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ABSTRACT

Deep Neural Networks (DNNs) are prone to learn shortcut patterns that damage
the generalization of the DNN during deployment. Shortcut Learning is concern-
ing, particularly when the DNNs are applied to safety-critical domains. This paper
aims to better understand shortcut learning through the lens of the learning dynam-
ics of the internal neurons during the training process. More specifically, we make
the following observations: (1) While previous works treat shortcuts as synony-
mous with spurious correlations, we emphasize that not all spurious correlations
are shortcuts. We show that shortcuts are only those spurious features that are
“easier” than the core features. (2) We build upon this premise and use instance
difficulty methods (like Prediction Depth (Baldock et al., 2021)) to quantify “easy”
and to identify this behavior during the training phase. (3) We empirically show
that shortcut learning can be detected by observing the learning dynamics of the
DNN’s early layers, irrespective of the network architecture used. In other words,
easy features learned by the initial layers of a DNN early during the training are
potential shortcuts. We verify our claims on simulated and real medical imaging
data and justify the empirical success of our hypothesis by showing the theoreti-
cal connections between Prediction Depth and information-theoretic concepts like
V-usable information (Ethayarajh et al., 2021). Lastly, our experiments show the
insufficiency of monitoring only accuracy plots during training (as is common in
machine learning pipelines), and we highlight the need for monitoring early train-
ing dynamics using example difficulty metrics.

1 INTRODUCTION

Shortcuts are spurious features that perform well on standard benchmarks but fail to generalize to
real-world settings (Geirhos et al., 2020). Deep neural networks (DNNs) tend to rely on short-
cuts even in the presence of core features that generalize well, which poses serious problems when
deploying them in safety-critical applications such as finance, healthcare, and autonomous driv-
ing (Geirhos et al., 2020; Oakden-Rayner et al., 2020; DeGrave et al., 2021). Previous works view
shortcut learning as a distribution shift problem (Kirichenko et al., 2022; Wiles et al., 2021; Bellamy
et al., 2022; Adnan et al., 2022). However, we show that not all spurious correlations are shortcuts.
Models suffer from shortcut learning only when the spurious features are much easier to learn than
signals that generalize well. We show how monitoring example difficulty metrics like Prediction
Depth (PD) (Baldock et al., 2021) can reveal valuable insights into shortcut learning quite early
during the training process. Early detection of shortcut learning is useful as it can help develop
intervention schemes to fix the shortcut early. To the best of our knowledge, we are the first to detect
shortcut learning by monitoring the training dynamics of the model.

Geirhos et al. (2020) define shortcuts as spurious correlations that exist in standard benchmarks but
fail to hold in more challenging test conditions, like real-world settings. The emphasis on shortcuts
being synonymous with spurious correlations has led to widespread adoption of viewing shortcut
learning as a distribution shift problem (Bellamy et al., 2022; Wiles et al., 2021; Adnan et al., 2022;
Kirichenko et al., 2022). While the distribution shift explains part of the story, we emphasize that
what is equally important for shortcut learning is the difficulty of the spurious features themselves
(see Fig-1). Previous works like Shah et al. (2020); Scimeca et al. (2021) hint at this. But we take
this line of thought further by viewing shortcut learning as a phenomenon that impacts the dataset
difficulty, which can be captured by monitoring early training dynamics.
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Figure 1: An illustration of how the causal view of shortcut learning is insufficient. In the causal
view, training and testing are different graphical models between input (x), output (y), and the
spurious feature (s). If x can predict s, and y is not causally related to s on the test data, then s is
viewed as a shortcut. (A) The figure shows two scenarios for even-odd classification. Scenario-1
shows a dataset where all even numbers have a spurious composite number (located at the top-left),
and odd numbers have a prime number. Scenario-2 shows a dataset where all odd numbers have a
spurious white patch. The spurious white patch is an easy feature, so the model uses it as a shortcut.
Whereas classifying prime numbers, as shown in scenario 1, is challenging. So the model ignores
such spurious features. This shows not all spurious correlations are shortcuts.

The premises that support our hypothesis are as follows: (P1) Shortcuts are only those spurious
features that are “easier” to learn than the core features (see Fig-1). (P2) Initial layers of a DNN
tend to learn easy features, whereas the later layers tend to learn the harder ones (Zeiler & Fergus,
2014; Baldock et al., 2021). (P3) Easy features are learned much earlier than the harder ones during
training (Mangalam & Prabhu, 2019; Rahaman et al., 2019). Premises (P1-3) lead us to conjecture
that: “Easy features learned by the initial layers of a DNN early during the training are potential
shortcuts.”

We empirically show that our hypothesis works well on simulated and real medical imaging
data (section-4.2) regardless of the DNN architecture used. We justify this empirical success by
theoretically connecting prediction depth with information-theoretic concepts like V-usable infor-
mation (Ethayarajh et al., 2021) (section-3 and appendix-A.1). Lastly, our experiments highlight
that monitoring only accuracy during training, as is common in machine learning pipelines, is in-
sufficient. Rather we need to monitor the learning dynamics of the model using suitable metrics to
detect shortcut learning (section-4.3). This could potentially save a lot of time and computational
costs and help develop reliable models that do not rely on spurious features.

2 RELATED WORK

Not all spurious correlations are shortcuts: Geirhos et al. (2020) define shortcuts as spurious
correlations that exist in standard benchmarks but fail to hold in more challenging test conditions.
Wiles et al. (2021) view shortcut learning as a distribution shift problem where two or more at-
tributes are correlated during training but are independent in the test data. Bellamy et al. (2022) use
causal diagrams to explain shortcuts as spurious correlations that hold during training but not during
deployment. All these papers characterize shortcuts purely as a consequence of distribution shift;
methods exist to build models robust to such shifts (Arjovsky et al., 2019; Krueger et al., 2021; Puli
et al., 2022). In contrast, we stress that not all spurious correlations are shortcuts. Rather only those
spurious features that are easier than the core features are potential shortcuts (see Fig-1). Previous
works like Shah et al. (2020); Scimeca et al. (2021) hint at this by saying that DNNs are biased
towards simple solutions, and Dagaev et al. (2021) use the “too-good-to-be-true” prior to emphasize
that simple solutions are unlikely to be valid across contexts. Veitch et al. (2021) distinguish various
model features using tools from causality and stress test the models for counterfactual invariance.
Other works in natural language inference, visual question answering, and action recognition, also
assume that simple solutions could be potential shortcuts (Sanh et al., 2020; Li & Vasconcelos, 2019;
Clark et al., 2019; Cadene et al., 2019; He et al., 2019). We take this line of thought further by view-
ing shortcuts as simple solutions or, more explicitly, easy features, which affect the early training
dynamics of the model. We suggest using suitable example difficulty metrics to measure this effect.
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Estimating Example Difficulty: There are different metrics in the literature for measuring
instance-specific difficulty (Agarwal et al., 2022; Hooker et al., 2019; Lalor et al., 2018). Jiang
et al. (2020) train many models on data subsets of varying sizes to estimate a consistency score that
captures the probability of predicting the true label for a particular example. Toneva et al. (2018)
define example difficulty as the minimum number of iterations needed for a particular example to be
predicted correctly in all subsequent iterations. Agarwal et al. (2022) propose a VoG (variance-of-
gradients) score which captures example difficulty by averaging the pre-softmax activation gradients
across training checkpoints and image pixels. Feldman & Zhang (2020) use a statistical viewpoint
of measuring example difficulty and develop influence functions to estimate the actual leave-one-out
influences for various examples. Ethayarajh et al. (2021) use an information-theoretic approach to
propose a metric called pointwise V-usable information (PVI) to compute example difficulty. Bal-
dock et al. (2021) define prediction depth (PD) as the minimum number of layers required by the
DNN to classify a given input and use this to compute instance difficulty. In our experiments, we
use the PD metric to provide a proof of concept for our hypothesis.

Monitoring Training Dynamics: Other works that monitor training dynamics have a significantly
different goal than ours. While we monitor training dynamics to detect shortcut learning, Rabanser
et al. (2022) use neural network training dynamics for selective classification. They use the disagree-
ment between the ground truth label and the intermediate model predictions to reject examples and
obtain a favorable accuracy/coverage trade-off. Feng & Tu (2021) use a statistical physics-based
approach to study the training dynamics of stochastic gradient descent (SGD). While they study
the effect of mislabeled data on SGD training dynamics, we study the effect of shortcut learning
on the early-time learning dynamics of DNNs. Hu et al. (2020) use the early training dynamics
of neural networks to show that a simple linear model can often mimic the learning of a two-layer
fully connected neural network. Adnan et al. (2022) have a similar goal as ours and use mutual
information to monitor shortcut learning. However, computing mutual information is intractable for
high-dimensional data, and hence their work is only limited to infinite-width neural networks that
offer tractable bounds for this computation. Our work, on the contrary, is more general and holds
for different neural network architectures and datasets.

3 BACKGROUND AND METHODOLOGY

In this section, we formalize the notion of spurious features, shortcuts, and task difficulty. Let Ptr

and Pte be the training and test distributions defined over the random variables X (input), y (label),
and s (latent spurious feature).

Definition-1 (Spurious Feature s): A latent feature s is called spurious if it is correlated with
label y in the training data but not in the test data. Specifically, the joint probability distributions
Ptr and Pte can be factorized as follows.

Ptr(X,y, s) = Ptr(X|s,y)Ptr(s|y)Ptr(y) (1)

Pte(X,y, s) = Ptr(X|s,y)Pte(s)Ptr(y). (2)

The variable s appears to be causally related to y but is not. This is shown in Fig-1. We also need a
notion of task difficulty. The difficulty of a task depends on the model and data distribution (X,y).

Definition-2 (Task Difficulty Ψ): Let ΨP
M(X → y) indicates the difficulty of predicting X → y

for a model M, where X,y ∼ P . Consider a joint distribution (X,y, t) ∼ P for two tasks, t, and
y. Then, ΨP

M(X → y) > ΨP
M(X → t) indicates that the task X → y is harder than X → t for a

given model M.

Definition-3 (Shortcut): The spurious feature s is a potential shortcut for model M iff ΨPtr

M (X →
y) > ΨPtr

M (X → s). In other words, given the input X, predicting spurious feature s is easier for
M than predicting the true label y.

Note that we use the term “potential shortcut” because, in the presence of multiple spurious features,
Scimeca et al. (2021) empirically show that the model selectively favors the easiest spurious feature.
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We now explain two metrics (Prediction Depth and V-Usable Information) to measure ΨP
M. Baldock

et al. (2021) proposed the notion of Prediction Depth (PD) to estimate example difficulty. The PD of
input is defined as the minimum number of layers required by the model to classify the input. Our
work relies on monitoring early training dynamics using example difficulty metrics, and we use PD
estimation for this purpose. The PD metric is also well-suited for our work as it is defined for easy
inputs even when the DNN is not fully trained. We use a binary classification setting to explain the
concepts used in this section.

Notion of Prediction Depth: The PD is defined by building k-NN classifiers on the embedding
layers of the model. The PD is simply the earliest layer after which all subsequent k-NN predictions
remain the same (0 or 1):

PD = min argmax
n

[
N∏
i=n

fknn(ϕ
i) +

N∏
i=n

(1− fknn(ϕ
i))

]
, (3)

fknn is a k-NN classifier that outputs 0 or 1 based on a given threshold (see Appendix-A.4 for
details), ϕi is the feature embedding for the given input at layer-i, and N is the index of the final
layer of the model. The lower the PD of input, the easier it is to classify. We also use the notion of
undefined PD to work with models that are not fully trained. We treat k-NN predictions close to 0.5
(for a binary classification setting) as invalid. If the k-NN predictions for the last three layers (for a
given input to the model) are invalid, we treat the PD of the input as undefined (see Appendix-A.4).
Figure-2 illustrates how to read the PD plots used in our experiment.

Training Progress

undefined

PD

∞ ∞

samples

migrating

∞

Easy samples in early 

layers

challenging samples in 

later layers

Figure 2: Examples of PD plots (for DenseNet-121) at different stages of the training process. The
red bar indicates samples with undefined PD, and the dotted vertical line indicates the mean PD of
the plot. Notice that the undefined samples (shown in red) slowly accumulate in layer 88 as training
progresses. This is because the model needs more time to learn the challenging samples which
accumulate at higher prediction depth, i.e., later layers.

Notion of V-Usable Information: The Mutual Information between input and output, I(X;Y ),
is invariant with respect to lossless encryption of the input, i.e., I(τ(X);Y ) = I(X;Y ). Such a
definition assumes unbounded computation and is counter-intuitive to define task difficulty as heavy
encryption ofX does not change the task difficulty. The notion of “Usable Information” introduced
by Xu et al. (2020) assumes bounded computation based on the model family V under consideration.
Usable information is measured under a framework called predictive V-information (Xu et al., 2020).
Ethayarajh et al. (2021) introduce pointwise V-information (PVI) for measuring example difficulty.

PVI(x→ y) = − log2 g[ϕ](y) + log2 g
′[x](y), s.t. g, g′ ∈ V (4)

The function g is trained on (ϕ, y) input-label pairs, where ϕ is a null input that provides no infor-
mation about the label y. g′ is trained on (x, y) pairs from the training data. Lower PVI instances
are harder for V and vice-versa. Since the first term in Eq-4 corresponding to g is independent of the
input x, we only consider the second term having g′ in our experiments. In what follows, we relate
the notions of PD and V-usable information. We use Vcnn (of finite depth and width) in our proof
as our experiments mainly use CNN architectures.

Proposition 1: (Informal) Consider two datasets: Ds ∼ Ptr(X,y) with shortcuts and Di ∼
Pte(X,y) without shortcuts. For some mild assumptions on PD (see Appendix-A.1), if the mean
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PD of Ds is less than the mean PD of Di, then the Vcnn-usable-information for Ds is larger than the
Vcnn-usable-information for Di: IDs

Vcnn
(X → Y ) > IDi

Vcnn
(X → Y ).

See proof in Appendix-A.1. The proposition intuitively implies that a sufficient gap between the
mean PD of shortcuts and core features can result in shortcuts having more Vcnn-usable information
than core features. In such a scenario, the model will be more inclined to learn shortcuts over core
features. This proposition justifies using the PD metric to detect shortcut learning, as demonstrated
in the following experiments.

4 EXPERIMENTS

We set up four experiments to evaluate our hypothesis. First, we consider two kinds of datasets, one
where the spurious feature is easier than the core feature and another where the spurious feature is
harder. We train a classifier on each dataset and observe that the model can learn the easy spurious
feature but not the harder one. This experiment demonstrates that not all spurious correlations
are shortcuts, but only those spurious features that are easier than the core features are potential
shortcuts. Second, we use toy and multiple medical datasets to demonstrate how monitoring the
learning dynamics of the initial layers can reveal suspicious shortcut learning activity. We show
that an early peak in the PD plot indicates potential shortcuts, and visualization techniques like
grad-CAM can provide intuition about the feature used at that layer. Third, we show how shortcuts
can often be detected relatively early during training. This is because initial layers which learn
the shortcuts converge very early during the training. We observe this by monitoring PD plots
across training epochs. In all of our experiments, the shortcut is revealed by the PD plot within two
epochs of training. Fourth, we show that datasets with easy spurious features have more “usable
information” (Ethayarajh et al., 2021) compared to their counterparts without such features. Due
to higher usable information, the model requires fewer layers to classify the images with spurious
features. We use this experiment to empirically justify Proposition-1 outlined in Appendix-A.1.

4.1 NOT ALL SPURIOUS CORRELATIONS ARE SHORTCUTS

We use the Dominoes binary classification dataset (formed by concatenating two datasets vertically;
see Fig-4.1) similar to the setup of Kirichenko et al. (2022). The bottom (top) image acts as the
core (spurious) feature. Images are of size 64 × 32. We construct three pairs of domino datasets
such that each pair has both a hard and an easy spurious feature with respect to the common core
feature (see Table-1). We use classes {0,1} for MNIST and SVHN, {coat,dress} for FMNIST,
and {airplane, automobile} for CIFAR10. We also include two classes from Kuzushiji-MNIST (or
KMNIST) and construct a modification of this dataset called KMNpatch, which has a spurious patch
feature (5x5 white patch on the top-left corner) for one of the two classes of KMNIST. The spurious
features are perfectly correlated with the target. The order of dataset difficulty based on the mean-
PD is as follows: KMNpatch(1.1) < MNIST(2.2) < FMNIST(3.9) < KMNIST(5) < SVHN(5.9)
< CIFAR10(6.8). We use a ResNet18 model and measure the test and core-only accuracies. The
test accuracy is measured on a held-out dataset sampled from the same distribution. For the core-
only accuracy, we blank out the spurious feature (top-half image) by replacing it with zeroes (same
as Kirichenko et al. (2022)). The higher the core-only accuracy, the lesser the model’s reliance on
the spurious feature.

Spurious

Core

Core-only

Image
(Hard Spurious)

CIF - FMN MN - FMN

(Easy Spurious)

Figure 3: Dominoes Dataset Table 1: Results for the Dominoes experiment averaged across 4-runs. Numbers

in bracket show mean-PD (dataset difficulty). Core-only accuracy indicates the

model’s reliance on core features. Models achieve high core-only accuracy when

spurious features are harder than core features.
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Figure 4: Top row shows three reference datasets at three different levels of difficulty and their cor-
responding prediction depth (PD) plots. The datasets are ordered based on their difficulty (measured
using mean PD shown by dotted vertical lines). The bottom row shows the effect of the shortcut on
the KMNIST dataset. The yellow region on the axis indicates the expected difficulty of classifying
KMNIST. While the original KMNIST lies in the yellow region, the shortcut significantly reduces
the task difficulty. The Grad-CAM shows that the model focuses on the spurious patch.

From Table 1, we observe that all datasets achieve a high test accuracy as expected. The core-only
accuracy stays high (> 98%) for datasets where the spurious feature is harder to learn than the core
feature, indicating the model’s high reliance on core features. When the spurious feature is easier
than the core, the model learns to leverage them, and hence the core-only accuracy drops to nearly
random chance ( 50%). This experiment demonstrates that a spurious feature that is harder than the
core feature fails to act as a shortcut that the model can leverage to “cheat”.

4.2 MONITORING INITIAL LAYERS CAN REVEAL SUSPICIOUS SHORTCUT LEARNING
ACTIVITY

Synthetic Shortcut on Toy Dataset: To provide a proof of concept, we demonstrate our method
on the Kuzushiji-MNIST (KMNIST) (Clanuwat et al., 2018) dataset comprising Japanese Hiragana
characters. The dataset has ten classes and images of size 28 × 28, similar to MNIST. We insert a
white patch (shortcut) at a particular location for each of the ten classes. The location of the patch is
class-specific. We train two VGG16 models, one on the KMNIST with a patch shortcut (Msh) and
another on the original KMNIST without the patch (Morig).

Fig-4 shows the prediction depth (PD) plots for this experiment. The vertical dashed lines show the
mean PD for each plot. Intuitively KMNIST should be harder than MNIST but easier than CIFAR10.
But introducing the white patch makes KMNIST easier than even MNIST for Msh (see Fig - 4A &
4D). The white patch is a very easy feature, and hence the model only needs a single layer to detect
it. The Grad-CAM maps for the layer-1 show that Msh focuses mainly on the patch (see Fig-4D),
and hence the test accuracy on the original KMNIST images is very low ( 8%). The PD plot for
Morig (see Fig-4E) is not as skewed toward lower depth as the plot for Msh. This is expected as
Morig is not looking at the shortcut and therefore utilizes more layers to make the prediction. The
mean PD for Morig suggests that the original KMNIST is harder than Fashion-MNIST but easier
than CIFAR10, which is intuitive. Morig also achieves a higher test accuracy ( 98%).

This experiment demonstrates how models that learn shortcuts (Msh) exhibit PD plots that are
suspiciously skewed towards the initial layers. If the dataset is sufficiently difficult, the skewed PD
plot should raise concerns. Visualization techniques like Grad-CAM can further aid our intuition
about what shortcut the model is utilizing at any given layer.

Semi-Synthetic Shortcut on Medical Datasets: We follow the procedure by DeGrave et al.
(2021) to create the ChestX-ray14/GitHub-COVID dataset. This dataset comprises Covid19 pos-
itive images from Github Covid repositories and negative images from ChestX-ray14 dataset (Wang
et al., 2017b). In addition, we also create the Chex-MIMIC dataset following the procedure by Puli
et al. (2022). This dataset comprises 90% images of Pneumonia from Chexpert (Irvin et al., 2019)
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and 90% healthy images from MIMIC-CXR (Johnson et al., 2019). We train two DenseNet121 mod-
els, Mcovid on the ChestX-ray14/GitHub-COVID dataset, and Mchex on the Chex-MIMIC dataset.
We use DenseNet121, a common and standard architecture for medical image analysis. Images are
resized to 512× 512.

Chex-MIMIC

Grad-CAM Layer-4

ChestX-ray14/GitHub-COVID

Grad-CAM Layer-4

Figure 5: PD plots for two DenseNet-121 models trained on Chex-MIMIC and ChestX-
ray14/GitHub-COVID datasets are shown in the figure, along with their corresponding Grad-CAM
visualizations. Both PD plots exhibit a very high peak in the initial layers (1 to 4), indicating that
the models use very easy features to make the predictions.

Fig-5 shows the PD plots for Mchex and Mcovid. Both the plots are highly skewed towards initial
layers, similar to the KMNIST with patch shortcut in Fig-4D. This again indicates that the models
are using very easy features to make the predictions, which is counterintuitive as the two tasks
(pneumonia and covid19 detection) are hard tasks even for humans. Examining the Grad-CAM
maps at layer-4 reveals that these models focus on irrelevant spurious features outside the lung
region. This raises concern because both diseases are known to affect mainly the lungs. The reason
for this suspicious behavior is that, in both these datasets, the healthy and diseased samples have
been acquired from two different sources. This creates a shortcut because source-specific attributes
or tokens are predictive of the disease and can be easily learned, as pointed out by DeGrave et al.
(2021).

Real Shortcut on Medical Dataset: For this experiment, we use the NIH dataset (Wang et al.,
2017a) which has the popular chest drain shortcut (for Pneumothorax detection) (Oakden-Rayner
et al., 2020). Chest drains are used to treat positive Pneumothorax cases. The presence of a chest
drain in the lung is, therefore, positively correlated with the presence of Pneumothorax and can be
used by the deep learning model (Oakden-Rayner et al., 2020). Appendix-A.3 outlines the procedure
we use to obtain chest drain annotations for the NIH dataset. We train a DenseNet121 model (Mnih)
for Pneumothorax detection on NIH images of size 128× 128.

Prediction Depth (DenseNet121)

∞

NIH

Grad-CAM Layer-40

(A) (B) (C)

Healthy

Diseased

Layer-40 Samples Shortcut Influence on Performance

(D) (E)

Grad-CAM Layer-4

Figure 6: Shortcut learning on NIH dataset. (A) PD plot for DenseNet-121 trained on NIH shows
three prominent peaks in layers-4,40,88. (B, C) Grad-CAM reveals that layer-4 uses irrelevant
artifacts as shortcuts, and layer-40 uses the chest drain shortcut for classification. (D) Plotting chest
drain (shortcut) probability for layer-40 samples reveals that the model segregates healthy patients
from diseased ones based on the shortcut: most diseased patients have a chest drain, whereas most
healthy patients do not. (E) The chest drain shortcut affects the AUC performance of the model. The
X-axis (Y-axis) shows the false positive (true positive) rate.

Fig-6A shows the PD plot for Mnih. We observe that the distribution is not as skewed as the plots
in the previous experiments. This is because all the images come from a single dataset (NIH). But
we see two suspicious peaks at layers - 4 & 40. Pneumothorax classification is challenging even for
radiologists, and hence peaks at initial layers raise suspicion. The Grad-CAM maps in Figs -6B &
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Figure 7: Evolution of PD plot across epochs shows the training dynamics of the DNN on the NIH
dataset. The initial peaks (layers-4&40) are relatively stable throughout training, whereas the later
peaks (layer-88) change with time. The initial layers learn the easy shortcuts, which can be detected
early during the training. Samples with undefined PD (shown in red) take more time to converge
and eventually accumulate in the later layers (layer 88 in this case).

6C reveal that layer-4 looks at irrelevant artifacts in the chest X-ray image, whereas layer-40 looks
at chest drain in the image. The chest drain shortcut is much harder and is therefore detected at
layer 40. To verify that layer-40 is looking for chest drains, we ran a tube detector on the images
at layer-40 and found that most diseased patients had a chest drain inserted into their lungs, while
most healthy patients did not have the chest drain (see Fig-6D). This provides evidence that layer-40
categorizes patients based on the chest drain shortcut. Appendix-A.3 provides details on how we
train a tube detector. Fig-6E shows that the AUC performance is 0.94 when the diseased patients
have a chest drain and 0.74 when they don’t. In both cases, the set of healthy patients remains the
same. This observation is consistent with the findings of Oakden-Rayner et al. (2020) and indicates
that the model looks at chest drains to classify positive Pneumothorax cases.

The above experiments demonstrate how a peak located in the initial layers of the PD plot should
raise suspicion, especially when the classification task is challenging. Visualization techniques like
Grad-CAM can further aid our intuition and help identify the shortcuts being learned by the model.
This approach works well even for realistic scenarios and challenging shortcuts (like chest drain for
Pneumothorax classification), as shown above.

4.3 DETECTING SHORTCUTS EARLY

Fig-7 shows the evolution of the PD plot across epochs for Mnih (which is the model used in Fig-6).
This visualization helps us observe the training dynamics of the various layers. The red bar in the
PD plots shows the samples with undefined prediction depths.

These plots reveal several useful insights into the learning dynamics of the model. Firstly, we see
three prominent peaks in epoch-1 at layers-4,40,88 (see Fig-7A). The magnitude of the initial peaks
(like layers-4&40) remains nearly constant throughout the training. The peaks at layers-4&40 corre-
spond to shortcuts, as discussed in the previous section. This indicates that easy shortcuts can often
be identified early (epoch-1 in this case). Fig-8 shows the PD plots at epoch-2 for other datasets
with shortcuts. It is clear from Fig-8 that the suspiciously high peak at the initial layer is visible in
the second epoch itself. The Grad-CAM maps reveal that this layer looks at irrelevant artifacts in
the dataset. This behavior is seen in all datasets shown in Fig-8.

Secondly, we also see that accuracy or AUC plots do not reveal shortcut learning patterns, and
we need to monitor the training dynamics using suitable metrics (like PD) to detect this behavior.
Thirdly, the red peak (undefined samples) decreases in magnitude with time, and we see a propor-
tional increase in the layer-88 peak. This corroborates well with the observation that later layers
take more time to converge (Rahaman et al., 2019; Mangalam & Prabhu, 2019; Zeiler & Fergus,
2014). Therefore, samples with higher PD are initially undefined and do not appear in the PD plot.
Nonetheless, samples with lower PD show up very early during the training, and this helps us in the
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KMNIST w/ Shortcut

Grad-CAM Layer-1

Chex-MIMIC

Grad-CAM Layer-4

ChestX-ray14/GitHub-COVID

Grad-CAM Layer-4

Figure 8: Epoch-2 PD plots for various datasets with shortcuts. The high spurious peak in the initial
layer is visible in all the datasets indicating that shortcuts can be detected early during the training.

early detection of shortcuts. Early detection can consequently help develop intervention schemes
that fix the shortcut early.

4.4 PREDICTION DEPTH ≈ V -USABLE INFORMATION

Table-2 measures the influence of shortcuts on NIH and KMNIST using PD and PVI metrics. All
diseased patients in the “NIH w/ Shortcut” dataset have a chest drain, whereas all diseased patients
in the “NIH w/o Shortcut” dataset have no chest drain. The set of healthy patients is common for
the two datasets. The KMNIST datasets are the same as those used in Section-4.2. We use VGG16
for KMNIST and DenseNet121 for NIH. Other training details remain the same as in Section-4.2.

Dataset mean PD −HVcnn (Y | X)

NIH w/ Shortcut 53.43 -0.1171
NIH w/o Shortcut 75.33 -0.2321

KMNIST w/ Shortcut 1.06 -0.0024
KMNIST w/o Shortcut 5.25 -0.0585

Table 2: Effect of Shortcuts on Prediction Depth and the negative conditional V-entropy (-
HVcnn(Y | X)). The label marginal distributions for NIH and KMNIST are the same with or
without shortcut, and thus the negative conditional V-entropy is proportional to V-information.

Table-2 shows that datasets with shortcuts (Ds) have smaller mean PD values than their counterparts
without shortcuts (Di). Proposition-1 (see Section-3, Appendix-A.1) shows that a sufficient gap
between the mean PDs of Ds and Di causes the V-Information of Ds to be greater than Di. Table-2
confirms this in a medical-imaging dataset with a real shortcut, and we see that the mean “usable
information” increases when there is a shortcut. This implies that the model learns shortcut features
as they have more usable information than the core features. We investigate this relationship between
PD and V-information in more detail in Appendix-A.8. Ethayarajh et al. (2021) also show that
V-information is positively correlated with test accuracy. This explains the significant change in
AUC observed in Fig-6E. Proposition 1 bridges the gap between the notions of PD and V-usable
information. This connection between V-information and PD indicates that monitoring early training
dynamics using PD not only helps detect shortcut learning but also bears insights into the dataset’s
difficulty (in information-theoretic terms) for a given model class.

5 CONCLUSION

In this paper, we study shortcut learning by monitoring the early training dynamics of DNNs. We
emphasize that not all spurious correlations are shortcuts and empirically show that models suffer
from shortcut learning only when the spurious features are easier than the core features. We hy-
pothesize that “Potential shortcuts can be found by monitoring the easy features learned by the
initial layers of a DNN early during the training.” and validate this hypothesis on real medical
imaging data. We empirically demonstrate that shortcuts are learned quite early during the training
and that one can detect shortcut learning by monitoring the early training of DNNs using suitable
instance difficulty metrics like Prediction Depth (PD). Further, we show a theoretical connection
between PD and V-information to support our empirical results. Datasets with shortcuts have more
V-information causing the model to learn the shortcut. To conclude, relying only on accuracy plots
is insufficient, and we recommend monitoring the DNN training dynamics using additional metrics
like PD for the early detection of shortcuts.
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A APPENDIX

A.1 PROOF OF PROPOSITION-1

Proposition 1. Given two datasets, Ds with shortcuts and Di without shortcuts, we assume the
following:

1. (Well-Trained Model Assumption) The part of the network from any representation to the
label is one of the functions that compute V-information.

2. (Function Class Complexity Assumption) Assume that there exists a K ∈ {1, N} such that
Vcnn of depth N −K is deep enough to be a strictly larger function class than Vknn with a
fixed neighbor size (29 in this paper). Assume that this Vknn is a larger function class than
a linear function.

3. (Controlled Confidence Growth Assumption) For both datasetsD ∈ {Ds, Di}, assume that
the for all k ∈ {1, · · · , N},

τ ≤ ID
Vknn

(ϕk)− ID
Vknn

(ϕk−1) ≤ ϵ

4. (Prediction Depth Separation Assumption) Let L be an integer such that, L ≤ K and
L < K + (N −K) ϵ

τ − ψmaxy (− log p(Y = y)) .

Let there exist a gap in prediction depths of samples in Ds and Di : ψ ∈ (0, 0.5) such that 1 − ψ
fraction of Ds has prediction depth ≤ L and 1− ψ fraction of Di has prediction depth > K.

Then, for a model class of N -layer CNNs, we show that the Vcnn-information for Ds is greater than
Vcnn-information for Di:

IDs

Vcnn
(X → Y ) ≥ IDi

Vcnn
(X → Y )

Proof. We proceed in two parts: first, we lower bound Vcnn-information for Ds, and then we upper
bound Vcnn for Di.

Assumpition 3 implies:

(B −A)τ ≤
B∑

k=A

τ ≤ ID
Vknn

(ϕk)− ID
Vknn

(ϕk−1) ≤ (B −A)ϵ

PD - PVI connection. Note that by definition, when the prediction depth is k for a sampleX , then
PV Iknn(ϕk(X)) ≥ δ but PV Iknn(ϕk−1(X)) < δ. This follows from how we compute PD (see
Section-3 in main paper, and Appendix-A.4).

Lower bounding IDs

Vcnn

IDs

Vcnn
= IDs

Vcnn of depth N−K
(ϕK) {Assumption-1}

≥ IDs

Vknn
(ϕK) {Assumption-2}

= IDs

Vknn
(ϕL) +

K∑
k=L+1

ID
Vknn

(ϕk)− ID
Vknn

(ϕk−1) {Telescoping Sum}

≥ IDs

Vknn
(ϕL) + (K − L)τ {Assumption-3}

≥ ψ min
X,Y ∈Ds,pd>=L

PV Iknn(X → Y )

+ (1− ψ) min
X,Y ∈Ds,pd<L

PV Iknn(X → Y ) + (K − L)τ {Prediction Depth Separation}

≥ 0 ∗ ψ + δ ∗ (1− ψ) + (K − L)τ {Prediction Depth Separation}
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Upper bounding IDi

Vcnn

IDi

Vcnn
≤ IDi

Vknn
(ϕN ) {Assumption-2}

= ID
Vknn

(ϕK) +

N∑
k=K+1

ID
Vknn

(ϕk)− ID
Vknn

(ϕk−1) {Telescoping Sum}

≤ ID
Vknn

(ϕK) + (N −K)ϵ {Assumption-3}
≤ (N −K)ϵ+ ψ max

X,Y ∈Di,pd(X)≤K
PV IDVknn

(ϕK(X) → Y )

+ (1− ψ) max
X,Y ∈Di,pd(X)>K

PV IDVknn
(ϕK(X) → Y ) {Prediction Depth Separation}

≤ (N −K)ϵ+ ψmax
y

(− log p(Y = y))

+ (1− ψ) max
X,Y ∈Di,pd(X)>K

PV IDVknn
(ϕK(X) → Y ) {PVI ≤ − log p(Y = y)}

≤ (N −K)ϵ+ ψmax
y

(− log p(Y = y)) + (1− ψ)δ {PD-PVI connection for pd > K}

The proof follows by comparing the lower bound on IDs

Vcnn
and the upper bound on IDi

Vcnn
. Intuitively

what this means is that when there is a sufficiently large gap in the mean PD between Ds and Di,
then the V-information of Ds exceeds the V-information of Di, which is why the model prefers
learning the shortcut rather than using the core features for the task.

A.2 GRAD-CAM VISUALIZATION

PD plots help us understand the layers of the model which are actively used for classifying different
images. To further aid our intuition, we visualize the Grad-CAM outputs for an arbitrary layer k
of the model by attaching a soft-KNN head. Let gknn denote the soft and differentiable version of
k-NN. We compute gknn as follows:

This is a sample text in gknn(ϕkq ;ϕ
k
i∈{1,2,...m}) =

∑
j∈N(ϕk

q ,1)
exp

−∥ϕk
q−ϕk

j ∥/s

∑
j∈N(ϕk

q ,:)
exp

−∥ϕk
q−ϕk

j
∥/s

This function makes the KNN differentiable and can be used to compute Grad-CAM (Selvaraju
et al., 2017). We use the L1 norm for all distance computations. ϕkq corresponds to feature at layer-k
for query image xq . Let ϕki∈{1,2,...m} be the training data for KNN. Let N denote the neighborhood
function. N (ϕkq , :) returns the indices of K-nearest neighbors for ϕkq . N (ϕkq , 1) returns indices of
images with positive label (y = 1) from the set of K-nearest neighbors for ϕkq . s is the median for
the set of L1 norms {∥ϕkq − ϕkj ∥} for j ∈ N (ϕkq , :).

A.3 CHEST DRAIN ANNOTATIONS FOR NIH DATASET

To reproduce the results by Oakden-Rayner et al. (2020), we need chest drain annotations for the
NIH dataset (Wang et al., 2017a), which is not natively provided. To do this, we use the MIMIC-
CXR dataset (Johnson et al., 2019), which has rich meta-data information available in the form of
radiology reports. We collaborate with radiologists to identify terms related to Pneumothorax from
the MIMIC-CXR reports. These include pigtail catheters, pleural tubes, chest tubes, thoracostomy
tubes, etc. We collect chest drain annotations for MIMIC-CXR by parsing the reports for these terms
using the RadGraph NLP pipeline (Jain et al., 2021). We train a DenseNet121 model to detect chest
drains relevant to Pneumothorax using these annotations. Finally, we run this trained model on the
NIH dataset to obtain the needed chest drain annotations. We use these annotations to obtain the
results shown in Figs - 6D and 6E. Fig-6E closely reproduces the results obtained by Oakden-Rayner
et al. (2020).
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A.4 NOTION OF UNDEFINED PREDICTION DEPTH

Section-3 shows how we compute PD in our experiments. While fully trained models give valid PD
values, our application requires working with arbitrary deep-learning models that are not necessarily
fully trained. We, therefore, introduce the notion of undefined PD by treating k-NN predictions close
to 0.5 (for a binary classification setting) as invalid. We define a δ such that |fknn(x) − 0.5| < δ
implies an invalid k-NN output. We use δ = 0.1 and k = 29 in our experiments. If any k-NN
predictions for the last three layers are invalid, we treat the PD of the input image to be undefined.
To work with high-resolution images (like 512 × 512), we downsample the spatial resolution of
all training embeddings to 8 × 8 before using the k-NN classifiers on the intermediate layers. We
empirically see that our results are insensitive to k in the range [5, 30].

A.5 PD PLOTS AT EPOCH-0
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Figure 9: Pneumothorax Detection in NIH
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Figure 10: Age Detection in NIH

We show epoch-0 PD plots for various tasks on the NIH dataset (see Figures-9&10). We expect
most samples to be undefined at epoch 0 (shown by the red bar), and we see some additional noisy
patterns in the plot. The model is not trained during initialization, and hence the weights and features
are random vectors carrying little information. Most of the instance difficulty metrics are ill-defined
until the model is fully trained, and therefore we find this uninterpretable behavior in PD plots at
epoch-0. Although most of the instance difficulty metrics fail to give meaningful information at the
start of training Ethayarajh et al. (2021); Agarwal et al. (2022), we empirically observe that PD plots
can capture the distribution of the relatively easy samples in the training dataset even during early
stages of training. This favors our hypothesis, which relies on monitoring easy samples in early
layers to detect shortcut learning. We, therefore, use PD over other metrics to analyze the early
training dynamics of the model.

A.6 CODE REPRODUCIBILITY

Please find the code here: https://github.com/anonymCloud/ICLR2023_Shortcut_
Learning_Through_Training_Dynamics

A.7 VISION EXPERIMENTS

We use the NICO++ (Non-I.I.D. Image dataset with Contexts) dataset Zhang et al. (2022) to create
multiple spurious datasets (Cow vs. Bird; Dog vs. Lizard; Flower vs. Lizard) such that the con-
text/background is spuriously correlated with the target. NICO++ is a Non-I.I.D image dataset that
uses context to differentiate between the test and train distributions. This forms an ideal setup to
investigate what spurious correlations the model learns during training. We follow the procedure
outlined by Puli et al. (2022) to create datasets with spurious correlations (90% prevalence) in the
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training data, and the test data has the relationship between spurious attributes and the true labels
flipped. This is similar to the Chex-MIMIC dataset illustrated in section-4.2. We test our hypothesis
using ResNet-18 and VGG16. We train our models for 30 epochs using an Adam optimizer and a
base learning rate of 0.01. We choose the best checkpoint using early stopping.

NICO (Cows vs Birds; Spurious Background)

GradCAM (Layer-1)

Training Data (Acc=97.2%)

(Cows on grass; Birds on water)

Test Data (Acc=59.9%)

(Cows on water; Birds on grass)

(A) (B) (C) (D)

Figure 11: Cow vs. Birds classification on NICO++ dataset. (A) Training data contains images
of cows on grass and birds on water (correlation strength=0.9). The model achieves 97.2% training
accuracy. (B) PD plot for ResNet-18 reveals a spurious peak at layer-1, indicating the model’s heavy
reliance on very simple (potentially spurious) features. (C) GradCAM plots for layer 1 reveal that
the model mainly relies on the spurious background to make its predictions. (D) Consequently, the
model achieves a test accuracy of only 59.9% on test data where the spurious correlation is flipped
(i.e., cows (birds) are found on water (grass)).

NICO (Cows vs Birds; Balanced Dataset)

Balanced Training Data (Acc=99.1%)

(Cows/Birds on Grass/Water)

Test Data (Acc=80.2%)

(Cows on water; Birds on grass)

(A) (B) (C)

Figure 12: Balanced dataset for Cow vs. Birds classification task on NICO++ dataset. (A) The
training dataset contains a balanced distribution of cows and birds found on water and grass (each
group has an equal number of images). (B) The balanced dataset shifts the PD plot towards the later
layers (compared to Fig-11B, indicating that the model relies on both simple and complex features
for the prediction task. (C) This consequently results in an improved test accuracy of 80.2% (as
compared to 59.9% in Fig-11D for the spurious dataset).

Figures-11,13,14 show PD plots and train/test accuracies for models that learn the spurious back-
ground feature present in the NICO++ dataset. While all models achieve > 85% training accuracy,
they have poor accuracies ( 50%) on the test data where the spurious correlation is flipped. This
can be seen simply by observing the PD plots for the model on the training data. The plots are
skewed towards the initial layers indicating that the model relies heavily on very simple (potentially
spurious) features for the task. GradCAM maps also confirm that the model often focuses on the
background context rather than the foreground object of interest.

We further observe in Fig-12 that balancing the training data (to remove the spurious correlation)
results in a model with improved test accuracy (80.2%) as expected. This is also reflected in the
PD plot (Fig-12B), where we see that the distribution of the peaks, as well as the mean PD, shift
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NICO (Dog vs Lizard; Spurious Background)

Spurious Training Data (Acc=87.2%)

(Outdoor Dogs; Lizards on Rock)

Test Data (Acc=63.9%)

(Dogs on Rock; Outdoor Lizards)

(A) (B) (C)

Figure 13: Dog vs. Lizard classification with a spurious background feature on NICO++ dataset.
(A) Training data contains images of outdoor dogs and lizards on rock (correlation strength=0.9).
The spurious background color/texture reveals the foreground object. The model achieves 87.2%
training accuracy. (B) PD plot for ResNet-18 reveals a spurious peak at layer-1, indicating the
model’s reliance on simple (potentially spurious) features. (C) The low test accuracy confirms this
(63.9%). The test data has the spurious correlation flipped (i.e., images contain dogs on rock and
lizards found outdoors.)

Spurious Training Data (Acc=87.87%)

(Flowers on Grass; Lizard on Rock)

NICO (Flower vs Lizard; Spurious Background)

Test Data (Acc=45.16%)

(Flowers on Rock; Lizard on Grass)GradCAM (Layer-1)

(A) (B) (C) (D)

Figure 14: Flower vs. Lizard classification with a spurious background feature on NICO++ dataset.
(A) Training data contains images of flowers on grass and lizards on rock (correlation strength=0.9).
The spurious background reveals the target class. The model achieves 87.87% training accuracy. (B)
PD plot for ResNet-18 reveals a spurious peak at layer-1. (C) GradCAM plots for layer 1 confirm
that the model uses the rock texture in the background to detect lizards, whereas it uses simple (non-
spurious) color features to detect the flowers in the image. (D) Due to partial reliance on spurious
features, the model obtains low test accuracy (45.16%) on the test data with the spurious correlation
flipped (i.e., images contain flowers on rock and lizards on grass.)

proportionately towards the later layers, indicating that the model is now using a combination of
both easy and complex features for the prediction task.

By monitoring PD plots during training and using suitable visualization techniques, we show that
one can obtain useful insights about the spurious correlations that the model may be learning. This
can also help the user make an educated guess about the generalization behavior of the model on
various test datasets with different distributions.

A.8 EMPIRICAL RELATIONSHIP: PD VS V -INFORMATION

In Section-4.4 we explore the relationship between PD and V-information. To empirically confirm
these results, we further investigate this relationship on four additional datasets: KMNIST, FMNIST,
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SVHN, and CIFAR10. We train a VGG16 model on these datasets for ten epochs using an Adam
optimizer and a base learning rate of 0.01. We use a bar plot to show the correlation between PD and
V-entropy. We group PD into intervals of size four and compute the mean V-entropy for samples
lying in this PD interval.

Figure 15: The bar plots show a positive correlation between PD and Conditional V-entropy. Sam-
ples with higher PD also have a higher V-entropy resulting in lower usable information for models
like VGG16.

In Section-4.4, we find that PD is positively correlated with V-information, and the results shown
in Fig-15 further confirm this observation. Instance difficulty increases with PD, and the usable
information decreases with an increase in V-entropy. It is, therefore, clear from Fig-15 that samples
with a higher difficulty (PD value) have lower usable information, which is not only intuitive but
also provides empirical support to Proposition-1 in Appendix-A.1.
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