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Abstract—Functional connectivity (FC)-based predictive mod-
eling is a widely used approach in resting-state fMRI studies
to predict various mental states such as attention, depression,
and impulsivity. FC-based predictive modeling often employs a
standard procedure: parcellating the brain into regions of interest
(ROIs) using a predefined atlas, computing ROI-to-ROI FC, and
applying predictive models to estimate behavioral or clinical
measures. However, many existing studies focus solely on end-to-
end prediction performance and often overlook the influence of
preprocessing choices on FC features and downstream predictive
model performance. Assessing the preprocessing effect is crucial
because it can significantly influence the spatial accuracy of ROI
partition, FC measures, and predictive modeling performance,
potentially reducing reproducibility. In this study, we investi-
gated the impact of fMRI preprocessing strategies, particularly
fieldmap distortion correction, on the resulting FC features
and the performance of machine learning models predicting
sensation-seeking. We compared two preprocessing pipelines:
with distortion correction (DC) and without (NDC). FC matrices
were computed from each pipeline and used to train machine
learning models to predict sensation-seeking trait. We showed
that different preprocessing choices can lead to substantial differ-
ences in FC values and model predictions. The prediction model
trained on DC data achieved R? of 0.34, while the model trained
on NDC data has a lower R? of 0.21. Moreover, we observed
notable differences in the key predictive connections between
the DC and NDC pipelines, involving the brain regions such as
cerebellum, prefrontal cortex, cingulate cortex, and subcortical
regions, which also showed the largest voxel shifts following
distortion correction. Our findings revealed the important role
that preprocessing strategies play in functional connectivity-
based modeling and raised the important issue of accounting
for preprocessing variability in fMRI predictive modeling.

Index Terms—rs-fMRI, Functional Connectivity, Preprocess-
ing, Distortion Correction, Predictive Modeling

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a non-
invasive neuroimaging technique widely used to study brain
activity and its relationship with human health. A key feature
of fMRI is functional connectivity (FC), commonly defined by
the temporal correlation between brain regions, representing
intrinsic brain function. FC is linked to various physical and
psychological processes in the human body, making it an
essential feature in studying brain-behavior relationships [1].

However, fMRI data acquisition is often heterogeneous due
to differences in scanning devices and protocols, and inter-
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subject variability. Therefore, preprocessing is important to
mitigate fMRI heterogeneity, reduce artifacts, and standardize
the data [2]. Although most studies typically follow similar
steps, which include motion correction, coregistration, sig-
nal denoising, filtering, and spatial normalization, the im-
plementation details often differ. There is strong evidence
that signal filtering, white matter/cerebrospinal fluid regres-
sion, and global signal regression influence the estimation
of the brain connectome [3]-[5]. However, one critical step
in preprocessing, distortion correction, is less examined [6].
This step corrects geometric distortions from magnetic field
inhomogeneity using a fieldmap, which represents variations in
the static magnetic field [7]. Distortion correction improves the
alignment between the functional and the structural images and
reduces mislocalization after spatial normalization to standard
space. However, fieldmap acquisition requires additional scan
time and is often unavailable in many publicly available fMRI
datasets that were collected and released years ago [8]. Thus,
many studies overlook this step, especially when the areas
of interest may not be deemed particularly vulnerable to
distortion by the study team [6]. To our knowledge, the impact
of distortion correction on the downstream connectivity-based
predictive modeling has not been examined. We hypothesize
that the inclusion or exclusion of fieldmap distortion correction
affects functional connectivity measures, potentially influenc-
ing the outcomes of machine learning models trained to predict
behavioral traits from these features.

To address the above hypothesis, we consider the case of
predicting sensation-seeking trait, a sub-dimension of impul-
sivity, using functional connectivity as input features. Re-
cent studies have employed machine learning approaches for
similar predictions [9]-[11]. However, those studies primar-
ily focused on the performance metric without considering
model sensitivity. This is important because, given the high-
dimensionality nature of FC data, even small variations can
lead to significant changes in model outcomes. Prior research
has demonstrated that different preprocessing can lead to
systematically different FC matrices [3], [4]. The main gap lies
in understanding how preprocessing choices influence down-
stream predictive modeling, which can limit the reproducibility
and interpretability of FC-based predictions in neuroimaging.

In this study, we aim to bridge this gap by evaluating how
distortion correction affects both functional connectivity (FC)
estimation and machine learning-based behavioral prediction.
We implemented two fMRI preprocessing pipelines, one with



distortion correction (DC) versus one without distortion cor-
rection (NDC, no distortion correction), and computed FC fea-
tures from each. The computed features were then used to train
a machine-learning model to predict sensation-seeking scores.
We evaluated this modeling on the 128 male participants from
the MPI Leipzig Mind-Brain-Body (LEMON) dataset to avoid
any gender confounders. The male subset was selected for its
larger sample size and greater variability in sensation-seeking
scores compared to the female population in the dataset.

We observed significant subject-level differences in func-
tional connectivity (p < 0.05) derived from the two prepro-
cessing pipelines in 32% of the subjects. The most affected
connections involved the cerebellum, vermis, prefrontal cortex,
cingulate cortex, subcortical regions (e.g., amygdala, hip-
pocampus), and parietal lobe (e.g., precuneus, angular gyrus)
that also exhibited the highest voxel shift after distortion
correction. Our findings further demonstrated that FC-based
sensation-seeking prediction varied substantially depending
on whether distortion correction was applied. The prediction
model trained on DC data achieved R? of 0.34, while the
model trained on NDC data had a lower R?> of 0.21. This
study highlighted the importance of evaluating the effects of
preprocessing choices on the reliability and generalizability of
machine learning predictive models in neuroimaging.

II. MATERIALS AND METHODS
A. Data

1) Participants: The dataset used in this study is part of the
large MPI Leipzig Mind-Brain-Body (LEMON) dataset, which
comprises multi-modal data, including brain imaging data
(MRI and EEG), cognitive assessments, emotional measures,
and peripheral physiology data for studying the relationships
between mind, brain, and body functions [12]. The 205 par-
ticipants fell into two age groups: 139 from a younger group
aged 20 — 35, and 66 from an older group aged 59 —77.

2) Self-reported  sensation-seeking score:  Sensation-
seeking, a sub-dimension of impulsivity, reflects a preference
for stimulation and excitement. In the LEMON dataset,
it’s measured using the UPPS impulsivity questionnaire
[13]. UPPS covers four sub-dimensions of impulsivity:
Urgency, Lack of Premeditation, Lack of Perseverance, and
Sensation-Seeking. Participants rated 45 questionnaire items
on a 4-point scale (higher score indicates stronger trait).
Each item relates to one of these sub-dimensions, and the
aggregated scores reflect the impulsivity level across the
sub-dimensions. Figure 1 shows the distribution of age and
sensation seeking score across the male and female groups in
the LEMON dataset.

B. Methods

1) Preprocessing Pipelines: In the LEMON dataset, rs-
fMRI and structural MRI scans were obtained using a 3
Tesla scanner. Participants were instructed to stay awake with
their eyes open during rs-fMRI acquisition. We employed two
preprocessing pipelines (Figure 2), with and without fieldmap
distortion correction, referred to as DC and NDC.
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Fig. 1. Age and sensation seeking score distribution across males and females.

Aside from fieldmap distortion correction, other steps were
identical for DC and NDC pipelines: 1) removing the first
5 slices to ensure stable signals; 2) 3D motion correction;
3) rigid-body coregistration to anatomical image; 4) signal
denoising; 5) band-pass filtering; 6) mean centering and vari-
ance normalization; 7) spatial normalization to MNI152 2mm
standard space. For DC, fieldmap correction was performed
before coregistration to the anatomical image. Fieldmap imag-
ing was acquired with a double-echo gradient echo sequence
that included a magnitude image and a phase image. FSL
FUGUE [14] was used to compute and correct the spatial
shift of each voxel from the original functional image space
due to magnetic inhomogeneity. After preprocessing, time
series extracted from each brain region were used to construct
functional brain connectivity networks. After quality control,
we excluded 3 from the initial 131 male subjects, leaving 128
subjects for subsequent analysis.
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Fig. 2. The workflow of fMRI preprocessing. We compared two preprocessing
pipelines, with and without distortion correction; other steps remain identical.

2) Brain functional connectivity: fMRI measures brain
activity by detecting changes in blood flow and oxygenated
hemoglobin, known as blood oxygen level-dependent (BOLD)
signals. Temporal correlations of the BOLD signal between
pairs of brain regions are used to represent brain functional
connectivity (FC). As illustrated in Figure 3 (a), after pre-
processed through DC and NDC pipelines, respectively, we
partitioned the voxel-level fMRI data into 116 regions of
interest (ROIs) with Automated Anatomical Labelling (AAL)
Atlas [15] to reduce the high dimensionality. Next, we ex-
tracted ROI-wise time series by averaging BOLD signals
across voxels within each ROI. FC was computed as the
Pearson correlation between the time series of all ROI pairs.
This yields 6670 FCs for each individual, representing the
brain connectivity network. Subsequently, we used the ab-
solute correlation value to represent the connection strength,



which was the input feature for the predictive model.

3) Assessment of the influence of distortion correction on
FC: We evaluated the influence of fieldmap distortion on FC
with the following measurements:

o Degrees of Voxel Shift after Distortion Correction: We
calculated the spatial shift of each voxel from the original
functional image space after distortion correction.

« Distribution of Functional Connectivity: After calculating
FC from DC and NDC, we reported the global difference
between the two FC with mean and standard deviation.
We also conducted a statistical test to compare the distri-
bution of FC at the subject level.

4) Sensation-seeking score prediction framework: As a
baseline, we implemented the Elastic Net model from previous
literature [10], the only work predicting sensation-seeking
from rs-fMRI to our knowledge. We applied this model to
all 128 male participants from the LEMON dataset.

Our predictive model employed nested cross-validation to
predict sensation-seeking scores from functional connectivity,
as illustrated in Figure 3 (b). This consists of two loops: an
inner loop for feature selection and hyperparameter tuning, and
an outer loop for unbiased model performance evaluation [16].
Within each outer training set, we performed 10-fold cross-
validation as the inner loop to optimize model configuration
and feature selection. We adopted leave-one-subject-out cross-
validation for the outer loop to evaluate the model’s predictive
performance and generalization ability across each individual.
We evaluated predictive performance using Pearson’s corre-
lation coefficient (r), RZ, Root Mean Squared Error (RMSE),
and normalized RMSE (NRMSE).

For the predictive model, we evaluated a set of machine-
learning models to capture either linear or nonlinear relation-
ships between FC and sensation-seeking, including Extreme
Gradient Boosting (XGBoost) and Generalized Linear Model
(GLM) - Elastic Net and Lasso. These models are widely used
to handle high-dimensional datasets and prevent overfitting.
We first applied Light Gradient Boosting Machine (Light-
GBM) for feature selection to reduce dimensionality and keep
the most informative features for prediction, selecting top-
k features that achieved the highest average cross-validated
R? in the inner loop. The optimal number of features was
then applied to the held-out fold in the outer cross-validation.
We optimized model settings through inner cross-validation,
including tree depth and feature split thresholds for XGBoost,
the regularization term for ElasticNet, and Lasso. Feature se-
lection and hyperparameter tuning were performed exclusively
on training data within each fold to avoid data leakage.

Previous work found that the associations between FC and
sensation-seeking were not uniform across ages and proposed
an age-specific modeling approach, which outperformed the
single all-ages model [11]. Building on the age-specific model-
ing approach, we partitioned the male population into different
age groups and implemented the prediction framework within
each age group. We focused on the male population due to
its higher variability in sensation-seeking scores and a larger
sample size in each age group (as illustrated in Figure 1).

To ensure sufficient data samples in each group, we merged
the 30-34 (N =5) and 35-39 (N = 1) groups with 25-29,
and combined older participants into a 55-79 group. The final
age groups were 20-24 (N = 46), 25-39 (N =50), and 55-79
(N = 32). As the number of female participants in key age
ranges was insufficient for reliable modeling (e.g., N = 22 for
20-24 and N = 21 for 25-39), we focus on the male subset
to avoid any gender-related confounding.

5) Model Sensitivity: Due to the high dimensionality of
functional connectivity data, even small variations in the data
can lead to substantial perturbations in model performance.
To evaluate the sensitivity of our prediction framework to
such variations, we added random Gaussian noise with varying
variance to the FC features and reran the prediction pipeline.
We calculate the R> for each noise level, showing the influence
of FC variations on model predictive accuracy.

ITI. RESULTS
A. Assessment of the influence of distortion correction on FC

1) Degrees of Voxel Shift after Distortion Correction:
We quantified the voxel-wise spatial shift using the unwarp-
ing shift map derived from the field map images. Figure 4
shows the spatial shift across all voxels and a heatmap of
the normalized voxel shift magnitude throughout the brain
after applying distortion correction. The mean voxel shift is
1.18mm. Notably, the most substantial shifts occurred in brain
regions located near the edges, including the vermis (6.32 &
0.65mm), cerebellum (5.30 & 1.37mm), medial orbitofrontal
gyrus (5.4140.02mm), anterior cingulate gyrus (4.3 +=0.3mm),
superior and middle temporal pole (3.66 £ 1.51mm), precuneus
(4.53£0.03mm) amygdala (5.37 £ 0.03mm), caudate nucleus
(4.53+0.16mm), hippocampus (5.15£0.14mm), and parahip-
pocampal gyrus (6.61 = 0.23mm) areas. These regions have
also been demonstrated to be affected by distortion in previous
studies [6], [17], [18].

2) Distribution of Functional Connectivity: We compared
the distribution of functional connectivity derived from the
pipelines with distortion correction (DC) and without dis-
tortion correction (NDC). The overall distribution of FC
values across all subjects appears similar between the two
pipelines (DC: 0.31£0.26, NDC: 0.32+£0.26). For subject-
level differences in FC between the two pipelines, a paired
t-test indicated a significant preprocessing effect in 32% of
the subjects (p < 0.05), showing that distortion correction
can substantially alter FC estimates at the individual level.
Although overall FC distribution differences were subtle, these
subject-level variations may lead to meaningful differences
in model performance. Figure 5 shows brain connections
with significant FC differences (p < 0.05) between pipelines
and highlights the involved brain regions. Notably, these
brain regions with the most significant FC differences largely
overlap with areas exhibiting large voxel shifts in Figure 4,
including regions such as the cerebellum, vermis, prefrontal
regions, cingulate gyrus, subcortical regions (e.g., amygdala,
hippocampus, parahippocampal gyrus), and parietal lobe (e.g.,
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Fig. 3. Sensation-seeking score prediction framework: (a) The functional connectivity feature was constructed from two preprocessing pipelines, with and
without distortion correction; (b) The functional connectivities then served as input features of the prediction framework to predict sensation-seeking scores.
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Fig. 5. Functional connectivity changes with distortion correction. Blue-white
color represents the normalized magnitude of FC changes in brain regions.

precuneus, angular gyrus). These findings highlight the im-
portance of correcting distortion for accurate FC estimation in
regions susceptible to magnetic field inhomogeneities.

B. Predictive performance

1) Predictive performance on sensation-seeking prediction:
As described in the previous section, the results were obtained
using outer leave-one-subject-out cross-validation within the
nested framework.

As baseline, we fitted an ElasticNet model on the male
group for DC and NDC pipelines. The result shows a notable

difference in the prediction performance with the two pipelines
(DC: R* = —0.03,r = 0.07, NDC: R* = 0.036,r = 0.26).

Building on the age-specific modeling [11], we segmented
the dataset into age subgroups and developed predictive mod-
els tailored to each subgroup. Table I presents the evaluation
metrics of DC and NDC within each subgroup, and Figure 6
illustrates the prediction results within each subgroup. The
results show a significant difference in prediction performance
between DC and NDC. With distortion correction, the model
achieved high prediction performance in age groups 20 — 24
(R> =0.21) and 55 —79 (R?> = 0.37) but achieved relatively
low accuracy in the 25 — 39 age group (R? = 0.03). While
within the NDC group, we observed a significant drop in R?
and r in the 20—24 (R2 =0.01) and 55 —79 (R? = 0.0), where
DC achieved higher accuracy.

Figure 7 shows the aggregated prediction from all age
groups. Similar to the results within each age group, DC
group achieved higher accuracy (R? = 0.34) compared to the
NDC group (R?> =0.21). Both DC and NDC achieved higher
accuracy with age-specific modeling compared to the baseline
(DC: R* = —0.03, NDC: R*> = 0.036), which is in line with
previous findings [11].

2) Functional connectivity associated with sensation-
seeking: Our analysis revealed distinct associations between
functional connectivity and sensation-seeking across different
age groups. To identify strong predictors for sensation-seeking,
we determined the connectivities that were consistently se-
lected by over 80% of the cross-validation iterations. These
robust predictors potentially provide valuable insights into the
neural correlates of sensation-seeking. Figure 8 visualizes the
involved brain regions in each group in both the distortion-
corrected (DC) and non-distortion-corrected (NDC) pipelines.

In the age group 20-24, the DC pipeline highlighted
key connections involving the prefrontal cortex (PFC), or-
bitofrontal cortex (OFC), temporal pole, cingulate cortex,
and cerebellum. The NDC pipeline identified similar regions,



TABLE I
EVALUATION METRIC OF THE MODEL FITTED IN EACH SUBGROUP (FC = FUNCTIONAL CONNECTIVITY)

- . T R’ RMSE NRMSE
Participants (N: number of individuals) DC/NDC DCJ/NDC DC/NDC DCJNDC
Male aged 20-24 (N=46) 047/0.11 021/0.01 545/6.10 209/234
Male aged 25-39 (N=50) 0.22/023 003/0.05 582/577 224/222
Male aged 55-79 (N=32) 0.62/0.18 037/00 462/586 23.1/29.3
Male population (N=128) 059/046 034/021 541/591 18.6/204
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Fig. 6. Prediction result within each age group of DC and NDC. Top:
Prediction with distortion correction. a) age group 20 — 24 (R*=0.21). b)
age group 25 —39 (R?> = 0.03). ¢) age group 55— 79 (R* = 0.37). Bottom:
Prediction without fieldmap correction. d) age group 20 — 24 (R* = 0.01). e)
age group 25 —39 (R? = 0.05). f) age group 55 —79 (R* = 0.0).
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Fig. 7. Prediction result of the male population aggregated all age groups
(N = 128). a) shows the prediction with fieldmap correction (R? =0.34). b)
shows the prediction without fieldmap correction (R? = 0.21)

including the cerebellum and temporal pole, with stronger
connectivity in the hippocampus. For the 25-39 group, both
pipelines showed key regions such as the cerebellum, temporal
pole, supplementary motor area (SMA), and subcortical struc-
tures (e.g., amygdala, caudate). In the 55-79 group, the DC
pipeline identified key connections between the cerebellum
and precentral, parietal lobes, while NDC identified connec-
tions in the precentral gyrus, ventrolateral PFC, and OFC.
Although the brain regions involved in the two prepro-

cessing pipelines were largely similar, the prediction results
differed significantly. The differences in predictive perfor-
mance between the DC and NDC pipelines may be attributed
to variations in the derived FC features. As shown in Fig-
ure 5, regions such as the cerebellum, medial orbitofrontal
cortex, cingulate cortex, and subcortical areas (amygdala,
thalamus, hippocampus)-which exhibited the most significant
FC changes after distortion correction- were also involved
in the key connections for sensation-seeking. This overlap
highlights that distortion correction can critically impact the
identification of meaningful brain-behavior relationships in
FC-based predictive modeling.
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Fig. 8. Key brain regions associated with sensation-seeking within each age
group. White-blue color shows the normalized sum of connections within
brain regions. The brain regions involved are the cerebellum, vermis, frontal
lobe (PFC, precentral gyrus), subcortical areas (caudate, amygdala, thalamus,
hippocampus), and parietal lobe (precuneus, angular gyrus), which overlap
with the most significant FC changes after distortion correction.

C. Complementary evaluations - Alternate downstream pre-
diction tasks and preprocessing choices

To provide a more thorough analysis of the impact of
preprocessing on predictive performance, we evaluated two
additional targets: 1) age and 2) attentional performance from
the TAP-incompatibility test [19], which measures interference
control towards incompatible stimuli as a behavioral outcome.
For age prediction, both the distortion-corrected (DC) and non-
corrected (NDC) pipelines performed well (R?> = 0.52). For
TAP scores, the DC pipeline outperformed NDC (R> = 0.26
vs. R? =0.15), which is similar to our findings for sensation-
seeking, showing a substantial performance gain from distor-
tion correction.

Moreover, we also examined two debated denoising
choices—global signal regression (GSR) and white mat-



ter/cerebrospinal fluid (WM-CSF) regression, using the
distortion-corrected (DC) data as the baseline. For GSR,
regressing out global signal confounds achieved R?> = 0.18.
In the WM-CSF regression, we regressed out WM-CSF
confounders derived from the raw signal, instead of using
CompCor denoising [20] in the DC pipeline, which leads to
R?> = 0.10. These analyses further demonstrate that prepro-
cessing choices beyond distortion correction also lead to large
impacts on prediction performance.

D. Model sensitivity analysis

We conducted a model sensitivity analysis by adding Gaus-
sian noise with different variances to the FC data. For each
noise level, we computed the R’ between predicted and
actual sensation-seeking scores. As shown in Figure 9, model
performance dropped substantially as noise increased. Given
the high dimensionality of FC data, even small variations can
lead to substantial changes in prediction accuracy. This also
helps explain why differences in preprocessing strategies can
impact the predictive model outcomes.
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Fig. 9. Model sensitivity analysis shows how R? value drops as increasing
noise was added in DC and NDC prediction (62 = 0.005,0.01,0.05,0.10)

IV. DISCUSSION
A. The impact of preprocessing in fMRI

In this study, we examined the influence of fMRI prepro-
cessing on functional connectivity (FC) and its downstream
impact on the prediction of sensation-seeking scores in 128
healthy male participants from the LEMON dataset.

Our predictive model achieved an R? of 0.34 and a root
mean squared error (RMSE) of 5.41 when using the distortion-
corrected (DC) pipeline, demonstrating that sensation-seeking
can be predicted from resting-state fMRI with reasonable ac-
curacy. In contrast, the model trained on data without fieldmap
distortion correction (NDC) showed a reduced R> of 0.21.
One likely explanation is that distortion correction significantly
affects spatial registration, especially when ROI partitions are
derived from a standard template-based atlas. Misalignment
between fMRI and ROI template can lead to inaccurate signal
extraction and functional connectivity estimates.

The selected functional connectivities associated with
sensation-seeking involved brain regions such as the cerebel-
lum, frontal lobe (e.g., prefrontal cortex, precentral), cingulate
cortex, subcortical structures (e.g., amygdala, hippocampus,
thalamus, caudate, pallidum), parietal lobe (e.g., angular gyrus,
precuneus), and temporal pole, as shown in Figure 8. Previous

studies have shown that the cerebellum, thalamus, and hip-
pocampus are involved in reward processing, which relates to
sensation seeking [21], [22]. The prefrontal cortex plays a key
role in impulse control and novelty detection. Its interaction
with subcortical regions like the amygdala and hippocam-
pus is linked to novelty-seeking [23]. The anterior cingulate
cortex and orbitofrontal cortex are also involved in response
inhibition, which relates to sensation-seeking [24]. Notably,
many of these important regions identified in the prediction
model, such as the cerebellum, medial orbitofrontal cortex,
cingulate cortex, and subcortical regions (caudate, amygdala,
hippocampus, thalamus), were also most affected by distortion
correction (Figure 4). This overlap suggests the reason why
distortion correction has a meaningful impact on FC measures
and model performance.

Accurate functional connectivity estimation is essential for
reliable neuroimaging biomarkers in clinical research. Our
study showed that preprocessing choice, especially fieldmap
correction, significantly impacts functional connectivity (FC)
measures. Moreover, we demonstrated that these variations
in FC due to preprocessing significantly influenced the per-
formance of connectivity-based predictive modeling, with the
case of sensation-seeking prediction. Although previous stud-
ies have explored the relationship between FC and sensation-
seeking, they typically focused on end-to-end prediction per-
formance while overlooking how preprocessing steps might
affect the input features and consequently affect the model
outcome. Our study emphasized the need to account for
preprocessing variability when developing predictive models
based on fMRI data, in order to enhance the reproducibility
and clinical utility of fMRI-based models.

Our analysis also showed that the impact of preprocessing
could depend on the downstream prediction target, as seen
in the differing effects for age and TAP test prediction. This
could be due to the neurobiological feature implicated in
predicting the target. The predictive features for the TAP task
involved regions such as the cerebellum, hippocampus, and
amygdala, which are affected by distortion correction; while
age prediction involved broader brain networks and global
brain connectivity change [25], which are less sensitive to local
changes with fieldmap distortion correction.

Fieldmap distortion correction mitigates spatial misalign-
ment and benefits the signal extraction, especially when tar-
geted brain regions are vulnerable to magnetic field distortion.
We suggest that researchers incorporate fieldmap distortion
correction in fMRI preprocessing if fieldmap data is available
in the dataset. If fieldmap data is not provided, alternative
distortion correction methods, such as field-reversed DTI or
nonlinear registration using ANTS, can be considered [26].
We also showed that other preprocessing steps, such as global
signal regression and WM-CSF regression, can also have a
substantial impact on FC measures, which aligns with previous
findings [3], [4]. While there is no clear consensus on the most
optimal preprocessing choice, our study showed that variations
in FC measures due to preprocessing can lead to significant
differences in model outcomes. We suggest that researchers



should be aware of these effects as a potential source of
variability when building predictive models.

B. Limitation and future directions

One limitation of our study is the lack of investigation of
prediction in the female subgroup due to the small number of
female participants in each age group. To minimize potential
gender-related confounding effects, we restricted our analysis
to the male cohort as males exhibit a higher sensation-seeking
score with greater variability, which is of higher clinical
relevance [27]. Future research could aim to include a larger
and more gender-balanced dataset to validate the findings in
a larger population. We will also conduct a validation study
on external datasets in future work to validate the generaliz-
ability of our findings across different samples, brain atlases,
preprocessing pipelines, and prediction tasks, and provide a
comprehensive investigation into the impact of preprocessing
on functional connectivity modeling.

V. CONCLUSIONS

Our study explored the influence of fMRI preprocessing
choice and distortion correction on the derived functional
connectivity features and downstream predictive modeling
performance. By comparing two preprocessing pipelines—one
with distortion correction (DC) and one without (NDC), we
show that distortion correction affects the spatial alignment of
fMRI and therefore impacts functional connectivity measures.
The prediction model trained on DC data achieved R? of 0.34,
while the model trained on NDC data has a lower R? of 0.21,
demonstrating the sensitivity of FC predictive modeling to
variations in preprocessing steps. Our findings pointed out
the limitations of end-to-end FC-based predictive modeling
and demonstrated the importance of accounting for prepro-
cessing variability when interpreting functional connectivity-
based predictions. Future research could extend this finding
to a larger population or incorporate other processing choices
to provide a comprehensive understanding of the critical role
of preprocessing in the reproducibility and interpretability of
functional connectivity-based predictive modeling.

REFERENCES

[1] M. D. Fox and M. Greicius, “Clinical applications of resting state
functional connectivity,” Frontiers in systems neuroscience, vol. 4, p.
1443, 2010.

[2] R. M. Birn, “The role of physiological noise in resting-state functional
connectivity,” Neuroimage, vol. 62, no. 2, pp. 864-870, 2012.

[3] M. Gavrilescu, G. W. Stuart, S. Rossell, K. Henshall, C. McKay,
A. A. Sergejew, D. Copolov, and G. F. Egan, “Functional connectivity
estimation in fmri data: influence of preprocessing and time course
selection,” Human brain mapping, vol. 29, no. 9, pp. 1040-1052, 2008.

[4] N. K. Aurich, J. O. Alves Filho, A. M. Marques da Silva, and A. R.
Franco, “Evaluating the reliability of different preprocessing steps to
estimate graph theoretical measures in resting state fmri data,” Frontiers
in neuroscience, vol. 9, p. 48, 2015.

[5] R. Vos de Wael, F. Hyder, and G. J. Thompson, “Effects of tissue-specific
functional magnetic resonance imaging signal regression on resting-state
functional connectivity,” Brain connectivity, vol. 7, no. 8, pp. 482-490,
2017.

[6] H. Togo, J. Rokicki, K. Yoshinaga, T. Hisatsune, H. Matsuda, N. Haga,
and T. Hanakawa, “Effects of field-map distortion correction on resting
state functional connectivity mri,” Frontiers in neuroscience, vol. 11, p.
656, 2017.

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

P. J. Reber, E. C. Wong, R. B. Buxton, and L. R. Frank, “Correction of
off resonance-related distortion in echo-planar imaging using epi-based
field maps,” Magnetic Resonance in Medicine, vol. 39, no. 2, pp. 328-
330, 1998.

D. F. Montez, A. N. Van, R. L. Miller, N. A. Seider, S. Marek, A. Zheng,
D. J. Newbold, K. Scheidter, E. Feczko, A. J. Perrone et al., “Using
synthetic mr images for distortion correction,” Developmental Cognitive
Neuroscience, vol. 60, p. 101234, 2023.

B. J. Shannon, M. E. Raichle, A. Z. Snyder, D. A. Fair, K. L.
Mills, D. Zhang, K. Bache, V. D. Calhoun, J. T. Nigg, B. J. Nagel
et al., “Premotor functional connectivity predicts impulsivity in juvenile
offenders,” Proceedings of the National Academy of Sciences, vol. 108,
no. 27, pp. 11241-11245, 2011.

Z. Wan, E. T. Rolls, W. Cheng, and J. Feng, “Sensation-seeking is related
to functional connectivities of the medial orbitofrontal cortex with the
anterior cingulate cortex,” Neurolmage, vol. 215, p. 116845, 2020.

Z. Li, B. Lamichhane, A. Patel, R. Salas, N. Moukaddam, and A. Sab-
harwal, “Predicting sensation-seeking from resting-state fmri: The need
for age-specific models,” in 2024 IEEE EMBS International Conference
on Biomedical and Health Informatics (BHI). IEEE, 2024, pp. 1-8.
A. Babayan, M. Erbey, D. Kumral, J. D. Reinelt, A. M. Reiter, J. Robbig,
H. L. Schaare, M. Uhlig, A. Anwander, P.-L. Bazin et al., “A mind-brain-
body dataset of mri, eeg, cognition, emotion, and peripheral physiology
in young and old adults,” Scientific data, vol. 6, no. 1, pp. 1-21, 2019.
S. P. Whiteside, D. R. Lynam, J. D. Miller, and S. K. Reynolds,
“Validation of the upps impulsive behaviour scale: a four-factor model
of impulsivity,” European Journal of personality, vol. 19, no. 7, pp. 559—
574, 2005.

M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and
S. M. Smith, “Fsl,” Neuroimage, vol. 62, no. 2, pp. 782-790, 2012.

E. T. Rolls, C.-C. Huang, C.-P. Lin, J. Feng, and M. Joliot, “Automated
anatomical labelling atlas 3,” Neuroimage, vol. 206, p. 116189, 2020.
D. Kistajic, L. J. Buturovic, D. E. Leahy, and S. Thomas, “Cross-
validation pitfalls when selecting and assessing regression and classi-
fication models,” Journal of cheminformatics, vol. 6, pp. 1-15, 2014.
C. Hutton, A. Bork, O. Josephs, R. Deichmann, J. Ashburner, and
R. Turner, “Image distortion correction in fmri: a quantitative evalu-
ation,” Neuroimage, vol. 16, no. 1, pp. 217-240, 2002.

N. F. Grauhan, N. Griinebach, L. Brockstedt, A. Sanner, T. Feiweier,
V. Schoffling, M. A. Brockmann, and A. E. Othman, “Reduction of
distortion artifacts in brain mri using a field map-based correction
technique in diffusion-weighted imaging: A prospective study,” Clinical
Neuroradiology, vol. 34, no. 1, pp. 85-91, 2024.

P. Zimmermann and B. Fimm, Testbatterie
Aufmerksamkeitspriifung-Version 2.2:(TAP);[Handbuch].
2009.

Y. Behzadi, K. Restom, J. Liau, and T. T. Liu, “A component based
noise correction method (compcor) for bold and perfusion based fmri,”
Neuroimage, vol. 37, no. 1, pp. 90-101, 2007.

B. Abler, H. Walter, S. Erk, H. Kammerer, and M. Spitzer, “Prediction
error as a linear function of reward probability is coded in human nucleus
accumbens,” Neuroimage, vol. 31, no. 2, pp. 790-795, 2006.

M. Legault and R. A. Wise, “Novelty-evoked elevations of nucleus
accumbens dopamine: dependence on impulse flow from the ventral
subiculum and glutamatergic neurotransmission in the ventral tegmental
area,” European Journal of Neuroscience, vol. 13, no. 4, pp. 819-828,
2001.

M. Petrides, “The orbitofrontal cortex: novelty, deviation from expecta-
tion, and memory,” Annals of the New York Academy of Sciences, vol.
1121, no. 1, pp. 33-53, 2007.

N. Horn, M. Dolan, R. Elliott, J. F. Deakin, and P. Woodruff, “Response
inhibition and impulsivity: an fmri study,” Neuropsychologia, vol. 41,
no. 14, pp. 1959-1966, 2003.

E. Varangis, C. G. Habeck, Q. R. Razlighi, and Y. Stern, “The effect of
aging on resting state connectivity of predefined networks in the brain,”
Frontiers in aging neuroscience, vol. 11, p. 234, 2019.

S. Wang, D. J. Peterson, J. C. Gatenby, W. Li, T. J. Grabowski, and T. M.
Madhyastha, “Evaluation of field map and nonlinear registration methods
for correction of susceptibility artifacts in diffusion mri,” Frontiers in
neuroinformatics, vol. 11, p. 17, 2017.

C. P. Cross, D.-L. M. Cyrenne, and G. R. Brown, “Sex differences in
sensation-seeking: a meta-analysis,” Scientific reports, vol. 3, no. 1, p.
2486, 2013.

zur
Psytest,




	INTRODUCTION
	Materials and Methods
	Data
	Participants
	Self-reported sensation-seeking score

	Methods
	Preprocessing Pipelines
	Brain functional connectivity
	Assessment of the influence of distortion correction on FC
	Sensation-seeking score prediction framework
	Model Sensitivity


	Results
	Assessment of the influence of distortion correction on FC
	Degrees of Voxel Shift after Distortion Correction
	Distribution of Functional Connectivity

	Predictive performance
	Predictive performance on sensation-seeking prediction
	Functional connectivity associated with sensation-seeking

	Complementary evaluations - Alternate downstream prediction tasks and preprocessing choices
	Model sensitivity analysis

	Discussion
	The impact of preprocessing in fMRI
	Limitation and future directions

	CONCLUSIONS
	References

