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Abstract

Diffusion models (DMs) produce very detailed
and high-quality images, achieved through rig-
orous training on huge datasets. Unfortunately,
this practice raises privacy and intellectual prop-
erty concerns, as DMs can memorize and later re-
produce their potentially sensitive or copyrighted
training images at inference time. Prior efforts to
prevent this issue are viable when the DM is de-
veloped and deployed in a secure and constantly
monitored environment. However, they hold the
risk of adversaries circumventing the safeguards
and are not effective when the DM itself is pub-
licly released. To solve the problem, we introduce
NEMO, the first method to localize memorization
of individual data samples down to the level of
neurons in DMs’ cross-attention layers. Through
our experiments, we make the intriguing finding
that in many cases, single neurons are responsi-
ble for memorizing particular training samples.
By deactivating these memorization neurons, we
avoid replication of training data at inference time,
increase the diversity in the generated outputs, and
mitigate the leakage of sensitive data.

1. Introduction
Diffusion models (DMs) have made remarkable advances in
image generation. In particular, text-to-image DMs like Sta-
ble Diffusion (Rombach et al., 2022) enable the generation
of complex images given a textual input prompt. Yet, DMs
carry a significant risk to privacy and intellectual property
since the models have been shown to generate verbatim
copies of their potentially sensitive or copyrighted training
data at inference time (Carlini et al., 2023; Somepalli et al.,
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2023). Memorization in DMs recently received a lot of at-
tention (Gu et al., 2023; Yoon et al., 2023; Carlini et al.,
2023), and several mitigations have been proposed (Wen
et al., 2024; Ren et al., 2024; Somepalli et al., 2023), either
excluding samples from training, monitoring inference and
preventing their generation, or altering the input to the DM.
While these techniques are a viable solution, they are not ef-
fective when the DMs are publicly released, such that users
can freely interact with them.

As a first step to solving this problem, we propose FINDING
NEURON MEMORIZATION (NEMO), the first method for
localizing where individual data samples are memorized
inside the DM on the level of individual cross-attention layer
neurons. Based on the insights about where within the DM
individual data samples are memorized, we can prevent their
verbatim output by deactivating the identified neuron(s). As
demonstrated in Fig. 1, without NEMO, the memorized
image is reproduced, independent of the random seed. By
localizing and deactivating the neuron responsible for the
memorization, we prevent the verbatim output of the train-
ing data and instead cause the generation of various non-
memorized related samples. Hence, by relying on NEMO to
localize and deactivate memorization neurons, we can limit
memorization, which mitigates the privacy and copyright
issues, while keeping the overall performance intact.

In summary, we make the following contributions:

• We propose NEMO, the first method to localize memo-
rization on the neuron level in DMs.

• Our extensive empirical evaluation of localizing memo-
rization within Stable Diffusion reveals that few or even
single neurons are responsible for the memorization.

• We limit the memorization in DMs by deactivating the
highly memorizing neurons and further show that this
leads to a higher diversity in the generated outputs.

2. Related Work On Memorization in DMs
Recent empirical studies connect the model architecture,
training data complexity, and the training procedure to the
expected level of DM memorization (Gu et al., 2023), while
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Figure 1: Overview of NeMo. For memorized prompts, we observe that the same (original training) image is constantly
generated independently of the initial random seed. In the initial stage, NEMO first identifies candidate neurons
potentially responsible for the memorization based on out-of-distribution activations. In a refinement step, NEMO
detects the memorization neurons from the candidate set by leveraging the noise similarities during the first denoising step.
Deactivating memorization neurons prevents unintended memorization and induces diversity in the generated images.

others connect memorization to the generalization of the
generation process (Yoon et al., 2023). Two types of memo-
rization are usually distinguished: Verbatim memorization
that replicates the training image exactly. And template
memorization that reproduces the general composition of
the training image while having some non-semantic varia-
tions at fixed image positions (Webster, 2023). Existing ap-
proaches focus on the detection of memorized prompts (Wen
et al., 2024; Ren et al., 2024). Our work is orthogonal to
these detection methods, focusing on the exact localization
of memorization in the DM’s U-Net rather than detecting
memorized samples. Previously proposed methods for miti-
gating memorization during inference either rescale the at-
tention logits (Ren et al., 2024) or adjust the text embeddings
with a gradient-based approach (Wen et al., 2024). How-
ever, these inference time mitigation strategies are easy to
deactivate in practice and provide no permanent mitigation
strategies for publicly released models. In contrast, related
training-based mitigation strategies (Wen et al., 2024; Ren
et al., 2024) require re-training an already trained model like
Stable Diffusion, which is time- and resource-intensive. We
show that NEMO can reliably identify individual neurons
responsible for memorizing specific training samples. Prun-
ing these neurons effectively mitigates memorization, does
not harm the general model performance, and provides a
more permanent solution to avoid training data replicating.

3. NeMo: Localizing and Removing
Memorization in Diffusion Models

NEMO, our method for detecting memorization neurons, in-
volves a two-step selection process, first identifying a broad
set of candidate neurons that might be responsible for memo-
rizing a specific training sample and then refining the initial
candidate set by filtering neurons out. After refinement, we
deactivate the remaining memorization neurons to remove
memorization. We apply this two-step approach to detect
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Figure 2: Differences Between Memorized and Non-
memorized Prompts. (a) depicts the distribution of pair-
wise SSIM scores between initial noise differences starting
from different seeds. (b) shows the distribution of each
neuron’s activation in the first cross-attention value layer.
Memorization neurons produce considerably higher activa-
tions, here depicted as standardized z-scores, for memorized
prompts, allowing them to be identified by outlier detection.

memorization neurons in the DM’s cross-attention layers, the
only components that directly process the text embeddings.
Image editing research (Hertz et al., 2023; Wang et al., 2023;
Chen et al., 2024) indicates that cross-attention layers highly
influence the generated content, suggesting they are crucial
for memorization. We analyze the impact of blocking in-
dividual key and value layers in Appx. B.7. Our results
show that the value layers in the down- and mid-blocks of
the U-Net have the highest memorization effect, which is
why we apply NEMO only to neurons in these layers. We
visualize examples of deactivating memorization neurons
to prevent data replication and enhance diversity in Fig. 3.
We also provide detailed algorithmic descriptions for each
of NEMO’s components in Appx. C.

3.1. Quantifying the Memorization Strength

Intuitively, the denoising process of DMs for memorized
prompts follows a rather consistent trajectory to reconstruct
the corresponding training image, resulting in generations
with little diversity. Conversely, the denoising trajectory
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Figure 3: Deactivating Memorization Neurons. Images
generated with memorized prompts closely replicating the
training images (top row). Deactivating memorization neu-
rons increases diversity and mitigates memorization (bottom
row). Notably, only a few neurons (counts indicated by dig-
its in the boxes) are responsible for these memorizations.

for non-memorized prompts varies significantly depending
on the initial noise (Wen et al., 2024). To quantify mem-
orization strength, we measure the similarity between the
first denoising steps for different initial seeds, using this
as a proxy to compare denoising trajectories. We employ
the structural similarity index measure (SSIM) (Wang et al.,
2004) for this purpose. Higher SSIM values indicate more
consistent denoising trajectories, reflecting stronger mem-
orization. Fig. 2a shows the distribution of SSIM scores
for memorized and non-memorized prompts, demonstrating
that memorized prompts lead to substantially higher scores
and that SSIM values can be used to quantify the generated
sample’s degree of memorization. A formal description of
the SSIM score is provided in Appx. A.4 and visual exam-
ples comparing the noise difference between memorized
and non-memorized samples can be founding in Appx. B.5.

3.2. Localizing Memorization Neurons using NEMO

(1) Initial Selection: Our initial neuron selection proce-
dure is based on the observation that activation patterns of
memorized prompts differ from the ones of non-memorized
prompts on the neuron level. Fig. 2b underlines this observa-
tion by plotting the standardized activation scores for mem-
orized and non-memorized samples in the first value layer.
Leveraging this insight, we identify memorization neurons
as the ones that exhibit an out-of-distribution (OOD) activa-
tion behavior. We first identify the standard activation behav-
ior of neurons on a separate hold-out set of non-memorized
prompts. Then, we compare the activation pattern of the
neurons for memorized prompts and identify neurons with
OOD behavior using the standardized z-score (Kreyszig
et al., 2011). The z-score quantifies the number of stan-
dard deviations by which the neuron’s activation is above or
below the mean activation of non-memorized prompts. To
identify neurons that exhibit an out-of-distribution (OOD)
activation behavior, we set an activation threshold and as-
sume that a neuron in a specific layer has OOD behavior if
its activation is higher than the activation threshold. Since
some neurons have high variance in their activation patterns,
even on non-memorized prompts, we additionally take the

top-k neurons of each layer in addition to the neurons having
OOD activations, resulting in an initial selection of neurons.
A formal definition of the z-score can be found in Appx. A.5.

(2) Refinement: After identifying an initial set of memo-
rization neurons, we proceed to filter out those not directly
responsible for memorization. Initially, we deactivate all
neurons identified in the initial selection and then iteratively
re-activate them to observe any increase in the SSIM value,
which serves as our memorization indicator. To speed up this
process, we first group the identified neurons layer-wise and
iterate over each layer, re-activating all neurons within this
layer. If the SSIM value fails to increase beyond the SSIM
threshold, we conclude that the currently activated neurons
are not involved in memorization and remove them from the
set of memorization neurons. After removing neurons of
layers not responsible for memorization, we individually as-
sess each remaining neuron by re-activating it while keeping
all other neurons deactivated. Again, we remove neurons
that do not increase the SSIM score above the SSIM thresh-
old from our neuron set. After iterating over all neurons, we
are left with those responsible for memorization.

4. Experiments
Models and Datasets: We investigate memorization in Sta-
ble Diffusion v1.4 (Rombach et al., 2022). Our set of memo-
rized prompts consists of 500 LAION prompts (Schuhmann
et al., 2022) provided by Wen et al. (2024). We further split
the dataset into verbatim- (VM) and template-memorized
(TM) samples. Images generated by VM prompts match the
training image exact, i.e., pixel-wise, while TM prompts re-
produce the general composition of the training image while
having some non-semantic variations at fixed image posi-
tions. Details about the analysis and the annotation can be
found in Appx. B.1. We also checked for memorization in
other publicly available models, like Stable Diffusion v2 and
Deep Floyd (StabilityAI, 2023), but could not identify mem-
orized prompts, which aligns with related research (Wen
et al., 2024; Ren et al., 2024).

Metrics: We measure the memorization, diversity, and
quality of the generated images with and without memo-
rization neurons deactivated. For measuring memorization,
we calculate the SSCD score (Pizzi et al., 2022) between the
generated images and the original images (SSCDGen) or the
generated images without mitigation (SSCDOrig). Higher
SSCD scores indicate a higher degree of memorization. To
measure the diversity of the differently seeded generated
images, we are computing the pairwise cosine similarity be-
tween the SSCD embeddings of different images generated
by the same prompt. We refer to this metric as DSSCD, for
which lower values indicate more image diversity. To assess
the quality of the images, we are calculating the Fréchet
Inception Distance (FID) (Heusel et al., 2017) as well as
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Table 1: Impact of Deactivating the Memorization Neurons. Keeping all neurons active (1st row) and randomly
deactivating neurons (3rd row) has no impact on memorization. However, deactivating the memorization neurons located by
NEMO (4th row) successfully mitigates memorization, increases diversity, and maintains prompt alignment. These results
are comparable to the gradient-based mitigation strategies by adjusting the prompt embeddings (2nd row).

Setting Memorization Type Deactivated Neurons ↓↓↓ SSCDOrig ↓↓↓ SSCDGen ↓↓↓DSSCD ↑↑↑ ACLIP ↓↓↓ FID

All Neurons Activate (Default) Verbatim 0 0.83± 0.16 1.0± 0.0 0.99± 0.01 0.32± 0.02 16.57Template 0 0.04± 0.04 1.0± 0.0 0.17± 0.06 0.31± 0.02

Prompt Embedding Adjustment (Wen et al., 2024) Verbatim – 0.04± 0.02 0.08± 0.03 0.08± 0.03 0.30± 0.02 –Template – 0.03± 0.02 0.08± 0.03 0.09± 0.03 0.31± 0.02

Deactivating Random Neurons Verbatim 4± 3 0.80± 0.11 0.999± 0.0 0.99± 0.01 0.32± 0.02 16.35Template 21± 18 0.05± 0.04 0.997± 0.0 0.16± 0.06 0.31± 0.02

Deactivating Memorization Neurons (NeMo) Verbatim 4± 3 0.09± 0.06 0.10± 0.07 0.16± 0.06 0.31± 0.02
16.97Template 21± 18 0.05± 0.03 0.05± 0.04 0.12± 0.05 0.31± 0.02

the similarities between the generated images and the input
prompts using CLIP (ACLIP). The higher the alignment, the
better the generated images represent the concepts described
in the prompt, while a lower FID score denotes better image
quality. More detailed information about the experiments
and how we chose the thresholds can be found in Appx. A.

Results: We begin by demonstrating the effectiveness of
our memorization localization method. Tab. 1 presents the
quantitative results for images generated with the identified
memorization neurons deactivated. NEMO detected a me-
dian of 4 and 21 memorization neurons for VM and TM
prompts, respectively. For VM prompts, deactivating these
memorization neurons significantly decreases memoriza-
tion, as reflected by low memorization metrics SSCDOrig
and SSCDGen, while increasing the diversity in images in
terms of pairwise similarity DSSCD. However, the SSCDOrig
does not change noticeably for TM prompts. This is be-
cause TM prompts typically memorize specific parts of the
original training image, such as objects or compositions,
rendering the SSCDOrig metric less informative. In contrast,
the SSCDGen score, which compares similarities between
images generated with and without the deactivated neurons,
provides a more accurate measure. This score highlights
that deactivating the identified neurons effectively alters the
images and mitigates memorization. Importantly, the image-
prompt alignment ACLIP remains constant in all cases, indi-
cating that deactivating memorization neurons does not re-
sult in misguided image generations. We visualize examples
of deactivating memorization neurons in Fig. 3. Additional
examples can be found in Appx. B.4 and an analysis of the
distribution of neurons found is available in Appx. B.2.

Comparing the results of deactivating the neurons identified
by NEMO with those obtained from randomly deactivated
neurons highlights that only a specific subset of neurons is
actually responsible for memorizing a prompt. While deac-
tivating the identified memorization neurons significantly
impacts both memorization and the diversity of the gener-
ated images, randomly deactivating neurons has no notice-
able effect. Moreover, the mitigation effect of deactivating

memorization neurons is comparable to the state-of-the-art
method of adjusting the prompt embeddings (Wen et al.,
2024). Yet, adjusting the prompt embeddings requires gradi-
ent computations for each seed and prompt, which are time-
and memory-expensive, especially with large batch sizes. In
contrast, once the memorization neurons are identified using
our gradient-free NEMO, no additional computations are
required during image generations, thus adding no overhead
to the generation process. A comparison to the mitigation
method of Somepalli et al. (2023) can be found in Appx. B.8.

We further investigate how memorization neurons influence
non-memorized prompts and the overall image quality. We
deactivate the 750 most frequent memorization neurons and
compute the FID score on the COCO dataset (Lin et al.,
2014). We also repeat the generations by deactivating the
same number of randomly selected neurons that are not
among the identified memorization neurons. We found no
noticeable degradation in the image quality when blocking
the random or memorization neurons. This finding under-
scores the potential for pruning memorization neurons in
DMs without compromising the overall image quality. More
detailed FID plots and an ablation and sensitivity study, an-
alyzing the impact of each component of NEMO, can be
found in Appx. B.3 and Appx. B.6, respectively.

5. Conclusion
DMs have rapidly become a cornerstone of computer vi-
sion. Yet, problems like memorization of training samples
can lead to undesired replication of potentially sensitive or
copyrighted training images. Our research provides novel
insights into the memorization mechanisms in text-to-image
DMs. Unlike previous studies that focused on identifying
memorized prompts, our approach, NEMO, is the first to
localize memorization within the model and pinpoint indi-
vidual neurons responsible for it. Our memorization miti-
gation can be executed without compromising the model’s
overall performance or the quality of the generated images,
allowing model providers to deploy the resulting models
without additional safeguards to prevent memorization.
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Reproducibility Statement. Our source code is publicly
available at https://github.com/ml-research/
localizing_memorization_in_diffusion_
models to reproduce the experiments and facilitate further
analysis on memorization in diffusion models. We state all
hyperparameters in the Appendix.
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A. Experimental Details
A.1. Hard- and Software Details

We performed all our experiments on NVIDIA DGX machines running NVIDIA DGX Server Version 5.2.0 and Ubuntu
20.04.5 LTS. The machines have 1.5 TB (machine 1) and 2 TB (machine 2) of RAM and contain NVIDIA Tesla V100
SXM3 32GB (machine 1) NVIDIA A100-SXM4-40GB (machine 2) GPUs with Intel(R) Xeon(R) Platinum 8174 (machine
1) and AMD EPYC 7742 64-core (machine 2) CPUs. We further relied on CUDA 12.1, Python 3.10.13, and PyTorch 2.2.2
with Torchvision 0.17.2 (Paszke et al., 2019) for our experiments. All investigated models are publicly available on Hugging
Face. For access, we used the Hugging Face diffusers library with version 0.27.1.

We provide a Dockerfile with our code to make reproducing our results easier. In addition, all training and configuration
files are available to reproduce the results stated in this paper.

A.2. Model and Dataset Details

Experiments were mainly conducted on Stable Diffusion v1-4 (Rombach et al., 2022), publicly available at https:
//huggingface.co/CompVis/stable-diffusion-v1-4. All details regarding the data, training parameters,
limitations, and environmental impact are available at that URL. The model is available under the CreativeML OpenRAIL
M license.

The investigated prompts originate from the LAION2B-en (Schuhmann et al., 2022) dataset used to train the DM. The set of
memorized prompts is taken from Wen et al. (2024)1, who collected the prompts by using the tool of Webster (2023). The
LAION dataset itself is licensed under the Creative Common CC-BY 4.0. The images of the LAION dataset might be under
copyright, so we do not include them in our code base; we only provide URLs to retrieve the images directly from their
source.

A.3. Experimental Details and Hyperparameters

All images depicted throughout the paper are generated with fixed seeds, 50 inference steps, and a classifier-free guidance
strength of 7 using the default DDIM scheduler. Notably, the seeds used for generating the images and computing the
evaluation metrics differ from those used for our detection method NEMO to avoid seed overfitting.

During detection with NEMO, no classifier-free guidance was used, which speeds up the detection since only a single
forward pass per seed is required, compared to an additional forward pass on the null-text embedding with classifier-free
guidance. We always used ten different seeds for each prompt. The threshold on the SSIM memorization score was set to
τmem = 0.428 during the experiments in the main paper. We vary this threshold and analyze its impact in our sensitivity
analysis in Appx. B.6.

We run all experiments – detection with NEMO and the generations for the metric computations – with half-precision
(float16) to reduce the memory consumption and speed up the computations.

A.4. Structural Similarity Index Measure (SSIM)

We quantify the memorization strength during our experiments using the structural similarity index measure commonly
used in the computer vision domain to assess the similarity between image pairs. Our memorization score is computed as
follows: Let xT ∼ N(0, I) be the initial noisy image. Let ϵθ(xT , T, y) further denote the initial noise prediction without
any scaling by the scheduler. We found that the normalized difference between the initial noise and the first noise prediction
δ = ϵθ(xT , T, y)− xT for memorized prompts is substantially more consistent for different seeds than for non-memorized
prompts. To detect the degree of memorization, we, therefore, use the similarity between the noise differences δ(i) and δ(j)

generated with seeds i and j as a proxy. We measure the similarity with the common structural similarity index measure
(SSIM) (Wang et al., 2004). The SSIM ∈ [−1, 1] between two noise differences δ(i) and δ(j) is defined by

SSIM(δ(i), δ(j)) =
(2µiµj + C1)(2σij + C2)

(µ2
i + µ2

j + C1)(σ2
i + σ2

y + C2)
. (1)

1Available at https://github.com/YuxinWenRick/diffusion_memorization.
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The parameters µi, µj and σ2
i , σ2

j denote the mean and variance of the pixels in δ(i) an δ(j), respectively. Likewise, σxy

denotes the covariance between the images. Following the original paper, C1 and C2 are small constants added for numerical
stability.

A higher SSIM indicates higher similarity between the noise differences, reflecting a higher degree of memorization. Notably,
the SSIM computation only requires a single denoising step per seed, which makes the process fast. To set a memorization
threshold τmem, starting from which we define a sample as memorized, we first compute the mean SSIM on a holdout set of
non-memorized prompts. We compute the pairwise SSIM between ten different initial noise samples for each prompt and
take the maximum score. After that, we average the scores across all prompts and set the threshold τmem to the mean plus
one standard deviation. We consider the current image generation non-memorized if the maximum pairwise SSIM scores
are below this threshold τmem.

A.5. Z-Score

We identify memorization neurons as the ones that exhibit an out-of-distribution (OOD) activation behavior. We first identify
the standard activation behavior of neurons on a separate hold-out set of non-memorized prompts. Then, we compare the
activation pattern of the neurons for memorized prompts and identify neurons with OOD behavior. Let the cross-attention
value layers of a DM be l ∈ {1, . . . , L}. We denote the activation of the i-th neuron in the l-th layer for prompt y as ali(y).
Let µl

i be the pre-computed mean activation and σl
i the corresponding standard deviation for this neuron. To detect neurons

potentially responsible for the memorization of a memorized prompt y, we compute the standardized z-score (Kreyszig
et al., 2011), defined as

zli(y) =
ali(y)− µl

i

σl
i

. (2)

The z-score quantifies the number of standard deviations σl
i by which the activation ali(y) is above or below the mean

activation µl
i. To identify a neuron as exhibiting an OOD activation behavior, we set a threshold θact and assume that neuron

i in layer l has OOD behavior if |zli(y)| > θact. The lower the threshold θact, the more neurons are labeled as OOD and
added to the memorization neuron candidate set.

To get an initial selection of memorization neurons, we calculate the standardized z-scores for all neurons and start with
a relatively high value of θact = 5. We deactivate all neurons with OOD activations given the current threshold θact, i.e.,
setting the output of a neuron to 0 if |zli(y)| > θact, to reduce the memorization strength. If, after deactivating these neurons,
the memorization score is not below the threshold τmem, we then iteratively decrease the activation threshold θact by 0.25
and update the candidate set until the target memorization score τmem is reached.
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B. Additional Results
B.1. Distinguishing Between Different Types of Memorization

Webster (2023) distinguished between verbatim and template memorized prompts. Verbatim memorized prompts lead to the
exact reconstruction of training samples, while template-memorized prompts replicate the composition and structure of the
training image. To provide a more fine-grained analysis of our results, we classify the prompts in our dataset into these
two categories. We distinguish between both types by computing the SSCD (Pizzi et al., 2022) scores between the original
training image and ten generations with different seeds. We then classify a prompt as verbatim memorized if the maximum
SSCD score computed as cosine similarity exceeds a threshold of 0.7 and as template memorized otherwise. Fig. 4 plots the
distribution of SSCD scores for both datasets. We manually inspected and classified the prompts where the original training
image is no longer available (16 out of 500).

0.0 0.2 0.4 0.6 0.8 1.0
Maximum SSCD Score

De
ns

ity

Template
Verbatim

Figure 4: We compare the maximum SSCD score between ten generated images and the original training sample. We
categorize the memorized prompts into verbatim memorized if the SSCD score exceeds 0.7 and into template memorized
prompts otherwise.
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B.2. Detailed Analysis of the Distribution of Memorization Neurons

Fig. 5a shows the total number of neurons responsible for memorizing specific prompts. Typically, a small set of neurons is
responsible for verbatim memorization. For instance, 28 VM prompts from our dataset are memorized by a single neuron.
Additionally, five or fewer neurons replicate two-thirds of VM images, indicating that verbatim memorization can often be
precisely localized within the model. Template memorization can also frequently be pinpointed to a small set of neurons,
with about 30% of TV replication triggered by five or fewer neurons. However, approximately one-third of TM prompts are
distributed across 50 or more neurons. We hypothesize that this broader distribution results from the higher variation in
generated images for TM prompts, where memorization spread across multiple neurons leads to increased image diversity.
In contrast, VM prompts, often memorized by a small group of neurons, consistently produce the same image without
variation. More detailed plots of the identified neurons can be found in Fig. 6.

Interestingly, we identify two neurons in the first cross-attention value layer responsible for the verbatim memorization
of multiple prompts. Neuron #25 in this layer is associated with depicting people, while neuron #221 is responsible for
memorizing multiple podcast covers. Together, these neurons account for memorizing 17% of our dataset’s VM prompts.
Similarly, neurons #507 and #517 in the third value layer are responsible for multiple TM prompts describing iPhone
cases. The impact of deactivating these neurons on the image generation of memorized prompts is visualized in Appx. B.4.
We also plot the distribution of the average layer-wise number of memorization neurons per prompt in Fig. 5b. Neurons
responsible for VM prompts are primarily located in the value mappings of the first cross-attention layers within the U-Net’s
down-blocks (each block contains two cross-attention layers). A similar pattern appears for TM prompts, although value
layers located deeper in the U-Net seem to play a more crucial role for TM prompts than for VM prompts.

Highly Memorized Prompts: For certain memorized prompts, our method identifies a set of over 100 neurons. Upon closer
examination, we found that in these cases, memorization is distributed across many neurons in various layers rather than
being concentrated in a small group. Even deactivating a substantial number of neurons in the network does not eliminate
memorization for these prompts. However, such instances, primarily TM prompts, were rare in our experiments. We provide
examples of highly memorized prompts in Fig. 7.
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Figure 5: Distribution of Memorization Neurons. (a) shows the number of prompts that are memorized by a fixed number
of neurons, e.g., the verbatim memorization of 28 prompts is located in single neurons. (b) depicts the average number of
memorization neurons per layer and prompt.
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(a) Number of initial neurons per prompt.
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(b) Number of neurons per prompt after refinement.

Figure 6: Distribution of Memorization Neurons. We show the number of prompts that are memorized by a fixed number
of neurons. (a) plots the number of neurons found in the initial neuron selection. (b) shows the number of neurons after
refinement. As we can observe, the refinement step drastically reduces the number of found memorization neurons for both
the template and the verbatim memorized prompts.
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No Blocked Neurons

Falmouth Navy Blue Area Rug by Andover Mills (156 memorization neurons)

Blocked Memorization Neurons

Renegade RSS Laptop Backpack - View 3 (232 memorization neurons)

Grieve Cream/Navy Area Rug by Bungalow Rose (136 memorization neurons)

Pencil pleat curtains in collection Blackout, fabric: 269-12 (116 memorization neurons)

Designart Bohinj Lake Panorama Seashore Canvas ArtPrint - 6 Panels (129 memorization neurons)

Red Mums - Throw Pillow (112 memorization neurons)

Dreamscape iPhone Cases - Mermaid Magic iPhone Case by Jane Small (379 memorization neurons)

Fish Lodge Bass Tapestry Throw Blanket (107 memorization neurons)

 Pirelli Scorpion Verde All Season 255/60 R18 112H (101 memorization neurons)

Australian Silky Terrier Print Car Seat Covers-Free Shipping (242 memorization neurons)

Figure 7: Memorization of highly memorized prompts is distributed across many neurons in various layers, rather than
concentrated in a small group of neurons. We show examples of such prompts and the impact of deactivating the identified
memorization neurons. The number of memorization neurons in each case is stated behind each prompt.
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B.3. Detailed Quality Metric Plots
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(a) Assessing image quality using FID.
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(b) Assessing image quality using CLIP-FID.
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(c) Assessing image quality using KID.

Figure 8: Image Quality Does Not Degrade When Deactivating Memorizing Neurons. Depicted are the generated
images’ FID, CLIP-FID (FID calculated using a CLIP model), and KID scores when blocking an increasing number of
neurons. For all three metrics, smaller values are better. As can be seen, the FID, KID, and CLIP-FID values vary only
slightly, indicating that blocking neurons identified by NEMO does not negatively affect image generation quality. Gray
lines indicate baselines without any neurons blocked. We repeated the experiment with five different seeds. Depicted are the
mean values and the standard deviation.

12



Finding NeMo: Localizing Neurons Responsible For Memorization in Diffusion Models

B.4. Examples for Memorization of Single Neurons

To illustrate that some single neurons are responsible for memorizing multiple training prompts, we generated images with
and without these specific neurons deactivated. In Fig. 9 and Fig. 10, we only deactivate a single neuron each in the first
value layer, whereas in Fig. 11, we deactivate two neurons in the third value layer.
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No Blocked Neurons

"Watch: Passion Pit's New Video, ""Lifted Up (1985)""""Watch: Passion Pit's New Video, ""Lifted Up (1985)"""

Blocked Neuron #25

Aretha Franklin Files $10 Million Suit Over Patti LaBelle Fight Story On Satire WebsiteAretha Franklin Files $10 Million Suit Over Patti LaBelle Fight Story On Satire Website

Rambo 5 und Rocky Spin-Off - Sylvester Stallone gibt UpdatesRambo 5 und Rocky Spin-Off - Sylvester Stallone gibt Updates

Prince Reunites With Warner Brothers, Plans New AlbumPrince Reunites With Warner Brothers, Plans New Album

Here's Who Ian McShane May Be Playing in <i>Game of Thrones</i> Season SixHere's Who Ian McShane May Be Playing in <i>Game of Thrones</i> Season Six

Future Steve Carell Movie Set In North Korea Canceled By New RegencyFuture Steve Carell Movie Set In North Korea Canceled By New Regency

George R.R. Martin Donates $10,000 to Wolf Sanctuary for a 13-Year-Old FanGeorge R.R. Martin Donates $10,000 to Wolf Sanctuary for a 13-Year-Old Fan

Sarah Silverman Will Star in HBO Pilot from <i>Secret Diary of a Call Girl</i> CreatorSarah Silverman Will Star in HBO Pilot from <i>Secret Diary of a Call Girl</i> Creator

Freddy Adu Signs For Yet Another Club You Probably Don't KnowFreddy Adu Signs For Yet Another Club You Probably Don't Know

Emma Watson Set to Star Alongside Tom Hanks in Film Adaptation of Dave Eggers' <i>The Circle</i>Emma Watson Set to Star Alongside Tom Hanks in Film Adaptation of Dave Eggers' <i>The Circle</i>

"Listen to Ricky Gervais Perform ""Slough"" as David Brent""Listen to Ricky Gervais Perform ""Slough"" as David Brent"

Figure 9: We found that neuron #25 in the first cross-attention layer’s value mapping is responsible for verbatim
memorization of multiple prompts, all associated with depicting people. Deactivating this single neuron mitigates the
memorization and introduces diversity into the images (right columns) compared to images generated with all neurons active
(left columns). Generations were conducted with seeds different from the seeds used for the neuron localization process.
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No Blocked Neurons

The No Limits Business Woman PodcastThe No Limits Business Woman Podcast

Blocked Neuron #221

Mothers influence on her young hippoMothers influence on her young hippo

Talks on the Precepts and Buddhist EthicsTalks on the Precepts and Buddhist Ethics

Insights with Laura PowersInsights with Laura Powers

The Health Mastery Café with Dr. DaveThe Health Mastery Café with Dr. Dave

Passion. Podcast. Profit.Passion. Podcast. Profit.

Living in the Light with Ann Graham LotzLiving in the Light with Ann Graham Lotz

Figure 10: We found that neuron #25 in the first cross-attention layer’s value mapping is responsible for verbatim
memorization of multiple prompts, all associated with depicting people. Deactivating this single neuron mitigates the
memorization and introduces diversity into the images (right columns) compared to images generated with all neurons active
(left columns). Generations were conducted with seeds different from the seeds used for the neuron localization process.
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No Blocked Neurons

Beautiful Space iPhone Case

Blocked Neurons #507 & #517

Kimi Doesn't Know - Phone Case

Pink Icelandic Poppy | iPhone Phone Cases

Peace Love Massage iPhone 6 Case

Sloth in Space iPhone 4 Case

Lavender Flames iPhone Xs Max Case

porter robinson & madeon shelter Clear iPhone Case

"Zen Buddha iPhone 6 6s Plus TOUGH Case - Unique Black and White Buddhist Art
""Bliss of Being"" Zen Meditation iPhone 6 6s Plus case - iPhone 6 6s Plus Tough Case - 1"

Figure 11: We found that neurons #507 and #517 in the third cross-attention layer’s value mapping is responsible for
template memorization of multiple prompts describing iPhone cases. Deactivating these two neurons mitigates the template
memorization and introduces diversity into the images (right columns) compared to images generated with all neurons active
(left columns). Image generations were conducted with a fixed seed different from the seed used for the neuron localization
process.
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B.5. Comparison of Initial Noise Predictions

Memorized Prompts
Memorized Prompts

With Blocked Neurons Non-Memorized Prompts

Figure 12: Visualizations for generated images and the noise differences between the predicted noise after the first
denoising step and the initial Gaussian noise. Noise differences for memorized prompts (left column) have low diversity
and are already structurally similar to the final image. The noise differences for non-memorized prompts (right column)
show no clear structure and differ substantially for different noise initializations. Deactivating the memorization neurons
detected with NEMO (middle column) removes the structure in the initial noise differences and adds more diversity, leading
to diverse image generations.
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B.6. Ablation Study and Sensitivity Analysis

We conduct an ablation study to investigate the impact of the individual components of NEMO. Additionally, we analyze the
sensitivity of the memorization threshold τmem and explore alternatives to deactivating neurons by setting their activations to
zero. The results for the various settings are presented in Tab. 2.

The first two rows provide evaluation results for the model with all neurons active and with randomly deactivated neurons.
Both scenarios exhibit strong memorization. The third row shows the results of blocking the neurons identified as memorizing
by NEMO, using the threshold τmem = 0.428 as specified in the main paper. This threshold corresponds to the mean SSIM
memorization plus one standard deviation, calculated on a holdout set of 50,000 non-memorized LAION prompts. In row
four, we repeat this setting using classifier-free guidance (CFG) with a guidance strength of 7.0, as opposed to our default
setting without CFG. Detection with CFG further reduces the number of detected memorizing neurons. However, the SSCD
scores indicate slightly increased memorization after deactivating the identified neurons. Additionally, running NEMO with
CFG doubles the number of forward passes in the U-Net since a separate noise prediction is generated for each initial seed.

Rows five to seven display the results of varying the memorization threshold τmem. Specifically, we adjust the threshold to
one standard deviation below the mean SSIM score, to the mean, and two standard deviations above the mean. A lower
threshold identifies more neurons. However, for lower thresholds, the metrics are comparable to those obtained with our
default threshold value (τmem = 0.428). Increasing the threshold reduces the number of identified neurons but slightly
increases memorization, as measured by the SSCD scores. Thus, a trade-off exists between reducing the number of identified
memorization neurons and their memorization mitigation effect. In addition, we provide heat maps to directly compare the
impact of different thresholds τmem used during the initial selection and the refinement step in Appx. B.6. Appx. B.6 further
compares the SSCD scores for varying the threshold values.

Rows eight and nine examine the impact of removing the refinement step or incorporating no neurons with top-k activations
during the initial selection. As anticipated, without refinement, the number of identified neurons increases substantially.
Despite this, the various metrics remain comparable to those obtained after the refinement step, even with more neurons
deactivated. This underscores the robustness of image generations against pruning out-of-distribution (OOD) neurons.
Without the top-k selection, NEMO identifies a larger set of neurons. However, deactivating these neurons does not mitigate
memorization as effectively as with a top-k search. Notably, for template verbatim prompts, the SSCDGen is substantially
higher without top-k, indicating increased memorization.

In the remaining rows, we explore the impact of scaling the activations of memorization neurons instead of deactivating
them. With negative scaling factors, the results are comparable to those of completely deactivating the neurons. For positive
scaling factors, however, the generated images demonstrate higher degrees of memorization, with a scaling factor of 0.75
having almost no influence on memorization. A plot of the SSCD values can be seen in Fig. 13.

We also apply NEMO to a set of 500 LAION non-memorized prompts, different from the 50,000 prompts used to set the
memorization threshold. For 442 of these prompts, NEMO identified no memorization neurons, which is to be expected
since these prompts show no memorization behavior. For the remaining prompts, a median of 62± 27 neurons was found.
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Figure 13: Negatively scaling the activations of memorization neurons instead of deactivating them (scaling by zero) has no
benefit. Whereas positively scaling memorization neuron activations only slightly reduces memorization, negative scaling
reduces the memorization not any further.
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Table 2: Quantitative Results of Our Ablation Study and Sensitivity Analysis.

Setting Memorization Type Deactivated Neurons ↓↓↓ SSCDOrig ↓↓↓ SSCDGen ↓↓↓DSSCD ↑↑↑ ACLIP

All Neurons Activate (Default) Verbatim 0 0.83± 0.16 1.0± 0.0 0.99± 0.01 0.32± 0.02
Template 0 0.04± 0.04 1.0± 0.0 0.17± 0.06 0.31± 0.02

Deactivating Random Neurons Verbatim 4± 3 0.80± 0.11 0.999± 0.0 0.99± 0.01 0.32± 0.02
Template 21± 18 0.05± 0.04 0.997± 0.0 0.16± 0.06 0.31± 0.02

Default Values (τmem = 0.428) Verbatim 4± 3 0.09± 0.06 0.10± 0.07 0.16± 0.06 0.31± 0.02
Template 21± 18 0.05± 0.03 0.05± 0.04 0.12± 0.05 0.31± 0.02

With Classifier-Free Guidance Verbatim 3± 2 0.09± 0.06 0.14± 0.07 0.15± 0.06 0.31± 0.02
Template 6± 5 0.05± 0.03 0.12± 0.07 0.11± 0.04 0.32± 0.02

τmem = µ− 1σ = 0.288
Verbatim 10.5± 9.5 0.08± 0.06 0.14± 0.06 0.15± 0.05 0.32± 0.02
Template 32.0± 27 0.06± 0.03 0.10± 0.07 0.14± 0.05 0.31± 0.03

τmem = µ = 0.358
Verbatim 6± 5 0.10± 0.06 0.14± 0.07 0.16± 0.05 0.31± 0.02
Template 30± 25 0.06± 0.03 0.11± 0.07 0.13± 0.04 0.31± 0.02

τmem = µ+ 2σ = 0.498
Verbatim 3± 2 0.10± 0.06 0.15± 0.07 0.15± 0.06 0.32± 0.02
Template 7± 6 0.06± 0.03 0.12± 0.04 0.12± 0.04 0.31± 0.03

No Refinement Verbatim 26.5± 22.5 0.07± 0.05 0.11± 0.06 0.15± 0.06 0.32± 0.02
Template 674.5± 624.5 0.04± 0.03 0.09± 0.05 0.13± 0.04 0.31± 0.02

No top-k Selection Verbatim 11± 10 0.11± 0.05 0.21± 0.13 0.16± 0.04 0.32± 0.02
Template 30± 23 0.05± 0.03 0.41± 0.32 0.13± 0.03 0.31± 0.02

Scaling Factor 0.75 Verbatim 4± 3 0.79± 0.12 0.995± 0.00 0.96± 0.04 0.32± 0.02
Template 21± 18 0.05± 0.04 0.966± 0.03 0.15± 0.05 0.31± 0.02

Scaling Factor 0.5 Verbatim 4± 3 0.62± 0.29 0.97± 0.02 0.67± 0.33 0.32± 0.01
Template 21± 18 0.05± 0.03 0.83± 0.15 0.14± 0.04 0.31± 0.02

Scaling Factor 0.25 Verbatim 4± 3 0.20± 0.17 0.32± 0.25 0.21± 0.12 0.32± 0.02
Template 21± 18 0.05± 0.03 0.23± 0.16 0.12± 0.04 0.32± 0.02

Scaling Factor −0.25 Verbatim 4± 3 0.09± 0.06 0.12± 0.06 0.15± 0.05 0.32± 0.02
Template 21± 18 0.05± 0.03 0.09± 0.06 0.13± 0.04 0.31± 0.02

Scaling Factor −0.5 Verbatim 4± 3 0.08± 0.05 0.12± 0.06 0.17± 0.06 0.31± 0.02
Template 21± 18 0.05± 0.03 0.08± 0.05 0.13± 0.04 0.31± 0.02

Scaling Factor −0.75 Verbatim 4± 3 0.08± 0.05 0.11± 0.06 0.17± 0.06 0.31± 0.02
Template 21± 18 0.05± 0.03 0.08± 0.05 0.14± 0.05 0.31± 0.02

Scaling Factor −1 Verbatim 4± 3 0.08± 0.05 0.11± 0.07 0.16± 0.06 0.31± 0.02
Template 21± 18 0.04± 0.03 0.07± 0.05 0.14± 0.05 0.30± 0.02
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(a) Number of initial neurons found for VM.
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(b) Number of initial neurons found for TM.

0.288 0.358 0.428
Refinement Threshold

0.
28

8
0.

35
8

0.
42

8
In

iti
al

 S
el

ec
tio

n 
Th

re
sh

ol
d 10.5 8 5

6 4

4

4

5

6

7

8

9

10

(c) Number of refined neurons found for VM.
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(d) Number of refined neurons found for TM.

Figure 14: Number of neurons found with different initial and refinement thresholds τmem. The left plots show the
results for verbatim memorization prompts, while the right plots show the results for template memorization prompts. The
refinement step significantly reduces the number of identified neurons across all threshold combinations. Notably, using
0.428 for both the initial selection and refinement thresholds results in the smallest set of identified neurons.
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(a) SSCDGen of VM samples.
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(b) SSCDGen of TM samples.
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(c) SSCDOrig of VM samples.
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(d) SSCDOrig of TM samples.

Figure 15: SSCD memorization scores with different initial and refinement thresholds τmem. The left plots show the
results for verbatim memorization prompts, while the right plots show the results for template memorization prompts. The
value of the thresholds does not seem to have a high impact on the memorization scores. Since higher thresholds identify
much less memorization neurons, choosing a threshold of τmem = 0.428 is a valid choice.
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B.7. Ablation of Individual Key and Value Layers

During our experiments in the main paper, we limit our search with NEMO for memorization neurons to cross-attention
value layers in the down- and mid-blocks of the U-Net. To motivate this decision, we perform an analysis of the influence
of neurons in the individual key and value layers of different cross-attention blocks. Let us first recall the computation
performed in attention layers:

Attention(Q,K, V ) = softmax
(
QKT

√
d

)
· V . (3)

The computed key and query matrices K and Q are used to calculate the attention scores, i.e., the weighting of the components
in the value matrix V . In the cross-attention layers, the query matrix Q is computed by linearly mapping the current feature
maps from the previous U-Net layer. Therefore, information from the textual guidance is only indirectly contained, i.e.,
of earlier layers or the U-Nets input feature map after the first denoising step. Therefore, we can exclude neurons in the
query mapping layers since we aim to identify neurons directly responsible for memorization. The neurons in the key
mapping layers directly process the text embeddings to compute the attention scores. However, strong interdependencies
exist between the activations of different neurons through the nature of the softmax function. The impact each neuron’s
activation has on the computed attention score also depends on the activations of all other neurons from the same layer.
Removing a single neuron, i.e., setting its activation to zero, does not necessarily imply substantial changes in the attention
scores and the corresponding weighting of features from the value mapping layer.

The value mapping layers, however, also directly process the text embeddings, but there is no direct interdependence between
the activations of different neurons. Consequently, setting the activations of individual neurons in value layers to zero
directly blocks the information flow from the text embeddings. We hypothesize that the neurons in the value layers are
mainly responsible for memorizing the text embeddings of specific prompts.

We evaluate this assumption by taking a set of 100 memorized prompts, generating ten samples for each prompt, and
comparing the impact of removing neurons from different layers. More specifically, we remove all activations of individual
key and value mapping layers, i.e., setting the output vectors of these layers to zero while keeping all other parts of the
model untouched. We then compare the generated images with removed activations to the original training images. Fig. 16
plots the resulting SSCD similarity scores for deactivating individual value (top row) and key (bottom row) layers. We
distinguish between verbatim (left column) and template (right column) prompts. The plots show the maximum and median
SSCD scores and the deviations for the median scores. We decided not to plot deviations for the maximum score to improve
readability. However, deviations are comparable to the median scores. Baselines computed without any deactivated neurons
are plotted as dashed lines.

Stable Diffusion contains six cross-attention layers in the down-blocks, one in the mid-block, and nine in the up-blocks. The
vertical lines indicate the separation between the different blocks. For the value layers, the layers with indexes 1 (down-lock)
and 7 (mid-block) have the highest impact, whereas layers later in the network hardly change the SSCD scores. Also,
the effect of the remaining layers in the down-blocks is small on their own. However, we expect there to be entwined
effects between deactivating neurons in different layers, which is why we also searched for memorization neurons in these
down-block layers.

For the key layers, particularly layers 4 and 6 in the down-blocks have the strongest impact on the generated images.
However, removing these layers often produces images that no longer align with the concepts in the prompt or degrades the
image quality, both leading to lower SSCD scores. We quantify this behavior by computing the alignments between the
generated images and the corresponding input prompts in Fig. 17. While deactivating individual value layers only slightly
decreases the alignment scores, deactivating some key layers substantially reduces the alignment. To further illustrate this
fact, we plot some of the generated images for deactivating individual value layers in Fig. 18 and for key layers in Fig. 19.
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Figure 16: SSCD similarity scores between memorized generations and the corresponding training samples. Scores
are computed for 100 prompts and ten different seeds per generation. We then take the maximum and median scores of
each prompt. During the generation, we deactivated individual value and key layers of the cross-attention blocks in the
network. A lower SSCD score indicates a lower similarity between generated and training images. Dashed lines denote the
median and the maximum SSCD baselines for images generated without deactivating any neurons. For verbatim memorized
prompts, both baselines are close, which is why we only plot the median SSCD baseline.
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Figure 17: CLIP alignment scores between memorized generations and the corresponding input prompt. Scores
are computed for 100 prompts and ten different seeds per generation. We then take the median alignment scores of each
prompt. During the generation, we deactivated individual value and key layers of the cross-attention blocks in the network.
A higher alignment score indicates a better representation of the prompt concepts in the generated images. Dashed lines
denote the median alignment scores for images generated without deactivating any neurons. For both types of memorization,
deactivating value layers decreases the alignment only slightly, whereas deactivating some key layers substantially reduces
the alignment.
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Figure 18: Images generated with memorized prompts with deactivated individual value layers. Whereas the standard
row shows generations with keeping all neurons active, the following rows depict results for deactivating all neurons in a
specific value layer.
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Figure 19: Images generated with memorized prompts with deactivated individual key layers. Whereas the standard
row shows generations with keeping all neurons active, the following rows depict results for deactivating all neurons in a
specific key layer.
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B.8. Comparison of Mitigation Strategies

We compare the mitigation effects of deactivating the neurons identified as memorizing by NEMO with existing mitigation
strategies. Specifically, we used the gradient-based prompt embedding adjustment proposed by Wen et al. (2024) and the
addition of random tokens to the prompt, as proposed by Somepalli et al. (2023). For the latter approach, we added 1, 4, or
10 random tokens to the prompts.

The evaluation results in Tab. 3 demonstrate that deactivating the memorization neurons leads to memorization mitigation
comparable to the gradient-based prompt embedding adjustment. Adding random tokens also reduces memorization;
however, for 1 or 4 tokens, the memorization, as quantified by the SSCD scores, is still higher than with deactivated
memorizing neurons. Adding 10 random tokens leads to comparable mitigation but also reduces the prompt alignment score.

Table 3: Impact of Memorization Mitigation Strategies.

Setting Memorization Type Deactivated Neurons ↓↓↓ SSCDOrig ↓↓↓ SSCDGen ↓↓↓DSSCD ↑↑↑ ACLIP

All Neurons Activate (Default) Verbatim 0 0.83± 0.16 1.0± 0.0 0.99± 0.01 0.32± 0.02
Template 0 0.04± 0.04 1.0± 0.0 0.17± 0.06 0.31± 0.02

Prompt Embedding Adjustment (Wen et al. (2024)) Verbatim 0 0.04± 0.02 0.08± 0.03 0.08± 0.03 0.30± 0.02
Template 0 0.03± 0.02 0.08± 0.03 0.09± 0.03 0.31± 0.02

Adding 1 Random Token (Somepalli et al. (2023)) Verbatim 0 0.59± 0.31 0.68± 0.31 0.67± 0.33 0.31± 0.02
Template 0 0.04± 0.03 0.16± 0.05 0.17± 0.05 0.31± 0.02

Adding 4 Random Tokens (Somepalli et al. (2023)) Verbatim 0 0.09± 0.06 0.12± 0.09 0.15± 0.06 0.30± 0.02
Template 0 0.04± 0.03 0.13± 0.04 0.15± 0.04 0.30± 0.02

Adding 10 Random Tokens (Somepalli et al. (2023)) Verbatim 0 0.03± 0.02 0.07± 0.05 0.11± 0.03 0.28± 0.03
Template 0 0.03± 0.03 0.08± 0.05 0.12± 0.04 0.29± 0.03

Deactivating Memorization Neurons (NEMO) Verbatim 4± 3 0.09± 0.06 0.10± 0.07 0.16± 0.06 0.31± 0.02
Template 21± 18 0.05± 0.03 0.05± 0.04 0.12± 0.05 0.31± 0.02
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C. Algorithmic Description of NeMo
C.1. Computing Noise Differences

Alg. 1 defines our algorithm to compute the differences between the initial noise samples and the noise predicted during
the first denoising step. The resulting noise differences are used to compute our SSIM-based memorization score during
the initial neuron selection and the refinement step. We compute the noise differences always for n = 10 different seeds
to avoid undesired biases due to the random sampling process. We further remove noise differences from the set, which
have low similarity with other noise differences. By this step, we remove noise differences for seeds that do not lead to
memorization and might mislead the algorithm.

Algorithm 1 Compute Noise Differences

Input:
Prompt embedding y ▷ Text prompt (embedding)
Neuron set Sneurons ▷ Set of neurons to deactivate
Noise predictor ϵθ ▷ Diffusion model
Memorization threshold (SSIM) τmem ▷ Target memorization score

Output: Noise differences ∆

Set ∆ as empty list ▷ Initialize list of noise differences
ϵ̃θ ← deactivate neurons(ϵθ, SNeurons) ▷ Set activations of neurons in Sneurons to zero

// Compute noise differences for each random seed
for i = 1, . . . , 10 do ▷ Iterate over 10 seeds

set seed(i) ▷ Set random seed to i
sample xT ∼ N (0, I) ▷ Randomly initialize noise image
xT−1 ← ϵ̃θ(xT , T, y) ▷ Compute noise prediction
δ ← xT−1 − xT ▷ Compute noise difference
δ ← δ−min(δ)

max(δ)−min(δ) ▷ Normalize differences by min-max scaling
append δ to ∆ ▷ Add current noise difference to list

end for

// Remove noise differences not leading to memorization
for δ ∈ ∆ do ▷ Iterate over noise differences

∆̄← ∆ \ δ ▷ Get set of noise differences without δ
d← compute memorization(δ, ∆̄) ▷ Compute pairwise memorization scores (SSIM)
if max(d) < τmem then ▷ Highest memorization score is below threshold

∆← ∆ \ δ ▷ Remove noise difference from set
end if

end for
return ∆ ▷ Return list of noise differences
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C.2. Detecting Neurons with Out-of-Distribution Activations

Alg. 2 describes our method to detect neurons with out-of-distribution (OOD) activations. Our method detects OOD neurons
based on their activation distance for a memorized prompt to a neuron’s mean activation computed on a hold-out dataset of
non-memorized prompts. In addition, we also add the k neurons with the highest absolute activations within each layer to
the set.

Algorithm 2 Get OOD Neurons

Input:
Prompt embedding y ▷ Text prompt (embedding)
Activation threshold θact ▷ Threshold for the OOD detection
Top k ▷ Value of top-k detection
Activation mean µ and standard deviation σ ▷ Activation statistics of hold-out dataset

Output: Set of neurons with OOD activations Sinitial

Sactivations ← collect activations(y) ▷ Collect activations on prompt
Sinitial ← {} ▷ Initialize empty neuron set

// Check each neuron in each layer for OOD activation
for l ∈ {1, . . . , L} do ▷ Iterate over all layers

for i ∈ {1, . . . , N} do ▷ Iterate over all N neurons in layer l

zli(y) =
al
i(y)−µl

i

σl
i

▷ Compute z-score for current neuron

if zli(y) > θact then ▷ Activation above OOD threshold
Sinitial ← Sinitial ∪ {neuronl

i} ▷ Add OOD neuron to set
end if

end for

// Add k neurons of layer l with the highest absolute activations to the candidate set
Stopk ← top k activations(Sactivations, l, k) ▷ Get neurons with highest absolute activations
Sinitial ← Sinitial ∪ Stopk ▷ Add top-k neurons to set

end for

return Sinitial ▷ Return set with OOD neurons
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C.3. Selecting Initial Candidates of Memorization Neurons

Alg. 3 defines our algorithm to compute the initial set of memorization neurons. The resulting initial set of selected
memorization neurons is then refined in a second step, shown in Alg. 4.

Algorithm 3 Initial Neuron Selection

Input:
Prompt embedding y ▷ Text prompt embedding
Memorization threshold (SSIM) τmem ▷ Target memorization score
Minimum activation threshold θmin ▷ Threshold for stopping neuron search

Output: Set of neuron candidates Sinitial, refinement memorization threshold τmem ref

Candidate set of memorization neurons Sinitial ▷ Initial memorizing neuron set
Memorization threshold (SSIM) τmem ref ▷ Memorization threshold for refinement

mem← 1.0 ▷ Initialize memorization score as maximum
θact ← 5 ▷ Initialize threshold of OOD activation detection
k ← 0 ▷ Initialize k for top-k activation detection
τmem ref ← τmem ▷ Set refinement memorization threshold to current threshold
∆unblocked ← get noise diff(y, ∅) ▷ Noise differences with all neurons active

// Increase set of candidate neurons until target memorization score is reached
while mem > τmem do ▷ While memorization score above threshold

Sinitial ← get ood neurons(y, θact, k) ▷ Detect neurons with OOD activations
∆blocked ← get noise diff(y, Sinitial) ▷ Compute noise differences
mem← compute memorization(∆unblocked,∆blocked) ▷ Compute memorization score (SSIM)

if θact < θmin then ▷ Minimum activation threshold not reached
τmem ref ← mem ▷ Set refinement threshold to current memorization score
break ▷ Stop if activation threshold is too low

end if

// Adjust OOD detection parameters to increase set of candidate neurons
θact ← θact − 0.25 ▷ Decrease threshold for OOD detection
k ← k + 1 ▷ Increase k for top-k activation detection

end while

return Sinitial, τmem ref ▷ Return neuron candidates and refinement memorization threshold
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C.4. Neuron Selection Refinement

Alg. 4 defines our algorithm to refine the set of candidate neurons identified from NEMO’s initial selection step.

Algorithm 4 Neuron Selection Refinement

Input:
Initial memorization neuron candidate set Sinitial ▷ Given neuron candidate set
Memorization threshold (SSIM) τmem ref ▷ Refinement memorization score threhsold

Output: memorization neurons Srefined ▷ Refined set of memorization neurons

Srefined ← Sinitial
∆unblocked ← get noise diff(y, ∅) ▷ Noise differences with all neurons active

// Check all candidate neurons of individual layers at once for memorization
for l ∈ {1, . . . , L} do ▷ Iterate over all layers to remove low impact layers

Slayer ← get neurons in layer(Srefined, l) ▷ Get the neurons in the current layer l
Sneurons ← Srefined \ Slayer ▷ Compute set of neurons from remaining layers
∆blocked ← get noise diff(y, Sneurons) ▷ Compute noise differences
mem← compute memorization(∆unblocked,∆blocked) ▷ Compute memorization score (SSIM)

if mem < τmem ref then ▷ Minimum memorization threshold not reached
Srefined ← Srefined \ Slayer ▷ Remove neurons of layer l from neuron set

end if
end for

// Check all remaining candidate neurons individually
for l ∈ {1, . . . , L} do ▷ Iterate over each remaining layer

Slayer ← get neurons in layer(Srefined, l) ▷ Get the neurons in the current layer l

for n ∈ Slayer do
Sneurons ← Srefined \ {n} ▷ Compute set of neurons without neuron n
∆blocked ← get noise diff(y, Sneurons) ▷ Compute noise differences
mem← compute memorization(∆unblocked,∆blocked) ▷ Compute mem. score (SSIM)

if mem < τmem ref then ▷ Minimum memorization threshold not reached
Srefined ← Srefined \ {n} ▷ Remove current neuron from set

end if
end for

end for

return Srefined ▷ Return refined set of memorization neurons
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