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GenUDC: High Quality 3D Mesh Generation With Unsigned Dual
Contouring Representation

Anonymous Authors

UDC

(a) Unsigned Dual Contouring Representation

Face Part

Vertex Part

(b) Mesh generation samples of GenUDC

Sharp Parts

Curved Surface

Complex Structure

Complex Structure Thin Parts

Thin Parts

Figure 1: (a) A visual sample of Unsigned Dual Contouring Representation (UDC) consisting of the face part and vertex part. (b)
Our high-quality mesh generation results in 643 resolution with close-up views.

ABSTRACT
Generating high-quality meshes with complex structures and real-
istic surfaces is the primary goal of 3D generative models. Existing
methods typically employ sequence data or deformable tetrahe-
dral grids for mesh generation. However, sequence-based methods
have difficulty producing complex structures with many faces due
to memory limits. The deformable tetrahedral grid-based method
MeshDiffusion fails to recover realistic surfaces due to the inherent
ambiguity in deformable grids. We propose the GenUDC frame-
work to address these challenges by leveraging the Unsigned Dual
Contouring (UDC) as the mesh representation. UDC discretizes
a mesh in a regular grid and divides it into the face and vertex
parts, recovering both complex structures and fine details. As a
result, the one-to-one mapping between UDC and mesh resolves
the ambiguity problem. In addition, GenUDC adopts a two-stage,
coarse-to-fine generative process for 3D mesh generation. It first
generates the face part as a rough shape and then the vertex part
to craft a detailed shape. Extensive evaluations demonstrate the
superiority of UDC as a mesh representation and the favorable
performance of GenUDC in mesh generation. The code and trained
models will be released upon publication.
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CCS CONCEPTS
• Computing methodologies → Mesh models; • Information
systems → Multimedia content creation.

KEYWORDS
Mesh, 3D Generation, Diffusion Model, Dual Contouring

1 INTRODUCTION
Mesh plays an important role in 3D content generation and re-
construction [21, 40, 41, 68], AR/VR [22], robotics [20, 65], and
autonomous driving [4, 9, 18] and other 3D tasks. It can flexibly rep-
resent various complex geometric shapes. High editability allows
meshes to be modified and adjusted easily in computer-aided de-
sign (CAD). Additionally, it is effortless for users to convert meshes
to other 3D representations, e.g., voxels, point clouds, and neural
implicit functions. Besides, the rendering pipelines are designed for
meshes, enabling high-quality 3D visualization effects. However,
Employing deep neural networks on meshes is tricky because the
numbers of vertices and faces are constantly changing, and model-
ing the complex topology structure of faces is also an obstacle. To
navigate those challenges, a mesh representation compatible with
deep learning and a capable generative framework adapted to this
mesh representation are both highly desired.

Most existing approaches focus on intermediate representations,
e.g., voxels [57, 71], point clouds [1, 45, 46], neural implicit functions
[12, 33, 68, 77, 78] and so on, which are highly compatible with deep
learning. However, those methods require a post-processing step
[10, 13, 15, 28, 43, 58] to extract meshes, resulting in over-smooth
surfaces and lacking detailed geometry. PolyGen [50] first treats
vertices and faces as sequences and uses transformer networks

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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[66] to generate vertices and then faces. MeshGPT [63] and Poly-
Diff [2] follow similar ideas but concentrate on faces. All three
approaches cannot produce mesh with intricate geometry since the
memory limits the number of faces to no more than 2800. MeshD-
iffusion [42] chooses to combine a deformable tetrahedral grid
with Signed Distance Functions (SDF) to model meshes. However,
its data preparation is especially slow (Tab. 6), and the generated
meshes are crumpled due to the deformable nature of the grid and
the inaccurate 2D supervision.

To address these two challenges, we construct a novel frame-
work dubbed GenUDC to combine the Unsigned Dual Contouring
representation (UDC) with a two-stage, coarse-to-fine generative
process, enabling high-quality mesh generation. As a mesh coun-
terpart, UDC consists of a face part and a vertex part. Accordingly,
we decompose the mesh generation into two subtasks: the face part
generation and vertex part generation. To address these subtasks,
we devise the two-stage, coarse-to-fine pipeline, which involves
generating faces first and then vertices.

Precisely, to find a proper mesh representation, we expand Dual
Contouring [28], which has long been regarded as an isosurface
reconstruction method, to generation tasks. Thus, we obtain the
UDC representation to model meshes as shown in Fig. 1 (a) and
Fig. 2. In UDC, we discretize a mesh in a regular grid. The faces part
of UDC is a set of tiny faces represented by boolean values. The
vertex part of UDC contains all the actual and potential vertices of
those tiny faces. Since the values of the face part and vertex part
are arranged in a regular grid, we can conveniently employ deep
learning-based generative models to learn the distribution of UDC.

Another pivotal component is the two-stage, coarse-to-fine gen-
erative process specially designed for UDC. Because the mesh is
discretized in UDC, the face part draws the rough shape, and the
vertex part describes the details. Consequently, we first employ a
latent diffusion model to generate the face part, determining the
mesh’s rough shape and topological structure. Then, conditioning
the rough shape, we take a vertex refiner to generate the vertex
part. Such a two-stage, coarse-to-fine pipeline is a natural solution.
Without this pipeline, the edges would be jagged due to the inac-
curate vertex part. We will study the necessity of this two-stage,
coarse-to-fine pipeline in Sec. 4.4.

Finally, using GenUDC, we can produce high-quality meshes
with complex structures and realistic details as shown in Fig. 1 (b)
and Fig. 3. Comprehensive experiments demonstrate the superiority
of our method over existing ones in mesh generation. In data fitting,
compared with MeshDiffusion, our method runs at 3274% times
their speed and consumes only about 13% of their total memory as
shown in Tab. 6.

To summarize, the contributions of this paper are:
• We propose a novel generative framework, called GenUDC,
utilizing UDC as the representation for high-quality mesh
generation.

• We design a two-stage, coarse-to-fine generative pipeline to
UDC,which generates faces and then vertices, circumventing
the jagged edges problem.

• Extensive experiments demonstrate our method’s superior
performance in mesh generation and data fitting.

Table 1: Taxonomy of mesh generation methods.

Method Representation Memory Maximum Num Of Faces

PolyGen [50] Face Sequence
+ Vertex Sequence High Less Than 2800

MeshGPT [63] Triangle Face Sequence High Less Than 800
PolyDiff [2] Triangle Face Soup High Less Than 800

MeshDiffusion [42] Deformable Tetrahedral
Grid + SDF Medium More Than 32768

Ours (GenUDC) UDC (Regular Grid) Medium More Than 32768

2 RELATEDWORK
In this section, we will outline some closely related topics to our
study: 3D shape generation, isosurface reconstruction, and diffusion
models.

2.1 3D Shape Generation
With the advent of deep learning, researchers have been exploring
the generation of 3D voxels [34, 57, 67, 71, 73] and point clouds [1, 3,
17, 26, 29, 32, 36, 45, 46, 61, 72, 74] using neural networks. However,
voxels suffer from memory limits, and point clouds lack topology
of shapes. Until the dawn of neural implicit function [12, 49, 53],
the community finds it an excellent shape representation, which
does not require a lot of memories and can be easily transformed
into meshes. The neural implicit function is specially designed for
advanced deep neural networks and inspires a lot of work [14, 16,
25, 27, 31, 33, 35, 37, 48, 51, 60, 62, 68, 70, 76–78]. It utilizes SDF
values or occupancy values as the intermediate representation of
3D shapes. By using some isosurface reconstruction methods like
Marching Cube [15, 43], and Dual Contouring [28], meshes can be
reconstructed from those neural implicit functions. However, this
also means those implicit function-based methods still require a
post-processing step and cannot directly generate meshes.

A collection of existing methods [6–8, 11, 39, 54, 64, 69, 75]
adapt Neural Radiance Fields (NeRF) or 3D Gaussian Splatting
(3DGS) as 3D representation. They utilize the powerful text-to-
image generative model, Stable Diffusion [55], as the guidance to
optimize NeRF or 3DGS with a text prompt. After optimization, the
final NeRF or 3DGS contains both 3D shape and texture information.
Themesh can be extracted from it by some post-processingmethods.
However, they are time-consuming, taking hours of optimization
for each text prompt. They also suffer from artifacts such as over-
saturated colors and the multi-face problem.

Moreover, some works are trying to find a proper mesh represen-
tation to generate meshes directly. PolyGen [50], MeshGPT [63],
and PolyDiff [2] are inspired by natural language processing to pro-
cess meshes as sequences. By leveraging the power of transformer
network [66], they can theoretically produce vertices and faces of
any length. In practice, the limited memory constrains the com-
plexity of synthetic mesh structures, making it difficult for them
to generate curved surfaces. In MeshDiffusion [42], a deformable
tetrahedral grid and SDF values are utilized to recover meshes. It
supposes all mesh vertices are on the edges of the deformable tetra-
hedral grid. It can use linear interpolation to compute mesh vertices
with the coordinates of adjacent grid points and SDF values. After
getting the mesh vertices, It produces faces by connecting mesh
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vertices in the same tetrahedrons. However, the deformable grid
brings ambiguity to the fitting mesh. Two different tetrahedral grids
with distinct SDF values may recover the same mesh. In addition,
to fit a mesh, the deformable grid is trained in the supervision of
rendered images, which are inaccurate due to various rendering
settings. The ambiguity and 2D supervision tend to result in defi-
cient surfaces shown in Fig. 7. As for data preparation, it takes too
much time and memory to fit a tetrahedral grid on a shape due to
the 2D supervision, as shown in Tab. 6.

In contrast to sequence-based methods, e.g., PolyGen, MeshGPT,
and PolyDiff, our method is capable of using limited memory to
generate a diverse range of mesh structures, such as flat surfaces,
thin parts, curved surfaces, sharp parts, and so on, as shown in
Fig. 1 (b). Compared with MeshDiffusion, we use a regular grid to
fit meshes with more accurate results, less processing time, and less
memory, as shown in Tab. 6 and Fig. 7. We taxonomize methods
that can directly generate meshes in Tab. 1. We present more details
of the data fitting comparison between MeshDiffusion and ours in
Sec. 4.5.

2.2 Isosurface Reconstruction
Typically, isosurface reconstruction methods extract meshes from
volume data (e.g. voxels and SDF volumes). As a pioneering work,
the original Marching Cubes (MC) method is proposed by Lorensen
and Cline [43]. It discretizes a mesh into a regular grid and creates
approximative surfaces in each cube according to intersections
between themesh and grid. Its most well-known variant, MC33 [15],
can even model all possible topological cases in a cube. However,
since vertices of approximative surfaces are on the edges of the
grid, it is hard for the marching cubes method to model sharp
parts. The Dual Contouring method (DC) [28] is thus proposed. Its
vertices of approximative faces (also called dual faces) are in the
cubes. So DC can recover sharp parts. With the rise of deep learning,
Deep Marching Cubes [38] first applied deep learning to isosurface
reconstruction. Neural Marching Cubes (NMC) [13] and Neural
Dual Contouring (NDC) [10] focus on building a learnable version
of MC and DC. Manifold Dual Contouring [58] and FlexiCubes
[59] try to solve the non-manifold problem in DC. VoroMesh [47]
introduces Voronoi diagrams to isosurface reconstruction.

All isosurface reconstruction methods focus on developing a
pipeline to transform a kind of 3D data into a counterpart of mesh.
In contrast, we adopt UDC and expand it to shape generation by
learning the distribution of the UDC representations. In other sec-
tions, with a little abuse of the abbreviation, we refer to UDC rep-
resentation as UDC.

2.3 Diffusion Models
Diffusion models are a class of deep generative models that play an
important role in artificial intelligence generated content (AIGC). It
achieves pleasant results in various applications, such as image gen-
eration [24, 55], image super-resolution [55], shape generation [42],
text-to-3D [16, 35], etc. Diffusion models are designed to model the
step-by-step transformations between a simple distribution (e.g.
Gaussian distribution) and a complex distribution of data. Once
trained, a diffusion model can map a sample of the simple distri-
bution to the desired data distribution. As a milestone of diffusion

models, the Denoising Diffusion Probabilistic Model (DDPM) [24]
introduces variational inference into diffusion models and shows
greater potential over generative adversarial networks [19]. But it
still suffers from the huge memory requirement. Therefore, the la-
tent diffusion model (LDM) [55] proposes to train diffusion models
in a low-dimensional latent space instead of the high-dimensional
data space. It has been demonstrated that this technique can speed
up training and reduce memory footprints without degradation
of generation quality. In this paper, we adopt the LDM in the face
part generation (see Sec. 3.3) since the regular grid takes a lot of
memory footprints.

3 METHOD
3.1 Overview
Aiming at mesh generation, how to represent meshes, and how to
process meshes with neural networks are two critical issues. To
address them, we propose GenUDC, a novel generative framework
for mesh generation. In GenUDC, we discretize a mesh in a regular
grid to get its corresponding Unsigned Dual Contouring representa-
tion (UDC). Thus, due to the regular grid structure of UDC, neural
networks can easily be used on both watertight and non-watertight
meshes. We further propose a two-stage, coarse-to-fine pipeline
adapted to UDC, which generates faces and vertices successively.
In summary, we offer a new and straightforward solution for mesh
generation.

In the following sections, we first elaborate on UDC in Sec. 3.2.
Then, we illustrate our generative models for face generation in
Sec. 3.3 and vertex generation in Sec. 3.4. Finally, the implementa-
tion details are presented in Sec. 3.5.

3.2 Unsigned Dual Contouring Representation
We have briefly shown the main ideas of the Unsigned Dual Con-
touring representation (UDC) in Fig. 1 (a) and Fig. 2. For more
details, in a grid G with the size of (𝑋 + 1, 𝑌 + 1, 𝑍 + 1), UDC can
be formalized as:

UDC =

{
V ∈ R3×|C | , (vertex part)
F ∈ B | E | , (face part)

(1)

where C are the cubes in the grid, V are the vertices, E are the
edges inside the grid, and F are the faces (also called dual faces)
denoted by the intersection flags of edges. The grid G contains
(𝑋 + 1) (𝑌 + 1) (𝑍 + 1) nodes. There are |C| = 𝑋𝑌𝑍 cubes in the
grid, and each cube contains a vertex 𝑣 ∈ V . Considering the edges
along the x-axis, y-axis, and z-axis, there are |E | = 𝑋 (𝑌 −1) (𝑍 −1)+
(𝑋 − 1)𝑌 (𝑍 − 1) + (𝑋 − 1) (𝑌 − 1)𝑍 inside edges. If the intersection
flag of an edge is true, four adjacent vertices make up two triangle
faces that are dual to the edge. In other words, the edge intersects
with one of the two triangle faces when the flag is true. If not, there
is no face intersecting with this edge. When translating a UDC to a
correlative mesh, we craft faces by traversing all intersection flags
in F and remove a subset of V which are not in these faces. By
this means, faces and remaining vertices comprise the final mesh.

Comparedwith the traditional SDF-basedmethods [42, 77], which
usually generate over-smooth shapes, UDC can easily model the
sharp parts as shown in Fig. 7. In addition, the rigid grid used in
UDC is suited for deep neural networks and can produce more
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Figure 2: The overview of GenUDC. It consists of UDC and a two-stage, coarse-to-fine generative pipeline. We first translate the
meshes to UDCs by data fitting. Then, we take UDCs to train the generative models. After training, we can generate the face
part and vertex part to compose the output UDC.

realistic surfaces than the deformable grid of MeshDiffusion [42],
which will be evaluated in Sec. 4.5. Moreover, UDC has the potential
to model non-watertight shapes shown in Fig. 7.

In practice, V are the relative coordinates in each cube, which
means 0 ≤ 𝑚𝑖𝑛(V) and𝑚𝑎𝑥 (V) ≤ 1 and F are boolean values.
When 𝑋 = 𝑌 = 𝑍 , we pad F with zeros to the same size as V . We
callV as the vertex part and F as the face part.

Data Fitting. We follow a similar procedure of DC [28] to fit
a mesh with UDC. Given a mesh M = (VM , FM ) and a grid
G = (C, E), we first find the crossing vertices VE of the mesh M
on the edges E. Then, we compute the normals N E of M at those
crossing vertices. WithVE and N E , we can create UDC as:

V = 𝑓V (VE ,N E ), (2)

F = 𝑓F (VE , E) . (3)

The dual contouring vertices V should be on the surfaces of M.
So we extrapolate neighboring normals N E to find a point of best
fit in each cube:

𝑓V : {𝑣𝑥𝑦𝑧 |arg min
𝑣𝑥𝑦𝑧

∑︁
𝑒∈C𝑥𝑦𝑧

(N E
𝑒 · (𝑣𝑥𝑦𝑧 −VE

𝑒 ))2}, (4)

where 𝑣𝑥𝑦𝑧 is the vertex inside the cube C𝑥𝑦𝑧 which is indexed by
(𝑥,𝑦, 𝑧), and 𝑒 are 12 edges of C𝑥𝑦𝑧 . 0 ≤ 𝑥 < 𝑋 , 0 ≤ 𝑦 < 𝑌 , and
0 ≤ 𝑧 < 𝑍 . By default, if there is noVE

𝑒 orN E
𝑒 in a cube, 𝑣𝑥𝑦𝑧 is

set to [0.5, 0.5, 0.5].
Besides, we only craft faces F when M intersects with an edge

𝑒 ∈ E at the crossing vertex 𝑣 ∈ VE :

𝑓F :
{

1, if ∀ 𝑒 ∈ E, ∃ 𝑣 ∈ VE is on the 𝑒,
0, otherwise.

(5)

3.3 Face Part Generation
In UDC, we have devised a simple and intuitive method for gener-
ating faces by connecting them with intersection flags. If an edge’s
intersection flag is true, it crosses faces. If not, there is no face. By
this means, we can denote all faces of the mesh as boolean values
and arrange them into a regular grid as a face tensor F ∈ B | E | . We
can easily employ typical neural networks to face part generation
thanks to the regular grid.

To reduce thememory footprint, we use a Latent DiffusionModel
(LDM) [55] to learn the distribution of F . Our LDM consists of a
Variational AutoEncoder (VAE) [30] and a diffusion model [24, 55].
VAE compresses a F to a latent representation 𝑧. Then, we take la-
tent representations 𝑧 to train our diffusion model. Thus, by extract-
ing the compression process from the generative learning phase,
we can speed up the diffusion model training process and reduce
the memory footprints. And since the latent space is perceptually
equivalent to the input space, there is no quality reduction for the
diffusion model. We provide detailed descriptions of VAE and the
diffusion model below.

VAE. A VAE comprises an encoder 𝐸 and a decoder 𝐷 . Given
a face tensor F ∈ B | E | , we first normalize F to [−1.0, 1.0] us-
ing min-max normalization. Then 𝐸 encodes F to a mean code
𝜇 ∈ R𝑐×𝑑×ℎ×𝑤 and a standard deviation code 𝜎 ∈ R𝑐×𝑑×ℎ×𝑤 . We
use the mean code 𝜇 as the latent code 𝑧 ∈ R𝑐×𝑑×ℎ×𝑤 without
reparameterization, which differs from the typical VAE. Finally, 𝐷
decodes 𝑧 back to the face tensor F𝑝𝑟𝑒𝑑 = 𝐷 (𝑧). We train our VAE
with the mean squared error (MSE) loss and the Kullback–Leibler
divergence (KL) loss:

L𝑣𝑎𝑒 = L𝑚𝑠𝑒 (𝐷 (𝐸 (F ))), F ) + 𝐾𝐿(N (𝜇, 𝜎) | |N (0, 1)) . (6)

Since we do not use the reparameterization technique, our VAE
is more like an autoencoder (AE) producing compact latent codes
(close to zero).

DiffusionModel. After encoding the face part F to the latent code
𝑧 with our VAE, we employ a diffusion model [24, 55] to the latent
code distribution 𝑝 (𝑧). We first normalize 𝑧0 ∈ 𝑝 (𝑧) to [−1.0, 1.0].
Then, through a series of diffusion steps, we introduce the controlled
Gaussian noise 𝜖 to 𝑧0 and transform it to 𝑧𝑡 =

√
𝛼𝑡𝑧0 +

√
1 − 𝛼𝑡𝝐 ,

where 𝑡 = 1 . . .𝑇 and 𝛼𝑡 =
∏𝑡

𝑖=1 𝛼𝑖 . 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛽𝑡 is the
predefined variance. The diffusion model 𝜃 is trained to predict
the noise 𝜖 , aiming at reversing the diffusion steps. The training
objective is

L𝑑𝑚 = E𝑥,𝑡,𝜖∼N(0,1) | |𝝐 − 𝝐𝜽 (𝑧𝑡 , 𝑡) | |1 . (7)

After training, to generate a face part F , a sampled Gaussian noise
𝜖 ∼ N(0, 1) is seen as 𝑧𝑇 . Then, our trained diffusionmodel denoises
𝑧𝑇 to 𝑧0. 𝑧0 is further denormalized from [−1.0, 1.0] to the original
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data range of 𝑝 (𝑧). The VAE decoder takes denormalized 𝑧0 as the
input and decodes it to F .

More details of the network are in the supplemental material.

3.4 Vertex Part Generation
The vertex part V is a set of relative vertex coordinates, and all
vertices are arranged in a regular grid. Each vertex is in a cube of
this grid. The vertex part contains all actual and potential vertices
of a mesh. Since several vertices compose a face, there is a tight
correlation between V and F . Therefore, learning this correlation
is a crucial problem in the vertex part generation.

In UDC, when the face part is determined, the rough shape is
known, and the variance of the vertex part is limited. So we treat
the vertex part generation as a regression task. We take a vertex
refiner to generateV conditioned on F . Here, we use a 3D version
of U-Net [56] as the vertex refiner. Note that F is padded to the
same size as V described in Sec. 3.2. Firstly, we normalize the face
part F and the vertex part V to [−1.0, 1.0]. Secondly, the vertex
refiner takes the F as the conditional input and generates a vertex
part V𝑝𝑟𝑒𝑑 ∈ R3×|C | as shown in Fig. 2. We compare V𝑝𝑟𝑒𝑑 with
the ground truthV𝑔𝑡 to train networks:

L𝑓 𝑙𝑜𝑎𝑡 = L𝑚𝑠𝑒 (V𝑔𝑡 ,V𝑝𝑟𝑒𝑑 ), (8)
V𝑝𝑟𝑒𝑑 = Unet3D(F ), (9)

whereL𝑚𝑠𝑒 isMSE loss.V𝑔𝑡 is the ground truth vertices pairedwith
F . In the inference phase,V𝑝𝑟𝑒𝑑 is denormalized from [−1.0, 1.0]
to [0.0, 1.0].

This is a natural and efficient solution to learn the correlation
between F andV for vertex part generation with reasonable train-
ing costs. If we eliminate the vertex refiner and generate F and
V together, synthesized meshes will contain jagged edges due to
inaccurate vertex coordinates. We will illustrate the necessity of
the vertex refiner in Sec. 4.4.

More details of the network are in the supplemental material.

3.5 Implementation Details
If not specified otherwise, we set𝑋 = 𝑌 = 𝑍 = 64 for the grid G and
𝑐 = 64, 𝑑 = ℎ = 𝑤 = 16 for the latent code 𝑧. During training,V and
F are normalized to [−1.0, 1.0]. At the final step of mesh generation,
we denormalize the generatedV and F to [0.0, 1.0] and keepV as
floating-point numbers and F as boolean values. We train the VAE
and U-Net with all five categories as told in Sec. 4.1. In contrast,
the diffusion model is trained in a category-specific manner. We
use the AdamW optimizer [44] with 𝛽1, 𝛽2 = [0.9, 0.999] for all
networks. Empirically, large 𝛽 values can make our diffusion model
produce realistic meshes. During the inference of diffusion models,
we adopt the sampling method in Denoising Diffusion Probabilistic
Models [24] and set the inference step as 1000.

4 EXPERIMENTS
4.1 Data
Following the protocol of MeshDiffuision [42], we use the ShapeNet
Core (v1) dataset [5] to train and test our networks. Airplane, car,
chair, refile, and table — five categories are used in our experiments.
For each category, we split all data like [23] and [77] do: 70% as
the training set, 20% as the test set, 10% as the validation set. To

be clear, the validation set is not used. For a fair comparison, we
remove the interior of shapes. We apply the data-fitting method in
Sec. 3.2 to generate UDC for all mesh data.

4.2 Shape Generation
To evaluate the quality of shape generation, we compare ourmethod
with IM-GAN [12], SDF-StyleGAN [77], MeshDiffusion [42] and,
LAS-Diffusion [78]. IM-GAN, SDF-StyleGAN, and LAS-Diffusion
are neural implicit function-based shape generation methods. IM-
GAN predicts the occupancy values. Similarly, SDF-StyleGAN and
LAS-Diffusion predict the SDFs. We apply MC to create meshes
from synthesized implicit representations, following their protocols.
MeshDiffusion is also a mesh generation method that utilizes a
deformable tetrahedral grid and SDF values to generate meshes
directly. We do not compare ours with PolyGen, MeshGPT, and
PolyDiff because it is unfair that their faces are limited to no more
than 2800, and they cannot produce complex geometric shapes.

Four metrics and three kinds of distances are used in the quanti-
tative experiments as shown in Tab. 2. We take the test dataset as
the reference set B and generate samplesA of the same number, i.e.
|A| = |B|. To calculate chamfer distance (COV) and earth mover’s
distance (EMD), we sample 2048 points for each mesh of A and B.
Note that all point clouds are normalized to [-1.0, 1.0], and meshes
are normalized to [-0.5, 0.5]. More details of metrics are elaborated
in the supplementary materials.

Quantitative evaluation. We present metric values in Tab. 2. Our
method outperforms others in most cases, indicating that our ap-
proach is superior in terms of quality, diversity, and distribution.
Particularly in the car and airplane category, our method demon-
strates significantly better performance than others. It can be at-
tributed to our excellent ability to generate details, considering the
minimal intra-class variation within cars. We also achieve good
performance in high resolution, shown in Tab. 3.

Qualitative evaluation. We show rendered meshes of various
methods in Fig. 3. As seen, neural implicit function-based methods
tend to produce over-smooth shapes and inaccurate parts, e.g., arms
of chairs, wheels of cars, and legs of tables. MeshDiffusion usually
produces pits on surfaces due to the ambiguity and inaccurate 2D
supervision, which we have examined the reason in Sec. 2.1. The
Laplacian smoothing used in MeshDiffusion reduces its generation
quality by removing details and thin parts, such as chair arms and
legs, rifle barrels, aero engines, and airplane propellers. In contrast,
our GenUDC can generate high-quality meshes with realistic ap-
pearances, various structures, and rich details. We provide more
visual samples in the supplementary materials.

4.3 Comparison with NDC
Since NDC [10] is an isosurface reconstruction method, we cannot
directly compare GenUDC with NDC. Thus, we train NDC and
UNDC networks with the default setting of their codes and the
data from the airplane category of ShapeNetCore (v1) [5] for 2500
epochs. After training, we apply them to SDFs to create meshes
for comparison. Qualitative evaluations are shown in Tab. 4. The
performance of NDC and UDNC is poor due to the distribution gap
between SDFs generated by SDF-StyleGAN and SDFs for training
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Table 2: Quantitative evaluation of shape generation in 643 resolution.

Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (10−3, ↓)
CD ×103 EMD ×10 LFD CD EMD LFD CD EMD LFD

Chair

IM-GAN 13.928 1.816 3615 49.64 41.96 47.79 58.59 69.05 68.58 6.298
SDF-StyleGAN 15.763 1.839 3730 45.60 45.50 43.95 63.25 67.80 67.66 6.846
MeshDiffusion 13.212 1.731 3472 46.00 46.71 42.11 53.69 57.63 63.02 5.038
Ours 14.083 1.653 2924 48.08 48.60 47.94 59.18 58.67 60.84 4.837

Car

IM-GAN 5.209 1.197 2645 28.26 24.92 30.73 95.69 94.79 89.30 42.586
SDF-StyleGAN 5.064 1.152 2623 29.93 32.06 41.93 88.34 88.31 84.13 15.960
MeshDiffusion 4.972 1.196 2477 34.07 25.85 37.53 81.43 87.84 70.83 12.384
Ours 3.753 0.854 1191 45.67 46.53 45.73 60.80 58.33 62.23 2.839

Airplane

IM-GAN 3.736 1.110 4939 44.25 37.08 45.86 79.48 82.94 79.11 21.151
SDF-StyleGAN 4.558 1.180 5326 40.67 32.63 38.20 85.48 87.08 84.73 26.304
MeshDiffusion 3.612 1.042 4538 47.34 42.15 45.36 66.44 76.26 67.24 11.366
Ours 3.960 0.902 3167 48.33 50.06 44.13 60.75 56.74 69.16 7.020

Rifle

IM-GAN 3.550 1.058 6240 46.53 37.89 42.32 70.00 72.74 69.26 25.704
SDF-StyleGAN 4.100 1.069 6475 46.53 40.21 41.47 73.68 73.16 76.84 33.624
MeshDiffusion 3.124 1.018 5951 52.63 42.11 48.84 57.68 67.79 55.58 19.353
Ours 3.530 0.849 3493 48.42 51.58 50.53 56.63 55.05 55.58 10.951

Table

IM-GAN 11.378 1.567 3400 51.04 49.20 51.04 65.96 63.17 62.49 4.865
SDF-StyleGAN 13.896 1.615 3423 42.21 41.80 42.98 68.35 68.21 66.19 4.603
MeshDiffusion 11.405 1.548 3427 49.56 50.33 51.92 59.35 59.47 58.97 4.310
Ours 11.998 1.564 2683 46.36 50.41 47.12 61.46 59.43 60.75 3.822

Table 3: Quantitative evaluation of shape generation in 1283 resolution on airplane category.

Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (10−3, ↓)
CD ×103 EMD ×10 LFD CD EMD LFD CD EMD LFD

LAS-Diffusion 4.654 0.56 3142 37.45 35.72 42.15 79.48 84.67 71.51 33.137
Ours 4.000 0.509 3077 46.72 43.88 42.27 60.01 61.06 69.22 6.873

Table 4: Quantitative comparison between MC, NDC, UNDC, and ours in 643 resolution on the airplane category. We apply those
three methods to the same SDFs generated by SDF-StyleGAN. A post-processing step described in [10] is used after UNDC.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓)
Method CD ×103 EMD ×10 LFD CD EMD LFD CD EMD LFD JSD (10−3, ↓)

SDF-StyleGAN + MC 4.459 1.113 3731 41.29 43.88 41.14 81.33 76.89 80.04 20.581
SDF-StyleGAN + NDC 7.341 1.257 3748 17.55 20.64 44.00 94.13 95.30 78.06 133.827
SDF-StyleGAN + UNDC 7.758 1.563 3902 15.57 14.46 41.90 95.24 97.71 80.66 173.030
Ours 3.960 0.902 3167 48.33 50.06 44.13 60.75 56.74 69.16 7.020

NDC, shown in Fig. 4. Fig. 5 shows that NDC and UDNC cannot han-
dle the generated SDFs, resulting in surface distortion and floating
artifacts. Overall, integrating NDC (UNDC) into the SDF generation
method introduces too many uncertainties, making it unsuitable
for mesh generation. In contrast, our GenUDC directly generates
high-quality meshes using UDC, demonstrating that our paradigm
is more suitable for mesh generation.

4.4 Ablation Study of the Vertex Part
Generation

In this section, we compare the GenUDC to the one without the
U-Net to demonstrate the necessity of the vertex refiner, i.e., U-Net.

In the one without the U-Net, we concatenate the face part F and
vertex part V as a mesh tensor and then use the LDM to learn the
distribution of mesh tensors. Other settings are consistent with the
vanilla GenUDC. More network details are in the supplementary
materials. Then, we takemesh tensors to train the LDM, learning the
joint distribution of F andV . At the inference, it simultaneously
generates F and V . However, it is quite difficult for a single LDM
to learn this joint distribution and build the correlation between F
andV . To prove this, we present some similar samples produced by
GenUDC with and without U-Net in Fig. 6. As we can see, removing
U-Net results in jagged edges and unsmooth surfaces. Only by
modeling the vertex part generation conditioned on the face part,
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Figure 3: Qualitative evaluation of shape generation in 643 resolution.

Table 5: Quantitative evaluation of ablation study. We compare two methods on the car category following the setting in Sec. 4.2.

Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (10−3, ↓)
CD ×103 EMD ×10 LFD CD EMD LFD CD EMD LFD

Ours w/o U-net 15.463 1.702 3073 36.28 42.77 36.06 74.93 72.23 75.18 6.574
Ours w/ U-net 14.083 1.653 2924 48.08 48.60 47.94 59.18 58.67 60.84 4.837

we can learn the correlation between F andV . The quantitative
evaluation in Tab. 5 also proves our opinion.

4.5 Data Fitting Comparison
Our UDC is a discretized mesh counterpart, which requires a data
fitting process. In this section, we demonstrate the superiority of
UDC in the data fitting process compared with MeshDiffusion,
which uses a deformable tetrahedral grid to discretize a mesh.

For quantitative evaluation, we randomly select one hundred
meshes and record the average processing time and memory foot-
prints in Tab. 6. As shown, UDC outperforms MeshDiffusion in

both speed and memory footprint. The reason is that MeshDiffu-
sion uses the rendered 2D images as the supervision of data fitting.
Rendering 2D images requires a lot of GPU and CPU resources, and
it takes a long time to fit data. In contrast, we only use the CPU
to directly calculate the fitting vertices and faces of UDC as we
elaborate in Sec. 3.2, which is resource-efficient and fast.

To visually illustrate UDC’s superiority, we present some sam-
ples in Fig. 7. As seen, MeshDiffusion is unavoidable to produce
pits on the mesh surfaces and lack of details, such as the line and
crack on the car. The reason is the ambiguity and inaccurate 2D
supervision talked about in Sec. 2.1. Laplacian smoothing used by
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Figure 4: The histogram of SDFs generated by SDF-StyleGAN
and SDFs for training NDC. We select 809 SDF grids and only
consider SDFs near the surfaces to draw this histogram.

Ours
SDF-StyleGAN

+ NDC

SDF-StyleGAN

+ UNDC

SDF-StyleGAN

+ MC

Figure 5: Visual samples of three post-processing methods
and ours. We apply those post-processing methods on the
same SDFs generated by SDF-StyleGAN.

Without U-NetWith U-Net Without U-NetWith U-Net

Figure 6: GenUDC with U-Net vs. GenUDC without U-Net.
A pair of samples are not the same object but are similar in
appearance and structure.

MeshDiffusion even removes details and sharp parts instead of
the pits. In comparison, UDC can fit flat surfaces, sharp parts, and
curved surfaces with details.

5 LIMITATION
Firstly, the main limitation of our method is the non-manifold issue.
Since we adopt UDC as the mesh representation, our method inher-
its the non-manifold issue from DC. However, such an issue rarely
occurs. It can be resolved by "tunneling" through vertices/edges
or dividing them with the approaches introduced by [52, 58]. Sec-
ondly, the memory footprint constrains the resolution of our results.

Table 6: Quantitative evaluation of data fitting in terms of
mean processing time, GPU memory footprints, and CPU
memory footprints of one hundred samples. All the pro-
grams are executed in a single thread, using an NVIDIA RTX
3090 GPU, an Intel i7-10700 CPU, and 64GB of memory.

Processing time
(Sec.)

GPU memory
(MB)

CPU memory
(MB)

MeshDiffusion 1,408 8544 1497
Ours (UDC) 43 0 1266

Ours (UDC)Ground Truth
Before smoothing After smoothing

MeshDiffusion

Figure 7: Qualitative evaluation of data fitting. The resolution
of thosemeshes is 643 except for the ground truth. In addition,
since MeshDiffusion applies a post-processing method to the
uneven surfaces of its fitting mesh, we present both raw and
smoothed meshes.

Thirdly, since the face part is a set of boolean values, our models
may predict wrong boolean values, resulting in pits on the surface.
We can solve this pit problem with the post-processing method in
[10].

6 CONCLUSION & FUTUREWORKS
In conclusion, we propose a novel 3D generative framework, GenUDC,
using the Unsigned Dual Contouring representation (UDC) for high-
quality mesh generation. Our method can directly generate high-
quality meshes without using isosurface reconstruction methods.
Specifically, following the discretization idea, we fit a mesh in a
regular grid to get its UDC representation. Since UDC is composed
of the face and vertex parts, we use a two-stage, coarse-to-fine
pipeline to learn its distribution. Firstly, we use a latent diffusion
model to generate the face part. Secondly, we take a U-Net as a
vertex refiner to synthesize the vertex part conditioned on the face
part. Experiments demonstrate our superiority over baselines in
shape generation and data fitting. The ablation study proves the
validity of network design. We believe that our method offers a new
paradigm for further work in mesh generation.

In the future, we plan to apply GenUDC to various applications,
such as text-to-3D, joint generation of texture and shape, single
view 3D reconstruction, shape editing, etc.
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