriminative representations in the middle layers,
indicating a stronger ability to extract task information from the demonstrations, thereby achieving
better performance in both ICL and task-vector ICL.

10¢

—e— Noise: 10 %
—e— Noise: 20 %

B —e— Noise: 40 %
2 —e— Noise: 50 %
-~ Noise: 70 %
Noise: 80 %

Noise: 90 %
100k —— VAL Noise: 100 % - |

—e— Pythia 14M 1.0]
—+— Pythia 70M

Pythia 160M 0.8
—=— Pythia 410M

10t == Baseline

m—CL 0.8
TVICL

—e— Min TDNV

o
o

806

04|

TDNV
Accuracy

0.4 —e— next letter
list first

0.2/ —o— jist last

—e— to upper

100

5 10 15 20 007am 7oM 160M 410 o0 20% 40% 60% 80% 100% 0 5 10 15 20 25 30
Layers Model Size Noise Ratio Layer
Figure 7: Effect of model size on layerwise Figure 8: Effect of noisy demonstrations on ICL
TDNV and ICL performance. performance and layerwise TDNV.

4.3 COMPRESSION-TO-EXPRESSION UNDER NOISY DEMONSTRATIONS

Demonstrations in real-world scenarios are often noisy, with some input-output pairs failing to accu-
rately represent the intended task. Despite this, ICL demonstrates notable robustness to such noisy
demonstrations. As illustrated in Figure [§]left, performance remains largely unaffected even when
the noise ratio reaches up to 40%, where the noise ratio is defined as the proportion of incorrect
input-output pairs relative to the total number of pairs. To understand this robustness, we explore it
through the lens of information compression.

We plot the layerwise TDNV under varying noise ratios in Figure §]right and highlight two key ob-
servations: (z) higher noise ratios consistently lead to increased TDNV across all layers, indicating
that noisy demonstrations impair the model’s ability to compress and extract task-relevant informa-
tion. In the extreme case of 100% noise—where inputs and labels are completely uncorrelated—the
model receives no meaningful task signal, and the characteristic compression-to-expression pattern
disappears across layers. (i¢) When the noise ratio remains below 40%, the minimum TDNV values
stay below 1, indicating that within-task variance is still smaller than between-task distance. This al-
lows task representations to remain distinguishable, resulting in minimal performance degradation.
This observation explains the robust performance at noise ratios below 40%. However, beyond 40%
noise, task representations become increasingly entangled, causing performance to decline rapidly.

Under review as a conference paper at ICLR 2026

i

K increase

0.80~ 102 40
K=1
0.75- K=2 20/ next_letter, K=0
next_letter, K=1
0.70- [0.40 10! K=3 M next_letter, K=5
o - > | — K=14 o M next_letter, K=15
£ 065 z =z —— K=5 copy_letter, K=0
g 0352 £ | i copy_letter, k=1
2 3 -20{ A copy_letter, K=5
0.607 10° ——K=7 A copy_letter, K=15
0.55- —e— Mean Accuracy (30 —— K=8 e
—=&— TDNV —— K=9
4 -1. +
05074 2 4 6 8 10 5 10 15 20 25 30 60

Perturbation Position Layers -60 -40 -20 O 20 40 60 80

Figure 9: Layerwise TDNV Figure 10: Layerwise TDNV un- Figure 11: PCA of task vec-
and ICL accuracy under different der different number of demon- tors as number of demonstra-
perturbation positions. strations K. tions K increase.

The position of noisy demonstration affects compression. Unlike conventional machine learn-
ing, the order of demonstrations has a significant impact on model performance in ICL (Liu et al.,
2023a; [Lu et al.l 2021} [Zhou et al., |2024). As illustrated in Figure E} perturbing demonstrations
that appear later in the sequence causes a larger performance drop and higher TDNV values. These
perturbations result in less compressed task vectors, indicating that later demonstrations play a more
crucial role than earlier ones in helping the model extract task information. To gain deeper insight,
we perform a fine-grained analysis by computing layerwise TDNYV for each separator token, referred
to as grid TDNV in Appendix [D.2]

5 BIAS-VARIANCE DECOMPOSITION OF TASK VECTORS

In this section, we analyze the effect of the number of demonstrations and study the task vectors in
the middle layer—where the representation is most compact (i.e., exhibits the smallest TDNV)—
using a bias—variance decomposition.

Increasing in-context lengths lead to more compressed representations. We first evaluate how
the number of demonstrations affects the geometry of ICL representations using layerwise TDNV.
The results in Figure [I0] show that increasing the number of demonstrations K consistently reduces
TDNV across all layers. This indicates that as more demonstrations are provided, the within-task
variance of task vectors decreases while the between-task distance increases. This explains why
increasing the number of demonstrations improves performance—it leads to more compressed and
more distinct representations in the intermediate layers.

Bias-Variance decomposition. In Figure we present a PCA visualization of the most com-
pressed layer for two different tasks that share the same query; see an illustrative example in (T)).
When no demonstrations are provided (KX = 0), both tasks produce the same vectors that reflect
the prior of the pretrained model. As K increases, we observe an intriguing phenomenon: (¢) dif-
ferent tasks induce task vectors in distinct directions, yet each task follows a consistent direction;
(i9) the variance within each task decreases. Based on this observation, we decompose the task
vector h; +(K) (where we highlight the dependence on the number of demonstrations K and omit
the superscript (£)) of each instance into the following components

hit(K) = p(00) + py(K) — py(00) + by 1 (K) — py (K), (5

bias variance

where p, (K) = E;[h; +(K)] denotes the mean of the task vector obtained from K demonstrations,
and p,(00) = limp o0 E;[h; :(K)] represents the mean of the task vector obtained from infinitely
many possible demonstrations (ignoring the practical limitations of context length in real-world
LLMs), which maybe referred to as the ideal task vector.

How well does the mean task vector encode task information? Unlike the classical
bias—variance decomposition—where the mean of multiple models often outperforms individual
models due to the ensemble effect—the setting here is more nuanced. The mean task vector p(K)
is averaged not only over different demonstrations but also over different queries. Therefore, it is
not immediately clear whether the mean task vector still encodes useful task information—and if it

Under review as a conference paper at ICLR 2026

—— K=1Mean x

g, ~" KeLindvidua 0.8- «\ =*= O(1/K) 0.5- == O(1/K)

¥ —=— K=5Mean —e— Algorithmic —e— Algorithmic
Zp . = K=5individual @
go.e —— K=15 Mean go's é
§ = s - K=15 Individual [S

4- 0.4- >

) 0.2
0.0- . .) : oS NPT 5
5 9 138 17 21 25 29 2 4 6 8 2 4 6 8

Layer

Figure 12: Layerwise task vec- Figure 13: Decrease of bias at Figure 14: Decrease of variance
tor accuracy using the mean v.s. rate of O(1/K). atrate of O(1/K).
individual task vectors.

does, whether it does more effectively than individual vectors h;(K). To address this question, we
compare task vector accuracy (Hendel et al., 2023)) using both individual task vectors and the mean
task vector, with results shown in Figure Remarkably, we observe that injecting the mean task
vector consistently leads to better performance, suggesting that it encodes task information more
effectively than individual task vectors. Moreover, the performance of the mean task vector also
exhibits an inverted U-shaped curve: it peaks around the most compressed layer and improves as the
number of demonstrations increases. Together with the results in Figures [I0]and [IT] this indicates
that—ignoring the practical limitations of context length—ICL representations constructed from
infinitely many possible demonstrations also exhibit the Layerwise Compression-Expression phe-
nomenon, and the corresponding task vector p(co) at the most compressed layer can thus be viewed
as an ideal task representation. This suggests a promising direction for a theoretical investigation of
the phenomenon in the infinite-sample regime, which we leave for future work.

Building on this understanding, we now use the bias—variance decomposition to study how the
number of demonstrations K influences task vectors at the most compressed layer.

* Decrease of bias: The task mean vector p,(K) progressively shifts from the zero-shot mean
vector p,(0) (encodes the pertaining bias) toward the ideal task vector p,(00) as K increases,
capturing more information about the task. In other words, the bias term p,(K) — p,(o0) de-
creases with increasing K, and empirically, as shown in Figure [13| we observe that ||p,(K) —
p:(00)]2/ 144 (0) — pri(00)]|2 decays roughly at a rate of O(1/K).

* Decrease of variance: On the other hand, as shown in Figure (14} the variance term ||h; +(K) —
1, (K)||3 decays roughly at a rate of O(1/K), which together with the fact that between-task
distance becomes a constant when K is large leads to a decay rate of O(1/K’) for TDNV.

We remark that, unlike the classical bias—variance decomposition of prediction risk in terms of model
capacity—where a trade-off may exist—our bias—variance decomposition applies to the task vector
in ICL and exhibits no such trade-off with respect to the number of demonstrations K. In other
words, both the bias and variance decrease as K increases, indicating that the task vector converges
to an ideal task representation. This further suggests that LLMs generate increasingly compact
and informative representations from the input demonstrations in the compression phase, with the
compact representation encoding task information and converging as the number of demonstrations
becomes sufficiently large.

Theoretical analysis of bias-variance terms for attention layer. To develop a theoretical under-
standing of how the bias and variance terms of task vectors evolve with the number of demonstrations
K, we consider a simplified setting. Specifically, we analyze a single-layer attention model, as the
attention mechanism plays a central role in extracting task representations from demonstrations. To
simplify the presentation, we drop the subscript ¢ as we only focus on one task and assume that each
demonstration and the query correspond to a single hidden state, denoted as h1, ..., hx € R¢ for
the demonstrations and h, € R for the query, respectively. To facilitate analysis, we adopt a linear
attention mechanism, denoted by Attn, which preserves the normalization property of softmax at-
tention, namely, that the attention weights sum to 1 (Katharopoulos et al., 2020; |Shen et al., [2021])).
Linear attention has been widely adopted in the literature for theoretical analysis of ICL (Von Os-
wald et al.,[2023; |Ahn et al.,|2023; Wang et al., 2024} |Li et al., 2024).

Theorem 1 (Bias-variance decomposition with respect to K). Suppose that each demonstration
hi,i =1,...,K isiid. randomly generated from a distribution H on RY. Then the output of the

Under review as a conference paper at ICLR 2026

g
=)

W CE Loss
B CE + Contrastive Loss

4
©

o
o

TDNV

107!

o
IS

Task Vector Accuracy

o
)

=@— CE Loss
107?{ =@= CE + Contrastive Loss

=4
o

0 2 4 6 8 10 next next upper next2 prev upper
Layer Tasks

Figure 15: Layerwise TDNV using Figure 16: Task-vector contrastive fine-
model trained with CE loss v.s. CE + tuning improves task-vector accuracy.
contrastive loss on layer 7.

query token, hi,(K) = [Attn (hy,. .., hi, hg))l. k41, where [|. k41 means the (K +1)-th column,
satisfies the following statistical properties as the number of demonstration K increases:
* (Decrease of variance) The variance decays as Var(||h,(K)||3) = O(1/K).
* (Decrease of bias) The mean output E[h; (K)] evolves as a linear combination of the zero-shot
mean E[h;,(0)] and infinite-shot mean E[h; (c0)]:
Elhg(K)] = Ak E[hg(0)] + (1 — Ax) E[hy(c0)], (6)
which further implies that the bias term decays as ||E[h,(K)] — E[h;(c0)]||2 = O(1/K).
The proof for Theorem [I] can be found in Appendix [E} While our analysis shares the same sim-
plifications and limitations as prior work on linear self-attention (Von Oswald et al 2023}, [Ahn
let al.l 2023} Wang et all, [2024; [Li et al} [2024), it offers new insights into the functional role of

attention in ICL, revealing how attention contribute to reducing both the variance and bias of task
representations—leading to improved performance as the number of demonstrations increases.

6 APPLICATIONS OF COMPRESSION-TO-EXPRESSION

Identify the optimal task vector layer. To find the optimal intermediate layer for task vector
extraction, previous works (Hendel et al.,[2023)) typically patch the vector at each layer and evaluate
accuracy using a validation set. TDNV provides a more efficient way to identify the optimal layer for

task vectors. As shown in Fi gure at a certain intermediate layer 7, we observe three simultaneous
changes: the TDNV shifts from decreasing to increasing, the task vector accuracy begins to decrease,
and the early-exit accuracy starts to increase. Since the layer with minimum TDNV corresponds to
the layer with maximum task vector accuracy, we can identify the optimal layer with just one pass

of inference using ¢ = arg mingepy g TDNV(®),

Task-vector contrastive fine-tuning improves task-vector accuracy. Motivated by prior evidence
that more compressed task vectors yield better performance, we propose task-vector contrastive fine-
tuning that explicitly encourages such compression. Specifically, during fine-tuning on ICL tasks,
we augment the cross-entropy (CE) loss with a contrastive loss applied to the task vectors. This loss
pulls representations from the same task closer together while pushing apart those from different
tasks (see Appendix [H]for the exact formulation). We fine-tune a pretrained GPT-2 model on sym-
bolic ICL domains using either the baseline CE loss or our combined loss applied in 7-th layer. As
shown in Figure[T3] the contrastive term lowers TDNYV, indicating stronger task-vector compression,
which in turn boosts downstream task-vector accuracy by an average of 20% (Figure [T6).

7 CONCLUSION

This work provides a comprehensive analysis of the internal dynamics of ICL in LLMs. We uncover
a prevalent Layerwise Compression-Expression phenomenon in ICL representations, shedding light
on how task information is compressed and later expressed to generate predictions. We show that it
has profound implications for ICL performance and robustness and reveal the role of attention mech-
anisms. These insights not only deepen our understanding of structured representation learning in
LLMs but also offer practical implications for improving interpretability, efficiency, and robustness.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on revealing the Layerwise Compression-Expression phenomenon in in-context
learning. Our research does not involve the collection of new human or animal data, and all experi-
ments are conducted using publicly available datasets that have been widely adopted in prior work.
We acknowledge that pretrained LLM models may inherit biases present in their training data. Our
method involves no additional training of LL.Ms, it does not explicitly mitigate such biases. We en-
courage future research to examine fairness, accountability, and transparency when deploying these
models in real-world applications.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. Full implementation details,
including model architectures, hyperparameters, and experimental settings, are provided in the main
paper and appendix. To further support reproducibility, we plan to release the complete codebase,
configuration files, and detailed instructions upon publication.

THE USE OF LARGE LANGUAGE MODELS

Large language models were used exclusively to assist with writing polish, grammar correction, and
improving readability. They were not used for ideation, experiment design, analysis, or generating
research content. All technical contributions, experimental implementations, and results reported in
this paper are original work conducted by the authors.

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 36:45614-45650, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Ido Ben-Shaul and Shai Dekel. Nearest class-center simplification through intermediate layers. In
Topological, Algebraic and Geometric Learning Workshops 2022, pp. 37-47. PMLR, 2022.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397-2430. PMLR, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, and He He. Meta-learning via language
model in-context tuning. arXiv preprint arXiv:2110.07814,2021.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
learn in-context? language models implicitly perform gradient descent as meta-optimizers. arXiv
preprint arXiv:2212.10559, 2022.

Diego Doimo, Alessandro Serra, Alessio Ansuini, and Alberto Cazzaniga. The representation land-
scape of few-shot learning and fine-tuning in large language models. Advances in Neural Infor-
mation Processing Systems, 37:18122—-18165, 2024.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,

Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. arXiv preprint arXiv:2301.00234,
2022.

10

Under review as a conference paper at ICLR 2026

Cong Fang, Hangfeng He, Qi Long, and Weijie J Su. Exploring deep neural networks via layer-
peeled model: Minority collapse in imbalanced training. Proceedings of the National Academy
of Sciences, 118(43):¢2103091118, 2021.

Tomer Galanti, Andras Gyorgy, and Marcus Hutter. On the role of neural collapse in transfer learn-
ing. arXiv preprint arXiv:2112.15121,2021.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Hangfeng He and Weijie J Su. A law of next-token prediction in large language models. arXiv
preprint arXiv:2408.13442, 2024.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. arXiv
preprint arXiv:2310.15916, 2023.

Jiachen Jiang, Jinxin Zhou, Peng Wang, Qing Qu, Dustin Mixon, Chong You, and Zhihui Zhu.
Generalized neural collapse for a large number of classes. arXiv preprint arXiv:2310.05351,
2023.

Jiachen Jiang, Jinxin Zhou, and Zhihui Zhu. On layer-wise representation similarity: Application
for multi-exit models with a single classifier. arXiv preprint arXiv:2406.14479, 2024a.

Jiachen Jiang, Jinxin Zhou, and Zhihui Zhu. Tracing representation progression: Analyzing and
enhancing layer-wise similarity. arXiv preprint arXiv:2406.14479, 2024b.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156-5165. PMLR, 2020.

Kenji Kawaguchi, Zhun Deng, Xu Ji, and Jiaoyang Huang. How does information bottleneck help
deep learning? In International Conference on Machine Learning, pp. 16049-16096. PMLR,
2023.

Jannik Kossen, Yarin Gal, and Tom Rainforth. In-context learning learns label relationships but is
not conventional learning. In The Twelfth International Conference on Learning Representations,
2024.

Dongfang Li, Xinshuo Hu, Zetian Sun, Baotian Hu, Min Zhang, et al. In-context learning state vector
with inner and momentum optimization. Advances in Neural Information Processing Systems, 37:
7797-7820, 2024.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023a.

Sheng Liu, Haotian Ye, Lei Xing, and James Zou. In-context vectors: Making in context learning
more effective and controllable through latent space steering. arXiv preprint arXiv:2311.06668,
2023b.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo
Li, Yuqgi Wang, Suqi Sun, Omkar Pangarkar, et al. LIm360: Towards fully transparent open-source
Ilms. arXiv preprint arXiv:2312.06550, 2023c.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786, 2021.

11

Under review as a conference paper at ICLR 2026

Xuan Luo, Weizhi Wang, and Xifeng Yan. Adaptive layer-skipping in pre-trained llms. arXiv
preprint arXiv:2503.23798, 2025.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652-24663, 2020.

Akshay Rangamani, Marius Lindegaard, Tomer Galanti, and Tomaso A Poggio. Feature learning
in deep classifiers through intermediate neural collapse. In International conference on machine
learning, pp. 28729-28745. PMLR, 2023.

Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D
Tracey, and David D Cox. On the information bottleneck theory of deep learning. Journal of
Statistical Mechanics: Theory and Experiment, 2019(12):124020, 2019.

Nan Shao, Zefan Cai, Chonghua Liao, Yanan Zheng, Zhilin Yang, et al. Compositional task rep-
resentations for large language models. In The Eleventh International Conference on Learning
Representations, 2023.

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention:
Attention with linear complexities. In Proceedings of the IEEE/CVF winter conference on appli-
cations of computer vision, pp. 3531-3539, 2021.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and Ravid
Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. arXiv
preprint arXiv:2502.02013, 2025.

Eric Todd, Millicent L Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
Function vectors in large language models. arXiv preprint arXiv:2310.15213, 2023.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Jodo Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151-35174. PMLR, 2023.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

Jiugi Wang, Ethan Blaser, Hadi Daneshmand, and Shangtong Zhang. Transformers learn tempo-
ral difference methods for in-context reinforcement learning. arXiv preprint arXiv:2405.13861,
2024.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun. Label
words are anchors: An information flow perspective for understanding in-context learning. arXiv
preprint arXiv:2305.14160, 2023a.

Peng Wang, Xiao Li, Can Yaras, Zhihui Zhu, Laura Balzano, Wei Hu, and Qing Qu. Understanding
deep representation learning via layerwise feature compression and discrimination. arXiv preprint
arXiv:2311.02960, 2023b.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting for
accelerating bert inference. arXiv preprint arXiv:2004.12993, 2020.

12

https://github.com/kingoflolz/mesh-transformer-jax

Under review as a conference paper at ICLR 2026

Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. Learning diverse and
discriminative representations via the principle of maximal coding rate reduction. Advances in
neural information processing systems, 33:9422-9434, 2020.

Zeping Yu and Sophia Ananiadou. How do large language models learn in-context? query and
key matrices of in-context heads are two towers for metric learning. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 3281-3292, 2024.

Yuexiang Zhai, Zitong Yang, Zhenyu Liao, John Wright, and Yi Ma. Complete dictionary learning
via l4-norm maximization over the orthogonal group. Journal of Machine Learning Research, 21
(165):1-68, 2020.

Jinxin Zhou, Jiachen Jiang, and Zhihui Zhu. Are all layers created equal: A neural collapse perspec-
tive. In The Second Conference on Parsimony and Learning (Proceedings Track), 2025.

Zijian Zhou, Xiaogiang Lin, Xinyi Xu, Alok Prakash, Daniela Rus, and Bryan Kian Hsiang Low.
Detail: Task demonstration attribution for interpretable in-context learning. arXiv preprint
arXiv:2405.14899, 2024.

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A ge-
ometric analysis of neural collapse with unconstrained features. Advances in Neural Information
Processing Systems, 34:29820-29834, 2021.

13

Under review as a conference paper at ICLR 2026

The appendix is organized as follows. We first provide detailed descriptions of all tasks in Ap-
pendix [A]l Next, we add more discussion on related works in Appendix [B] Appendix [C] presents
additional experiments, including verification of the Layerwise Compression-Expression and an ab-
lation study on the choice of the last separation tokens. Appendix [D]offers a fine-grained token-level
analysis, featuring saliency maps and grid TDVN visualizations. Proofs of Theorem [I] are given in
Appendix [E] followed by an examination of the i.i.d. assumption through repetition experiments
in Appendix [F] We then provide detailed descriptions and illustrations of task-vector accuracy and
early-exit accuracy in Appendix (G} Finally, Appendix [H| presents illustrations of the task-vector
contrastive fine-tuning method and PCA visualization of extracted task vectors.

A TASK DESCRIPTION
A.1 SyYMBOLIC TASKS

Detailed descriptions of the symbolic tasks used in our empirical studies are provided in Table [}

covering the algorithmic, translation, linguistic, and knowledge domains.

Table 1: Descriptions of symbolic tasks.

Task Domains \ Task Example Description
Copy Letter a—a Output the same letter of the given letter.
Next Letter a—b Output the next letter of the given letter in the
alphabet.
To Uppercase a— A Output the corresponding uppercase letter of
I the given lowercase letter.
Algorithmic(Letter-to-Letter) Prev Letter b—a Oul]g;ut the previous letter of the given letter in
the alphabet.
Next 2 Letter a—c Output the letter that comes two positions after
the given letter in the alphabet.
List First [a,b,c] — a Output the first item in the given list.
List Last [a,b,c] — ¢ Output the last item in the given list.
List Length [a,b,c] — 3 Output length of the given list.
Algorithmic(List-to-Element) | List First Upper [abc] — A Get the first item in the given list, then output
the corresponding uppercase letter.
List Last Upper [a,b,c] — C Get the last item in the given list, then output

the corresponding uppercase letter.

French — English
Spanish — English

bonjour — hello
gracias — thank you

Translate the given French word into English.
Translate the given Spanish word into English.

Translation English — French goodbye — au revoir Translate the given English word into French.
English — Italian music — musica Translate the given English word into Italian.
English — Spanish thank you — gracias Translate the given English word into Spanish.
Antonyms hot — cold Output the antonym of the given word.
Plural — Singular cats — cat Convert the given plural noun to its singular
form.
Present Simple — Gerund run — running Convert the given verb from present simple to
its gerund form.
Linguistic Present Simple — Past Perfect walk — had walked Convert the given verb from present simple to
past perfect tense.
Present Simple — Past Simple jump — jumped Convert the given verb from present simple to
past simple tense.
Singular — Plural dog — dogs Convert the given singular noun to its plural
form.
Country — Capital France — Paris Output the capital city of the given country.
Football Player — Position Lionel Messi — Forward Output the playing position of the given foot-
ball player.
Location — Continent Brazil — South America Output the continent where the given location
is found.
Knowledge Location — Country Kyoto — Japan Output the country in which the given location

Location — Language

Location — Religion

Egypt — Arabic

India — Hinduism

is situated.

Output the primary language spoken in the
given location.

Output the predominant religion of the given lo-
cation.

A.2 LANGUAGE UNDERSTANDING TASKS

For evaluating TDNV on natural language understanding tasks, we require each query sentence to
be assessed across multiple attributes. To enable this, we construct a synthetic natural language
dataset in which every sentence can be evaluated on six distinct attributes: length, semantic polar-
ity, tense, sentence type, subject person, and entity type. Each attribute is associated with several
categorical labels, all of which are summarized in Table[2] The dataset contains 1,000 samples, and
representative examples of these sentences are provided in Table

14

Under review as a conference paper at ICLR 2026

Attribute

Labels

Length

Semantic Polarity
Tense

Sentence Type
Subject Person
Entity Type

short, medium, long

positive, negative, neutral

present, past, future, progressive

declarative, interrogative, imperative, exclamatory
first_person, second_person, third_person

person, location, organization

Table 2: The attributes and labels in language understanding dataset.

Sentence Length Semantic Polarity Tense Sentence Type Subject Person Entity Type
I enjoy morning walks. short positive present declarative first_person person
Close the window now. short neutral present imperative second_person location
Despite the heavy rain, our research team long positive past declarative third_person organization
successfully completed the outdoor experi-

ment and gathered all the required samples

before sunset.

Will you be visiting the United Nations long neutral future interrogative second_person location
headquarters in New York next year to at-

tend the global climate summit?

While the orchestra rehearsed the challeng- long neutral progressive declarative third_person organization

ing new symphony, the conductor meticu-
lously adjusted each section to achieve the
perfect balance of sound for the upcoming
performance.

Table 3: Example sentences in language understanding dataset, each sentence is annotated with 6

attributes.

A.3 MULTIMODALITY TASKS

For evaluating TDNV on multimodality tasks, we require each query image to be assessed across

multiple attributes. To enable this, we

construct a synthetic vision-text dataset in which every image

can be evaluated on four distinct attributes: color, shape, size and texture. Each attribute is associated

with several categorical labels, all of
samples, and representative examples

which are summarized in Table EL The dataset contains 300
of these images are provided in Figure[T7]

Attribute

Labels

Color
Shape
Size
Texture

red, green, blue, yellow, black

circle, square, triangle, pentagon, star
small, medium, large

solid, stripes, dots, checker

Table 4: The attributes and labels in multimodality dataset.

image color shape size texture
yellow | triangle | small solid
blue square large dots
red star large solid
black | pentagon| large checker
(lm]]] green circle small stripes

Figure 17: Example images in multimodality dataset, each image is annotated with 4 attributes.

15

Under review as a conference paper at ICLR 2026

B RELATED WORKS

Layerwise Representations An intriguing line of research (Ben-Shaul & Dekel, [2022}; [Fang et al.}
2021 Wang et al., 2023b; Rangamani et al.| 2023} [He & Suj [2024; [Zhou et al.| [2025) has empiri-
cally investigated the role of different layers in feature learning. These studies show that in image
classification tasks, features in intermediate layers become increasingly linearly separable as the
layers deepen. Specifically, Neural Collapse (N'C) properties emerge in intermediate layers, where
the within-class variance decreases compared to the between-class variance as depth increases. This
indicates that layerwise compression occurs monotonically with layer depth in these settings. How-
ever, our hypothesis reveals that in the ICL setting, decoder-only models’ layerwise representations
exhibit dual encoding-decoding stages: shallow layers compress information while deep layers ex-
press it. Furthermore, research by (Skean et al.| [2025) shows that intermediate layers consistently
outperform both shallow and final layers on downstream tasks. Our research focuses on how inter-
mediate layers achieve maximum information compression in the ICL setting.

In-Context Learning Interpretability Numerous studies have focused on the working mechanisms
of ICL (Xie et al.,[2021;/Chen et al., [2021; Von Oswald et al.,[2023;|Dai et al.,[2022; /Ahn et al., 2023}
Olsson et al., 2022)). [Xie et al|(2021) propose that ICL emerges as an implicit form of Bayesian
inference. In the realm of meta-learning, (Chen et al.| (2021} introduce in-context tuning to pre-
dict target labels from concatenated sequences of task instructions. A significant line of research
connects ICL with gradient descent optimization. [Von Oswald et al.|(2023)) demonstrate that Trans-
formers trained on autoregressive tasks can emulate gradient descent in their forward pass. |Dai et al.
(2022); |Ahn et al.| (2023)) compare standard gradient descent-based fine-tuning with ICL, revealing
that transformer attention in ICL exhibits a dual form of gradient descent-based optimization. |Ols-
son et al.| (2022) identify “induction heads”—specific attention heads that facilitate ICL by copying
patterns from previous tokens. However, our work focuses on the layer-wise representational analy-
sis of ICL. In addition, |Doimo et al.|(2024)) also reveals different clustering patterns in shallow and
deep layers. However, we observed a strikingly different phenomenon and would like to clarify the
differences in settings and results. [Doimo et al.| (2024) uses demonstrations with minimal task cues
while the query itself provides ample task information, enabling high zero-shot accuracy and only
modest few-shot gains. Our tasks encode the task only in the demonstration pairs, while the query
provides no clues, yielding near-random zero-shot performance. As a result, our work shows that the
model progressively compresses task information from the demonstration pairs, reaching maximal
compression around the intermediate layers. In contrast, Doimo et al.|(2024) clusters representations
by semantic subject, with ARI peaking in the earliest layers.

Task Representations Researchers have explored various ways to extract compact representations
of different ICL tasks, including task vectors (Hendel et al., [2023)), function vectors (Todd et al.,
2023)), and state vectors (L1 et al.| [2024)). Task vectors (Hendel et al., [2023)) are extracted from the
intermediate hidden state of the final separate token. Function vectors (Todd et al., [2023)) are derived
from attention activation through causal mediation, while state vectors (L1 et al., [2024)) concatenate
activations from several initial layers of transformers. These representations effectively enable mod-
els to perform ICL tasks by injecting to specific transformer layers’ hidden states during inference.
Some researchers have explored task manipulation within in-context learning. For instance, |Shao
et al.[(2023) has demonstrated that compositional task representations can be created through com-
position model training. Additionally, In-context vectors (Liu et al., [2023b) enhance ICL through
latent space steering. However, previous works have mainly focused on task representations for in-
dividual tasks, and none have provided a layer-wise analysis of task vectors. Our research examines
how the model distinguishes between different tasks from a geometric perspective across shallow to
deep layers.

C ADDITIONAL EXPERIMENTS

C.1 UNIVERSAL OF LAYERWISE COMPRESSION-EXPRESSION ACROSS DIFFERENT TASKS

In Figure [l we validate the Layerwise Compression-Expression phenomenon across layers on
Letter-to-Letter tasks. To further assess its generality, we evaluate the phenomenon on the other
algorithmic task groups: (i) List-to-Element tasks (list-first, list-last, list-length, list-first-upper, list-
last-upper); (ii) A combination of Letter-to-Letter and List-to-Element tasks.

16

Under review as a conference paper at ICLR 2026

We use the DeepSeek-Coder-7B model under a 15-shot ICL setting. As shown in Figure [T8] the
TDNYV exhibits a U-shaped curve across layers in both settings, and both task vector accuracy and
early-exit accuracy follow patterns similar to those observed in Figure [I] Notably, Figure [T8[b)
presents results for the combined task groups listed in Table|[T] further supporting the conclusion that
this phenomenon holds broadly across diverse tasks. These findings further confirm the universality
of the Layerwise Compression-Expression.

10°

Compression Expansion =
10

@~ TDNV

—®- Task Vector Accuracy |10

—— Early-exit Accuracy
-

Compression Expansion

=~ TDNV
—8— Task Vector Accuracy
—— Early-exit Accuracy

Accuracy
Accuracy
TONV

17 3 17
Layers Layers

(a) List-to-Element (b) Letter-to-Letter and List-to-Element

Figure 18: Layerwise Compression-Expression phenomenon across different tasks groups: a) List-
to-Element, b) a combination of two task groups, the Letter-to-Letter and List-to-Element. TDNV
first decreases then increases from shallow to deep layers, splitting the model into compression and
expression stages.

C.2 ALTERNATIVE REPRESENTATIONS FOR TASK VECTOR

We choose the last separator token as the ICL representation following prior work (Hendel et al.|
2023)), where it serves as a natural anchor point between the demonstrations and the query. For
comparison, we evaluate two other aggregation strategies: (i) Mean of All Tokens: the mean of
all demonstration token representations(remove the last query and separator), and (¢¢) Mean of All
Separator Tokens: the mean of all separator token representations. To quantitatively evaluate which
representation best captures layerwise features, we compare the TDNV changes during both com-
pression and expression stages:

TDNVy, — TDNV, TDNV; — TDNV,
ACompression = TDNV, TDNV,

Where TDNV, and TDNV, are the TDNV of the first and last layer, and TDNV,
mum TDNYV.

min

= and AExpression =

is the mini-

min

Representation Compression Ratio T Expression Ratio 1

Mean All Tokens 0.9671 0.6002
Mean Sep Tokens 0.9879 0.5448
Last Sep Token 0.9926 0.7746

Table 5: Compression and expression ratios for different representations.

As shown Table [5] the Last Sep Token representation demonstrates both higher compression and
expression ratios. This evidence supports our conclusion that the last separator token remains the
optimal choice for capturing task-relevant information.

The other two alternatives are suboptimal for the following reasons:

* Mean of All Tokens. As shown in Figure 20} saliency maps reveal that token contributions
to task representation are highly uneven. Early layers focus on label tokens within the
demonstrations, while later layers shift attention to the final separator token as the primary
carrier of task information. Averaging across all tokens therefore introduces noise from
irrelevant content tokens and dilutes the in-context learning (ICL) signal.

* Mean of All Separator Tokens. As illustrated in Figure 2] grid-level TDNV analysis
across separator tokens shows a monotonic decrease in TDNV from the first to the last

17

Under review as a conference paper at ICLR 2026

separator. This pattern indicates that the model progressively compresses task-relevant in-
formation across successive demonstrations. Because later separators encode richer context
and stronger compression, averaging over all separators weakens this effect, whereas using
only the final separator captures the fully accumulated task representation.

D TOKEN LEVEL ANALYSIS

D.1 SALIENCY MAPS

In the main pages, we have extensively explored the use of TDNV to quantify layerwise information
compression during ICL, revealing important statistical properties of model representations. In this
subsection, we complement the understanding from a fine-grained token level. In particular, we
will use the method of saliency maps (Wang et al.| [2023al), specifically elucidating which parts of
the input significantly contribute to the model’s decision-making. By highlighting critical token
interactions, saliency maps provide intuitive insights into model behavior. Denoting by I, saliency
map at the /-th layer, we compute it by,

I, =

5|)

Z Ape © oL
h

where Ay, , represents the attention map of head & at layer ¢, and the loss L is the cross-entropy cal-
culated between the logits of the last token and the ground-truth label. Thus, a saliency map quan-
tifies the importance of internal activations by integrating both attention strength and its gradient-
based influence on the model’s outcome. In a nutshell, these maps highlight how token interactions
evolve across layers.

We show saliency maps of all layers using three demonstrations in Figure In shallow layers,
there is more interaction within demonstrations, indicating that the model extracts task information
from each demonstration. In deep layers, there is less interaction within demonstrations and more
interaction with the last token, indicating that the model uses the accumulated task information to
generate output.

To observe more clear patterns, we group the layers into 3 groups: shallow (average of layers 1-14),
intermediate (average of layers 15-16), and deep (layers 17 and above) in Figure We observe
that (¢) in shallow layers, the model focuses on token-to-label mappings within demonstrations,
reflecting local compression, (i%) intermediate layers shift focus toward the final token, indicating
integration of task-level information, and (i:¢) deep layers emphasize interactions between the query
and final token, aligning with expression and prediction. Thus, token-level interpretability also
aligns with the layerwise compression-expression trajectory.

D.2 GRID-TDNV

In Section 4.3 we find that the position of noisy demonstration affects compression. To investi-
gate why perturbing later demonstrations results in higher TDNV at the final separation token, we
conduct a more fine-grained token-level analysis by computing the layerwise TDNYV for each separa-
tion token across all demonstrations. For each demonstration’s separator, we calculate the layerwise
TDNV and organize them into a grid structure, referred to as the grid TDNV. As shown in Figure 21}
perturbing a demonstration at a given position most significantly increases the TDNV of the next
demonstration. However, this increase gradually diminishes as more correct demonstrations are ap-
pended. This pattern suggests that the negative impact of early errors can be partially mitigated by
subsequent correct examples.

E PROOF OF THEOREMI]

Proof. (Proof for Variance Decay.) Consider one layer linear attention (Von Oswald et al., 2023}
Ahn et al., 2023 [Wang et al.| 2024; [Li et al., [2024) that preserves the normalization property of
softmax attention(Katharopoulos et al.,|2020; [Shen et al.,2021)): the hidden state of the query token

18

Under review as a conference paper at ICLR 2026

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
B ® Inputtokens 2 x3 - yXguey—»| BOSx; = ¥1 X2 = Y2 X3 - yXquey—| BOSX; = y1 X2 = Y2 X3 - yXquey—| BOSx1 = y1 X2 = Y2 X3 - yXquey—| BOSx; = y1 X2 = Y2 X3 - yXquery—
@ Outputtokens) @ @ ® ® © L] LN) 000000 .*..’.... L N NN) LN)
\ \
\ |
\ \
\
\
\
\
W \ \
\ \
\
\ \
\ \
\ \
‘ | \
eeccccece XX XXING IR eeccccee eoecee

BOSx1 = y1 X2 = y2 X3 = y¥aey—

BOSx1 = y1 X2 = y2 X3 = y¥aey—

BOSx1 = y1 X2 = y2 X3 = y¥aey—

BOSx1 = y1 X2 = y2 X3 = y¥auey—

BOSx1 = y1 X2 = y2 X3 = y¥aey—

Layer 6 Layer 7 Layer 8 Layer 9 Layer 10
B @ Inputtokens 2 x3 = yXquey>| BOSX1 = y1 X2 = y2 X3 = YXauey—| BOSX1 = y1 X2 > y2 X3 - yXqueys | BOSX1 = y1 X2 = Y2 X3 > yXquey>| BOSX1 > y1 X2 o Y2 X3 = YXquery>
@ Output tokens b LN] L N N] [] L N J °

LA]

|

(X e0bdoe 00 L) (XX ° °
BOSX1 = Y1 X2 = Y2 X3 = yXauey—| BOSX1 = yi X2 = Y2 X3 - yXaveys| BOSx1 - yi X2 o V2 X3 - yXaey—| BOSX1 > Y1 X2 - Y2 X3 = yXaer— o Y2 X3 o yXauery—
Layer 11 Layer 12 Layer 13 Layer 14
B @ Inputtokens 1 X3 — yXauey—| BOSX1 = yi X2 = y2 X3 > yXauey=| BOSx1 » yi X2 > V2 X3 - YXauey—| BOSX1 > Y1 X2 = Y2 X3 = yXaery— Kavery—
@ Output tokens ° 00000000 00090000 ..000.000.\0
|
(X K] [A NN NN ©e000000000 0000000000 e0000000000
BOSX1 = y1 X2 = y2 X3 - yXaey>| BOSx1 = y1 X2 = ¥2 X3 = y¥Xaey—| BOSX1 = Y1 Xz = Y2 X3 = YXauey—| BOSX1 > Y1 Xz = Y2 X3 —» yXaueys| BOSX1 - y1 Xz = y2 X3 = yavery—>
Layer 16 Layer 17 Layer 18 Layer 19 Layer 20
B ® Inputtokens 72 X3 — yXauey—| BOSxy = y1 X2 = Y2 X3 = y¥awery»| BOSXy = Y1 X2 = Y2 X3 = YXauey=| BOSX1 » Y1 X2 = Y2 X3 = YXaues| BOSX1 = y1 X2 = Y2 X3 = yavery—
@ Outputtokens} ® @ 0\000000000\ 000000000X 00000000090
(X EREEX RN NN (XXX X RN NN NN e000000coo0o0 000000000 e000000coo00
BOSX1 = Y1 X2 = Y2 X3 = yXaey—| BOSX1 = y1 X2 = Y2 X3 = yXaey—| BOSX1 = Y1 Xz = Y2 X3 = YXauey—| BOSX1 > Y1 Xz = Y2 X3 - yXauey—| BOSX1 - y1 Xz = Y2 X3 = yavery—
Layer 21 Layer 22 Layer 23 Layer 24 Layer 25
B ® Inputtokens 72 X3 - yXauey—| BOSXy = y1 X2 = Y2 X3 = yXaey—| BOSX1 = ¥1 X2 = Y2 X3 - YXaey=| BOSX1 » Y1 X2 = Y2 X3 - yXauey-| BOSX1 - y1 X2 - Y2 X3 - yavery—>
@ Outputtokensh ® @ ° ° (X) e00000o0ooe ° ° ° e00000000 ¢

® Outputtokens) ® ® © ®

(XX EE NN NN NN)
BOSX1 - Y1 X2 = Y2 X3 = yXavery—

(XX ERE NN NN NN
BOSX1 - ¥1 X2 = Y2 X3 = yXavery—

(XXX NN NN NN
BOSX1 = Y1 X2 = Y2 X3 = yXavery—

000000
BOSX1 = y1 X2 = ¥2 X3
Layer 26 Layer 27 Layer 28 Layer 29 Layer 30
B @ Inputtokens 72 X3 — yXauey—| BOSXi = y1 X2 = Y2 X3 = yXauey-| BOSx1 = y1 x2 = ¥2 X3 = YXawey»| BOSx1 = Y1 X2 = Y2 X3 = yXauey—| BOSx: = y1 X2 = y2 X3 = yXavery—
eoo0o0e

(XXX RN NN NN N
BOSX1 = Y1 X2 = Y2 X3 = yXavery—

(XX EENNNNNN)
BOSX1 = Y1 X2 = Y2 X3 = yXavery—

Token Position

becomes

Token Position

Token Position

Token Position

Figure 19: Saliency Maps for all layers.

/
hq

(K) = [Attn(hh ey h[{7 hq)]:’KJrl
¢(q,) " ¢(kq)

_ i o(q,) " o(k:)

K+1 U

qs

K+1

Token Position

(®)

where g = W@h,k = WXh,v = WV h are the query, key and value vectors, respectively, and
¢ : RY — R” denotes the feature map that approximates the softmax. Define z; := ¢(q,) " ¢(k;).

= ¢(q,) " ¢(k,), we can rewrite it as

19

Under review as a conference paper at ICLR 2026

Shallow Layers (0-14) Intermediate Layers (15-16) Deep Layers (17+)

BOS x1 = y1 X2 = Y2 X3 = Y3 Xquery - BOS x1 = y1 X2 = Y2 X3 = Y3 Xquey - BOS x;

L] 0 @ \. e o
~ ANV
AN \ N
\ N\
\
DA R\
L] e o [

e © 06 0 o ® © 6 06 06 0 O o o o
BOS x1 = Y1 X2 = Y2 X3 - Y3 Xaey - BOS X1 - Y1 X2 = Y2 X3 - Y3 Xaey - BOS X1 - yi X2 = Y2 X3 - Y3 Xaey -

Figure 20: Saliency maps across transformer layers: (a) shallow, (b) intermediate, and (c) deep. The
edge widths indicate saliency magnitude from input tokens (red dots) to output tokens (blue dots).

3 2

-3 -4 ~7 =8 -9 -10 -1 -2 -3 6 -7
‘Separation Tokens. ‘Separation Tokens

Figure 21: The grid TDNV pattern when perturbing one demonstration at different positions: from
left to right, the perturbation is applied to the Oth, 2nd, 4th, 6th, and 8th demonstration.

K
h (K) = v, +

q
=1

Ve ©)

To further simplify the notation, we define a; := zv;, i=1,...,K,and axy1 := z4vg4, which
gives
K+1

1
h(K)= —— i 10
Since a; := cj)(qq)T(b(WKhi)WVhi only relates to h; and h; are i.i.d., the a; are also i.i.d. with
Ela;] = p,, Cov(a;) = X,.

Finally, we get,

K+1

1 K+1 Tr(X,)
2y 2y _ a)
Var(||h,[12) = K112 ; Var(|la;l|3) = K12 1)2Tr(2a) =K1l O(1/K). (1)
O
Proof. (Proof for Mean Shift.) Define the mean of demonstrations and the zero-shot as
Hzero-shot *— E[zqvq]a Hdemo = E[Z[Ul]
Then according to (E[), we have
E[r, (K)] = L E[z,v] 4—L Elziv;] (12)
a K41 Hq,_q/ K+1 Hz,_z/
= Hzero-shot = Mdemo

20

Under review as a conference paper at ICLR 2026

If K = 0, we get E[h, (0)] = E[2,v,]. When K — oo, we have E[h; (c0)] = E[z;v,].

In summary, we get,

E[hy(K)] = Ak E[hg(0)] + (1 — Ak) E[hg(c0)] (13)
where A = 1/(1+ K) ~ O(1/K).
O
F VALIDATION OF THE I.I.D. ASSUMPTION UNDER REPITITION
In Theorem [I} we assume that each demonstration h;,7 = 1,..., K is i.i.d. randomly generated

from a distribution 4 on R?. To validate the importance of this assumption, we design experiments
that increase the ICL length by providing additional demonstrations as input. There are two possible
extension methods:

* Repeat Mode: Extending demonstrations by repeating existing examples.
* Distinct Mode: Extending demonstrations by adding new, unique examples.
In the Distinct Mode, new demonstrations are independently and identically distributed (i.i.d.), ran-

domly generated from a distribution. In the Repeat Mode, demonstrations are no longer i.i.d. We
examine both performance and compression level across these two modes.

0.75
=@~ Repeat Mode
~#~ Distinct Mode
11
0.70
1.0
>
go.es é
g ‘209
< =
0.60
0.8
0.55 —&— Repeat Mode
0.7 —m— Distinct Mode
)70 G 1 572 GIE G Br+5 (5)+0 (5)+1 (5)+2 (5)+3 (5)+4 (5)+5
Number of Examples Number of Examples
Figure 22: Comparison of accuracy under re- Figure 23: Minimum TDNYV under under repeat
peat mode v.s. distinct mode. mode v.s. distinct mode.

As shown in Figure 22] and Figure 23] in distinct mode, as new demonstrations introduce novel
information, the accuracy increases and TDNV decreases. However, in repeat mode, since repeated
demonstrations add no new task information, the accuracy and TDNV remain largely unchanged.
This proves that when the i.i.d. condition is violated, increasing the number of demonstrations does
not lead to better performance and compression.

G TASK VECTOR ACCURACY & EARLY-EXIT ACCURACY

Task vector accuracy(Hendel et al., 2023) refers to how accurately a LLM can perform a task using
only a learned representation of the task(task vector), instead of full in-context demonstrations. As
shown in Figure 24] to evaluate the task vector accuracy, we conduct the following steps:

1. Extract task vector 8 from the demonstration set S using a dummy query ', avoiding infor-
mation leakage from the real query as,

Ousk = [foa0 ([Sk, 7)) k1 (14)

2. Inject 6 into a forward pass of the model with only the query z, not the full demonstration set,
then predict the output using this modulated forward pass.

y:fﬁ([x]§0task) (15)

21

Under review as a conference paper at ICLR 2026

S EEEEEEEN]

[lllll;llllﬂ—h(l)
N—

SN EEEEEN)
a > b b ->¢cg->h j >

O]

Figure 24: Illustration for task vector accuracy.

(IXXI XTI I I 1IN k?

AN
CE N D 0 e k?
)/
SIS EEEEEN

a > b b —»>c¢cg —>h j >

k?

Figure 25: Illustration for early-exit accuracy.

where []. x+1 means the (K + 1)-th column, / is the layer with most compression.

Early-exit accuracy (Xin et al., [2020; Jiang et al [2024a) measures a model’s prediction accuracy
when using intermediate-layer representations instead of the final layer for making predictions. This
metric helps assess how effectively different layers encode the information needed to complete the
task. Let ') € R? be the hidden state of the final token at layer ¢, and let C : R? — RV be
the last-layer classifier mapping from hidden dimension d to vocabulary size V. Then as shown in
Figure[25] the prediction is,

gl = arg max softmax (C(h‘?)), (16)
v

Then, the early-exit accuracy at layer £ over [N examples is,

N
A = 31 [50 =] (17)
=1

H TASK-VECTOR CONTRASTIVE FINE-TUNING

As shown in Figure 26 to obtain more compressed and discriminative task vectors, we add an
additional contrastive loss on task vectors that explicitly encourages representation compression.
Specifically, we fine-tuning a pretrained GPT-2 model on algorithmic ICL tasks domains (next letter,
next two letters, previous letter, uppercase, next uppercase letter) using a combined objective as,

L= ECE + 5£Contra, (18)

where L is the cross-entropy loss computed only on separator tokens to predict the correct label
and Lcontra 18 a contrastive term that pulls hidden states from the same task closer while pushing

22

Under review as a conference paper at ICLR 2026

those from different tasks apart:

1 exp(h{ h;/7)
*CContra = og 2 4 . (19)
2] Et: ZEJ: 2 (@b)£(ist) exp(thha,b/T)

i#]

where h; ; denotes the normalized hidden state of the last token in the intermediate layer(task vector)
for the i-th sample of task ¢, 7 is the temperature, and €2 is the set of all pairs. We set S = 0.1,
temperature 7 = 0.07, and batch size 100 with equal samples from each task. Each training example
provides K = 20 context demonstrations followed by a separator token. We finetuned the model to
achieve 100% ICL accuracy on all tasks.

For evaluation, we extract task vectors with a context length of K = 20 and assess task-vector
accuracy: performing zero-shot ICL with the extracted task vector injected at the same position.
Higher task-vector accuracy reflects more effective task vectors. As shown in Figure[T6] task-vector
contrastive fine-tuning produces better task vectors than standard fine-tuning.

To illustrate whether task-vector contrastive fine-tuning produces more compressed task vectors,
we visualize hidden states from the 7-th layer using PCA. As shown in Figure 27] the left panel
depicts task vectors extracted from model finetuned with only the cross-entropy loss, while the
right panel shows vectors extracted from model finetuned with both cross-entropy and contrastive
losses. The latter exhibits more distinct and tightly clustered task representations, demonstrating the
effectiveness of the contrastive objective in compressing task vectors.

Cross Entropy Loss Contrastive Loss
p A
b c h

fl tl 1l
S EEEEEN)

[lllll;llll

N EEEEEEEE | o

—_—

a - b b ->c¢cg ->hj > backward

Figure 26: Illustration of task-vector contrastive fine-tuning.

301 @ Next Letter L 80 ® Next Letter ‘
Next 2 Letter) ? Next 2 Letter
201 ® Previous Letter ° ® 601 o previous Letter
® Upper Lettgr LY . ® Upper Letter
101 ® Next ng J, ' 40 © Next Upper Letter
20
0 ‘ W‘@
® o < $ L
oO ﬁ. ° o 0
-10 -
. . ®
& e
-20)
oot “ (%) ®
-40 -30 -20 -10 0 10 20 -100 -75 -=50 =25 0 25 50
(a) CE loss. (b) CE loss + contrastive loss.

Figure 27: Comparison of PCA visualizations for task vectors. The task vector is extracted from
models finetuned with different losses.

23

	Introduction
	Related Works
	Preliminaries
	Problem Setup
	Metric for Representation Compression

	Layerwise Compression-Expression Dynamic
	Prevalence of Layerwise Compression-Expression
	Scaling Up Model size Leads to More Compression
	Compression-to-Expression under Noisy Demonstrations

	Bias-variance Decomposition of Task Vectors
	Applications of Compression-to-Expression
	Conclusion
	Task Description
	Symbolic Tasks
	Language Understanding Tasks
	Multimodality Tasks

	Related Works
	Additional Experiments
	Universal of Layerwise Compression-Expression across different tasks
	Alternative Representations for task vector

	Token Level Analysis
	Saliency Maps
	Grid-TDNV

	Proof of theorem:bias-var
	Validation of the I.I.D. Assumption under Repitition
	Task vector accuracy & Early-exit accuracy
	Task-Vector Contrastive Fine-tuning

