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ABSTRACT

Graph Neural Networks (GNNs) have achieved remarkable results in various tasks.
Recent studies reveal that graph backdoor attacks can poison the GNN model to
predict test nodes with triggers attached as the target class. However, apart from
injecting triggers to training nodes, these graph backdoor attacks generally require
altering the labels of trigger-attached training nodes into the target class, which is
impractical in real-world scenarios. In this work, we focus on the clean-label graph
backdoor attack, a realistic but understudied topic where training labels are not
modifiable. According to our preliminary analysis, existing graph backdoor attacks
generally fail under the clean-label setting. Our further analysis identifies that the
core failure of existing methods lies in their inability to poison the prediction logic
of GNN models, leading to the triggers being deemed unimportant for prediction.
Therefore, we study a novel problem of effective clean-label graph backdoor attacks
by poisoning the inner prediction logic of GNN models. We propose BA-LOGIC to
solve the problem by coordinating a poisoned node selector and a logic-poisoning
trigger generator. Extensive experiments on real-world datasets demonstrate that
our method effectively enhances the attack success rate and surpasses state-of-
the-art graph backdoor attack competitors under clean-label settings. Our code is
available at https://anonymous.4open.science/r/BA-Logic.

1 INTRODUCTION

Graph neural networks (GNNs) Kipf & Welling (2017); Veličković et al. (2018); Hamilton et al.
(2017) have achieved promising results in diverse graph-based applications, such as social networks Ni
et al. (2024), finance systems Cheng et al. (2022), and drug discovery Bongini et al. (2021). Most
GNNs update the representation of a node by aggregating features from its neighbors with the
message-passing mechanism. Thus, the representations learned by GNNs can preserve node features
and neighbor topology, facilitating various graph representation learning tasks Xu et al. (2019).

Despite GNNs having achieved success, they are vulnerable to graph backdoor attacks Dai et al.
(2023); Xi et al. (2021); Zhang et al. (2021). We illustrate the general process of existing graph
backdoor attacks in Fig. 1. As Fig. 1 shows, to create a backdoored graph, the adversary will
attach a selected set of poisoned nodes with triggers. In addition, the adversary will alter labels of
the poisoned nodes to the target class regardless of their original classes. Then, the GNN model
trained on this poisoned graph will learn to associate the presence of the trigger with the target
class, resulting in a backdoored GNN model. During the inference phase, the backdoored GNN will
misclassify test nodes attached with the trigger to the target class while maintaining regular prediction
accuracy on clean nodes. Some initial efforts Dai et al. (2023); Xi et al. (2021); Zhang et al. (2021)
have demonstrated the effectiveness of the graph backdoor attacks. For instance, SBA Zhang et al.
(2021) conducts pioneering research on graph backdoor attacks by adopting randomly generated
triggers. Building upon this work, GTA Xi et al. (2021) proposed a trigger generator to guarantee the
effectiveness of graph backdoor attacks. The state-of-the-art method UGBA Dai et al. (2023) adopts
an unnoticeable constraint into the trigger generator to make the attack more unnoticeable while
maintaining a high attack success rate. More detailed discussion of related works is in Appendix D.
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Figure 1: Illustration of graph backdoor attacks under both
the general and clean-label settings.

However, as the Fig. 1 illustrates, the
majority of graph backdoor attacks,
such as UGBA Dai et al. (2023) and
DPGBA Zhang et al. (2024b), require
attackers to alter the labels of trigger-
attached poisoned nodes to the target
class, regardless of their ground-truth
labels. Such manipulation of the train-
ing labels is often impractical. In many
application scenarios, the training set
is annotated by experts of the dataset
owners. It would be very expensive or
even infeasible to manipulate the labels
of the training set. For instance, fake
account labels of Twitter are annotated
and stored within a well-protected back-
end system, making it nearly impossible
for attackers to alter the labels Alothali et al. (2018). Furthermore, modifying labels of training
samples can increase the risk of being detected. Therefore, it is crucial to investigate backdoor attacks
under the clean-label setting. Specifically, as illustrated in Fig. 1, clean-label backdoor attackers
inject triggers into training samples of the target class without modifying their labels, which is a more
practical and challenging attack scenario. Some initial efforts Fan & Dai (2024); Xu & Picek (2022)
have been conducted for clean-label graph backdoor attacks. For instance, Fan & Dai (2024) employs
a single node as an efficient trigger, while Xu & Picek (2022) uses random graphs, respectively.

Despite the state-of-the-art general graph backdoor methods and initial attempts at clean-label
backdoor attacks, our preliminary analysis in Sec. 2.3 reveals that these methods often fail to
effectively poison the decision logic of target GNN models, resulting in poor backdoor performance.
More precisely, our experiments indicate that during the poisoning phase, for a training sample
attached with the poisoning trigger, clean neighbors dominate the prediction of the target GNN model.
By contrast, injected triggers would be treated as irrelevant information, resulting in poor backdoor
attacks. In fact, under the clean-label setting, poisoned samples that are attached with triggers are
correctly labeled with ground-truth labels (target class). Consequently, during the training phase,
the GNN model naturally learn correct patterns associated with the labeled class, thus ignoring the
injected triggers during prediction. To address this problem, it is promising for attackers to explicitly
guide the model’s inner prediction logic to emphasize the injected triggers when predicting the
poisoned nodes. Though promising, the works on poisoning the inner logic of GNNs for clean-label
backdoor attacks are rather limited.

Therefore, in this paper, we study a novel and essential problem of poisoning the inner logic of GNN
models for effective clean-label graph backdoor attacks. In essence, we face two technical challenges:
Firstly, how to obtain triggers capable of poisoning the inner prediction logic of target GNN models.
Secondly, the budget for the number of triggers injected is generally limited, so how to fully leverage
the budget of poisoned nodes for effective inner prediction logic poisoning. In an attempt to address
these challenges, we propose a novel Clean-Label Graph Backdoor Attack by Inner Logic Poisoning
(BA-LOGIC). BA-LOGIC employs a logic-poisoning trigger generator, guided by a novel prediction
logic poisoning loss. To better utilize the budget of poisoned nodes, BA-LOGIC further employs a
poisoned node selection module for logic poisoning. We summarize our contributions as follows:

• We study a novel problem of poisoning the inner prediction logic of target models for clean-label
graph backdoor attacks;

• We introduce an innovative framework, BA-LOGIC, which is capable of optimizing the poisoned
node set and generating logic-poisoning triggers for effective clean-label backdoor attacks;

• We conduct comprehensive experiments for diverse target GNN models across a wide range of
real-world graph datasets. Consistent results unequivocally demonstrate the superiority of BA-
LOGIC over state-of-the-art backdoor attacks. This substantiates the significant improvement in the
effectiveness of clean-label graph backdoor attacks, achieved through the novel inner prediction
logic poisoning strategy we present.
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2 PRELIMINARIES

2.1 THREAT MODEL OF LOGIC POISONING FOR CLEAN-LABEL BACKDOOR ATTACKS

Notations A graph G = (V, E) consists of a set of N nodes V = {v1, . . . , vN} and edges E .
A ∈ RN×N is the adjacency matrix and X ∈ RN×d is the node feature matrix. This work focuses
on an inductive node classification task, where only a subset of nodes VL has assigned labels YL for
training, and unlabeled nodes are denoted as VU . Test nodes VT are unavailable during training.
Threat Model Attackers aims to inject backdoor triggers to a subset of training nodes VP , forcing
the GNN fθ trained on the poisoned graph to learn the backdoor patterns introduced by the trigger
and misclassify the nodes in VT that attached with trigger g as the target class yt. Meanwhile, the
backdoored GNN fθ should maintain the accuracy on the clean test nodes with no trigger attached. In
the clean-label graph backdoor attack, attackers are not capable of altering the labels of nodes. During
training, attackers can only attach triggers to a subset of labeled nodes VP ⊂ VL to poison the target
model. During inference, attackers can only attach triggers to the target test nodes. Following Zhang
et al. (2024b); Dai et al. (2023), the information about the target model, such as architectures and
hyperparameters, is unavailable to attackers. Instead, attackers can only select a surrogate model to
transfer the attack to unseen target models. This black-box threat model poses a strict limitation on
the attacker. Threat model level comparison with existing works is in Appendix E.

2.2 LIMITATIONS OF EXISTING METHODS UNDER CLEAN-LABEL SETTING

To evaluate existing graph backdoor methods under clean-label setting, we employ three state-
of-the-art graph backdoor methods, namely GTA Xi et al. (2021), UGBA Dai et al. (2023), and
DPGBA Zhang et al. (2024b). We extend them to the clean-label setting and denote the extended
methods as GTA-C, UGBA-C, and DPGBA-C, where -C indicates it as a variation for the clean-label
setting that only poisons labeled nodes of the target class without altering their labels. We also
include an initial effort of a clean-label backdoor attack ERBA Xu & Picek (2022), which injects
Erdös-Rényi random graphs Erdos et al. (1960) to labeled nodes of the target class as triggers. We
report the average attack success rate (ASR) and clean accuracy (CA) of 5 runs on Pubmed in Tab. 1.
From the table, it is evident that (i) all the methods exhibit poor ASR with the number of poisoned
nodes VP set as 100; (ii) even with a larger |VP |, the ASR improves marginally. The results confirm
the inadequacy of existing graph backdoor attacks under clean-label settings.

(a) ERBA top-3 (b) ERBA top-5 (c) GTA-C top-3 (d) GTA-C top-5
Target Node Trigger Nodes Normal Nodes

Figure 2: GNNExplainer’s visualization of impor-
tant subgraphs in a poisoned node’s computational
graph. We bold the edges connecting the poisoned
node and the top-3 (a, c) and top-5 (b, d) most
important nodes, respectively.

Table 1: ASR | CA (%) for GCN on Pubmed.

|VP | ERBA GTA-C UGBA-C DPGBA-C

100 22.2 | 85.6 38.4 | 85.1 71.1 | 85.3 64.2 | 85.2
200 22.5 | 85.2 38.9 | 85.0 71.2 | 85.1 64.1 | 85.1
300 23.0 | 85.0 38.7 | 85.2 71.2 | 84.8 64.2 | 84.7

Table 2: IRT (%) under clean-label setting.
Top-k ERBA GTA-C UGBA-C DPGBA-C

k = 3 12.3 21.0 42.4 33.8
k = 5 15.1 22.6 44.3 34.7

2.3 WHY EXISTING METHODS FALL SHORT?

To understand why existing methods fail under clean-label settings, we analyze the impact of injected
triggers empirically and theoretically. By using GNNExplainer Ying et al. (2019) to extract edge/node
masks as explanations, we visualize the prediction for a poisoned node classified as yt in a GCN
model backdoored by ERBA and GTA-C, showing subgraphs consisting of top-k important nodes in
Fig. 2. Results reveal that triggers from both methods exhibit lower importance than poisoned nodes’
clean neighbors, suggesting their limited influence on model predictions.

To further assess the injected triggers’ influence on backdoored GNN predictions, we propose a
metric named Important Rate of Triggers (IRT) to quantify trigger contributions by measuring
their proportion as top-k critical nodes in compact graphs of poisoned nodes. The mathematical
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formulation is in Appendix H. Tab. 2 reports IRT values of existing methods on Cora, showing
that the IRT values for subgraphs consisting of top-3 and top-5 important nodes remain low across
all methods, indicating triggers are rarely critical for target class prediction. We further conduct
a theoretical analysis to prove that the existing methods fail to poison the inner logic of the target
model, resulting in poor ASR.

Assumptions on Graphs Following Dai et al. (2023); Zhang et al. (2025), we consider a graph G
where (i) The node feature xi ∈ Rd is sampled from a specific feature distribution Fyi

that depends on
the node label yi. (ii) Dimensional features of xi are independent to each other. (iii) The magnitude
of node features is bounded by a positive scalar vector S, i.e., maxi,j |xi(j)| ≤ S.
Theorem 1. We consider a graph G = (V, E ,X) follows Assumptions. Given a node vi with label yi,
let degi be the degree of vi, and γ be the value of the important rate of trigger. For a node vi attached
with trigger gi, the probability for GNN model f predict vi as target class yt is bounded by:

P(f(vi) = yt) ≤ 2d · exp
(
−degi · (1− γ)2 · ∥µyt − µyi∥22

2d · S2

)
, (1)

where d is the node feature dimension, µyt and µyi are the class centroid vectors in the feature space
for yi and yt, respectively.

The detailed proof is in Appendix H. Theorem 1 shows that the upper bound of the probability
for predicting the trigger-attached vi as yt grows with the increase in the IRT value γ. Existing
graph backdoor methods generally lead to a low important rate of triggers, resulting in poor attack
performance under the clean-label setting. The analysis further motivates a new graph backdoor
paradigm that poisons the inner prediction logic of GNNs for effective clean-label graph backdoor
attacks. More empirical analysis on IRT and attack budget VP is in Appendix A.9, and more empirical
validations on theoretical analysis are in Appendix J.

3 PROBLEM DEFINITION

We denote the prediction on a clean node vi as fθ(vi) = fθ(Gi
C), where Gi

C is the computational
graph of node vi. For a node vi injected with trigger gi, the prediction from the model is denoted
as fθ(ṽi) = fθ(a(Gi

C , gi)), where a(·) is the trigger attachment operation. Let Sθ(ṽi, gi) denote the
importance score of the trigger gi injected to the node vi determined by the target GNN fθ.

Our preliminary analysis in Sec. 2.3 shows that existing backdoor attacks suffer from a poor ASR
under clean-label settings due to the failure to poison the inner logic of the target model. To effectively
conduct clean-label graph backdoor attacks, we propose to generate triggers capable of poisoning the
inner logic of the target model. More precisely, the proposed clean-label graph backdoor attacks aim
to achieve the following objectives:

• For any node vi ∈ VP ∪ VT , after attachment with the generated trigger gi, the backdoored GNN
will classify vi as the target class yt, i.e., fθ(ṽi) = yt.

• For poisoned nodes and test nodes attached with triggers, injected triggers should be identified as
the most important nodes by the logic of backdoored GNN, i.e., maximizing Sθ(ṽi, gi) for all node
vi ∈ VP ∪ VT .

• Constraints, including the number of poisoned nodes, the size of generated triggers, and other
unnoticeable constraints as the one outlined in Dai et al. (2023), should be met.

With the above objectives and the threat model discussed in Sec. 2.1, We can formulate the clean-label
graph backdoor attack by poisoning the inner prediction logic as:
Problem 1. Given a graph G = (V, E) with a set of labeled training nodes VL with labels YL, we aim
to learn a trigger generator fg: vi −→ gi and select a set of nodes VP ⊂ Vt

L to attach logic-poisoning
triggers so that a GNN model f trained on the poisoned graph will classify the test node attached
with the trigger to the target class yt by solving:

min
VP ,θg

∑
vi∈V

l(fθ∗(ṽi), yt)− βSθ∗(vi, gi)

s.t. θ∗ = argmin
θ

∑
vi∈VL\VP

l(fθ(vi), yi) +
∑

vi∈VP

l(fθ(ṽi), yi),

∀vi ∈ V, gi meets the required unnoticeable constraint, |gi| ≤ ∆g, |VP | ≤ ∆P

(2)
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where θg denotes the parameters of the trigger generator, l(·) denotes the cross-entropy loss, and β
is the hyperparameter to control the contribution of logic poisoning. The node size of the trigger |gi|
is limited by ∆g , and the number of poisoned nodes is limited by ∆P . A surrogate GNN f is applied
to simulate the target GNN whose architecture is unknown. Various unnoticeable constraints can be
applied to this problem. In this paper, we focus on the unnoticeable constraint in Dai et al. (2023).

4 METHODOLOGY

Prediction Explanations
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Figure 3: Framework of BA-LOGIC.

Our preliminary analysis reveals two
key challenges for logic poisoning
clean-label graph backdoor attacks: (i)
How to select the poisoned nodes that
are most effective in logic poisoning?
(ii) How to efficiently compute the
objective function of prediction logic
poisoning to guide the training of the
clean-label backdoor trigger genera-
tor? To overcome the above chal-
lenges, we propose a novel method
BA-LOGIC, and illustrate the overall
framework in Fig. 3.

As Fig. 3 shows, BA-LOGIC firstly identifies poisoned nodes of the target class with high prediction
uncertainty. The logic-poisoning trigger generator fg utilizes node features as a basis to iteratively
optimize triggers for the clean-label graph backdoor. To guide the training of the logic-poisoning
trigger generator fg , an efficient objective function for poisoning the prediction logic of the surrogate
GNN model is employed. Additionally, to ensure the unnoticeability of triggers, a constraint is
incorporated in the training of the trigger generator. Next, we give the details of each component.

4.1 POISONED NODE SELECTION FOR CLEAN-LABEL BACKDOOR ATTACKS

In this subsection, we present the details of the poisoned node selection. It indicates the optimal posi-
tions for trigger injection, after which the model trained on the trigger-injected graph is backdoored,
and arbitrary test nodes could be successfully attacked by attaching triggers during inference.

The poisoned nodes are randomly selected in several existing clean-label graph backdoor methods Xu
& Picek (2022); Xing et al. (2024), resulting in waste of the limited attack budget on useless poisoned
nodes. For example, some labeled nodes exhibit typical patterns strongly associated with the target
class. Thus, it would be difficult for the injected triggers to attain high importance scores with the
presence of these typical patterns, thereby invalidating the backdoor trigger in logic poisoning.

Therefore, we design a process of identifying the set of poisoned nodes VP ∈ Vt
L that are most

effective for backdoor. Specifically, we propose to select training nodes of the target class that exhibit
high uncertainty as predicted by the clean GNN. Intuitively, high uncertainty indicates irregular
patterns that are weakly associated with the target class yt. By contrast, triggers obtained by the
generator will exhibit consistent patterns to poison the prediction logic. Thus, when triggers are
injected into such nodes, the model is more likely to treat these triggers as key features of the target
class rather than irregular patterns. Specifically, to identify high uncertainty nodes, we utilize the
output of a GCN trained on the clean graph G and label set YL. Let fS denote the well-trained GCN
model, the probability of node vi predicted as the class yj can be obtained by:

p(yj |vi) = fS(vi)yc
(3)

Moreover, we design an uncertainty metric based on the following two aspects: (i) The probability
that the node predicted as the target class, i.e., p(yj |vi), should be low; (ii) The node is also expected
to be uncertain for all other classes, i.e., the entropy of the probability vector is high. Let C be the
number of classes. The score function of poisoned node selection for attacking logic is:

U(vi) = (1− p(yt|vi))−
C∑

j=1

p(yj |vi) log p(yj |vi) (4)

After getting the score of each vi ∈ Vt
L, we select nodes with top-∆P highest scores to construct VP

that satisfies the attack budget.

5
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4.2 INNER PREDICTION LOGIC POISONING

With the poisoned nodes VP selected for the clean-label backdoor attack, the backdoored graph to
poison the target GNN can be constructed by inserting powerful logic-poisoning triggers. In this
subsection, we introduce the design of the logic-poisoning trigger generator. Then, we present the
objective function of prediction logic poisoning that guides the training of the trigger generator.

Logic-Poisoning Trigger Generator To poison the logic of the target GNN model, the generated
trigger must be capable of capturing the importance scores for predictions on a poisoned node.
Therefore, the logic-poisoning trigger should be adaptive to the input node. To achieve this, we
deploy a MLP model to simultaneously generate node features and the adjacency of the trigger gi for
node vi by:

Xg
i , Ag

i = MLP (xi) , (5)

where xi is the feature of node vi. X
g
i ∈ Rs×d is the features of the trigger nodes, where s and d

represent the size of the generated trigger and dimension of node features, respectively. Ag
i ∈ Rs×s

represents the adjacency matrix of the generated trigger. As the adjacency matrix must be discrete, we
deploy the updating strategy of discrete variables in a binarized neural network Hubara et al. (2016).

To build the backdoored graph dataset for model poisoning, the generated trigger gi = (Xg
i ,A

g
i ) will

be attached to the corresponding poisoned node vi ∈ VP . During the inference phase, to mislead the
backdoored GNN to predict the test node vi ∈ VT as target class yt, the attacker would insert the
trigger generated by fg .

The prediction logic poisoning in BA-LOGIC aims to mislead the target model to treat triggers as
crucial patterns for prediction. As shown in Eq.(2), this can be formulated as maximizing the trigger’s
importance score Sθ(ṽi, gi) in predicting the trigger-attached node vi ∈ V as the target class yt by
a surrogate GNN model fθ. Although GNN explainers such as GNNExplainer Ying et al. (2019)
and PGExplainer Luo et al. (2020) are capable of computing importance scores for nodes, they
necessitate additional optimization to generate explanations. This extra optimization step poses
challenges for solving Eq.(2), both in terms of computational cost and gradient backpropagation.
Thus, BA-LOGIC deploys the gradient-based explanation, i.e., Sensitivity Analysis (SA) Baldassarre
& Azizpour (2019). Specifically, for the prediction ỹi = f(ṽi) on a trigger-attached node vi, SA
computes importance scores using the norm of the gradient w.r.t the node vj . Formally, the important
score of node vj in predicting vi as the target class is computed by:

S(yti , vj) = ∥ ∂ỹ
c
i

∂xj
∥2, (6)

where yci is score of predicting node vi attached trigger g into the target class, and xj represents the
node features of vj . The Eq.(6) will allow us the compute the importance scores of inserted triggers
efficiently. Simply maximizing the importance scores of triggers as specified in Eq.(6) can lead to
infinitely large gradients, which significantly degrade the utility of the target model. Alternatively,
within the computational graph of a trigger-attached node vi, BA-LOGIC enforces the importance
scores of trigger nodes to exceed those of clean nodes by a predefined margin T . More precisely, we
replace the term of maximizing importance scores of triggers in Eq.(2) with the following prediction
logic poisoning loss:

LA =
∑
vi∈V

max
(
0, T −

( ∑
vg∈gi

S(yti , vg)−
∑

vc∈N (vi)

S(yti , vc)
))

, (7)

where N (vi) denotes the clean node net in the computational graph of the trigger-attached node vi.

Unnoticeable Constraint on Triggers As we need to bypass various defense methods, an unno-
ticeable constraint on the generated trigger is required. Our BA-LOGIC is flexible to various types
of unnoticeable constraints on triggers. Following Dai et al. (2023), we propose the constraint that
requires high cosine similarity between the poisoned node or target node vi and trigger gi. Within the
generated trigger gi, the connected trigger nodes should also exhibit high similarity. Formally, the
loss of an unnoticeable constraint on trigger generator fg can be formulated as:

min
θg

LU =
∑
vi∈V

∑
(vj ,vk)∈Ei

B

exp(−sim(vj , vk)), (8)
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where E i
B denotes the edge set that contains edges insider trigger gi and edges attaching trigger gi and

node vi. sim(·) represents the computation of cosine similarity between vectors. The unnoticeable
loss in Eq.(8) is applied on all nodes to guarantee that generated triggers meet the unnoticeable
constraint on various nodes.

4.3 FINAL OBJECTIVE FUNCTION OF BA-LOGIC

As it is stated in Eq.(2), a bi-level optimization between the logic-poisoning trigger generator fg and
a surrogate GNN model f is adopted to ensure the effectiveness of triggers in logic poisoning for the
clean-label backdoor. In the lower-level optimization of Eq.(2), the surrogate GNN model is trained
on the backdoored dataset by:

min
θ

Lf =
∑

vi∈VL\VP

l(fθ(vi), yi) +
∑

vi∈VP

l(fθ(ṽi), yi) (9)

The upper-level optimization in Eq.(2) aims for successful backdoor attacks and inner prediction
logic poisoning. With the selected poisoned node set VP , the prediction logic poisoning loss LA

in Eq.(7), and the unnoticeable constraint LU in Eq.(8), the optimization problem in Eq.(2) can be
finally reformulated as:

min
θg

∑
vi∈V

l(fθ∗(ṽi(θg), yt)) + LU (θg) + βLA(θ
∗, θg) s.t. θ∗ = argmin

θ
Lf (θ, θg), (10)

where β is the hyperparameter to control the contribution of prediction logic poisoning loss. θg
denotes the parameters of the logic-poisoning trigger generator fg . fθ represents the surrogate GNN
model, with θ as its parameters. The optimization algorithm for solving Eq.(10) is in Appendix F,
and the overall training algorithm of BA-LOGIC is in Appendix G.

5 EXPERIMENTS

In this section, we conduct experiments to answer the following Research Questions:

• RQ1: Does BA-LOGIC outperform the competitors under the clean-label setting?
• RQ2: Can BA-LOGIC be generalized to more GNN downstream tasks and graphs?
• RQ3: Can BA-LOGIC maintain high ASR against various defense strategies?
• RQ4: How effective are BA-LOGIC’s components for clean-label graph backdoor attacks?

5.1 EXPERIMENTAL SETTINGS

Datasets We conduct experiments on Cora and Pubmed of Sen et al. (2008), Flickr Zeng et al.
(2020), and Arxiv Hu et al. (2020) for node classification; MUTAG, NCI1, and PROTEINS
of Morris et al. (2020) for graph classification; Cora of Sen et al. (2008), CS and Physics of Hu
et al. (2020) for edge prediction. We also include heterophilous graphs with diverse scales, including
Squirrel and Chameleon of Luan et al. (2022), Penn and Genius of Lim et al. (2021). More details
of the datasets are in Appendix C.1.
Baselines We compare BA-LOGIC with state-of-the-art graph backdoor attacks including GTA Xi
et al. (2021), EBA Xu et al. (2021), DPGBA Zhang et al. (2024b), and UGBA Dai et al. (2023) under
clean-label settings, denoted by -C. We also compare with the latest clean-label graph backdoor
attacks, including ERBA Xu & Picek (2022) and ECGBA Fan & Dai (2024). We further extend
comparison to SCLBA Dai & Sun (2025), GCLBA Meguro et al. (2024), TRAP Yang et al. (2022)
for graph classification; and include SNTBA Dai & Sun (2024), PSO-LB and LB Zheng et al. (2023)
for edge prediction. More details of the baselines are in Appendix C.2.
Evaluation In this paper, we focus on an inductive setting where attackers cannot access test samples
during the graph poisoning. To reduce randomness, we conduct experiments on each target model 5
times and report the average results. The backdoor attacks are evaluated by ASR on the target nodes
and CA on the clean nodes. More implementation details of BA-LOGIC are in Appendix C.3.

5.2 CLEAN-LABEL BACKDOOR PERFORMANCE

To answer RQ1, we compare BA-LOGIC with the baselines across four datasets and three target
GNNs. The surrogate model deployed for evaluation is a fixed 2-layer GCN. We report ASR | CA
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Table 3: Average backdoor attack success rate and clean accuracy (ASR | CA (%)). Note that the
surrogate model deployed in BA-LOGIC is fixed as a 2-layer GCN.

Dataset
Target
Model

Vanilla
Acc. ERBA ECGBA EBA-C GTA-C UGBA-C DPGBA-C BA-LOGIC

Cora
GCN 83.78 18.22 | 80.77 34.77 | 79.48 29.13 | 74.17 32.45 | 80.45 68.32 | 79.97 59.55 | 79.88 98.52 | 83.59
GAT 84.30 19.32 | 82.08 35.19 | 78.93 29.34 | 74.23 35.85 | 82.68 68.76 | 82.81 59.02 | 84.19 97.12 | 83.76
GIN 84.26 19.17 | 79.85 34.56 | 79.92 29.30 | 74.46 35.49 | 79.63 67.75 | 83.04 60.03 | 81.56 98.97 | 83.81

Pubmed
GCN 86.38 22.18 | 85.58 37.46 | 85.86 31.89 | 85.60 38.84 | 86.17 71.24 | 85.31 64.19 | 85.41 96.75 | 86.03
GAT 86.51 22.24 | 85.91 41.54 | 85.61 30.13 | 85.46 42.14 | 85.78 66.07 | 86.33 67.05 | 85.21 94.88 | 85.13
GIN 86.51 15.46 | 85.57 43.14 | 83.63 30.99 | 85.44 42.34 | 86.35 68.69 | 85.81 66.17 | 86.22 99.04 | 86.21

Flickr
GCN 46.21 0.00 | 45.75 39.47 | 45.68 32.47 | 45.68 48.12 | 44.96 66.49 | 43.99 69.66 | 42.93 99.98 | 46.05
GAT 46.07 0.00 | 47.51 41.03 | 47.65 31.93 | 47.65 47.87 | 47.64 68.78 | 47.02 70.39 | 46.31 99.72 | 44.91
GIN 46.22 0.00 | 45.62 41.71 | 41.64 32.07 | 41.64 48.04 | 45.03 68.97 | 45.98 68.12 | 45.09 100.0 | 46.14

Arxiv
GCN 66.58 0.01 | 66.14 25.56 | 66.16 28.64 | 66.23 37.16 | 66.29 69.71 | 66.57 58.96 | 66.82 98.04 | 65.82
GAT 66.02 0.02 | 64.09 26.03 | 64.46 28.09 | 64.41 36.45 | 65.20 71.65 | 65.10 59.13 | 65.25 98.43 | 65.40
GIN 66.73 0.02 | 66.07 26.72 | 62.01 27.35 | 66.08 34.32 | 65.87 71.01 | 66.56 60.50 | 66.73 97.62 | 66.83

(%) of methods in Tab. 3, from which we observe: (i) Across all datasets and models, BA-LOGIC
consistently achieves the highest ASR, typically close to 100%. It outperforms leading competitors
such as UGBA-C and DPGBA-C, indicating that the clean-label setting is challenging for state-
of-the-art methods, and BA-LOGIC poisons inner prediction logic of target models effectively for
clean-label backdoor attacks. (ii) Arxiv poses challenges with its diverse classes and our fixed target
class setting. Despite requiring generalization to larger unseen graph parts, BA-LOGIC maintains
superior performance when the ASR of competitors drops, demonstrating its scalability. Experiments
on larger graphs are in Appendix A.2. (iii) High ASR of BA-LOGIC towards different target GNNs
proves its transferability in backdooring various GNNs via logic poisoning. More results of varying
the surrogate and target models are in Appendix A.3. We further investigate how sampling strategies,
where only a subset of nodes is involved during the aggregation, affect BA-LOGIC’s performance in
Appendix A.4 (iv) BA-LOGIC achieves comparable CA compared to vanilla GNN models, while
other methods exhibit significantly larger CA drop. This indicates that our approach of poisoning
the prediction logic hardly affects the prediction on clean nodes while achieving effective backdoor
attacks. More experiments on the CA drop are provided in Appendix A.5.

5.3 GENERALIZATION TO MORE TASKS AND GRAPHS

Considering that node classification, graph classification, edge prediction can all be formed into
graph classification task, A natural question is how our BA-LOGIC can be generalized to graph
classification and edge prediction. Therefore, to answer RQ2, we extend BA-LOGIC from node
classification to graph classification and edge prediction. Details of the extensions are provided
in Appendix A.1. Tab. 4 reports results for graph classification and for edge prediction. From the
results, we observe that BA-LOGIC achieves competitive or superior performance in backdooring
both graph classification and edge prediction tasks without degrading clean accuracy, highlighting
the effectiveness of the extended BA-LOGIC.

Table 4: Evaluation (ASR | CA (%)) of BA-LOGIC on more tasks.

Graph Classification Edge Prediction

Dataset SCLBA GCLBA TRAP BA-LOGIC Dataset SNTBA PSO-LB LB BA-LOGIC

MUTAG 88.51|62.77 19.27|62.81 71.89|61.44 92.17|61.32 Cora 91.32|80.43 61.35|79.45 68.06|76.17 99.01|79.59
NCI1 94.01|61.43 61.35|60.97 68.06|61.51 96.19|62.08 CS 89.62|81.95 67.14|76.13 57.67|78.49 95.13|79.65
PROTEINS 67.59|71.25 67.14|71.33 57.67|71.49 89.67|71.65 Physics 48.32|62.77 39.27|64.09 61.89|63.44 93.81|63.02

Table 5: Results (ASR | CA (%)) of BA-LOGIC in
backdooring heterophilous graphs.

Datasets GCN ACMGCN LINKX

Squirrel 99.07 | 44.76 98.14 | 65.37 98.79 | 71.90
Chameleon 99.03 | 51.18 98.53 | 68.58 98.43 | 81.22
Penn 96.34 | 65.47 96.71 | 72.52 95.32 | 72.32
Genius 98.17 | 79.42 97.92 | 88.72 93.71 | 89.14

We further assess BA-LOGIC on diverse
heterophilous graphs for node classifica-
tion. Tab. 5 reports the results when tar-
geting the heterophily-specific GNN mod-
els ACMGCN Luan et al. (2022) and
LINKX Lim et al. (2021), along with the re-
sults when targeting GCN. Results in Tab. 5
indicate that graph characteristics such as
heterophily mainly affect the CA of GNNs instead of the ASR of BA-LOGIC, which adopts logic
poisoning to ensure high ASR across various graphs and backbones. More comparison with base-
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lines transferred from other domains is in Appendix A.6. More analysis on the generalizability of
BA-LOGIC under challenging label and feature settings is in Appendix K.

5.4 ATTACKS ON DEFENDING STRATEGIES

Table 6: Comparisons of ASR(%) against defense models.

Datasets Defense ECGBA DPGBA-C UGBA-C BA-LOGIC

Flickr
GCN-Prune 15.02 35.44 54.49 99.24
RobustGCN 11.25 22.26 58.81 99.02
GNNGuard 0.01 53.41 33.14 99.36
RIGBD 0.01 0.07 0.33 94.86

Arxiv
GCN-Prune 13.57 17.43 62.31 96.75
RobustGCN 14.24 29.65 44.46 97.03
GNNGuard 0.51 43.77 40.08 95.37
RIGBD 0.01 0.01 0.19 93.23

To answer RQ3, we evaluate BA-
LOGIC and competitors against rep-
resentative defense methods, includ-
ing GCN-Prune Dai et al. (2023), Ro-
bustGCN Zhu et al. (2019), GNN-
Guard Zhang & Zitnik (2020), and
RIGBD Zhang et al. (2025). We
record experiments conducted on two
datasets in Tab. 6. From the table,
we observe: (i) BA-LOGIC can effec-
tively attack the robust GNN models.
Compared with competitors, BA-LOGIC enhances ASR by 30%, showing the superiority of BA-
LOGIC in conducting backdoor attacks against defense methods by logic poisoning. (ii) Although
RIGBD is highly effective in defending against various backdoor attacks, it fails to defend against
BA-LOGIC that generates logic poisoning triggers. RIGBD defends by identifying the poisoned target
nodes and random edge dropping. Its failure arises from the inability to alleviate the logic poisoning
caused by BA-LOGIC during the training of target GNNs, confirming our method’s effectiveness.
More results of attacking defenses is provided in Appendix A.7 and Appendix I.

5.5 ABLATION STUDIES

Pubmed Arxiv

0.2
0.4
0.6
0.8
1.0

AS
R

BA-Logic
BA-Logic\S

BA-Logic\T
BA-Logic\ST

(a) GCN
Pubmed Arxiv
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(b) GIN

Figure 4: Ablation studies of BA-LOGIC.

To answer RQ4, we conduct ablation
studies to explore the effectiveness of
the poisoned node selector and the
logic-poisoning trigger generator. To
demonstrate the effectiveness of the
poisoned node selector, we randomly
select poisoned nodes from the train-
ing graph and obtain a variant named
BA-LOGIC\S. To show the benefits
of the logic poisoning trigger genera-
tor, we remove the inner logic loss in
Eq.(7). In such a case, the BA-LOGIC degrades to a simplified variant named BA-LOGIC\T. To verify
the effect of module collaboration, we implement BA-LOGIC by removing both modules, named as
BA-LOGIC\ST. The ASR with standard deviations on Pubmed and Arxiv are shown in Fig. 4, from
which we observe: (i) Compare to BA-LOGIC\S, BA-LOGIC achieves better attack performance
on various datasets. The standard variance of ASR of BA-LOGIC is significantly lower than that
of BA-LOGIC\S. It indicates that our selector identifies poisoned nodes that are influential to logic
poisoning backdoor attacks. (ii) BA-LOGIC outperforms BA-LOGIC\T and BA-LOGIC\ST by a
large margin. It highlights the proposed logic poisoning loss guides the trigger generator to produce
triggers capable of poisoning the inner logic of the target model for various test nodes. More analysis
to evaluate the contribution of each module is provided in Appendix A.8.

6 CONCLUSION AND FUTURE WORKS

In this paper, we investigate the limitations of existing graph backdoor attacks under a clean-label
setting. To overcome these limitations, we formalize the problem of clean-label graph backdoor
attacks through poisoning the inner prediction logic of GNNs. Our methodology originates from the
preliminary analysis of learning behaviors in backdoored GNNs, leading to a theoretically grounded
learning objective formulated as bi-level optimization for effective model poisoning. Extensive
experiments on real-world datasets with diverse graph learning tasks demonstrate that our approach
successfully induces backdoor behaviors in various GNN architectures under clean-label constraints,
and BA-LOGIC remains resilient against existing backdoor defense methods. Fundamentally, our
results primarily support our argument on poisoning the inner prediction logic of GNNs for effective
clean-label graph backdoor attacks. Several promising directions emerge for future research, including
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extending research scope to other tasks like recommendation systems, and developing defense
strategies against logic poisoning through the inverse application of our methodology.

ETHICS STATEMENT

In this work, we investigate potential security vulnerabilities in Graph Neural Networks (GNNs) by
developing a inner prediction logic poisoning clean-label graph backdoor attack without modifying
present labels. We recognize that the study of logic poisoning backdoor attacks may raise concerns
regarding potential risks. However, our primary goal is to advance the understanding of such
vulnerabilities to foster the development of more robust and trustworthy GNN models. We believe
this work will encourage further research into understanding clean-label graph backdoor attacks and
contribute to improving the safety and reliability of graph learning methods.

REPRODUCIBILITY STATEMENT

In this work, we proposed a novel approach to poison the inner prediction logic of Graph Neural
Networks (GNNs) for effectively conducting clean-label graph backdoor attacks. To ensure the
reproducibility of our work, we have provided comprehensive details throughout the paper and
supplementary materials. The methodology of our proposed BA-LOGIC framework is described in
detail in Section 4. Furthermore, Appendix C contains a complete description of the implementation,
including the public datasets used, adaptations of baseline methods, and the specific training parame-
ters for BA-LOGIC. The source code of BA-LOGIC is available in an anonymous repository, with
the link provided at the end of the Abstract. Additionally, for our theoretical analysis, Appendix H
provides a complete proof of Theorem 1, explicitly stating all underlying assumptions.
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A ADDITIONAL EXPERIMENTS

A.1 ADDITIONAL DISCUSSION ON EXTENDING METHOD

In the main text, we initially design BA-LOGIC for node classification and subsequently extend
it to graph classification and edge prediction for evaluation. This extension is grounded in the
fact that these graph learning tasks are all built upon the common message-passing mechanism
of GNNs Gilmer et al. (2020), where the core objective is to learn representations by aggregating
information from neighbors, which can be nodes, edges, and graphs. While the specific readout
functions differ across the tasks, such as node-level output for node classification, graph-level pooling
for graph classification, and pairwise node scoring for edge prediction, the underlying mechanism for
generating embeddings is shared.

We presented the results in Tab. 4, demonstrating the consistent effectiveness of BA-LOGIC on
conducting clean-label graph backdoor attacks on diverse tasks. Below, we detail the extensions of
BA-LOGIC for graph classification and edge prediction, respectively.

A.1.1 EXTEND BA-LOGIC TO GRAPH CLASSIFICATION

We first discuss how to extend our BA-LOGIC to graph classification. To backdoor graph classification,
we select the training graph Gi from the target class yt to establish a poisoned graph set GP , and
replace its nodes with trigger gi to poison the inner logic of target GNN models. For node vj ∈ Gi

and target class yt, importance score originates from Eq.(6) can be computed by:

S(yti , vj) = || ∂ỹ
c
i

∂xj
||2 (11)

And the logic poisoning loss originates from Eq.(7) can be computed by:

LA =
∑

vi∈Gi

max(0, T − (
∑
vg∈gi

S(yti , vg)−
∑

vc∈Gi\gi

S(yti , vc))) (12)

Moreover, the adopted lower-level optimization originates from Eq.(15) aims to train θ on clean
graphs GL \ GP and poisoned graph set GP . The upper-level optimization, originating from Eq.(16),
aims to optimize θg to minimize the loss for predicting GP as yt. To keep the trigger unnoticeable
when against defense methods, constraint in Eq.(8) on θg should be kept.

With the adaptation stated above, we extend our method to select graph classification as a downstream
task. In practice, we select a 2-layer GCN as the surrogate model, and report the average performance
of three different target models, i.e., GCN, GIN, and GAT. Moreover, we add a global pooling layer
to both the surrogate and target models and update the classifier for graph classification.

A.1.2 EXTEND BA-LOGIC TO EDGE PREDICTION

Noting that edge prediction is another widely adopted downstream task for GNN models besides node
classification and graph classification, we further discuss how to extend our BA-LOGIC to backdoor
GNN models that select edge prediction as the downstream task.

We consider the extension from a node-oriented perspective, in which the attacker attaches a trigger
gu,v to node u to make the model predict an edge (u, v) based on the trigger. To achieve this, we
maximize the influence of trigger nodes relative to clean neighbors. For node vj and edge (u, v), the
importance score of vj in predicting the edge is originated from Eq.(6), which can be formulated by:

S((u, v), vj) = ||
∂ỹ(u,v)

∂xj
||2, (13)

where ỹ(u,v) is the edge prediction given by the target model.

To backdoor edge prediction, we adopt logic poisoning loss, originating from Eq.(7), to maximize the
influence of trigger nodes relative to clean neighbors. After attaching the trigger, the logic poisoning
loss should be:

LA =
∑

(u,v)∈E

max(0, T − (
∑

vg∈gu,v

S((u, v), vg)−
∑

vc∈Nu

S((u, v), vc))), (14)
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where E is the edge set, Nu are clean neighbors.

Moreover, the adopted lower-level optimization originates from Eq.(15) aims to train θ on clean edges
(EL \ EP ) and poisoned edges (EP ). The upper-level optimization, originating from Eq.(16), aims
to optimize the trigger generator θg for minimizing the prediction loss on EP . To keep the trigger
unnoticeable when against defense methods, the constraint in Eq.(8) on θg should be kept.

With the adaptation stated above, we extend our method to select edge prediction as a downstream
task. In practice, we select a 2-layer GCN as the surrogate model, and report the average performance
of three different target models, i.e., GCN, GIN, and GAT.

A.2 ADDITIONAL RESULTS OF ATTACK PERFORMANCE ON INDUSTRY-SCALE GRAPH

In the main text of our work, we have included multiple graph datasets with diverse characteristics
for evaluation. To further demonstrate the scalability of BA-LOGIC, we evaluate our method on
OGBN-Products Hu et al. (2020), an industry-scale node classification dataset with 2.4 million
nodes. Specifically, we select a 5-layer GCN and GraphSAGE as the surrogate model, and report
the ASR|CA(%) of selecting GCN as the target model with the same layers. Due to the large size
of OGBN-Products, which prevents full-batch training on GPU memory, we enabled mini-batch
training with a large batch size following Luo et al. (2024). It is feasible in practice, as our method
is not strongly dependent on graph structure and only requires approximate linear complexity. We
also record the training time and GPU memory information during BA-LOGIC conducting backdoor
attacks. The results are recorded in Tab. 7, from which we have the following key findings:

Table 7: Training statistics and performance of BA-LOGIC on OGBN-Products.

Surrogate Model Training Time (s) GPU Memory Peak (GB) ASR|CA (%)
GCN 1678.05 23.52 87.07 | 78.51
GraphSAGE 1531.39 22.36 83.69 | 80.27

• The scalability of our method is demonstrated with feasible resource usage on a large graph with
2.4 million nodes, indicating that our BA-LOGIC remains practical at an industrial scale.

• Training time is acceptable given the performance, consistent with the approximately linear
complexity with respect to graph size per optimization iteration as shown in Appendix B.

A.3 ADDITIONAL RESULTS OF VARYING SURROGATE AND TARGET MODELS

In the main text of our work, we deliberately fixed a normal 2-layer GCN as the surrogate model
when evaluating with diverse target models, such as GIN, GAT, etc. Here, we further test triggers
crafted on one surrogate model against different target models to highlight the transferability of our
method. Specifically, we conduct additional experiments on Cora and Arxiv by varying both the
surrogate and target models across all six backbones implemented in both the main text and the
Appendix A.4. Tab. 8 and 9 present the results, from which we have the following key findings:

Table 8: Results (ASR|CA(%)) of varying surrogate and target models on Cora.

Target
Surrogate

GCN GAT GIN GraphSAGE GraphSAINT FastGCN

GCN 98.52 | 83.59 98.49 | 82.97 98.31 | 81.26 98.45 | 81.59 97.43 | 80.69 94.23 | 81.43
GAT 97.12 | 83.76 97.17 | 82.18 98.75 | 83.66 99.02 | 82.25 96.05 | 82.29 93.24 | 81.56
GIN 98.97 | 83.81 97.48 | 83.27 97.12 | 82.58 97.34 | 81.04 94.13 | 83.37 93.21 | 80.08
GraphSAGE 98.15 | 83.35 98.15 | 82.66 98.02 | 81.43 98.20 | 81.26 93.08 | 81.24 95.21 | 79.14
GraphSAINT 95.13 | 80.57 94.39 | 81.21 97.63 | 80.59 97.85 | 80.07 95.41 | 82.48 91.19 | 79.34
FastGCN 90.25 | 82.91 91.88 | 83.18 97.85 | 81.97 97.92 | 83.16 95.24 | 80.01 92.25 | 80.56
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Table 9: Results (ASR|CA(%)) of varying surrogate and target models on Arxiv.

Target
Surrogate

GCN GAT GIN GraphSAGE GraphSAINT FastGCN

GCN 98.04 | 65.82 98.51 | 64.35 98.18 | 66.02 98.45 | 66.71 95.21 | 64.62 93.45 | 64.13
GAT 98.43 | 65.40 98.97 | 62.24 98.75 | 65.42 97.06 | 65.38 95.45 | 63.58 93.48 | 65.09
GIN 97.62 | 66.83 97.20 | 64.35 96.12 | 66.15 97.15 | 65.17 94.25 | 64.15 93.07 | 66.35
GraphSAGE 98.07 | 64.95 98.05 | 64.13 96.16 | 64.07 95.12 | 61.34 94.15 | 63.65 93.42 | 65.51
GraphSAINT 91.31 | 61.42 97.75 | 61.25 97.15 | 61.32 94.85 | 59.66 94.47 | 60.22 92.38 | 62.12
FastGCN 89.95 | 59.71 97.88 | 60.21 97.85 | 60.13 97.92 | 59.18 94.82 | 58.71 94.25 | 60.11

• Despite differences between surrogate and target models, our attack maintains high effectiveness,
demonstrating strong transferability rooted in poisoning the shared message-passing mechanism
for most GNNs.

• Sampling-based targets like GraphSAINT and FastGCN are slightly more robust to backdoors. We
attribute this to their stochastic sampling of a subset of nodes which dilutes the trigger impact.

A.4 ADDITIONAL RESULTS OF ATTACK PERFORMANCE TOWARDS SAMPLING-BASED GNNS

We evaluate BA-LOGIC with different graph sampling methods involved to explore the effectiveness
of poisoning the logic of sampling-based GNNs. We expand our experiments by incorporating three
widely adopted sampling-based GNNs: GraphSAGE Hamilton et al. (2017), GraphSAINT Zeng et al.
(2020), and FastGCN Chen et al. (2018). Specifically, we have implemented GraphSAGE with two
different graph pooling strategies, denoted as SAGE-max, SAGE-min, respectively. And we also
implemented GraphSAINT with three different samplers, node, edge, and walk, denoted as SAINT-N,
SAINT-E, and SAINT-W, respectively. To mitigate the randomness induced by sampling, we repeat
each experiment 5 times and present the average results as shown in Fig. 5, from which we observe:

• Sampling methods can weaken BA-LOGIC slightly, as BA-LOGIC poisons the inner logic of the
model by involving poison nodes attached to triggers in training.

• The impact is more significant when a large graph reduces the probability of sampling poison nodes.
Specifically, ASR is most affected for layer-wise sampling (FastGCN) backbone, as it samples a
fixed number of nodes in each layer; Moreover, ASR of node-wise sampling (GraphSAGE) and
subgraph-wise sampling (GraphSAINT) backbones are not greatly affected, as the samplers will
significantly increase the probability of sampling poison nodes.

• Among the three GraphSAINT samplers, BA-LOGIC achieves the highest ASR when facing SAINT-
W. This is because SAINT-W can sample the complete trigger through random walks, amplifying
the impact of logic poison.
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Figure 5: Performance of BA-LOGIC on sampling-based GNNs.
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Figure 6: Clean Accuracy of backdoored models.

A.5 ADDITIONAL RESULTS OF CLEAN ACCURACY DROP ANALYSIS

In the main text, Table 3 shows that some existing methods may cause a drop in the model’s clean
accuracy during inference under certain conditions. This is inconsistent with the desired behavior
of a backdoor attack, where only nodes containing the trigger should be misclassified as the target
class, while predictions on clean nodes should remain unaffected to preserve clean accuracy. We
illustrate the average clean accuracy and standard deviation of five runs of different backbones after
being backdoored in Fig. 6. It should be noted that Avg represents the average results on GCN, GAT,
and GIN, which are three target models we use in Tab. 3. From the figure, we can observe that:

• Nearly all methods show a decrease in clean accuracy, indicating that their backdoor attack process
damages the normal behavior of the model, thereby weakening its practicality.

• Combined with the results of Tab. 3, certain baselines (e.g., EBA-C and ECGBA) severely degrade
the clean accuracy of target models, which violates the backdoor attack’s objective to maintain the
classification accuracy of the model for clean test nodes.

• The degradation of clean accuracy caused by various methods is generally alleviated on the stronger
defense models, RobustGCN and GNNGuard, which indicates the robustness of our selected
defense methods and highlights the effectiveness of BA-LOGIC in conducting backdoor attacks.

A.6 ADDITIONAL COMPARISON WITH CROSS-DOMAIN BASELINES

In the main text of our work, we mainly focus on evaluating backdoor attacks in the graph domain.
However, we found that the clean-label setting presents a shared challenge for both image and graph
domains. And the representative works from the image domain solve unique challenges and make
significant contributions in their respective fields. Specifically, we adopt the following backdoor
methods from the image domain to the graph domain:

• OPS-GFS Guo et al. (2023): OPS-GFS presents a clean-label video backdoor attack, designing a
temporal chrominance trigger to achieve imperceptible yet effective poisoning. This work proposes
a temporal chrominance-based trigger, leveraging the peculiarities of the human visual system to
reduce trigger visibility. To achieve effective poisoning in clean-label setting, the method utilizes
an Outlier Poisoning Strategy (OPS). OPS selects poisoned video samples that the surrogate video
model cannot classify. The attack is further enhanced by Ground-truth Feature Suppression (GFS),
which suppresses the features of outlier samples.

• UAT Zhao et al. (2020): UAT proposes a clean-label video backdoor attack, employing a universal
adversarial trigger to overcome high-dimensional input and unique clean-label challenges in
video recognition. The method employs a Universal Adversarial Trigger (UAT), whose pattern is
generated by minimizing the cross-entropy loss towards the target class across video samples from
non-target classes. To enhance the trigger, the attack applies adversarial perturbation to videos
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in the target class before injecting UAT. UAT coordinates two types of perturbation, uniform and
targeted adversarial perturbation, to weaken original features.

To adapt OPS-GFS to the graph domain, we make the following efforts:

• To adapt OPS strategy, we select the misclassified training graphs from the target class as poison
samples, and leverage GNNExplainer, an interpretability method, to find the top-30% unimportant
nodes for classification.

• To adapt GFS strategy, we add the cosine modulation to the unimportant node feature and use
an amplitude ∆ to control its effect. For the rest node features, we add PGD-based adversarial
perturbation for suppression.

To adapt UAT to the graph domain, we make the following efforts:

• To align with the original work, we leverage GNNExplainer to find the unimportant nodes for
classifying the training graphs from non-target classes. We obtain a trigger pattern by randomly
initializing the node features while masking off the other nodes in the graph.

• We denote uniform/targeted adversarial perturbation as -U and -T, respectively. During testing, we
randomly select non-target samples and replace their node features with trigger pattern.

We evaluate the adapted methods and our BA-LOGIC across various graph classification datasets,
including MUTAG, PROTEINS, and NCI1 of Morris et al. (2020), and record the results in the
following table.

Table 10: Results (ASR|CA(%)) of comparing BA-LOGIC with baselines from image domain.

Datasets OPS-GFS UAT-U UAT-T BA-LOGIC

MUTAG 88.45|60.67 88.91|60.95 90.15|59.45 92.17|61.32
PROTEINS 71.96|70.14 85.73|65.36 86.43|68.18 89.67|71.65
NCI1 83.71|80.65 93.46|77.44 95.17|78.16 94.38|80.39

From Tab. 10, we have the following key findings:

• The adapted methods demonstrate comparable performance in the graph domain, indicating the
effectiveness and transferability of their frameworks.

• OPS-GFS uses cosine modulation for the trigger pattern, associated with period T of time series
data. While we grid-searched its hyperparameters, lack of knowledge in static graphs potentially
limited its performance, especially with multi-class classification on PROTEINS.

• UAT achieves high ASR with both perturbing variants while suffering from slight CA degradation,
which is consistent with reports in its original paper.

• UAT can slightly outperform OPS-GFS. We find that UAT can fully use all non-target class samples,
while OPS-GFS selects poison samples from a single non-target class due to its original design of
binary classification.

Moreover, the additional experiment represents an early adaptation of clean-label backdoors from the
image to the graph domain, and we hope the effort can strengthen our contributions.

A.7 ADDITIONAL RESULTS OF ATTACKING AGAINST DEFENDING STRATEGIES

In the main text of our work, we evaluate BA-LOGIC with its ASR when facing defense methods.
Due to the space limitation of the main text, we compared our method with three leading competitors
against four defense methods on two datasets. In this subsection, we first present the complete
comparison with all baselines we select in the main text of our work. We evaluate the ASR of these
attack methods against defense models on four datasets, and record the results in Tab. 11. From
the table, we obtain similar observations to those in Tab. 6. Compared to competitors, BA-LOGIC
still shows significantly higher ASR. Notably, the competitors also achieve better ASR on Cora and
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Table 11: Results (ASR(%)) of comparing BA-LOGIC with baselines against defense models.

Datasets Defense ERBA ECGBA EBA-C GTA-C DPGBA-C UGBA-C BA-LOGIC

Cora

GCN-Prune 5.93 15.56 16.71 15.69 33.10 52.07 99.17
RobustGCN 4.17 14.25 15.28 15.04 21.78 56.09 99.12
GNNGuard 0.00 0.01 0.14 0.00 50.27 35.57 98.48
RIGBD 0.00 0.01 0.00 0.00 0.07 0.16 95.47

Pubmed

GCN-Prune 4.13 15.79 19.25 18.95 37.34 59.64 97.95
RobustGCN 2.96 13.24 17.13 18.72 28.13 45.59 98.10
GNNGuard 0.00 0.51 0.00 1.39 41.07 40.58 95.46
RIGBD 0.00 0.01 0.00 0.00 0.01 0.09 93.01

Flickr

GCN-Prune 0.00 15.02 16.09 17.19 35.44 54.49 99.24
RobustGCN 0.00 11.25 12.27 15.51 22.26 58.81 99.02
GNNGuard 0.00 0.01 0.00 0.00 53.41 33.14 99.36
RIGBD 0.00 0.01 0.00 0.00 0.07 0.33 94.86

Arxiv

GCN-Prune 0.00 13.57 21.07 16.02 17.34 62.31 96.75
RobustGCN 0.00 14.24 17.83 13.29 29.65 44.46 97.03
GNNGuard 0.00 0.51 0.00 0.00 43.77 40.08 95.37
RIGBD 0.00 0.01 0.00 0.00 0.01 0.19 93.23

Pubmed than the records of larger graph datasets in Tab. 6, likely due to the graph being of smaller
size, aiding in the attack methods generalizing the trigger patterns.

We further analyze why the existing defense methods in Tab. 11 fall short when facing BA-LOGIC.
Specifically:

• GCN-Prune removes edges between nodes with dissimilar features. Our logic poisoning triggers
are generated with the constraint of an unnoticeable limit, which enables our triggers to bypass the
defense.

• RobustGCN models hidden states of nodes as Gaussian distributions to unweight noisy features
and absorb adversarial modifications. Our method explicitly guides the model’s inner prediction
logic to emphasize the importance of our trigger, instead of identifying our triggers as adversarial.

• GNNGuard unweights edges link nodes with low similarity in representation space, effectively
acting as an attention-based defense. Our triggers poison the logic of GNNs to be identified as
important for prediction, thus forcing GNNGuard to focus on triggers instead of unweighting them.

• RIGBD assumes poisoned nodes exhibit high prediction variance, as random edge dropping can
remove triggers and change predictions of poisoned nodes back to the original class. Our method
adopts a clean-label setting, where the poisoned nodes are originally labeled as the target class
without requiring any label alteration. Therefore, removing triggers does not significantly change
predictions, causing RIGBD to fail in identifying triggers.

In our work, we employ the black-box threat model, where defense methods can be deployed against
unseen target models to counter adversaries. While we note that our method can surpass various
defending strategies, including the latest SOTA defense method RIGBD, it is also important to note
that the defense methods in our work employ a strong defense goal, which is cleansing the poisoned
graph and degrading ASR. The defense goal is reasonable in a real-world scenario, as achieving a
weaker defense goal, such as detection, would also lead to the removal of injected triggers naturally.

Meanwhile, we also note that a straightforward and widely adopted defense method is of cleansing
graphs by removing edges with unusually high node degrees Dai et al. (2023); Dhali & Dividino
(2024). To further demonstrate the robustness of our method, we prune {1, 2, 3} edges from nodes
with top-5% and top-10% degree after the trigger injection. We propose a metric, Remaining Trigger
Connectivity (RTC), defined as the ratio of the number of edges connected to the trigger after pruning
to the number before pruning. We evaluate BA-LOGIC under this pruning defense strategy with
RTC(%) and ASR | CA (%) on Arxiv, and record the results in Tab. 12.

From Tab. 12, we obtain the following key findings:
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Table 12: Results of BA-LOGIC against pruning defense strategy.

Pruning top-5% Pruning top-10%
RTC ASR | CA RTC ASR | CA

Prune 1 edge 96.20 97.45 | 60.42 95.80 97.71 | 61.15
Prune 2 edges 94.80 97.25 | 59.37 91.60 96.82 | 58.72
Prune 3 edges 90.40 96.62 | 56.31 88.70 94.75 | 56.03

• Our approach achieves outstanding performance against this pruning defense method. We owe this
to our node selection being of an uncertainty-based rather than a degree-based nature.

• Pruning can defend against backdoor attacks partially, but compromise the clean accuracy of GNN.
This is because the optimization of BA-LOGIC is regulated by an unnoticeable constraint in Eq.(8),
which ensures the injected trigger maintains high cosine similarity with normal samples.

A.8 ADDITIONAL RESULTS OF MODULE CONTRIBUTION ANALYSIS

A.8.1 HYPERPARAMETER ANALYSIS
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Figure 7: Hyperparameter sensitivity analysis of BA-LOGIC.

In the main text of our work, we introduce hyperparameters to regulate the magnitude of the logic
poisoning loss during optimization. To thoroughly understand their impact, we further investigate how
the main hyperparameters, i.e., T in Eq.(7) and β in Eq.(10), affect the performance of BA-LOGIC.
Specifically, T controls the expected margin of importance scores between trigger nodes and clean
neighbor nodes. And β controls the weight of logic poisoning loss, respectively. To explore the
effects of T and β, we take the value of T and β corresponding to the experimental result of Tab. 3 as
the normalized 1 and conduct parameter sweeps. Specifically, we vary T as {0.2, 0.5, 0.8, 1.0, 1.5}.
And β is changed from {0, 0.1, 1, 10, 100}. We report the ASR of attacking a 2-layer GCN in Fig. 7,
from which we observe: (i) Arxiv requires larger trigger margins T than Pubmed, due to its higher
average node degree, where clean neighbor nodes exert stronger influence on predictions. Hence,
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higher margins T and weights β are necessary to avoid attack failure. In practice, the value of T is
often taken as the local maximum of the gradient of the trigger nodes to ensure attack effectiveness.
(ii) ASR degrades when T and β are overly high. This is because unsuitable large values of T and β
could hinder the optimization of BA-LOGIC.

A.8.2 CROSS-METHOD MODULE UTILITY ANALYSIS

In the main text of our work, we have emphasized that one challenge of clean-label graph backdoor
attack facing is that the trigger-attached poisoned samples are correctly labeled as the target class.
Thus, the injected triggers would be treated as irrelevant information in prediction, resulting in poor
backdoor performance.

To address the challenge, we deliberately select the nodes with high uncertainty because:

• These nodes exhibit irregular patterns that are weakly associated with the target class yt

• The triggers obtained by the generator exhibit consistent patterns to poison the prediction logic,
causing the model to shift focus from irregular patterns to treating these triggers as key features

Specifically, we design an uncertainty metric based on two aspects: (i) the probability of being
predicted as the target class is low, and (ii) the node is also uncertain for other classes.

As we stated in our work, the main purpose of poison node selection is more efficient usage of
attack budget, and our main contribution lies in inner logic poisoning, rather than the poison node
selection. Poisoned node selection serves solely as positions for trigger injection. After injecting the
triggers, the target model trained on the backdoored graph is backdoored, and any test node could
be successfully attacked by attaching triggers during the inference of the target model. Indeed, we
randomly selected 25% of test nodes as the target for each evaluation.

In our original comparison, we faithfully preserved each method’s specific poison node selection,
either designed or random. While it ensures a fair comparison, we agree on that evaluate the
performance of baselines when they also poison nodes that are selected by our poisoned node selector
would highlight the module utility. Hence, we update baselines with our poison node selection under
clean label setting, and denote the updated methods with -S. We evaluate them on four datasets and
record the average ASR|CA(%) towards three target models adopted in the main text of our work, i.e.,
GCN, GIN, and GAT:

Table 13: Comparison between BA-LOGIC and poisoned node selection updated baselines.

Dataset ERBA-S EBA-S ECGBA-S GTA-S UGBA-S DPGBA-S BA-Logic
Cora 21.81 | 80.90 33.25 | 72.62 56.84 | 79.28 32.52 | 80.92 68.94 | 81.94 67.87 | 81.88 98.20 | 83.72
Pubmed 22.95 | 85.69 33.99 | 85.50 58.38 | 85.03 41.57 | 86.10 68.87 | 85.82 70.31 | 85.61 96.89 | 85.79
Flickr 4.70 | 46.29 34.15 | 44.99 62.08 | 44.99 51.71 | 45.88 68.08 | 45.66 71.39 | 44.78 99.90 | 45.70
Arxiv 0.01 | 65.43 31.09 | 65.57 54.94 | 64.21 37.98 | 65.79 70.79 | 66.08 69.10 | 66.27 98.03 | 66.02

From Tab. 13, we obtain the following key findings:

• All baselines show enhanced ASR when using our poison node selection, confirming its effective-
ness

• Among them, ECGBA-S has the most significant improvement. It is because we improved its
uncertainty metric, so the node should also be uncertain for other classes

• Methods that select nodes randomly only achieve limited improvement, such as ERBA and DPGBA,
indicating that the trigger is paramount for effective graph backdoor

Results from this analysis demonstrate two main conclusions: (i) Our poisoned node selection module
is effective and generalizable, as its adoption improves the performance of baselines. (ii) However,
the primary source of our method’s superior attack success rate is the logic poisoning mechanism
with solid theoretical ground. This is evidenced by the fact that updated baselines still fail to compare
with our method.
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Figure 8: Comparison of IRT distribution.

A.9 ADDITIONAL ANALYSIS ON IRT AND IMPACT OF ATTACK BUDGET

Important Scores of Trigger Nodes In our preliminary analysis, we conduct a theoretical analysis
to show that the existing methods fail under clean-label settings because their triggers are deemed
unimportant for prediction by the target GNN models. We further reveal that the attack success rate is
bounded by the important rate of triggers, a novel metric proposed in our preliminary analysis. How-
ever, there is still a research question waiting to be addressed: Does BA-LOGIC successfully poison
the target GNNs’ prediction logic as designed? To answer this question, we employ GNNExplainer
to measure trigger importance scores distribution for poisoned nodes, comparing BA-LOGIC against
two leading baselines, UGBA-C and DPGBA-C.

The histograms of the normalized importance scores across four datasets, Cora, Pubmed, Flickr,
and Arxiv, are presented in Fig. 8. For each dataset, we report the IRT distributions averaged over the
three clean models in Tab. 3, i.e., GCN, GIN, and GAT. From these figures, we have the following
key observations:

• BA-LOGIC shows concentration of nodes with large IRT values, with peaks close to the maximal
importance score. This indicates that the logic poisoning triggers are identified as important by the
logic of backdoored GNNs.

• UGBA-C and DPGBA-C exhibit flatter IRT distributions, with most mass in the lower importance
range. This indicates that their triggers are less effective at poisoning the inner logic of the target
models.

• Across all four datasets and three clean models, methods with higher IRT consistently achieve
higher ASR. This is aligned with theoretical analysis, which indicates existing graph backdoor
methods generally lead to a low important rate of triggers, resulting in poor attack performance
under the clean-label setting.
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Figure 9: Impact of attack budget.

Impact of Attack Budget In our preliminary
analysis, we evaluate BA-LOGIC and competi-
tors by varying the size of poisoned nodes
VP , which is also the attack budget of back-
door attack. Here, we further explore the
attack performance with various attack bud-
gets. Specifically, we vary the size of VP as
{80, 160, 240, 320, 400, 480}, and record the re-
sults on Arxiv with GCN and GAT in Fig. 9,
from which we observe: (i) ASR of most com-
petitors increases with the increase of VP , which intuitively satisfies expectations. BA-LOGIC
consistently outperforms the baselines regardless the size of VP , showing its effectiveness. Notably,
the gaps between our method and baselines widen when the budget is smaller, demonstrating the
effectiveness of the poisoned node selection in effectively utilizing the attack budget. (ii) Compared
to other competitors, the ASR of BA-LOGIC remains stable across GNN models with distinct inner
logic, showing BA-LOGIC’s transferability.

We further investigate the impact of a smaller attack budget. Specifically, we conducted additional
evaluations for EBA-C, UGBA-C, and DPGBA-C with attack budget ranges from {10, 20, 30, 40, 50}.
We evaluate these methods on Cora and Pubmed, and record ASR | CA(%) as below:

From Tab. 14, we have the following key findings:
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Table 14: Results (ASR | CA(%)) on Cora and Pubmed with less attack budget.

Cora Pubmed
∆P EBA-C UGBA-C DPGBA-C BA-Logic EBA-C UGBA-C DPGBA-C BA-Logic
10 5.13 | 82.47 15.29 | 81.05 17.87 | 80.95 65.16 | 83.11 0.69 | 86.38 11.89 | 85.36 21.15 | 84.95 62.07 | 85.32
20 12.39 | 82.78 51.26 | 80.14 45.43 | 81.36 87.13 | 83.06 8.61 | 86.21 34.62 | 85.36 49.31 | 84.36 88.04 | 85.09
30 15.64 | 82.34 62.20 | 80.65 50.77 | 80.44 92.17 | 82.39 19.47 | 86.75 64.16 | 85.05 54.61 | 85.44 94.79 | 84.67
40 29.03 | 81.86 63.18 | 80.37 51.03 | 80.85 94.22 | 83.16 29.76 | 85.33 64.07 | 85.16 55.57 | 85.85 95.44 | 84.96
50 29.17 | 80.99 63.23 | 79.85 51.15 | 80.75 96.05 | 81.85 30.66 | 85.17 63.97 | 85.25 57.86 | 85.75 95.71 | 85.05

• Our method exhibits leading performance against all baselines, and all methods demonstrate slightly
better CA with less attack budget.

• The relationship between ASR and attack budget is nonlinear, and ASR tends to show more obvious
improvements when the attack budget increases from a smaller value.

B TIME COMPLEXITY ANALYSIS

In BA-LOGIC, the time complexity mainly comes from the logic poisoning sample selection and the
bi-level optimization of the logic poisoning trigger generator. Let h denote the embedding dimension.
The cost of the logic poisoning node selection can be represented approximately as O(Mdh|V|),
where d is the average degree of nodes and M is the number of training iterations for the pre-trained
GCN model, which is small. The cost of bi-level optimization consists of updating the weight of the
surrogate GNN model in inner iterations and updating the logic poisoning trigger generator in outer
iterations. The cost for updating the surrogate model is approximately O(Ndh|VP |), where d is the
average degree of nodes and N is the number of inner training iterations for the surrogate GNN model.
For the trigger generator, the classification loss and prediction logic poisoning loss are computed with
cost as O(2dh|V|). For the unnoticeable loss LU , its time complexity is O(hd|Vp|∆g). Hence, the
overall time complexity of each iteration of bi-level optimization is O(dh(2|V|+ (∆g +N)|VP |),
which is linear to the size of the graph. Hence, BA-LOGIC can efficiently poison the inner prediction
logic of target models for clean-label graph backdoor attacks.

C IMPLEMENTATION DETAILS

C.1 DATASETS STATISTICS

In the main text of our work, we select extensive public real-world graph datasets to evaluate our
methods. These graph datasets are diverse in sources, scales, heterophily, tasks, etc. The detailed
statistics of these graph datasets are presented in Tab. 15.

Table 15: The statistics of datasets in our work.

Datasets #Nodes #Edges #Graphs #Features #Classes
Cora 2,708 5,429 1 1,433 7
Pubmed 19,717 44,338 1 500 3
Flickr 89,250 899,756 1 500 7
Arxiv 169,343 1,166,243 1 128 40
CS 18,333 163,788 1 6,805 15
Physics 34,493 495,924 1 8,415 5
Squirrel 5,201 217,073 1 2,089 5
Chameleon 2,277 36,101 1 2,325 5
Penn 41,554 1,362,229 1 5 2
Genius 421,961 984,979 1 12 2
Products 2,449,029 61,859,140 1 100 47
MUTAG ~17.9 ~39.6 188 7 2
NCI1 ~29.8 ~32.3 4110 - 2
PROTEINS ~39.1 ~145.6 600 3 6
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C.2 DETAILS OF COMPARED METHODS

In the main text of our work, we compare BA-LOGIC with representative and state-of-the-art graph
backdoor attack methods, such as DPGBA-C Zhang et al. (2024b), and UGBA-C Dai et al. (2023).
These methods originally required altering the labels of poisoned nodes. In our experiments, they
are extended to the clean-label setting by only selecting poisoned nodes of the target class. We
also compare with ERBA Xu & Picek (2022), and ECGBA Fan & Dai (2024), which are the latest
graph backdoor attacks for clean-label settings. We further extend the comparison with our method
to SCLBA Dai & Sun (2025), GCLBA Meguro et al. (2024), TRAP Yang et al. (2022) for graph
classification; and include SNTBA Dai & Sun (2024), PSO-LB and LB Zheng et al. (2023) for
edge prediction. For a fair comparison, hyperparameters of the methods are fine-tuned based on the
performance of the validation set. The details of the compared methods are described as follows:

• ERBA Xu & Picek (2022): It is the early work among the initial clean-label backdoor attacks on
GNNs. ERBA tailors graph classification tasks, samples training graphs randomly as targets, and
generates Erdös–Rényi random graphs as triggers. ERBA can also be considered a straightforward
variant of SBA Zhang et al. (2021). To adapt ERBA to the settings of our work, we maintain a
fixed node size of three within the random graph and select poisoned nodes from training nodes
belonging to the target class. All other settings remain consistent with those described in the
original work.

• EBA Xu et al. (2021): It is the first explainability-based graph backdoor attack. EBA aims to
conduct a graph backdoor attack on both node classification and graph classification tasks. For the
graph classification task, EBA selects the least important nodes as trigger injecting positions based
on the node importance matrix generated by GNNExplainer. Thus, EBA can remain unnoticeable to
some extent. For the node classification task, EBA selects the most important node features based
on the node importance matrix generated by GraphLIME Huang et al. (2022) and manipulates them
as trigger features. To adapt EBA to the settings of our work, we employ GNNExplainer to select
the most representative nodes from the target class without altering their labels. The trigger is an
Erdös-Rényi random graph with a density of ρ = 0.8, as in the original work. All other settings
remain consistent with those described in the original work.

• ECGBA Fan & Dai (2024): This is one of the latest clean-label graph backdoor attacks focused
on node classification. ECGBA completes the graph backdoor attack by coordinating a poison
node selector and a trigger generator. It selects nodes that are misclassified as target classes by
surrogate GCN as poison nodes, thereby improving performance to a certain extent. However, it
should be noted that ECGBA does not consider the inner prediction logic of the target model, and
for efficiency, ECGBA’s trigger only contains one node, which limits its effect. To adapt ECGBA
to the settings of our work, we select poisoned nodes from training nodes belonging to the target
class. All other settings remain consistent with those described in the original work.

• GTA Xi et al. (2021): GTA selects poisoned nodes randomly but adopts a trigger generator to inject
subgraphs as node-specific triggers. The trigger generator is purely optimized by the backdoor
attack loss with no constraints. To adapt GTA to the settings of our work, we prohibit GTA from
modifying the labels of poisoned nodes and select poisoned nodes from training nodes belonging
to the target class. All other settings remain consistent with those described in the original work.

• UGBA Dai et al. (2023): It is the state-of-the-art backdoor attack on GNNs. UGBA adopts a
representative node selector to utilize the attack budget fully. An adaptive trigger generator is
optimized with constraint loss to ensure the generated triggers are unnoticeable. To adapt UGBA
to the settings of our work, we prohibit UGBA from modifying the labels of poisoned nodes and
select poisoned nodes from training nodes belonging to the target class. All other settings remain
with those described in the original work.

• DPGBA Zhang et al. (2024b): Except for the node selector and trigger generator, DPGBA adopts
an out-of-distribution detector to ensure the attributes of triggers within the distribution and thus
achieve unnoticeable attacks. To adapt DPGBA to the settings of our work, we prohibit DPGBA
from modifying the labels of poisoned nodes and select poisoned nodes from the target class. All
other settings remain consistent with those described in the original work.

• SCLBA Dai & Sun (2025): SCLBA is one of the latest clean-label graph backdoor attacks on
GNNs for graph classification. SCLBA leverages node semantics by using a specific, naturally
occurring type of node as a trigger. Its core design involves selecting semantic trigger nodes based
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on a node importance analysis using degree centrality, followed by injecting these triggers into
a subset of target class graph samples. To adapt SCLBA to the settings of our work, we select
poisoned graphs from training graphs from the target class. All other settings remain consistent
with those described in the original work.

• GCLBA Meguro et al. (2024): GCLBA is a gradient-based clean-label graph backdoor attack for
graph classification. GCLBA comprises two main phases: graph embedding-based pairing and
gradient-based trigger injection. The pairing phase establishes relationships between graphs from
the target and other classes based on distance in the embedding space, selecting targets far from the
decision boundary. The trigger injection phase embeds tailored edges as triggers into paired graphs
based on gradient. To adapt GCLBA to the settings of our work, we select poisoned graphs from
training graphs from the target class. All other settings remain consistent with those described in
the original work.

• TRAP Yang et al. (2022): TRAP is a clean-label graph backdoor attack for graph classification.
TRAP generates structure perturbation as triggers without a fixed pattern. TRAP adopts the
same black-box setting as SCLBA, achieved by exploiting a surrogate GCN model to generate
perturbation triggers via a gradient-based score matrix. To adapt TRAP to the settings of our work,
we select poisoned graphs from training graphs from the target class. All other settings remain
consistent with those described in the original work.

• SNTBA Dai & Sun (2024): SNTBA proposes a backdoor attack targeting GNN models in edge
prediction tasks. SNTBA uses a single node as the backdoor trigger, and the backdoor is injected
by poisoning selected unlinked node pairs in the training graph. SNTBA injects the trigger to both
nodes in the pairs and links them, showing a more relaxed threat model. During inference, the
backdoor is activated by linking the trigger node to the two end nodes of unlinked target node pairs
in the test graph. The attacked GNN model would incorrectly predict that a link exists between
the unlinked target node pairs. To adapt SNTBA to the settings of our work, we select poisoned
nodes from training nodes of the target class and prohibit SNTBA from modifying the link state.
All other settings remain consistent with those described in the original work.

• LB Zheng et al. (2023): LB is a backdoor attack method for edge prediction. LB utilizes a subgraph
as trigger, combining fake/injection nodes with the nodes of the target link. The initial trigger is a
random graph comprising two injection nodes and the two target link nodes. LB optimizes triggers
by gradient generated by an edge prediction GNN model, aiming to minimize the attack objective
loss, i.e., L2 distance between prediction and the attacker-chosen target link state T . The trigger
is iteratively updated based on the gradient direction. LB requires modifying the target link state
embedded with the trigger to T . LB supports white-box and black-box attack scenarios, where the
latter utilizes a surrogate model. To adapt LB to the settings of our work, we select poisoned nodes
from training nodes of the target class and prohibit LB from modifying the link state. All other
settings remain consistent with those described in the original work.

• PSO-LB Zheng et al. (2023): PSO-LB is a variant proposed for comparison in the original work
of LB. It utilizes particle swarm optimization Kennedy & Eberhart (1995) to modify the injection
node features and structure of the trigger. To adapt PSO-LB to the settings of our work, we select
poisoned nodes from training nodes of the target class and prohibit PSO-LB from modifying the
link state. All other settings remain consistent with those described in the original work.

C.3 OTHER IMPLEMENTATION DETAILS

Our implementation is based on PyTorch 2.1.0 and PyTorch Geometric 2.4.0. All the experiments are
evaluated on an NVIDIA A100 GPU with 80 GB of memory. The detailed architecture of our method
is described as follows. Firstly, the framework of BA-LOGIC consists of the following modules:

• A 2-layer GCN as the surrogate model.
• A 2-layer GCN as the pre-trained poisoned node selector.
• A 2-layer MLP as the logic-poisoning trigger generator.

Secondly, for each architecture of GNN models, we fix the hyperparameters of BA-LOGIC as follows:

• Target class: 0
• Trigger size: 3.
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• Number of GNN layers L: 2.
• Hidden dimension H: 32.
• Weight decay: 5e− 3.
• Learning rate: 1e− 2.
• Seeds of NumPy, Torch, and CUDA: 3407.
• Activation function: ReLU for GCN and GIN, ELU for GAT.
• Mixed precision training is enabled for speeding up.

Thirdly, the two hyperparameters β and T are selected based on the grid search on the validation
set. Specifically, T is set as {32, 32, 64, 72} and β is set as {0.8, 0.8, 1.0, 1.2} for Cora, Pubmed,
Flickr and Arxiv, respectively.

In practice, we split the graph into training, validation, and test sets with a ratio of 25%/25%/50%.
We set the training epoch for the surrogate GCN and the logic-poisoning trigger generator as 200
for all datasets, and we vary the attack budget ∆P on the number of VP as {100, 100, 200, 200} for
Cora, Pubmed, Flickr, and Arxiv, respectively.

Table 16: Comparisons of dataset node size and method training time.

Dataset #Nodes UGBA DPGBA BA-LOGIC

Flickr 89,250 32.0s 57.7s 123.4s
Arxiv 169,343 51.3s 68.9s 155.7s

In our empirical experiments conducted on large-scale graph datasets such as Flickr and Arxiv,
which comprise 89,250 and 169,343 nodes respectively, we set the size of VP as 200 on average and
still achieve a much higher ASR than other competitors. We also report the overall training time cost
of BA-LOGIC compared with UGBA and DPGBA on the Flickr and Arxiv datasets in Tab. 16. The
results are consistent with the time complexity analysis in Appendix B, indicating that the BA-LOGIC
requires only approximately 60 seconds more training time than the two most powerful competitors
on a larger graph. The additional time is acceptable given that our BA-LOGIC achieves an ASR
over 90%, while these competitors achieve an ASR over 60%. This demonstrates that BA-LOGIC
effectively generates triggers that the target model memorizes quickly by poisoning the inner logic,
highlighting its potential in scalability.

D RELATED WORKS

Graph Neural Networks Graph Neural Networks (GNNs) come into the spotlight due to their
remarkable ability to model graph-structured data Chen et al. (2020); Hamilton et al. (2017); Kipf &
Welling (2017); Gasteiger et al. (2019); Veličković et al. (2018); Wu et al. (2019). Recently, many
GNN models have been proposed to further improve the performance of GNNs Dai et al. (2024).
There are also works that address the fairness Dai & Wang (2021a), robustness Wang et al. (2023);
Dai et al. (2022a), and explainability Pope et al. (2019); Dai & Wang (2021b) challenge of diverse
GNN models. And GNN models for handling heterophilous graphs, in which connected nodes may
in fact have distinct attributes Luan et al. (2022), are also proposed Zhang et al. (2019); Lim et al.
(2021). While the representational powers of GNN models have been well studied, GNN models’
performance under diverse backdoor attacks has remained largely an open question, particularly
performance under clean-label settings Zhang et al. (2021). Our analysis reveals that the crux of
GNNs’ vulnerability to backdoor attacks lies in whether their prediction logic is affected by the
backdoor patterns. Based on this, we propose a novel framework to address this open question.

Graph Backdoor Attacks Exploring backdoor attacks on graphs has aroused increasing interest
among the graph learning community Zhang et al. (2021); Xi et al. (2021); Dai et al. (2023); Xu &
Picek (2022); Zhang et al. (2024b). A large body of research focuses on enhancing graph backdoor
attacks via generating the adaptive triggers under the general dirty-label settings Xi et al. (2021),
and some of them point out the importance of remaining unnoticeable from the perspective of
similarity Dai et al. (2023) and distribution Zhang et al. (2024b). For the clean-label graph backdoor
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attack, some initial efforts Xu & Picek (2022); Xing et al. (2024); Chen & Zhou (2024); Dai & Sun
(2025) have been proposed to harness significant node features for trigger design. ERBA Xu &
Picek (2022) proposes to conduct the graph backdoor attack under clean-label settings. However, its
discussions focus on graph classification as a downstream task, which differs from node classification
as the node instances are, in fact, interdependent in the latter downstream task Hu et al. (2020).
Moreover, ERBA generates Erdös–Rényi random graph Erdos et al. (1960) to act as triggers, showing
limited exploration from the effectiveness perspective. EBA Xu et al. (2021), CGBA Xing et al.
(2024), and EGNN Wang et al. (2024a) conduct the graph backdoor attack for node classification by
changing part of the most representative node features as a trigger instead of injecting a subgraph
containing nodes. Similarly, clean-label graph backdoor attack methods for graph classification
by manipulating the edges as a trigger are also proposed Yang et al. (2022); Meguro et al. (2024).
However, modifying the present feature or structure in the graph is generally unrealistic for graph
backdoor injection. For instance, in social or transaction networks, attackers could easily register
malicious users and build connections with other users, while modifying existing users’ attributes or
connections that are well-preserved, is much harder to achieve Alothali et al. (2018). There is also
concurrent work Xia et al. (2025) that proposes to address the failure of existing clean-label graph
backdoor attacks, which boosts the classification confidence of trigger-attached samples towards the
target class. In general, the existing works differ fundamentally from our method, which achieves
logic poisoning that explicitly makes the trigger’s importance score to exceed that of clean nodes by
a predefined margin, enforcing the target model to deem our triggers as essential for its prediction.
Our method addresses a novel problem to poison the inner prediction logic of GNNs for an effective
clean-label graph backdoor attack.

Explaining the Prediction Logic of GNNs To enhance the trustworthiness of the predictions
made by GNNs, researchers have made extensive attempts to develop explanation methods for GNN
models Huang et al. (2022); Schnake et al. (2021); Luo et al. (2020). GNNExplainer Ying et al.
(2019) is proposed to leverage mutual information to find a compact subgraph with the most related
features for interpreting the prediction of a node or graph being explained. The work of Pope et al.
(2019) proposes a variant of Grad-CAM Selvaraju et al. (2017) towards GNNs, which identifies
important and class-specific features at the last convolutional layer. π-GNN Yin et al. (2023) is
one of the state-of-the-art explanation methods that distill the universal interpretability of GNNs by
pre-training over synthetic graphs with ground-truth explanations. Research on explaining makes the
prediction logic of GNNs traceable, which in turn helps researchers to understand the behaviors of
GNNs (Zhang et al., 2024a; Dai et al., 2024). Many works have been proposed to enhance GNNs from
an explainability perspective, enabling them to provide accurate predictions and faithful explanations
simultaneously Wang et al. (2024b); Tang et al. (2023). In contrast, while explainability-enhanced
graph backdoor attacks Xu et al. (2021); Wang et al. (2024c;a) are still in their nascent stages, there
is even less attention paid to focus on the clean-label graph backdoor attack, highlighting a gap that
our method aims to address.

E THREAT MODEL LEVEL COMPARISON

In the main text of our work, we introduced the threat model of BA-LOGIC in Sec. 2.1. To highlight
the fairness of the comparison between our method and the included baselines, we further present a
more comprehensive threat model level comparison.

In general, our method adopts a threat model that has stricter limitations than most existing graph
backdoor attacks. Specifically, we assume the attacker’s capability is limited to:

• The attacker can NOT remove or manipulate the existing nodes and edges in the training graph.

• The attacker can NOT alter the labels of the training data.

• The attacker can NOT know the information of the target model, such as parameters or gradients.

• The attacker can NOT either know or control the defending by data cleaning. Moreover, we
demonstrate the effectiveness of BA-LOGIC against defenders that prune malicious nodes and
edges in Sec. 5.4.

• The attacker can ONLY inject a small number of triggers to the training nodes. Each trigger is
subjected to strict limits on size.
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Table 17: Threat model level comparison.

Method
Manipulates Existing

Nodes/Edges
Alters Training

Labels
Knows/Controls

Defense for Data Cleaning
Trigger

Injection
Comparison

to Ours

GTA ✗ ✓ ✗ ✓ Stronger assumption than ours

UGBA ✗ ✓ ✗ ✓ Stronger assumption than ours

DPGBA ✗ ✓ ✗ ✓ Stronger assumption than ours

TRAP ✓ ✓ ✗ ✗ Stronger assumption than ours

EBA ✓ ✗ ✗ ✗ Stronger assumption than ours

CGBA ✓ ✗ ✗ ✗ Stronger assumption than ours

SCLBA ✓ ✗ ✗ ✗ Stronger assumption than ours

GCLBA ✓ ✗ ✗ ✗ Stronger assumption than ours

SNTBA ✓ ✓ ✗ ✓ Stronger assumption than ours

LB ✓ ✓ ✗ ✓ Stronger assumption than ours

ERBA ✗ ✗ ✗ ✓ Same

ECGBA ✗ ✗ ✗ ✓ Same

Our BA-Logic ✗ ✗ ✗ ✓ –

For the attacker’s knowledge, our threat model is in line with the commonly adopted black-box graph
backdoor attacks. Specifically, we assume that:

• The attacker can NOT know target GNN’s architecture and hyperparameters. As stated in Sec. 2.1,
we adopt a strict black-box setting where the attacker can only employ a surrogate model and
transfer the attack to the unseen target model for evaluation.

• The attacker can ONLY know partial training data of the target GNN. This widely adopted
assumption is reasonable. For example, when a GNN is trained on data from Twitter, much of that
data is publicly accessible and can be readily crawled by an attacker.

We further summarize a threat model comparison of our method with existing graph backdoor attacks
in Table 17 to highlight the fairness of our comparison, from which we highlight that:

• Our BA-Logic does not enable training label altering, which imposes a stricter limitation and
weaker assumption compared to general backdoor attacks.

• Some clean backdoor attacks obtain triggers by altering existing nodes or edges, which is less
practical than trigger injection. For instance, in social or transaction networks, attackers could
easily register malicious users and build connections with other users. However, modifying the
attributes or connections of existing users, which are well-preserved, is much harder to achieve in
practice.

• Our BA-Logic adopts the same threat model as two recently proposed clean-label backdoor methods,
i.e., ERBA and ECGBA. This alignment ensures our method is evaluated under a contemporary
and practical threat model, facilitating a fair and relevant comparison.

F OPTIMIZATION ALGORITHM

We present the algorithm for solving the bi-level optimization problem in Eq. (10).

Lower-Level Optimization In the lower-level optimization, the surrogate GNN is trained on the
backdoored dataset. To reduce the computational cost, we update surrogate model θ for N inner
iterations with fixed θg to approximate θ∗:

θn+1 = θn − αf∇θLf (θ, θg), (15)

where θn denotes model parameters after n−th iterations. αs is the learning rate for training the
surrogate model.

Upper-Level Optimization In the outer iteration, the updated surrogate model parameters θN are
used to approximate θ∗. Moreover, we apply a first-order approximation in computing gradients of
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Algorithm 1 Algorithm of BA-LOGIC

Require: G = (V, E ,X), YL, β, T .
Ensure: Backdoored graph GB , trained trigger generator fg

1: Initialize θ and θg for surrogate model f and logic poisoning trigger generator fg , respectively;
2: Select logic poisoning nodes set VP based on Eq.(4) ;
3: while not converged yet do
4: for t = 1, 2, . . . , N do
5: Update θ by descent on ∇θLf based on Eq.(15) ;
6: end for
7: Update θg by descent on ∇θg (

∑
l(·) + LU + βLA) based on Eq.(16);

8: end while
9: for vi ∈ VP do

10: Generate the trigger gi for vi by using fg;
11: Update GB based on a(Gi

B , gi);
12: end for
13: return GB , and fg;

θg to reduce the computation cost further:

θk+1
g = θkg − αg∇θg

( ∑
vi∈V

l(fθ̄(ṽi(θg)), yt) + LU (θg) + βLA(θ̄, θg)
)
, (16)

where θ̄s indicates the parameters when gradient propagation stopping. αg is the learning rate of the
training trigger generator. The training algorithm and time complexity analysis of BA-LOGIC are
given in Appendix G and Appendix B, respectively.

G TRAINING ALGORITHM

We formalize the training algorithm of BA-LOGIC in Algorithm 1. In line 2, we first select the
poisoned nodes VP with the top-∆P highest scores calculated by Eq.(4). From line 3 to line 9,
we train the trigger generator fg by solving a bi-level optimization problem based on Eq.(10). In
detail, we update the lower-level optimization (line 5) to poison the target model’s inner logic and the
outer-level optimization (line 7) to update trigger generator fg , respectively. These goals are achieved
by doing gradient descent on θ and θg based on Eq.(15) and Eq.(16). From line 10 to line 13, we use
the well-trained fg to generate triggers for each poisoned node vi ∈ VP and update G to obtain the
backdoored graph GB .

After presenting the training algorithm of BA-LOGIC, we analyze the time complexity of BA-LOGIC
in Appendix B.

H THEORETICAL ANALYSIS

In the main text of this work, we conclude that the failure of existing clean-label graph backdoors
stems from the target model’s inability to treat the trigger as a critical factor influencing classification
outcomes. To rigorously analyze the failure mechanism of existing clean-label graph backdoor
methods, we conduct a theoretical analysis in Sec. 2.3. Here we provide the proof.

Assumptions on Graphs Following Dai et al. (2023); Zhang et al. (2025), we consider a graph G
where (i) The node feature xi ∈ Rd is sampled from a specific feature distribution Fyi that depends on
the node label yi. (ii) Dimensional features of xi are independent to each other. (iii) The magnitude
of node features is bounded by a positive scalar vector S, i.e., maxi,j |xi(j)| ≤ S.

These assumptions are reasonable in the context of graph representation learning for the following
reasons:

• Label-correlated feature distributions (Assumption i): In graph-structured data, node features
often exhibit strong correlations with their labels. For instance, in an academic collaboration
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network, researchers’ publication keywords (features) naturally reflect their disciplinary domains
(labels) through semantic correspondence;

• Independence of feature dimensions (Assumption ii): In many real-world graph datasets, espe-
cially the high-dimensional ones, the correlations between features are typically weak or statistically
insignificant.

• Boundaries of features (Assumption iii): Feature magnitudes are often bounded due to prac-
tical constraints in real-world data. Moreover, common techniques such as normalization or
standardization during pre-processing can effectively bound them within a certain range.

Theorem 1. We consider a graph G = (V, E ,X) follows Assumptions. Given a node vi with label yi,
let degi be the degree of vi, and γ be the value of the important rate of trigger. For a node vi attached
with trigger gi, the probability for GNN model f predict vi as target class yt is bounded by:

P(f(vi) = yt) ≤ 2d · exp
(
−degi · (1− γ)2 · ∥µyt − µyi∥22

2d · S2

)
, (17)

where d is the node feature dimension, µyt
and µyi

are the class centroid vectors in the feature space
for yi and yt, respectively.

Proof. We present the pre-activated node representation as E[hi] = E[
∑

j∈N (i)
1√

degi
√

degj
Wxj].

Following the Assumption (ii), E[hi] can be written as:

E[hi] = E

 ∑
j∈N (i)

1√
degi

√
degj

Wxj


=

∑
vj∈Nc(i)

1√
degi

√
degj

WE[xj ] +
∑

vk∈Ng(i)

1√
degi

√
degk

WE[xk],

(18)

Let αij =
1√

degi
√

degj
denotes the normalized aggregation weight. To get a tighter bound, we assume

that the clean neighbor nodes of vi are labeled as yi, and the neighbor node within the trigger is
already considered important by an arbitrary graph explainer for the prediction of vi. Moreover,
following Dai et al. (2022b); Zhang et al. (2025), we consider a regular graph G, i.e., each node has
the same number of neighbors. For a node vi ∈ VP and its neighbors N (i), after attaching trigger gi
to node vi, its neighbor can be divided into clean nodes Nc(i) and trigger nodes Ng(i). Then we can
present the mathematical definition of IRT as follows:

IRT =
#Trigger Nodes in Top-k Important Nodes

#Poisoned Nodes |VP |

=
1

|VP |
·
∑

vi∈VP

|Ng(i)|
|Ng(i)|+ |Nc(i)|

(19)

As a fixed VP makes 1
|VP | remains constant, the IRT value in our proof can be simplified as γ =∑

vk∈N (gi)
αik =

|Ng(i)|
|Ng(i)|+|Nc(i)| . Substitute γ with Eq.(18), we have:

E[hi] = (1− γ)WEx∼Fyi
[x] + γWEx∼Fyt

[x]

= (1− γ)Wµyi
+ γWµyt

(20)

Let µ̃y = Wµy denote the class centroid feature vector in the embedding space via the linear mapping
by a GNN model’s weight matrix W. To get a bound for the distance between E[hi] and µ̃yt in the
embedding space, we substitute Eq.(20) with the triangle inequality and have:

∥E[hi]− µ̃yt
∥2 = |E[hi]− µ̃yi

+ µ̃yi
− µ̃yt

∥2
≥ ∥µ̃yi

− µ̃yt
∥2 − ∥E[hi]− µ̃yi

∥2
= ∥µ̃yi − µ̃yt∥2 − γ∥µ̃yt − µ̃yi∥2
≥ (1− γ) · ∥µ̃yt

− µ̃yi
∥2

(21)
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Following Wang & Shen (2024), we consider that the decision boundary in the embedding space for
an arbitrary GNN model to predict node vi as yi is ∥hi − µ̃yi

∥2 < ∥hi − µ̃yj
∥2, ∀yi ̸= yj . For a

successful backdoor attack, there must have a small ϵ > 0 such that ∥hi − µ̃yt
∥2 < ϵ < ∥hi − µ̃yi

∥2.
Substitute the equation with triangle inequality, we have:

∥hi − E[hi]∥2 ≥ ∥E[hi]− µ̃yt
∥2 − ∥hi − µ̃yt

∥2
≥ ∥E[hi]− µ̃yt

∥2 − ϵ
(22)

which indicates the successful backdoor attack is included in the bounds for hi deviates from its
expectation E[hi].

To continue the proof, we then introduce the celebrated Hoeffding’s Inequality:

Lemma 1. (Hoeffding’s Inequality). Let X1, . . . , Xn be independent bounded random variables
with Xi ∈ [a, b] for all i, where −∞ < a ≤ b < ∞. Then

P

(
1

n

n∑
i=1

(Xi − E[Xi]) ≥ t

)
≤ exp

(
− 2nt2

(b− a)2

)
(23)

and

P

(
1

n

n∑
i=1

(Xi − E[Xi]) ≤ −t

)
≤ exp

(
− 2nt2

(b− a)2

)
(24)

holds for all t ≥ 0.

For each feature dimension j ∈ {1, ..., d}, the node embedding hi can be decomposed as hi[j] =∑
k∈N (i) αikWxk[j]. For any dimension j, xk[j] is independent and bounded by [−S, S]. Hence,

directly use Hoeffding’s inequality, for any t1 > 0 and a fixed dimension j, we have:

P (|hi(j)− E[hi(j)]| ≥ t1) ≤ 2 exp

(
− 2t21∑

k(2αikWS)2

)
≤ 2 exp

(
− degi · t21
2ρ(W)2S2

)
,

(25)

where ρ2(W) denotes the largest singular value of W. By applying union bound over all d dimension,
we extend Eq.(25) as:

P
(
∥hi − E[hi]∥2 ≥ t1

√
d
)
≤ P

 d⋃
j=1

{|hi(j)− E[hi(j)]| ≥ t1}


≤

d∑
j=1

P (|hi(j)− E[hi(j)]| ≥ t1)

≤ 2d exp

(
− t21
2ρ(W)2S2 · 1

degi

)

= 2d exp

(
− degit

2
1

2ρ(W)2S2

)
(26)

Let t2 = t1 ·
√
d = (1− γ) · ∥µ̃yt

− µ̃yi
∥2, then we have:

P (∥hi − E[hi]∥2 ≥ t2) ≤ 2d exp

(
− degit

2
1

2ρ(W)2S2d

)
= 2d exp

(
−degi · (1− γ)2 · ∥µ̃yt − µ̃yi∥22

2ρ(W)2S2

) (27)
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Substitute Eq.(27) with the upper bound of probability derived from Eq.(22), we denote ρ(W) =
∥W∥2 to present the matrix 2-norm of W, then we have:

P(f(vi) = yt) ≤ P (∥hi − E[hi]∥2 ≥ t)

≤ 2d exp

(
−degi∥Wµyt

−Wµyi
∥22

2ρ(W)2S2d

)
≤ 2d exp

(
−degi∥W∥2∥µyt

− µyi
∥22

2ρ(W)2S2d

)
= 2d exp

(
−degi∥µyt − µyi∥22

2S2d

)
,

(28)

which completes the proof.

I ADDITIONAL ANALYSIS OF ATTACKING AGAINST ADAPTIVE DEFENSES

In Appendix A.7, we evaluated our method against existing defending strategies. While these widely
adopted defending strategies highlight the effectiveness of BA-LOGIC, there are gaps between their
defending goals and defending against logic poisoning.

Logic poisoning is a novel approach proposed by BA-LOGIC, which makes the trigger crucial for
prediction by forcing a gradient-based importance score to exceed that of clean nodes, thereby directly
increasing the probability of the victim model predicting the trigger-attached node as the target class
without altering the label. We find that exploring the performance of BA-LOGIC against adaptive
defenses, especially those designed to alleviate logic poisoning, could be informative.

In this subsection, we propose four adaptive defenses against logic poisoning attacks to further
strengthen our contributions. Here, we present the brief introductions of these adaptive defenses.
Specifically:

• Explainability Regularization (ER): We leverage class activation mapping (CAM) Zhou et al.
(2016) to measure the neighbors’ contribution in predicting the target node. By incorporating an
entropy-based regularization term during the training of the model, we penalize low-entropy CAM
distributions on neighbors. This in-processing defense aims to avoid any single node becoming
dominant for the prediction.

• Gradient Masking (GM): We first train a victim model and record the neighbors’ gradient
contribution on the prediction of labeled nodes. A lower entropy implies high dependence on a
certain neighbor, which might be the trigger node. Different from ER, GM is a pre-processing
defense method. We mask out the edges between these nodes and obtain the cleaned graph.

• Collaborative Defense (CD): We train a batch of independent GNNs with diverse initialization,
data splits, and hyperparameters, then we adopt an ensemble aggregation to make a final prediction
on nodes. As these independent models have various local prediction logic Deng & Mu (2023), the
diverse prediction logic of collaborators can alleviate the logic poisoning.

• Sampling And Masking (SAM): We repeatedly sample and mask edges during the training of the
victim model. The edges are sampled from a probability distribution indicating the CAM-based
importance for node prediction. Note that masking edges enables the model to perform masked
forward propagation and update node representations, rather than clipping the edges. We use
the before-and-after difference of the classifier in the final prediction as a regularization term to
penalize when the prediction relies heavily on certain nodes.

We evaluate our BA-LOGIC and competitors against the proposed adaptive defense methods. We first
finetuned these adaptive defenses based on the performance of defending against BA-LOGIC. We
also record the clean accuracy of vanilla GNN models after applying the defenses with no attacks as
Accuracy. Then we present the ASR|CA(%) of these methods in Tab. 18. The gray cell indicates the
competitor with the highest ASR. From the table, we obtain the following key observations:

• The adaptive defense can partially weaken the backdoor, indicating promising directions against
logic poisoning. However, under our BA-LOGIC, the ASR remains generally high, while CA
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Table 18: Results (ASR|CA(%)) of backdoor methods against adaptive defenses.

Dataset Defenses Accuracy ERBA ECGBA EBA-C GTA-C UGBA-C DPGBA-C BA-LOGIC

Cora

ER 84.11 7.83|82.36 42.59|82.07 20.74|75.75 30.56|82.38 45.82|80.37 49.31|82.91 68.67|71.85
GM 84.12 6.91|73.71 52.31|75.58 19.38|67.10 31.42|73.73 50.41|71.16 51.16|74.94 75.03|72.31
CD 84.10 0.05|74.72 44.62|78.14 21.78|68.11 45.34|74.74 62.71|70.14 48.10|76.45 70.11|70.02
SAM 84.09 0.03|73.21 45.01|81.66 25.19|66.60 51.08|73.23 39.95|70.65 33.08|67.87 59.29|75.69

Pubmed

ER 86.51 5.12|80.57 52.17|86.18 17.53|80.38 27.68|80.98 46.11|74.75 57.09|80.16 80.14|67.22
GM 86.51 3.21|75.65 56.22|80.01 16.29|75.46 28.45|76.06 52.30|71.16 52.61|75.16 78.78|66.48
CD 86.49 0.13|77.08 54.41|81.55 14.68|76.89 21.37|77.49 64.51|72.24 51.11|76.85 73.92|69.01
SAM 86.33 0.12|78.78 55.71|82.13 13.24|78.59 20.67|79.19 41.47|71.65 37.01|81.96 77.15|66.23

Flickr

ER 46.17 7.62|44.87 31.62|44.28 22.34|44.24 31.76|44.46 52.11|43.92 59.74|43.65 69.02|41.27
GM 46.15 5.49|43.49 24.85|43.41 20.12|42.86 28.68|43.08 40.26|42.23 47.89|42.06 75.49|39.84
CD 46.15 5.12|44.44 27.93|44.01 21.28|43.81 29.53|44.03 46.37|43.36 43.96|43.18 82.93|40.52
SAM 46.04 4.38|43.67 26.71|43.12 19.85|43.04 27.83|43.26 43.05|42.66 40.18|42.47 76.64|39.26

Arxiv

ER 66.51 6.95|64.81 19.84|65.41 20.23|64.95 28.76|65.17 44.39|64.37 51.73|64.92 59.68|61.83
GM 66.52 5.82|64.32 17.92|64.98 18.45|64.46 25.88|64.68 49.87|63.86 46.25|64.39 72.96|60.97
CD 66.39 5.67|64.48 18.63|65.12 19.56|64.62 26.72|64.84 42.51|64.01 48.37|64.57 65.11|62.34
SAM 66.21 5.21|64.02 18.21|64.73 19.12|64.16 27.15|64.38 40.94|63.52 47.06|64.08 60.82|60.46

significantly drops after applying adaptive defenses. This highlights the need for further in-depth
investigation into adaptive defenses.

• Our method consistently maintains the highest ASR (generally over 60%) across adaptive defenses
and datasets. This indicates the superiority of our BA-LOGIC in poisoning inner logic for clean-label
backdoor.

• Our BA-LOGIC maintains the effective ASR-CA trade-off across datasets and various types of
defenses. This highlights the challenge of fully cleansing the victim model, which already learns
the poisoned prediction logic and relies on the injected triggers when predicting the poisoned nodes

J ADDITIONAL EMPIRICAL VALIDATIONS ON THEORETICAL ANALYSIS
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Figure 10: Performance of BA-LOGIC on synthetic graphs with different feature-label correlations.

In the main text of our work, we conducted a theoretical analysis to show that the core failure of
existing methods under clean-label settings lies in that their triggers are deemed unimportant for
prediction by GNN models. Specifically, we propose a novel metric, IRT, to measure the importance
rate of triggers and establish a theoretical connection between IRT and attack success.

The theoretical analysis in Sec. 2.3 established the correlation between the IRT value and the
probability of attack success. In this subsection, we aim to empirically investigate whether our
theoretical analysis, i.e., the probability of attack success is bounded by the IRT value, still holds
under various feature-label correlations from real-world graphs.

Inspired by Zhu et al. (2020), we use the edge homophily h, the fraction of edges in a graph that
connect nodes that have the same labels, as a measure for the homophilous or heterophilous level
of the feature-label correlation. To investigate how the homophilous and heterophilous correlations
affect our method, we generate synthetic graphs based on Cora, Pubmed, Flickr, and Arxiv with
various h. We illustrate the ASR|CA(%) and IRT(%) of BA-LOGIC on the synthetic graphs in Fig. 10.

From the figures, we obtain the following key insights:
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Figure 11: Performance of BA-LOGIC under sparse, noisy, and imbalanced label settings.

• ASR and IRT values are closely aligned for different h. It indicates that the theoretical analysis
of triggers with a higher importance rate can achieve better attack performance remains valid for
complex feature-structure correlations

• Our BA-LOGIC consistently achieves high ASR across datasets with various h. This indicates logic
poisoning remains effective, facing complex feature-label correlations, as the GNN with poisoned
prediction logic still identifies our trigger as important for prediction

• CA changes significantly with varying h. It is consistent with observations from prior works that
homophily mainly affects the generalization of GNNs on clean nodes.

K ADDITIONAL ANALYSIS ON GENERALIZABILITY UNDER CHALLENGE
SETTINGS

In the main text of our work, we evaluated our method across various graphs and target models. To
further assess the generalizability of our method, here we systematically evaluate BA-LOGIC under
five challenging yet realistic settings.

K.1 GENERALIZABILITY TO SPARSE, NOISY, AND IMBALANCED LABELS

In real-world graphs, supervision can be incomplete or corrupted, which may challenge the adaptive
poisoned node selection strategy. To investigate the selection strategy and performance of BA-LOGIC
with low-quality supervision, we propose three challenging settings of labels, specifically:

• Label Sparsity (LS): We randomly mask a ratio of labels across all training nodes, and then retrain
the poisoned node selector to obtain a new set of poisoned nodes.

• Label Noise (LN): We randomly flip a ratio of labels of training nodes to other classes to simulate
bad annotations, and then retrain the poisoned node selector to obtain a new set of poisoned nodes.

• Label Imbalance (LI): We randomly mask a ratio of labeled nodes from the target class while
keeping training nodes of other classes unchanged.

For each setting, we report (i) ASR and CA(%) of our method and (ii) the Jaccard overlap between the
original set of poisoned nodes and the set selected under various challenging settings. We illustrate
the results across four graphs in Fig. 11 and Fig. 12 for the performance and the overlap, respectively.
From the figures, we have the following key findings:

• These supervision perturbations consistently degrade ASR and CA across all four datasets. But it
mainly affects the clean accuracy of GNN models rather than our method, as it retains high ASR
while CA starts to drop significantly.

• The Jaccard overlap between the original set of poisoned nodes and the manipulated set decreases
smoothly as labels become sparser or noisier. It indicates that the perturbations challenge the
poisoned node selector, as it is a normal 2-layer GCN whose generalizability might be affected by
the settings.

• Label sparsity is consistently less harmful than label noise and label imbalance, as both ASR and
overlap stay higher under LS than LN or LI. It suggests that BA-LOGIC prefers fewer but more
reliable labels over many corrupted ones.
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Figure 12: The Jaccard overlap of poisoned node selection under different label settings.

K.2 GENERALIZABILITY TO NOISY AND PARTIALLY ACCESSIBLE FEATURES

Besides the challenge introduced by labels, the features of nodes in real-world graphs can be noisy
or only partially accessible. To investigate the performance of BA-LOGIC under degraded feature
quality and accessibility, we further introduce two challenging settings of features, specifically:

• Noisy Features (NF): We add dimension-wise Gaussian noise to node features before training
BA-LOGIC on the same graph, and vary the noise level to simulate different degrees of feature
corruption.

• Partially Accessible Features (PAF): We restrict the access to node features to only a part of
the dimensions during the training of BA-LOGIC, while the target GNN is still trained on the full
feature space.

We first unify the perturbation ratios into normalized levels for the two settings, defined as:

ρNF =
σ − σmin

σmax − σmin
, ρPAF = 1− d′

d
, (29)

where σ is the standard deviation of the injected Gaussian noise, σmin and σmax are the minimum and
maximum noise levels used in our experiments, and d′

d denotes the ratio of visible feature dimensions
under the PAF setting.
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Figure 13: Performance of BA-LOGIC under noisy and partially accessible feature settings.

We illustrate the results across four graphs with respect to ASR and CA(%) of our method in Fig. 13
with different noise levels and feature partials. From the figures, we have the following key findings:

• Increasing the feature perturbation level consistently degrades both ASR and CA across all four
datasets. Our method retains high ASR, showing that logic poisoning remains effective even when
feature quality deteriorates.

• NF mainly affects the GNN’s CA, while PAF has a more significant impact on the ASR. It is
consistent with the label noisy analysis, reflecting that the noise mainly affects the performance of
GNNs rather than logic poisoning.

L ADDITIONAL TIME COMPLEXITY ANALYSIS OF ATTACKS AND DEFENSES

In Appendix B, we conducted the time complexity of BA-LOGIC. To highlight the efficiency of our
method, we further present a comparison to competing graph backdoor methods in terms of time
complexity. Let h denote the embedding dimensions, d denote the average degree of nodes in the
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graph, N denote the number of inner training iterations for the GNN model, |V| and |VP | denote the
size of poisoned nodes and training nodes, respectively. For clarity, we only keep the dominant terms
with respect to the graph size, and present the analysis of the time complexity as follows:

• ERBA: The cost mainly comes from standard GNN training on the graph and injecting triggers
into the |VP | poisoned nodes for N GNN training iterations, leading to time complexity of
O
(
dh(|V|+N |VP |)

)
.

• ECGBA: The method follows a bi-level optimization where a surrogate GNN and a single-
node trigger generator are updated over N training iterations on the poisoned nodes, giving
O
(
dh(|V|+N |VP |)

)
time complexity.

• EBA: The method first leverages GNNExplainers to score nodes and then retrains the backdoored
GNN, which also results in O

(
dh(|V|+N |VP |)

)
time complexity.

• GTA: The cost mainly comes from a surrogate GNN and a trigger generator. Additionally, GTA
coordinates an extra subgraph search around |VP | nodes. The time complexity is approximate to
O
(
dh
(
(|V|+ (N + 1)|VP |) + d2

))
.

• UGBA: The method performs clustering-based poisoned node selection and a bi-level optimization
on the whole graph, leading to O

(
dh(N + 1)|V|

)
time complexity.

• DPGBA: The method updates each outer iteration with both a surrogate GNN and a trigger
generator. Additionally, DPGBA coordinates an OOD detector which needs No training iterations.
The time complexity is O

(
dh
(
2|V|+ (N +No)|VP |

))
.

• BA-LOGIC: Our method optimizes a surrogate model and the logic poisoning trigger generator
over N inner iterations, and the size of the trigger attached to |VP | nodes is constrained by ∆g.
The time complexity is O

(
dh
(
2|V|+ (∆g +N)|VP |

))
.

Based on the analysis, we present the comparison in Tab. 19.

Table 19: Time complexity comparison of attacks.

Methods Time Complexity
ERBA O

(
dh(|V|+N |VP |)

)
ECGBA O

(
dh(|V|+N |VP |)

)
EBA O

(
dh(|V|+N |VP |)

)
GTA O

(
dh
(
(|V|+(N +1)|VP |)+d2

))
UGBA O

(
dh(N + 1)|V|

)
DPGBA O

(
dh
(
2|V|+ (N +No)|VP |

))
BA-LOGIC O

(
dh
(
2|V|+ (∆g +N)|VP |

))
Additionally, we further give a comparison of the time complexity of defenses. Let L denote the
number of layers of the GNN model. The complexity of training a GNN model mainly comes from
aggregation with O(dh|V|) and linear mapping with O(|V|h2). We first present the analysis of their
time complexity as follows:

• GCN-Prune: Its time complexity mainly comes from computing feature similarities for all edges
to identify low-similarity links, and then training an L-layer GNN on the pruned graph. It gives a
time complexity of O

(
h|V|L(d+ h)

)
.

• RobustGCN: The method performs robust message-passing and linear transformations on all
nodes at each of the L layers. The edge-wise aggregation and node-wise feature update give a time
complexity of O

(
h|V|L(d+ h)

)
.

• GNNGuard: GNNGuard augments standard GNN training with a gating mechanism that assigns
importance scores to neighbors and reweights message-passing along edges. The gating is im-
plemented as an additional edge-wise operation on top of standard propagation. It gives a time
complexity of O

(
h|V|L(d+ h)

)
.

• RIGBD: RIGBD samples random edge-dropping masks and performs GNN propagation on each
sampled graph to estimate the influence of edges. In each iteration, it draws K independent edge-
dropping masks and runs L-layer GNN passes once on each masked graph, so the time complexity
is O

(
(K + 1)h|V|L(d+ h)

)
.
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• ER: ER incorporates an explainability regularization term during training and computes neighbor
contribution distributions over all C classes. Compared with standard GNN training, this introduces
an additional multiplicative factor C, resulting in a time complexity of O

(
Ch|V|L(d+ h)

)
.

• GM: GM first trains a victim model to obtain gradient-based neighbor contributions and then
retrains on the graph where low-entropy edges are masked. It requires a dual L-layer GNN training
on the whole graph, giving a time complexity of O

(
2h|V|L(d+ h)

)
.

• CD: CD trains a batch of n independent GNN collaborators with diverse initialization, data splits,
and hyperparameters, and aggregates their predictions. We formulate each collaborator with the
same cost as a standard full-graph GNN, and the overall time complexity is O

(
nh|V|L(d+ h)

)
.

• SAM: SAM repeatedly samples and masks edges according to CAM-based importance during
training. In each iteration, the model performs a full pass and M additional masked passes, so the
total cost is multiplied by (M + 1), resulting in a time complexity of O

(
(M + 1)h|V|L(d+ h)

)
.

Table 20: Time complexity comparison of defenses.

Methods Time Complexity
GCN-Prune O(h|V|L(d+ h))
RobustGCN O(h|V|L(d+ h))
GNNGuard O(h|V|L(d+ h))
RIGBD O

(
(K + 1)h|V|L(d+ h)

)
ER O(Ch|V|L(d+ h))
GM O(2h|V|L(d+ h))
CD O(nh|V|L(d+ h))
SAM O((M + 1)h|V|L(d+ h))

Here, we draw the following key observations from Tab. 19 and Tab. 20:

• The competitors and BA-LOGIC share similar linear time complexity in the graph size scaled by
dh. For efficiency, BA-LOGIC only adds a (∆g +N)|VP | term for trigger generation, preserving
the same order time complexity while achieving consistently higher ASR and comparable CA than
competitors.

• Since |VP |≪ |V| and ∆g is constrained by a small trigger size, the additional computation that
BA-LOGIC requires for poisoning the inner prediction logic is modest relative to competitors.
This renders the superior attack performance of BA-LOGIC a reasonable trade-off in terms of
computational complexity.

• The adaptive defenses scale on training with additional multiplicative factors. While they reduce
the ASR of graph backdoor attacks, they consistently cause significant CA drops, and BA-LOGIC
remains more resilient than competing attacks. It implies that designing adaptive defenses that
are both computationally efficient and effective against logic poisoning is still an underexplored
research topic.
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