
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

GenUDC: High Quality 3D Mesh Generation With Unsigned Dual
Contouring Representation

Anonymous Authors

UDC

(a) Unsigned Dual Contouring Representation

Face Part

Vertex Part

(b) Mesh generation samples of GenUDC

Sharp Parts

Curved Surface

Complex Structure

Complex Structure Thin Parts

Thin Parts

Figure 1: (a) A visual sample of Unsigned Dual Contouring Representation (UDC) consisting of the face part and vertex part. (b)
Our high-quality mesh generation results in 643 resolution with close-up views.

ABSTRACT
Generating high-quality meshes with complex structures and real-
istic surfaces is the primary goal of 3D generative models. Existing
methods typically employ sequence data or deformable tetrahe-
dral grids for mesh generation. However, sequence-based methods
have difficulty producing complex structures with many faces due
to memory limits. The deformable tetrahedral grid-based method
MeshDiffusion fails to recover realistic surfaces due to the inherent
ambiguity in deformable grids. We propose the GenUDC frame-
work to address these challenges by leveraging the Unsigned Dual
Contouring (UDC) as the mesh representation. UDC discretizes
a mesh in a regular grid and divides it into the face and vertex
parts, recovering both complex structures and fine details. As a
result, the one-to-one mapping between UDC and mesh resolves
the ambiguity problem. In addition, GenUDC adopts a two-stage,
coarse-to-fine generative process for 3D mesh generation. It first
generates the face part as a rough shape and then the vertex part
to craft a detailed shape. Extensive evaluations demonstrate the
superiority of UDC as a mesh representation and the favorable
performance of GenUDC in mesh generation. The code and trained
models will be released upon publication.

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS CONCEPTS
• Computing methodologies → Mesh models; • Information
systems → Multimedia content creation.

KEYWORDS
Mesh, 3D Generation, Diffusion Model, Dual Contouring

1 INTRODUCTION
Mesh plays an important role in 3D content generation and re-
construction [21, 40, 41, 68], AR/VR [22], robotics [20, 65], and
autonomous driving [4, 9, 18] and other 3D tasks. It can flexibly rep-
resent various complex geometric shapes. High editability allows
meshes to be modified and adjusted easily in computer-aided de-
sign (CAD). Additionally, it is effortless for users to convert meshes
to other 3D representations, e.g., voxels, point clouds, and neural
implicit functions. Besides, the rendering pipelines are designed for
meshes, enabling high-quality 3D visualization effects. However,
Employing deep neural networks on meshes is tricky because the
numbers of vertices and faces are constantly changing, and model-
ing the complex topology structure of faces is also an obstacle. To
navigate those challenges, a mesh representation compatible with
deep learning and a capable generative framework adapted to this
mesh representation are both highly desired.

Most existing approaches focus on intermediate representations,
e.g., voxels [57, 71], point clouds [1, 45, 46], neural implicit functions
[12, 33, 68, 77, 78] and so on, which are highly compatible with deep
learning. However, those methods require a post-processing step
[10, 13, 15, 28, 43, 58] to extract meshes, resulting in over-smooth
surfaces and lacking detailed geometry. PolyGen [50] first treats
vertices and faces as sequences and uses transformer networks

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

[66] to generate vertices and then faces. MeshGPT [63] and Poly-
Diff [2] follow similar ideas but concentrate on faces. All three
approaches cannot produce mesh with intricate geometry since the
memory limits the number of faces to no more than 2800. MeshD-
iffusion [42] chooses to combine a deformable tetrahedral grid
with Signed Distance Functions (SDF) to model meshes. However,
its data preparation is especially slow (Tab. 6), and the generated
meshes are crumpled due to the deformable nature of the grid and
the inaccurate 2D supervision.

To address these two challenges, we construct a novel frame-
work dubbed GenUDC to combine the Unsigned Dual Contouring
representation (UDC) with a two-stage, coarse-to-fine generative
process, enabling high-quality mesh generation. As a mesh coun-
terpart, UDC consists of a face part and a vertex part. Accordingly,
we decompose the mesh generation into two subtasks: the face part
generation and vertex part generation. To address these subtasks,
we devise the two-stage, coarse-to-fine pipeline, which involves
generating faces first and then vertices.

Precisely, to find a proper mesh representation, we expand Dual
Contouring [28], which has long been regarded as an isosurface
reconstruction method, to generation tasks. Thus, we obtain the
UDC representation to model meshes as shown in Fig. 1 (a) and
Fig. 2. In UDC, we discretize a mesh in a regular grid. The faces part
of UDC is a set of tiny faces represented by boolean values. The
vertex part of UDC contains all the actual and potential vertices of
those tiny faces. Since the values of the face part and vertex part
are arranged in a regular grid, we can conveniently employ deep
learning-based generative models to learn the distribution of UDC.

Another pivotal component is the two-stage, coarse-to-fine gen-
erative process specially designed for UDC. Because the mesh is
discretized in UDC, the face part draws the rough shape, and the
vertex part describes the details. Consequently, we first employ a
latent diffusion model to generate the face part, determining the
mesh’s rough shape and topological structure. Then, conditioning
the rough shape, we take a vertex refiner to generate the vertex
part. Such a two-stage, coarse-to-fine pipeline is a natural solution.
Without this pipeline, the edges would be jagged due to the inac-
curate vertex part. We will study the necessity of this two-stage,
coarse-to-fine pipeline in Sec. 4.4.

Finally, using GenUDC, we can produce high-quality meshes
with complex structures and realistic details as shown in Fig. 1 (b)
and Fig. 3. Comprehensive experiments demonstrate the superiority
of our method over existing ones in mesh generation. In data fitting,
compared with MeshDiffusion, our method runs at 3274% times
their speed and consumes only about 13% of their total memory as
shown in Tab. 6.

To summarize, the contributions of this paper are:
• We propose a novel generative framework, called GenUDC,
utilizing UDC as the representation for high-quality mesh
generation.

• We design a two-stage, coarse-to-fine generative pipeline to
UDC,which generates faces and then vertices, circumventing
the jagged edges problem.

• Extensive experiments demonstrate our method’s superior
performance in mesh generation and data fitting.

Table 1: Taxonomy of mesh generation methods.

Method Representation Memory Maximum Num Of Faces

PolyGen [50] Face Sequence
+ Vertex Sequence High Less Than 2800

MeshGPT [63] Triangle Face Sequence High Less Than 800
PolyDiff [2] Triangle Face Soup High Less Than 800

MeshDiffusion [42] Deformable Tetrahedral
Grid + SDF Medium More Than 32768

Ours (GenUDC) UDC (Regular Grid) Medium More Than 32768

2 RELATEDWORK
In this section, we will outline some closely related topics to our
study: 3D shape generation, isosurface reconstruction, and diffusion
models.

2.1 3D Shape Generation
With the advent of deep learning, researchers have been exploring
the generation of 3D voxels [34, 57, 67, 71, 73] and point clouds [1, 3,
17, 26, 29, 32, 36, 45, 46, 61, 72, 74] using neural networks. However,
voxels suffer from memory limits, and point clouds lack topology
of shapes. Until the dawn of neural implicit function [12, 49, 53],
the community finds it an excellent shape representation, which
does not require a lot of memories and can be easily transformed
into meshes. The neural implicit function is specially designed for
advanced deep neural networks and inspires a lot of work [14, 16,
25, 27, 31, 33, 35, 37, 48, 51, 60, 62, 68, 70, 76–78]. It utilizes SDF
values or occupancy values as the intermediate representation of
3D shapes. By using some isosurface reconstruction methods like
Marching Cube [15, 43], and Dual Contouring [28], meshes can be
reconstructed from those neural implicit functions. However, this
also means those implicit function-based methods still require a
post-processing step and cannot directly generate meshes.

A collection of existing methods [6–8, 11, 39, 54, 64, 69, 75]
adapt Neural Radiance Fields (NeRF) or 3D Gaussian Splatting
(3DGS) as 3D representation. They utilize the powerful text-to-
image generative model, Stable Diffusion [55], as the guidance to
optimize NeRF or 3DGS with a text prompt. After optimization, the
final NeRF or 3DGS contains both 3D shape and texture information.
Themesh can be extracted from it by some post-processingmethods.
However, they are time-consuming, taking hours of optimization
for each text prompt. They also suffer from artifacts such as over-
saturated colors and the multi-face problem.

Moreover, some works are trying to find a proper mesh represen-
tation to generate meshes directly. PolyGen [50], MeshGPT [63],
and PolyDiff [2] are inspired by natural language processing to pro-
cess meshes as sequences. By leveraging the power of transformer
network [66], they can theoretically produce vertices and faces of
any length. In practice, the limited memory constrains the com-
plexity of synthetic mesh structures, making it difficult for them
to generate curved surfaces. In MeshDiffusion [42], a deformable
tetrahedral grid and SDF values are utilized to recover meshes. It
supposes all mesh vertices are on the edges of the deformable tetra-
hedral grid. It can use linear interpolation to compute mesh vertices
with the coordinates of adjacent grid points and SDF values. After
getting the mesh vertices, It produces faces by connecting mesh

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

GenUDC: HighQuality 3D Mesh Generation With Unsigned Dual Contouring Representation ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

vertices in the same tetrahedrons. However, the deformable grid
brings ambiguity to the fitting mesh. Two different tetrahedral grids
with distinct SDF values may recover the same mesh. In addition,
to fit a mesh, the deformable grid is trained in the supervision of
rendered images, which are inaccurate due to various rendering
settings. The ambiguity and 2D supervision tend to result in defi-
cient surfaces shown in Fig. 7. As for data preparation, it takes too
much time and memory to fit a tetrahedral grid on a shape due to
the 2D supervision, as shown in Tab. 6.

In contrast to sequence-based methods, e.g., PolyGen, MeshGPT,
and PolyDiff, our method is capable of using limited memory to
generate a diverse range of mesh structures, such as flat surfaces,
thin parts, curved surfaces, sharp parts, and so on, as shown in
Fig. 1 (b). Compared with MeshDiffusion, we use a regular grid to
fit meshes with more accurate results, less processing time, and less
memory, as shown in Tab. 6 and Fig. 7. We taxonomize methods
that can directly generate meshes in Tab. 1. We present more details
of the data fitting comparison between MeshDiffusion and ours in
Sec. 4.5.

2.2 Isosurface Reconstruction
Typically, isosurface reconstruction methods extract meshes from
volume data (e.g. voxels and SDF volumes). As a pioneering work,
the original Marching Cubes (MC) method is proposed by Lorensen
and Cline [43]. It discretizes a mesh into a regular grid and creates
approximative surfaces in each cube according to intersections
between themesh and grid. Its most well-known variant, MC33 [15],
can even model all possible topological cases in a cube. However,
since vertices of approximative surfaces are on the edges of the
grid, it is hard for the marching cubes method to model sharp
parts. The Dual Contouring method (DC) [28] is thus proposed. Its
vertices of approximative faces (also called dual faces) are in the
cubes. So DC can recover sharp parts. With the rise of deep learning,
Deep Marching Cubes [38] first applied deep learning to isosurface
reconstruction. Neural Marching Cubes (NMC) [13] and Neural
Dual Contouring (NDC) [10] focus on building a learnable version
of MC and DC. Manifold Dual Contouring [58] and FlexiCubes
[59] try to solve the non-manifold problem in DC. VoroMesh [47]
introduces Voronoi diagrams to isosurface reconstruction.

All isosurface reconstruction methods focus on developing a
pipeline to transform a kind of 3D data into a counterpart of mesh.
In contrast, we adopt UDC and expand it to shape generation by
learning the distribution of the UDC representations. In other sec-
tions, with a little abuse of the abbreviation, we refer to UDC rep-
resentation as UDC.

2.3 Diffusion Models
Diffusion models are a class of deep generative models that play an
important role in artificial intelligence generated content (AIGC). It
achieves pleasant results in various applications, such as image gen-
eration [24, 55], image super-resolution [55], shape generation [42],
text-to-3D [16, 35], etc. Diffusion models are designed to model the
step-by-step transformations between a simple distribution (e.g.
Gaussian distribution) and a complex distribution of data. Once
trained, a diffusion model can map a sample of the simple distri-
bution to the desired data distribution. As a milestone of diffusion

models, the Denoising Diffusion Probabilistic Model (DDPM) [24]
introduces variational inference into diffusion models and shows
greater potential over generative adversarial networks [19]. But it
still suffers from the huge memory requirement. Therefore, the la-
tent diffusion model (LDM) [55] proposes to train diffusion models
in a low-dimensional latent space instead of the high-dimensional
data space. It has been demonstrated that this technique can speed
up training and reduce memory footprints without degradation
of generation quality. In this paper, we adopt the LDM in the face
part generation (see Sec. 3.3) since the regular grid takes a lot of
memory footprints.

3 METHOD
3.1 Overview
Aiming at mesh generation, how to represent meshes, and how to
process meshes with neural networks are two critical issues. To
address them, we propose GenUDC, a novel generative framework
for mesh generation. In GenUDC, we discretize a mesh in a regular
grid to get its corresponding Unsigned Dual Contouring representa-
tion (UDC). Thus, due to the regular grid structure of UDC, neural
networks can easily be used on both watertight and non-watertight
meshes. We further propose a two-stage, coarse-to-fine pipeline
adapted to UDC, which generates faces and vertices successively.
In summary, we offer a new and straightforward solution for mesh
generation.

In the following sections, we first elaborate on UDC in Sec. 3.2.
Then, we illustrate our generative models for face generation in
Sec. 3.3 and vertex generation in Sec. 3.4. Finally, the implementa-
tion details are presented in Sec. 3.5.

3.2 Unsigned Dual Contouring Representation
We have briefly shown the main ideas of the Unsigned Dual Con-
touring representation (UDC) in Fig. 1 (a) and Fig. 2. For more
details, in a grid G with the size of (𝑋 + 1, 𝑌 + 1, 𝑍 + 1), UDC can
be formalized as:

UDC =

{
V ∈ R3×|C | , (vertex part)
F ∈ B | E | , (face part)

(1)

where C are the cubes in the grid, V are the vertices, E are the
edges inside the grid, and F are the faces (also called dual faces)
denoted by the intersection flags of edges. The grid G contains
(𝑋 + 1) (𝑌 + 1) (𝑍 + 1) nodes. There are |C| = 𝑋𝑌𝑍 cubes in the
grid, and each cube contains a vertex 𝑣 ∈ V . Considering the edges
along the x-axis, y-axis, and z-axis, there are |E | = 𝑋 (𝑌 −1) (𝑍 −1)+
(𝑋 − 1)𝑌 (𝑍 − 1) + (𝑋 − 1) (𝑌 − 1)𝑍 inside edges. If the intersection
flag of an edge is true, four adjacent vertices make up two triangle
faces that are dual to the edge. In other words, the edge intersects
with one of the two triangle faces when the flag is true. If not, there
is no face intersecting with this edge. When translating a UDC to a
correlative mesh, we craft faces by traversing all intersection flags
in F and remove a subset of V which are not in these faces. By
this means, faces and remaining vertices comprise the final mesh.

Comparedwith the traditional SDF-basedmethods [42, 77], which
usually generate over-smooth shapes, UDC can easily model the
sharp parts as shown in Fig. 7. In addition, the rigid grid used in
UDC is suited for deep neural networks and can produce more

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

UDC

Data fitting

Two-stage, Coarse-to-fine Pipeline

LDM

U-Net

Train

noisenoise

UDC

(mesh)

GenerateFace Part

Vertex Part

Face Part

Vertex Part

UDC

(mesh)
Ground Truth

Figure 2: The overview of GenUDC. It consists of UDC and a two-stage, coarse-to-fine generative pipeline. We first translate the
meshes to UDCs by data fitting. Then, we take UDCs to train the generative models. After training, we can generate the face
part and vertex part to compose the output UDC.

realistic surfaces than the deformable grid of MeshDiffusion [42],
which will be evaluated in Sec. 4.5. Moreover, UDC has the potential
to model non-watertight shapes shown in Fig. 7.

In practice, V are the relative coordinates in each cube, which
means 0 ≤ 𝑚𝑖𝑛(V) and𝑚𝑎𝑥 (V) ≤ 1 and F are boolean values.
When 𝑋 = 𝑌 = 𝑍 , we pad F with zeros to the same size as V . We
callV as the vertex part and F as the face part.

Data Fitting. We follow a similar procedure of DC [28] to fit
a mesh with UDC. Given a mesh M = (VM , FM) and a grid
G = (C, E), we first find the crossing vertices VE of the mesh M
on the edges E. Then, we compute the normals N E of M at those
crossing vertices. WithVE and N E , we can create UDC as:

V = 𝑓V (VE ,N E), (2)

F = 𝑓F (VE , E) . (3)

The dual contouring vertices V should be on the surfaces of M.
So we extrapolate neighboring normals N E to find a point of best
fit in each cube:

𝑓V : {𝑣𝑥𝑦𝑧 |arg min
𝑣𝑥𝑦𝑧

∑︁
𝑒∈C𝑥𝑦𝑧

(N E
𝑒 · (𝑣𝑥𝑦𝑧 −VE

𝑒))2}, (4)

where 𝑣𝑥𝑦𝑧 is the vertex inside the cube C𝑥𝑦𝑧 which is indexed by
(𝑥,𝑦, 𝑧), and 𝑒 are 12 edges of C𝑥𝑦𝑧 . 0 ≤ 𝑥 < 𝑋 , 0 ≤ 𝑦 < 𝑌 , and
0 ≤ 𝑧 < 𝑍 . By default, if there is noVE

𝑒 orN E
𝑒 in a cube, 𝑣𝑥𝑦𝑧 is

set to [0.5, 0.5, 0.5].
Besides, we only craft faces F when M intersects with an edge

𝑒 ∈ E at the crossing vertex 𝑣 ∈ VE :

𝑓F :
{

1, if ∀ 𝑒 ∈ E, ∃ 𝑣 ∈ VE is on the 𝑒,
0, otherwise.

(5)

3.3 Face Part Generation
In UDC, we have devised a simple and intuitive method for gener-
ating faces by connecting them with intersection flags. If an edge’s
intersection flag is true, it crosses faces. If not, there is no face. By
this means, we can denote all faces of the mesh as boolean values
and arrange them into a regular grid as a face tensor F ∈ B | E | . We
can easily employ typical neural networks to face part generation
thanks to the regular grid.

To reduce thememory footprint, we use a Latent DiffusionModel
(LDM) [55] to learn the distribution of F . Our LDM consists of a
Variational AutoEncoder (VAE) [30] and a diffusion model [24, 55].
VAE compresses a F to a latent representation 𝑧. Then, we take la-
tent representations 𝑧 to train our diffusion model. Thus, by extract-
ing the compression process from the generative learning phase,
we can speed up the diffusion model training process and reduce
the memory footprints. And since the latent space is perceptually
equivalent to the input space, there is no quality reduction for the
diffusion model. We provide detailed descriptions of VAE and the
diffusion model below.

VAE. A VAE comprises an encoder 𝐸 and a decoder 𝐷 . Given
a face tensor F ∈ B | E | , we first normalize F to [−1.0, 1.0] us-
ing min-max normalization. Then 𝐸 encodes F to a mean code
𝜇 ∈ R𝑐×𝑑×ℎ×𝑤 and a standard deviation code 𝜎 ∈ R𝑐×𝑑×ℎ×𝑤 . We
use the mean code 𝜇 as the latent code 𝑧 ∈ R𝑐×𝑑×ℎ×𝑤 without
reparameterization, which differs from the typical VAE. Finally, 𝐷
decodes 𝑧 back to the face tensor F𝑝𝑟𝑒𝑑 = 𝐷 (𝑧). We train our VAE
with the mean squared error (MSE) loss and the Kullback–Leibler
divergence (KL) loss:

L𝑣𝑎𝑒 = L𝑚𝑠𝑒 (𝐷 (𝐸 (F))), F) + 𝐾𝐿(N (𝜇, 𝜎) | |N (0, 1)) . (6)

Since we do not use the reparameterization technique, our VAE
is more like an autoencoder (AE) producing compact latent codes
(close to zero).

DiffusionModel. After encoding the face part F to the latent code
𝑧 with our VAE, we employ a diffusion model [24, 55] to the latent
code distribution 𝑝 (𝑧). We first normalize 𝑧0 ∈ 𝑝 (𝑧) to [−1.0, 1.0].
Then, through a series of diffusion steps, we introduce the controlled
Gaussian noise 𝜖 to 𝑧0 and transform it to 𝑧𝑡 =

√
𝛼𝑡𝑧0 +

√
1 − 𝛼𝑡𝝐 ,

where 𝑡 = 1 . . .𝑇 and 𝛼𝑡 =
∏𝑡

𝑖=1 𝛼𝑖 . 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛽𝑡 is the
predefined variance. The diffusion model 𝜃 is trained to predict
the noise 𝜖 , aiming at reversing the diffusion steps. The training
objective is

L𝑑𝑚 = E𝑥,𝑡,𝜖∼N(0,1) | |𝝐 − 𝝐𝜽 (𝑧𝑡 , 𝑡) | |1 . (7)

After training, to generate a face part F , a sampled Gaussian noise
𝜖 ∼ N(0, 1) is seen as 𝑧𝑇 . Then, our trained diffusionmodel denoises
𝑧𝑇 to 𝑧0. 𝑧0 is further denormalized from [−1.0, 1.0] to the original

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

GenUDC: HighQuality 3D Mesh Generation With Unsigned Dual Contouring Representation ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

data range of 𝑝 (𝑧). The VAE decoder takes denormalized 𝑧0 as the
input and decodes it to F .

More details of the network are in the supplemental material.

3.4 Vertex Part Generation
The vertex part V is a set of relative vertex coordinates, and all
vertices are arranged in a regular grid. Each vertex is in a cube of
this grid. The vertex part contains all actual and potential vertices
of a mesh. Since several vertices compose a face, there is a tight
correlation between V and F . Therefore, learning this correlation
is a crucial problem in the vertex part generation.

In UDC, when the face part is determined, the rough shape is
known, and the variance of the vertex part is limited. So we treat
the vertex part generation as a regression task. We take a vertex
refiner to generateV conditioned on F . Here, we use a 3D version
of U-Net [56] as the vertex refiner. Note that F is padded to the
same size as V described in Sec. 3.2. Firstly, we normalize the face
part F and the vertex part V to [−1.0, 1.0]. Secondly, the vertex
refiner takes the F as the conditional input and generates a vertex
part V𝑝𝑟𝑒𝑑 ∈ R3×|C | as shown in Fig. 2. We compare V𝑝𝑟𝑒𝑑 with
the ground truthV𝑔𝑡 to train networks:

L𝑓 𝑙𝑜𝑎𝑡 = L𝑚𝑠𝑒 (V𝑔𝑡 ,V𝑝𝑟𝑒𝑑), (8)
V𝑝𝑟𝑒𝑑 = Unet3D(F), (9)

whereL𝑚𝑠𝑒 isMSE loss.V𝑔𝑡 is the ground truth vertices pairedwith
F . In the inference phase,V𝑝𝑟𝑒𝑑 is denormalized from [−1.0, 1.0]
to [0.0, 1.0].

This is a natural and efficient solution to learn the correlation
between F andV for vertex part generation with reasonable train-
ing costs. If we eliminate the vertex refiner and generate F and
V together, synthesized meshes will contain jagged edges due to
inaccurate vertex coordinates. We will illustrate the necessity of
the vertex refiner in Sec. 4.4.

More details of the network are in the supplemental material.

3.5 Implementation Details
If not specified otherwise, we set𝑋 = 𝑌 = 𝑍 = 64 for the grid G and
𝑐 = 64, 𝑑 = ℎ = 𝑤 = 16 for the latent code 𝑧. During training,V and
F are normalized to [−1.0, 1.0]. At the final step of mesh generation,
we denormalize the generatedV and F to [0.0, 1.0] and keepV as
floating-point numbers and F as boolean values. We train the VAE
and U-Net with all five categories as told in Sec. 4.1. In contrast,
the diffusion model is trained in a category-specific manner. We
use the AdamW optimizer [44] with 𝛽1, 𝛽2 = [0.9, 0.999] for all
networks. Empirically, large 𝛽 values can make our diffusion model
produce realistic meshes. During the inference of diffusion models,
we adopt the sampling method in Denoising Diffusion Probabilistic
Models [24] and set the inference step as 1000.

4 EXPERIMENTS
4.1 Data
Following the protocol of MeshDiffuision [42], we use the ShapeNet
Core (v1) dataset [5] to train and test our networks. Airplane, car,
chair, refile, and table — five categories are used in our experiments.
For each category, we split all data like [23] and [77] do: 70% as
the training set, 20% as the test set, 10% as the validation set. To

be clear, the validation set is not used. For a fair comparison, we
remove the interior of shapes. We apply the data-fitting method in
Sec. 3.2 to generate UDC for all mesh data.

4.2 Shape Generation
To evaluate the quality of shape generation, we compare ourmethod
with IM-GAN [12], SDF-StyleGAN [77], MeshDiffusion [42] and,
LAS-Diffusion [78]. IM-GAN, SDF-StyleGAN, and LAS-Diffusion
are neural implicit function-based shape generation methods. IM-
GAN predicts the occupancy values. Similarly, SDF-StyleGAN and
LAS-Diffusion predict the SDFs. We apply MC to create meshes
from synthesized implicit representations, following their protocols.
MeshDiffusion is also a mesh generation method that utilizes a
deformable tetrahedral grid and SDF values to generate meshes
directly. We do not compare ours with PolyGen, MeshGPT, and
PolyDiff because it is unfair that their faces are limited to no more
than 2800, and they cannot produce complex geometric shapes.

Four metrics and three kinds of distances are used in the quanti-
tative experiments as shown in Tab. 2. We take the test dataset as
the reference set B and generate samplesA of the same number, i.e.
|A| = |B|. To calculate chamfer distance (COV) and earth mover’s
distance (EMD), we sample 2048 points for each mesh of A and B.
Note that all point clouds are normalized to [-1.0, 1.0], and meshes
are normalized to [-0.5, 0.5]. More details of metrics are elaborated
in the supplementary materials.

Quantitative evaluation. We present metric values in Tab. 2. Our
method outperforms others in most cases, indicating that our ap-
proach is superior in terms of quality, diversity, and distribution.
Particularly in the car and airplane category, our method demon-
strates significantly better performance than others. It can be at-
tributed to our excellent ability to generate details, considering the
minimal intra-class variation within cars. We also achieve good
performance in high resolution, shown in Tab. 3.

Qualitative evaluation. We show rendered meshes of various
methods in Fig. 3. As seen, neural implicit function-based methods
tend to produce over-smooth shapes and inaccurate parts, e.g., arms
of chairs, wheels of cars, and legs of tables. MeshDiffusion usually
produces pits on surfaces due to the ambiguity and inaccurate 2D
supervision, which we have examined the reason in Sec. 2.1. The
Laplacian smoothing used in MeshDiffusion reduces its generation
quality by removing details and thin parts, such as chair arms and
legs, rifle barrels, aero engines, and airplane propellers. In contrast,
our GenUDC can generate high-quality meshes with realistic ap-
pearances, various structures, and rich details. We provide more
visual samples in the supplementary materials.

4.3 Comparison with NDC
Since NDC [10] is an isosurface reconstruction method, we cannot
directly compare GenUDC with NDC. Thus, we train NDC and
UNDC networks with the default setting of their codes and the
data from the airplane category of ShapeNetCore (v1) [5] for 2500
epochs. After training, we apply them to SDFs to create meshes
for comparison. Qualitative evaluations are shown in Tab. 4. The
performance of NDC and UDNC is poor due to the distribution gap
between SDFs generated by SDF-StyleGAN and SDFs for training

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Quantitative evaluation of shape generation in 643 resolution.

Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (10−3, ↓)
CD ×103 EMD ×10 LFD CD EMD LFD CD EMD LFD

Chair

IM-GAN 13.928 1.816 3615 49.64 41.96 47.79 58.59 69.05 68.58 6.298
SDF-StyleGAN 15.763 1.839 3730 45.60 45.50 43.95 63.25 67.80 67.66 6.846
MeshDiffusion 13.212 1.731 3472 46.00 46.71 42.11 53.69 57.63 63.02 5.038
Ours 14.083 1.653 2924 48.08 48.60 47.94 59.18 58.67 60.84 4.837

Car

IM-GAN 5.209 1.197 2645 28.26 24.92 30.73 95.69 94.79 89.30 42.586
SDF-StyleGAN 5.064 1.152 2623 29.93 32.06 41.93 88.34 88.31 84.13 15.960
MeshDiffusion 4.972 1.196 2477 34.07 25.85 37.53 81.43 87.84 70.83 12.384
Ours 3.753 0.854 1191 45.67 46.53 45.73 60.80 58.33 62.23 2.839

Airplane

IM-GAN 3.736 1.110 4939 44.25 37.08 45.86 79.48 82.94 79.11 21.151
SDF-StyleGAN 4.558 1.180 5326 40.67 32.63 38.20 85.48 87.08 84.73 26.304
MeshDiffusion 3.612 1.042 4538 47.34 42.15 45.36 66.44 76.26 67.24 11.366
Ours 3.960 0.902 3167 48.33 50.06 44.13 60.75 56.74 69.16 7.020

Rifle

IM-GAN 3.550 1.058 6240 46.53 37.89 42.32 70.00 72.74 69.26 25.704
SDF-StyleGAN 4.100 1.069 6475 46.53 40.21 41.47 73.68 73.16 76.84 33.624
MeshDiffusion 3.124 1.018 5951 52.63 42.11 48.84 57.68 67.79 55.58 19.353
Ours 3.530 0.849 3493 48.42 51.58 50.53 56.63 55.05 55.58 10.951

Table

IM-GAN 11.378 1.567 3400 51.04 49.20 51.04 65.96 63.17 62.49 4.865
SDF-StyleGAN 13.896 1.615 3423 42.21 41.80 42.98 68.35 68.21 66.19 4.603
MeshDiffusion 11.405 1.548 3427 49.56 50.33 51.92 59.35 59.47 58.97 4.310
Ours 11.998 1.564 2683 46.36 50.41 47.12 61.46 59.43 60.75 3.822

Table 3: Quantitative evaluation of shape generation in 1283 resolution on airplane category.

Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (10−3, ↓)
CD ×103 EMD ×10 LFD CD EMD LFD CD EMD LFD

LAS-Diffusion 4.654 0.56 3142 37.45 35.72 42.15 79.48 84.67 71.51 33.137
Ours 4.000 0.509 3077 46.72 43.88 42.27 60.01 61.06 69.22 6.873

Table 4: Quantitative comparison between MC, NDC, UNDC, and ours in 643 resolution on the airplane category. We apply those
three methods to the same SDFs generated by SDF-StyleGAN. A post-processing step described in [10] is used after UNDC.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓)
Method CD ×103 EMD ×10 LFD CD EMD LFD CD EMD LFD JSD (10−3, ↓)

SDF-StyleGAN + MC 4.459 1.113 3731 41.29 43.88 41.14 81.33 76.89 80.04 20.581
SDF-StyleGAN + NDC 7.341 1.257 3748 17.55 20.64 44.00 94.13 95.30 78.06 133.827
SDF-StyleGAN + UNDC 7.758 1.563 3902 15.57 14.46 41.90 95.24 97.71 80.66 173.030
Ours 3.960 0.902 3167 48.33 50.06 44.13 60.75 56.74 69.16 7.020

NDC, shown in Fig. 4. Fig. 5 shows that NDC and UDNC cannot han-
dle the generated SDFs, resulting in surface distortion and floating
artifacts. Overall, integrating NDC (UNDC) into the SDF generation
method introduces too many uncertainties, making it unsuitable
for mesh generation. In contrast, our GenUDC directly generates
high-quality meshes using UDC, demonstrating that our paradigm
is more suitable for mesh generation.

4.4 Ablation Study of the Vertex Part
Generation

In this section, we compare the GenUDC to the one without the
U-Net to demonstrate the necessity of the vertex refiner, i.e., U-Net.

In the one without the U-Net, we concatenate the face part F and
vertex part V as a mesh tensor and then use the LDM to learn the
distribution of mesh tensors. Other settings are consistent with the
vanilla GenUDC. More network details are in the supplementary
materials. Then, we takemesh tensors to train the LDM, learning the
joint distribution of F andV . At the inference, it simultaneously
generates F and V . However, it is quite difficult for a single LDM
to learn this joint distribution and build the correlation between F
andV . To prove this, we present some similar samples produced by
GenUDC with and without U-Net in Fig. 6. As we can see, removing
U-Net results in jagged edges and unsmooth surfaces. Only by
modeling the vertex part generation conditioned on the face part,

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

GenUDC: HighQuality 3D Mesh Generation With Unsigned Dual Contouring Representation ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

IM
-G

A
N

S
D

F
-S

ty
le

G
A

N
M

es
h
D

if
fu

si
o
n

Car Airplane Rifle Table

O
u

rs

Chair

Figure 3: Qualitative evaluation of shape generation in 643 resolution.

Table 5: Quantitative evaluation of ablation study. We compare two methods on the car category following the setting in Sec. 4.2.

Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (10−3, ↓)
CD ×103 EMD ×10 LFD CD EMD LFD CD EMD LFD

Ours w/o U-net 15.463 1.702 3073 36.28 42.77 36.06 74.93 72.23 75.18 6.574
Ours w/ U-net 14.083 1.653 2924 48.08 48.60 47.94 59.18 58.67 60.84 4.837

we can learn the correlation between F andV . The quantitative
evaluation in Tab. 5 also proves our opinion.

4.5 Data Fitting Comparison
Our UDC is a discretized mesh counterpart, which requires a data
fitting process. In this section, we demonstrate the superiority of
UDC in the data fitting process compared with MeshDiffusion,
which uses a deformable tetrahedral grid to discretize a mesh.

For quantitative evaluation, we randomly select one hundred
meshes and record the average processing time and memory foot-
prints in Tab. 6. As shown, UDC outperforms MeshDiffusion in

both speed and memory footprint. The reason is that MeshDiffu-
sion uses the rendered 2D images as the supervision of data fitting.
Rendering 2D images requires a lot of GPU and CPU resources, and
it takes a long time to fit data. In contrast, we only use the CPU
to directly calculate the fitting vertices and faces of UDC as we
elaborate in Sec. 3.2, which is resource-efficient and fast.

To visually illustrate UDC’s superiority, we present some sam-
ples in Fig. 7. As seen, MeshDiffusion is unavoidable to produce
pits on the mesh surfaces and lack of details, such as the line and
crack on the car. The reason is the ambiguity and inaccurate 2D
supervision talked about in Sec. 2.1. Laplacian smoothing used by

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 4: The histogram of SDFs generated by SDF-StyleGAN
and SDFs for training NDC. We select 809 SDF grids and only
consider SDFs near the surfaces to draw this histogram.

Ours
SDF-StyleGAN

+ NDC

SDF-StyleGAN

+ UNDC

SDF-StyleGAN

+ MC

Figure 5: Visual samples of three post-processing methods
and ours. We apply those post-processing methods on the
same SDFs generated by SDF-StyleGAN.

Without U-NetWith U-Net Without U-NetWith U-Net

Figure 6: GenUDC with U-Net vs. GenUDC without U-Net.
A pair of samples are not the same object but are similar in
appearance and structure.

MeshDiffusion even removes details and sharp parts instead of
the pits. In comparison, UDC can fit flat surfaces, sharp parts, and
curved surfaces with details.

5 LIMITATION
Firstly, the main limitation of our method is the non-manifold issue.
Since we adopt UDC as the mesh representation, our method inher-
its the non-manifold issue from DC. However, such an issue rarely
occurs. It can be resolved by "tunneling" through vertices/edges
or dividing them with the approaches introduced by [52, 58]. Sec-
ondly, the memory footprint constrains the resolution of our results.

Table 6: Quantitative evaluation of data fitting in terms of
mean processing time, GPU memory footprints, and CPU
memory footprints of one hundred samples. All the pro-
grams are executed in a single thread, using an NVIDIA RTX
3090 GPU, an Intel i7-10700 CPU, and 64GB of memory.

Processing time
(Sec.)

GPU memory
(MB)

CPU memory
(MB)

MeshDiffusion 1,408 8544 1497
Ours (UDC) 43 0 1266

Ours (UDC)Ground Truth
Before smoothing After smoothing

MeshDiffusion

Figure 7: Qualitative evaluation of data fitting. The resolution
of thosemeshes is 643 except for the ground truth. In addition,
since MeshDiffusion applies a post-processing method to the
uneven surfaces of its fitting mesh, we present both raw and
smoothed meshes.

Thirdly, since the face part is a set of boolean values, our models
may predict wrong boolean values, resulting in pits on the surface.
We can solve this pit problem with the post-processing method in
[10].

6 CONCLUSION & FUTUREWORKS
In conclusion, we propose a novel 3D generative framework, GenUDC,
using the Unsigned Dual Contouring representation (UDC) for high-
quality mesh generation. Our method can directly generate high-
quality meshes without using isosurface reconstruction methods.
Specifically, following the discretization idea, we fit a mesh in a
regular grid to get its UDC representation. Since UDC is composed
of the face and vertex parts, we use a two-stage, coarse-to-fine
pipeline to learn its distribution. Firstly, we use a latent diffusion
model to generate the face part. Secondly, we take a U-Net as a
vertex refiner to synthesize the vertex part conditioned on the face
part. Experiments demonstrate our superiority over baselines in
shape generation and data fitting. The ablation study proves the
validity of network design. We believe that our method offers a new
paradigm for further work in mesh generation.

In the future, we plan to apply GenUDC to various applications,
such as text-to-3D, joint generation of texture and shape, single
view 3D reconstruction, shape editing, etc.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

GenUDC: HighQuality 3D Mesh Generation With Unsigned Dual Contouring Representation ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. 2018.

Learning representations and generative models for 3D point clouds. In ICML.
[2] Antonio Alliegro, Yawar Siddiqui, Tatiana Tommasi, and Matthias Nießner. 2023.

PolyDiff: Generating 3D Polygonal Meshes with Diffusion Models. arXiv preprint
arXiv:2312.11417 (2023).

[3] Mohammad Samiul Arshad andWilliam J. Beksi. 2020. A Progressive Conditional
Generative Adversarial Network for Generating Dense and Colored 3D Point
Clouds. In 3DV.

[4] Aseem Behl, Omid Hosseini Jafari, Siva Karthik Mustikovela, Hassan Abu Alhaija,
Carsten Rother, and Andreas Geiger. 2017. Bounding boxes, segmentations and
object coordinates: How important is recognition for 3D scene flow estimation
in autonomous driving scenarios?. In ICCV.

[5] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianx-
iong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR].

[6] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. 2023. Fantasia3D: Disentan-
gling Geometry and Appearance for High-quality Text-to-3D Content Creation.
In ICCV.

[7] Yang Chen, Jingwen Chen, Yingwei Pan, Xinmei Tian, and Tao Mei. 2023. 3D
Creation at Your Fingertips: From Text or Image to 3D Assets. In ACMMM.

[8] Yang Chen, Yingwei Pan, Yehao Li, Ting Yao, and Tao Mei. 2023. Control3D:
Towards Controllable Text-to-3D Generation. In ACMMM.

[9] Yiping Chen, Jingkang Wang, Jonathan Li, Cewu Lu, Zhipeng Luo, Han Xue, and
Cheng Wang. 2018. LiDAR-Video Driving Dataset: Learning Driving Policies
Effectively. In CVPR.

[10] Zhiqin Chen, Andrea Tagliasacchi, Thomas Funkhouser, and Hao Zhang. 2022.
Neural dual contouring. TOG (2022).

[11] Zilong Chen, Feng Wang, and Huaping Liu. 2023. Text-to-3D using gaussian
splatting. arXiv preprint arXiv:2309.16585 (2023).

[12] Zhiqin Chen and Hao Zhang. 2019. Learning Implicit Fields for Generative Shape
Modeling. In CVPR.

[13] Zhiqin Chen and Hao Zhang. 2021. Neural Marching Cubes. TOG (2021).
[14] Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander G. Schwing, and

Liang-Yan Gui. 2023. SDFusion: Multimodal 3D Shape Completion, Reconstruc-
tion, and Generation. In CVPR.

[15] Evgeni Chernyaev. 1995. Marching cubes 33: Construction of topologically
correct isosurfaces. Technical Report CN/95-17. CERN. (1995).

[16] Gene Chou, Yuval Bahat, and Felix Heide. 2023. Diffusion-SDF: Conditional
Generative Modeling of Signed Distance Functions. In ICCV.

[17] Rinon Gal, Amit Bermano, Hao Zhang, and Daniel Cohen-Or. 2021. MRGAN:
Multi-Rooted 3D Shape Representation Learning With Unsupervised Part Disen-
tanglement. In ICCVW.

[18] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are we ready for au-
tonomous driving? The KITTI vision benchmark suite. In CVPR.

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In NeurIPS.

[20] Joris Guerry, Alexandre Boulch, Bertrand Le Saux, Julien Moras, Aurélien Plyer,
and David Filliat. 2017. Snapnet-r: Consistent 3D multi-view semantic labeling
for robotics. In ICCVW.

[21] Benoit Guillard, Edoardo Remelli, Pierre Yvernay, and Pascal Fua. 2021.
Sketch2Mesh: Reconstructing and Editing 3D Shapes from Sketches. In ICCV.

[22] Lei Han, Tian Zheng, Yinheng Zhu, Lan Xu, and Lu Fang. 2020. Live semantic
3D perception for immersive augmented reality. TVCG (2020).

[23] Christian Häne, Shubham Tulsiani, and Jitendra Malik. 2017. Hierarchical surface
prediction for 3D object reconstruction. In 3DV.

[24] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. NeurIPS.

[25] Ka-Hei Hui, Ruihui Li, Jingyu Hu, and Chi-Wing Fu. 2022. Neural wavelet-domain
diffusion for 3D shape generation. In SIGGRAPH Asia.

[26] Le Hui, Rui Xu, Jin Xie, Jianjun Qian, and Jian Yang. 2020. Progressive point
cloud deconvolution generation network. In ECCV.

[27] Moritz Ibing, Isaak Lim, and Leif Kobbelt. 2021. 3D Shape Generation With
Grid-Based Implicit Functions. In CVPR.

[28] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual Contouring of
Hermite Data. In TOG.

[29] Hyeongju Kim, Hyeonseung Lee, Woo Hyun Kang, Joun Yeop Lee, and Nam Soo
Kim. 2020. Softflow: Probabilistic framework for normalizing flow on manifolds.
In NeurIPS.

[30] Diederik P Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In
ICLR.

[31] Marian Kleineberg, Matthias Fey, and Frank Weichert. 2020. Adversarial Genera-
tion of Continuous Implicit Shape Representations. In EG.

[32] Roman Klokov, Edmond Boyer, and Jakob Verbeek. 2020. Discrete point flow
networks for efficient point cloud generation. In ECCV.

[33] Juil Koo, Seungwoo Yoo, Minh Hieu Nguyen, and Minhyuk Sung. 2023. SALAD:
Part-Level Latent Diffusion for 3D Shape Generation and Manipulation. In ICCV.

[34] Jun Li, Chengjie Niu, and Kai Xu. 2020. Learning part generation and assembly
for structure-aware shape synthesis. In AAAI.

[35] Muheng Li, Yueqi Duan, Jie Zhou, and Jiwen Lu. 2023. Diffusion-SDF: Text-To-
Shape via Voxelized Diffusion. In CVPR.

[36] Ruihui Li, Xianzhi Li, Ka-Hei Hui, and Chi-Wing Fu. 2021. SP-GAN: Sphere-
guided 3D shape generation and manipulation. TOG (2021).

[37] Yuhan Li, Yishun Dou, Xuanhong Chen, Bingbing Ni, Yilin Sun, Yutian Liu, and
Fuzhen Wang. 2023. Generalized Deep 3D Shape Prior via Part-Discretized
Diffusion Process. In CVPR.

[38] Yiyi Liao, Simon Donné, and Andreas Geiger. 2018. Deep Marching Cubes:
Learning Explicit Surface Representations. In CVPR.

[39] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun
Huang, Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. 2023. Magic3D:
High-Resolution Text-to-3D Content Creation. In CVPR.

[40] Feng Liu and Xiaoming Liu. 2022. 2D GANs Meet Unsupervised Single-View 3D
Reconstruction. In ECCV.

[41] Feng Liu, Luan Tran, and Xiaoming Liu. 2021. Fully Understanding Generic
Objects: Modeling, Segmentation, and Reconstruction. In CVPR.

[42] Zhen Liu, Yao Feng, Michael J Black, Derek Nowrouzezahrai, Liam Paull, and
Weiyang Liu. 2023. Meshdiffusion: Score-based generative 3D mesh modeling.
ICLR.

[43] William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution
3D surface construction algorithm. SIGGRAPH.

[44] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[45] Shitong Luo and Wei Hu. 2021. Diffusion probabilistic models for 3D point cloud
generation. In CVPR.

[46] Zhaoyang Lyu, Jinyi Wang, Yuwei An, Ya Zhang, Dahua Lin, and Bo Dai. 2023.
Controllable Mesh Generation Through Sparse Latent Point Diffusion Models. In
CVPR.

[47] Nissim Maruani, Roman Klokov, Maks Ovsjanikov, Pierre Alliez, and Mathieu
Desbrun. 2023. VoroMesh: Learning Watertight Surface Meshes with Voronoi
Diagrams. In ICCV.

[48] Tejaswini Medi, Jawad Tayyub, Muhammad Sarmad, Frank Lindseth, and Margret
Keuper. 2023. FullFormer: Generating Shapes Inside Shapes. arXiv preprint
arXiv:2303.11235 (2023).

[49] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and
Andreas Geiger. 2019. Occupancy Networks: Learning 3D Reconstruction in
Function Space. In CVPR.

[50] Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter Battaglia. 2020. Polygen:
An autoregressive generative model of 3D meshes. In ICML.

[51] Weizhi Nie, Ruidong Chen, WeijieWang, Bruno Lepri, and Nicu Sebe. 2023. T2TD:
Text-3D Generation Model based on Prior Knowledge Guidance. arXiv preprint
arXiv:2305.15753 (2023).

[52] Gregory M. Nielson. 2004. Dual marching cubes. In IEEE VIS.
[53] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven

Lovegrove. 2019. Deepsdf: Learning continuous signed distance functions for
shape representation. In CVPR.

[54] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. 2023. Dreamfusion:
Text-to-3D using 2D diffusio. ICLR.

[55] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-Resolution Image Synthesis With Latent Diffusion Models.
In CVPR.

[56] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In MICCAI.

[57] Aditya Sanghi, Rao Fu, Vivian Liu, Karl D.D. Willis, Hooman Shayani, Amir H.
Khasahmadi, Srinath Sridhar, and Daniel Ritchie. 2023. CLIP-Sculptor: Zero-Shot
Generation of High-Fidelity and Diverse Shapes From Natural Language. In
CVPR.

[58] Scott Schaefer, Tao Ju, and Joe Warren. 2007. Manifold Dual Contouring. TVCG
(2007).

[59] Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, Zian Wang,
Wenzheng Chen, Zan Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. 2023.
Flexible isosurface extraction for gradient-based mesh optimization. TOG (2023).

[60] Jaehyeok Shim, Changwoo Kang, and Kyungdon Joo. 2023. Diffusion-Based
Signed Distance Fields for 3D Shape Generation. In CVPR.

[61] Dong Wook Shu, Sung Woo Park, and Junseok Kwon. 2019. 3D point cloud
generative adversarial network based on tree structured graph convolutions. In
ICCV.

[62] J. Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu, and Gordon
Wetzstein. 2023. 3D Neural Field Generation Using Triplane Diffusion. In CVPR.

[63] Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele
Sirigatti, Vladislav Rosov, Angela Dai, and Matthias Nießner. 2023. Meshgpt:
Generating triangle meshes with decoder-only transformers. arXiv preprint
arXiv:2311.15475 (2023).

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[64] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. 2024. Dream-
gaussian: Generative gaussian splatting for efficient 3D content creation. ICLR.

[65] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. 2017. Cnn-slam:
Real-time dense monocular slam with learned depth prediction. In CVPR.

[66] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NeurIPS.

[67] Hao Wang, Nadav Schor, Ruizhen Hu, Haibin Huang, Daniel Cohen-Or, and Hui
Huang. 2018. Global-to-Local Generative Model for 3D Shapes. TOG (2018).

[68] Ruowei Wang, Yu Liu, Pei Su, Jianwei Zhang, and Qijun Zhao. 2023. 3D Seman-
tic Subspace Traverser: Empowering 3D Generative Model with Shape Editing
Capability. In ICCV.

[69] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and
Jun Zhu. 2024. Prolificdreamer: High-fidelity and diverse text-to-3D generation
with variational score distillation. NeurIPS.

[70] Jiacheng Wei, Hao Wang, Jiashi Feng, Guosheng Lin, and Kim-Hui Yap. 2023.
TAPS3D: Text-Guided 3D Textured Shape Generation From Pseudo Supervision.
In CVPR.

[71] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum.
2016. Learning a probabilistic latent space of object shapes via 3D generative-
adversarial modeling. In NeurIPS.

[72] Jianwen Xie, Yifei Xu, Zilong Zheng, Song-Chun Zhu, and Ying Nian Wu. 2021.
Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for
3D Generation, Reconstruction and Classification. In CVPR.

[73] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, and
Ying Nian Wu. 2018. Learning Descriptor Networks for 3D Shape Synthesis and
Analysis. In CVPR.

[74] Guandao Yang, XunHuang, ZekunHao,Ming-Yu Liu, Serge Belongie, and Bharath
Hariharan. 2019. Pointflow: 3D point cloud generation with continuous normal-
izing flows. In ICCV.

[75] Chaohui Yu, Qiang Zhou, Jingliang Li, Zhe Zhang, Zhibin Wang, and Fan
Wang. 2023. Points-to-3D: Bridging the Gap between Sparse Points and Shape-
Controllable Text-to-3D Generation. In ACMMM.

[76] Biao Zhang, Jiapeng Tang, Matthias Nießner, and Peter Wonka. 2023.
3DShape2VecSet: A 3D Shape Representation for Neural Fields and Generative
Diffusion Models. TOG (2023).

[77] Xinyang Zheng, Yang Liu, Pengshuai Wang, and Xin Tong. 2022. SDF-StyleGAN:
Implicit SDF-Based StyleGAN for 3D Shape Generation. In CGF.

[78] Xin-Yang Zheng, Hao Pan, Peng-Shuai Wang, Xin Tong, Yang Liu, and Heung-
Yeung Shum. 2023. Locally Attentional SDF Diffusion for Controllable 3D Shape
Generation. SIGGRAPH.

	Abstract
	1 Introduction
	2 Related Work
	2.1 3D Shape Generation
	2.2 Isosurface Reconstruction
	2.3 Diffusion Models

	3 Method
	3.1 Overview
	3.2 Unsigned Dual Contouring Representation
	3.3 Face Part Generation
	3.4 Vertex Part Generation
	3.5 Implementation Details

	4 Experiments
	4.1 Data
	4.2 Shape Generation
	4.3 Comparison with NDC
	4.4 Ablation Study of the Vertex Part Generation
	4.5 Data Fitting Comparison

	5 Limitation
	6 Conclusion & Future Works
	References

