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Abstract

Learning agents are increasingly deployed alongside existing experts, such as hu-1

man operators or previously trained agents. While Bayesian methods like Thomp-2

son Sampling offer principled approaches to trade-offs between reward learning3

and information gain, it is unclear how a learner should optimally incorporate4

expert information, which differs in kind from its own action-outcome experiences.5

We study this problem of online Bayesian learning next to an expert in multi-armed6

bandits. We consider: (i) an offline setting, where the learner receives a dataset of7

outcomes from the expert’s optimal arm before interaction, and (ii) a simultaneous8

setting, where the learner must choose at each step whether to update its beliefs9

using its own experience or the expert’s concurrent outcome. We formalize how10

expert data influences the learner’s posterior, and prove that pretraining on expert11

outcomes tightens information-theoretic regret bounds by the mutual information12

between the expert data and the optimal arm. For the simultaneous setting, we pro-13

pose an information-directed rule where the learner processes the data source that14

maximizes the one-step information gain about the optimal arm. We empirically15

validate our findings, showing that the value of expert information is highest in16

asymmetric environments where it can significantly prune the parameter space, and17

we demonstrate that our information-directed agent successfully leverages this to18

accelerate learning.19

1 Introduction20

Many learning systems are deployed next to other learners: an agent learning online may co-exist with21

a party that already knows how to act well in the same environment (a human operator, a calibrated22

controller, or a previously trained policy). Examples of this are clinical decision support (learning23

beside clinicians), robotics (learning beside a safe supervisor), and online platforms (learning beside24

a well-tuned baseline). While Bayesian bandit algorithms and Thompson Sampling in particular offer25

efficient exploration strategies with information–theoretic regret guarantees [Thompson, 1933, Russo26

and Van Roy, 2014, 2016], it remains unclear how a Bayesian learner should optimally use expert27

information that differs in kind from its own action–outcome experience. In particular, we study online28

Bayesian learning next to an expert in multi-armed bandits. The learner interacts with a bandit with29

unknown characteristics, while an expert (who knows the optimal action A∗(θ∗)) reveals observable30

outcomes. We consider two settings of access to expert information: (i) an offline dataset of outcomes31

from the optimal arm collected before interaction, and (ii) simultaneous learning where, at each32

round, the learner may process either its own action–outcome pair or an expert outcome. These raise33

two basic questions. How should expert data be incorporated in a Bayesian bandit? Intuitively,34

knowledge of the optimal action distribution should prune parameter values that cannot induce that35

optimal arm distribution. We formalize this intuition and show that using an expert dataset to update36

the prior via the likelihood of the optimal arm yields a posterior that converges to the ideal update that37

conditions directly on a known optimal distribution (Proposition 1). Moreover, probabilities of arm38

optimality computed under this posterior coincide with the usual Bayesian posterior over the optimal39

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



arm (Proposition 2). Plugging these identities into the information–ratio framework of Russo and40

Van Roy [2016], we obtain that the expected regret of Thompson Sampling with the expert-updated41

prior is governed by the reduction in entropy of the optimal-arm random variable (Theorem 1). In42

expectation over expert data, pretraining on expert outcomes strictly decreases the entropy of A∗,43

and thus tightens the regret bound. When learning online, which source should the learner pay44

attention to? In the simultaneous mode, the learner can observe expert outcomes but not actions.45

Alternatively, the learner’s experiences contain both actions and outcomes. Because rewards do not46

depend on which source is processed, an information–theoretic decision rule emerges: at each round,47

process the source that maximizes the mutual information (MI) with the optimal arm. We propose48

a simple particle-based estimator that compares one-step posterior entropies after hypothetically49

conditioning on either source and chooses the larger information gain (Algorithm 1). The rule hinges50

on Bayesian experimental design [Lindley, 1956], with the target being the optimal action rather than51

the parameter.52

Contributions We study an online Bayesian learning next to an expert. (i) We show that the53

proposed Bayesian inference on finite expert datasets converge to the ideal infinite-information update54

(Proposition 1) and that arm-optimality probabilities computed under this posterior equal the standard55

posterior over A∗ (Proposition 2). (ii) Leveraging Russo and Van Roy [2016], we show tighter56

Bayesian regret bounds and a clean measure of the value of expert data (Theorem 1). (iii) We propose57

a particle-based algorithm to choose between expert and self information by maximizing one-step58

mutual information about A∗ (Algorithm 1), and we discuss bias/variance trade-offs of one-sample59

estimates. (iv) Empirically we show expert information provides no gains in a symmetric bandit case60

(as expert outcomes add no discriminative information about θ), substantial regret reductions from61

offline expert data in asymmetric worlds, and dramatic improvements in strongly asymmetric worlds62

where expert outcomes nearly identify θ∗.63

Main Insight Expert information is most valuable when it moves probability mass between optimal64

arms; its value is exactly the reduction in uncertainty about the optimal action. Framing who to learn65

from as information acquisition about the optimal arm yields both interpretable theory and practical66

algorithms that result in agents knowing when to listen to the expert.67

1.1 Related Work68

Bandits and Beliefs Thompson Sampling [Thompson, 1933] has been a prevalent Bayesian al-69

gorithm for online learning for decades [Agrawal and Goyal, 2012, Chapelle and Li, 2011, Russo70

et al., 2018]. Russo and Van Roy [2016] made the explicit connection between the regret bounds71

and efficiency of Thompson Sampling and information theoretic quantities on the agent decision72

rules. There are also many examples of multi-agent bandit problems [Brânzei and Peres, 2021, Chang73

and Lu, 2025] where the question of agent information is introduced. To the best of our knowledge,74

these works do not consider how to incorporate expert samples in a Bayesian update and how this75

affects Thompson Sampling regrets. Additionally, our work traces back to early game-theoretic and76

theory-of-mind ideas. Works as Geanakoplos and Polemarchakis [1982], Moses and Nachum [1990]77

discussed the implications of agents with different belief structures sharing information to learn. Our78

work considers how do these ideas apply to a reward maximisation (online learning) problem.79

Learning from Experts and Demonstrations Our work is also connected to the broad literature80

on learning from expert feedback. Particularly, imitation learning and inverse reinforcement learning81

focus on inferring a policy or reward function from an expert’s actions [Abbeel and Ng, 2004, Ross82

et al., 2011]. Our approach differs fundamentally: we do not observe the expert’s actions, but rather83

the outcomes generated by their known-optimal policy. This shifts the inference problem from84

“what did the expert do?” to “what must the world be like for the expert’s policy to be optimal?”.85

Furthermore, our setting diverges from the (frequentist) bandits with expert advice framework [Cesa-86

Bianchi et al., 1997, Auer et al., 2002], RL with expert information [Gimelfarb et al., 2018] or best87

arm selection problems with offline data [Agrawal et al., 2023, Yang et al., 2025, Cheung and Lyu,88

2024]. Here, we assume a single, observable expert, and the central point is the optimal integration of89

their information with the learner’s Bayesian framework.90

Active Learning and Information Sources Our results on deciding to learn from an expert echo a91

form of Bayesian experimental design [Lindley, 1956] and are closely related to Information-Directed92
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Sampling (IDS), which selects actions to optimize the trade-off between immediate reward and93

information gain about the optimal action [Russo and Van Roy, 2014]. However, where standard94

IDS chooses an arm to pull, our agent makes a meta-decision about which data stream to process.95

This connects to Arumugam and Van Roy [2021] where the authors propose rate distortion to allow96

online learners to choose samples to learn from. Additionally, there are connections to recent work97

on regret bounds for online learning from expert feedback [Plaut et al., 2025a,b], where authors study98

the setting where agents can ask experts for which action is best.99

2 Single-Agent Bandit Problem100

To first formally define the sequential decision-making problem considered, we introduce some101

notions and necessary concepts from information theory.102

Preliminaries We define our problem on a probability space (Ω,F , P ) with all quantities including103

the true parameter of the bandit, and the agent’s sampled parameters, actions, and outcomes, being104

considered random variables on this space. For a discrete random variable X , E[X] is the expected105

value of X , and the entropy of a (discrete) random variable X with probability mass function106

p(x) is H(X) := −
∑

x∈X p(x) log p(x) = E[− log p(X)]. The conditional entropy of X given107

another random variable Y is H(X|Y ) := E[− log p(X|Y )], representing the remaining uncertainty108

in X once Y is known. The mutual information between X and Y is defined as I(X;Y ) :=109

H(X) − H(X|Y ). It quantifies the reduction in uncertainty about X resulting from observing Y .110

Throughout the paper, we use a subscript t to denote conditioning on the history of variables up to time111

t, Ht = {As, Ys}s<t. For instance, the posterior probability of X is denoted Pt(X) := P (X | Ht).112

Similarly, the conditional entropy of a random variable X given the history is Ht(X) := H(X | Ht),113

and the conditional mutual information is It(X;Y ) := I(X;Y | Ht).114

Single Agent Bandit An agent chooses actions a ∈ A at every time-step t ∈ N, with A being a115

finite set of actions. Each action produces a (possibly random) outcome Yt,a ∈ Y , and the agent116

obtains a reward R(Yt,a), with R : Y → R. The outcomes are drawn from distributions pa, of117

which the agents do not have knowledge of. We assume the outcome distribution pθ := (pθ,a)a∈A118

to be parameterised by some θ ∈ Θ such that for any action, the (mean) reward is a function of θ,119

µ(a, θ) := Ey∼pθ,a
[R(y)]. For some parameter θ, the optimal action A∗ ∈ A is then the action that120

satisfies A∗(θ) = argmaxa∈A µ(a, θ). The objective of such agent is to maximize the expected121

cumulative reward (or equivalently, minimize the expected regret relative to the best action). The122

regret is defined as123

Reg(T ) =

T∑
t=1

R(Y ∗
t )−R(Yt),

where Y ∗
t ∼ pθ,A∗ , and we use Yt ≡ Yt,At

.124

Thompson Sampling Thompson sampling is a Bayesian algorithm for bandit problems that works125

by sampling actions according to the (posterior) probability that they are the optimal action. Let126

Ht := {At, Yt}1≤t≤T−1 be the history of the actions taken and outcomes observed up to (not127

including) time T . Thompson Sampling works by assuming the agent samples actions from a128

posterior distribution (or prior before any new observations) P (θ | Ht) (abbreviated as Pt(θ))129

conditioned on Ht such that Pt(A = A∗) = Pt(A = At). Then, the agent samples a parameter130

θ̂t ∼ Pt(θ), and selects the action that maximises expected rewards under the model θ̂t:131

At ∈ argmax
a∈A

µ(a, θ̂t).

Then, a new outcome Yt is observed (when choosing At), and the belief Pt(θ) is updated according132

to the history Ht+1 = {Ht, {At, YAt}} via Bayes’ rule:133

Pt+1(θ̂t) = P (θ̂t | Ht+1) ∝ pθ̂t,At
(Yt)P (θ̂t | Ht).

For Bayesian decision makers, one usually considers the expected regret134

E [Reg(T )] = E

[
T∑

t=1

R(Y ∗
t )−R(Yt)

]
,
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where the expectation is taken with respect to the outcomes and the parameters sampled θ̂t. We define135

finally a quantity that will be of use for some of the results in the paper. From Russo and Van Roy136

[2016], we define the information ratio in a Bandit as Γt := Et [Reg(T )]
2
/It(A∗, (At, Yt)). In other137

words, it is the ratio of the squared expected regret at time t given the past history against the mutual138

information between the optimal action distribution and the current observation.139

3 Learning from Expert Data140

Consider the case where one player i has no prior knowledge of the environment, and the second141

player j is an expert (i.e. knows θ∗). Assume player j can share some information with player i.142

This can manifest via (i) Player i gets an initial dataset D∗
N = {Y ∗

n }1≤n≤N and (ii) Player i gets to143

observe new samples Y ∗
t as they start learning.144

3.1 With Expert Prior Data145

Infinite Information To start our analysis, assume first that N → ∞ and we can construct an146

unbiased density estimator with no errors, or, in other words, player i has access to the likelihood147

p∗A∗(Y ). Treating this as an offline data scenario, we can interpret the knowledge of pA∗(Y ) as148

an observation to be incorporated into the player’s knowledge via posterior inference. Intuitively,149

knowing pA∗(Y ) should restrict the set of non-zero likelihood parameters in our posterior to those150

which satisfy Θ̃ := {θ ∈ Θ : maxa∈A pθ,a = p∗A∗}. Let I[p∗A∗ | θ] = 1 if maxa∈A pθ,a = p∗A∗ .151

Then, for the posterior to be consistent with the observed data, we want it to satisfy152

P1(θ | p∗A∗) ∝ P0(θ)I[p∗A∗ | θ]. (1)

We use P0 to refer to the initial prior the player has over the parameters Θ, and P1 as the (offline)153

posterior resulting from incorporating the expert data. This posterior in (1) will assign zero mass to154

any parameter θ which induces an optimal action distribution that does not match p∗A∗ . From the155

set of parameters that induce such a distribution, we cannot distinguish (have equal likelihood), so156

the prior will dominate the posterior mass. We show that this posterior update is consistent in the157

upcoming section, by showing it can be derived as a result of an infinite data limit.158

Finite Information Next, consider the case where N < ∞, and therefore player i starts with a159

finite dataset D∗
N = {Y ∗

n }1≤n≤N of samples from the optimal arm, but cannot identify (yet) what160

arm these correspond to. Following the intuition in the case of infinite information, one would want to161

incorporate this off-line information into the prior, to afterwards proceed normally with TS, hopefully162

with a prior that is better informed.163

Recall that, under parameter θ ∈ Θ, the likelihood of a given sample Y ∗ being sampled from the164

bandit θ is pA∗,θ(Y
∗). Then, given a set of N samples D∗

N = {Y ∗
n }1≤n≤N , we can infer a posterior165

under the likelihood that the data comes from the current model as166

P1(θ | D∗
N ) ∝ P0(θ)pA∗,θ(D

∗
N ). (2)

Since the expert samples are i.i.d., we can write the right hand side as167

P0(θ)pA∗,θ(D
∗
N ) = P0(θ)

N∏
i=1

pA∗,θ(Y
∗
i ) = P0(θ) exp

( N∑
i=1

log pA∗,θ(Y
∗
i )
)
. (3)

Proposition 1. Assume a countable set Θ. As the number of samples increases N → ∞, the posterior168

update in (3) converges to the infinite data update in (1). In other words,169

lim
N→∞

P1(θ | D∗
N ) = P1(θ | p∗A) a.s. (4)

Regret Bounds with Offline Expert Data To estimate the Bayesian regret improvement of the170

agents when having access to offline expert data, let us first define the following concepts. The171

probability P0(A = A∗) under measure P0 is the probability of A being optimal under the prior172

distribution P0(θ). Let Θ∗
A := {θ ∈ Θ : a = argmaxa′∈A µ(a′, θ)}; in other words, Θ∗

A is the173

subset of parameters that yields a to be the optimal action. Observe we can then write P0(A =174
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A∗) =
∫
Θ∗

A
P0(θ)dθ. Then, define H0(A

∗) to be the entropy of the optimal action distribution under175

measure P0, or equivalently:176

H0(A
∗) =

∑
a∈A

P0(A = A∗) logP0(A = A∗).

To prove posterior consistency, we need to show that the probability density of A = A∗ under posterior177

P0(θ | D∗
N ) (denoted as P1(A = A∗) is equal to the posterior probability P0(A = A∗ | D∗

N ) under178

prior P0(θ).179

Proposition 2. The probability of an action A being optimal under measure P (θ | D∗
N ) is equal to180

the posterior probability:181

P1(A = A∗) = P0(A = A∗ | D∗
N ).

Russo and Van Roy [2016] established that the Bayesian regret of a Thompson Sampling algorithm is182

upper bounded by
√
Ht(A∗). We can now show that under expert data, the entropy of the (offline)183

posterior P0(θ | D∗
N ) is guaranteed to decrease in expectation over the observed data.184

Theorem 1 (Regret Reduction from Offline Expert Data). Let TS0 be a Thompson Sampling agent185

with prior P0(θ), and TS1 be a Thompson Sampling agent whose prior is the expert-updated posterior186

P1(θ) = P (θ | D∗
N ). The expected Bayesian regret of TS1, taken over all sources of randomness187

including the expert data D∗
N , is bounded by the regret of TS0:188

E[RegTS1(T )] ≤ C
√

T (H0(A∗)− I0(A∗;D∗
N )) ≤ E[RegTS0(T )],

where C is a problem-dependent constant, H0(A
∗) is the prior entropy of the optimal arm and189

I0(A∗;D∗
N ) is the mutual information between the optimal arm and the expert data under P0.190

Intuitively, this means that if the mutual information between the expert data and the optimal action191

distribution is high (i.e. the expert samples allow the agent to reduce the set of possible parameters to192

a much smaller subset), then the resulting regret will be significantly lower.193

4 Simultaneous Learning: Learning Next to an Expert194

Consider now the problem where the player has no prior information on what the optimal arm195

distribution looks like, but as it learns, it will observe both the (action, outcome) pair (At, Yt) it196

generated itself and the (optimal) outcome Y ∗
t the expert player generated (and thus also knows197

R(Y ∗
t ).198

In this case, we assume that the observer player can only learn from one sample at the time. Therefore,199

the player needs to choose at every step t whether they learn from the expert outcome Y ∗
t (which200

does not include action index), or their own sampled pair (At, Yt). We assume the player will still201

receive it’s own reward R(Yt), and thus the expected instantaneous regret E[R(Y ∗
t )−R(Yt)] does202

not depend on the expert sample, or on the agent’s choice on which information source to incorporate.203

This simplifies the analysis of the decision the agent needs to make. From Russo and Van Roy [2016]204

and Russo and Van Roy [2014], the expected regret of (general) Bayesian online learners is bounded205

by
√
ΓHt(A∗)T , where Γ is an upper bound for the information ratio. Given that the agent’s choice206

over what information to incorporate does not change the immediate rewards, this choice needs to be207

driven by the information gain from each source. Let Dt ∈ {Y ∗
t , (Yt, At)} be the random variable208

representing the data processed at time t, which can be either the expert outcome or the pair (outcome,209

action) from the player themselves. Then, the choice of data to learn from can be expressed through210

the choice:211

argmin
Dt

E[Ht(A
∗ | Dt)] = argmin

Dt

Ht(A
∗)− It(A∗, Dt) = argmax

Dt

It(A∗, Dt). (5)

In other words, the agent should choose to learn from the sample that maximises the mutual in-212

formation with the optimal action distribution. This is effectively a Bayesian experimental design213

framework [Lindley, 1956], where the experiments (self-generated data vs. expert data) need to be214

selected to maximise information gain1.215

1Bayesian experimental design is usually framed in terms of the information gain of model parameters θ. In
our case, we care about the mutual information between (A = A∗, D).
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Conditional Entropy Estimations From (5), the agent can estimate their optimal information216

source at every time-step based on the estimated conditional entropy from each source. For this, let217

us write the posterior measures Pt+1(A = A∗) resulting from the expert and learner’s data,218

P e
t+1(A = A∗) =

∫
Θ

1[A∗(θ) = A]Pt(θ | Y ∗
t )dθ ∝

∫
Θ

1[A∗(θ) = A]pθ,A∗(θ)(Y
∗
t )Pt(θ)dθ,

P s
t+1(A = A∗) =

∫
Θ

1[A∗(θ) = A]Pt(θ | Yt, At)dθ ∝
∫
Θ

1[A∗(θ) = A]pθ,At(Yt)Pt(θ)dθ.

(6)

Observe that, although computing posterior densities can be computationally complex, sam-219

pling from the posteriors in (6) can be done relatively fast through particle samples.220

Algorithm 1 Information Choice: Who To Learn
From

Sample {θ(n)}1≤n≤K from Pt(θ).
for a ∈ A do

Approximate P̂ e
t+1(a = A∗) =

1
K

∑
n 1[A

∗(θ(n)) = A]pθ(n),A∗(θ(n))(Y
∗
t ).

Approximate P̂ s
t+1(a = A∗) =

1
K

∑
n 1[A

∗(θ(n)) = A]pθ(n),At
(Yt).

end for
Renormalise P̂ e

t+1(a = A∗), P̂ s
t+1(a = A∗).

Estimate Ĥe
t (A

∗), Ĥs
t (A

∗).
Select argmaxd∈{e,s}{Ĥd

t (A
∗)}.

221

Remark 1. Agents following Algorithm 1 to de-222

cide where to learn from estimate MI between223

data and A∗ one step at a time. This is bound to224

introduce bias and variance issues. First, from225

Jensen’s inequality, computing the entropy of an226

estimated distribution will have a bias. Second,227

the conditional entropy in (5) is taken in expec-228

tation over data, but one step ahead the agents229

only have one sample to compute this estimate.230

A better approach, if the agents can sustain a231

buffer, would be to collect a number N ′ >> 0232

samples from both the expert and their own ex-233

perience, and estimate the information gain. We234

showcase in Section 5 how this is indeed the235

case, and one-step ahead MI estimation results236

in learning collapse.237

4.1 Exploiting Naive Expert Trust238

Until now, the analysis has focused on the setting in which the learning agent fully trusts the expert;239

there is an implicit assumption that expert samples are drawn (with full confidence) from the optimal240

arm distribution pA∗ . A natural question that follows is how this can be affected by misaligned,241

imperfect, or adversarial experts. This can introduce robustness failure modes in agent learning, some242

of which can be more severe than others. To formalise this, consider the expert is sampling and243

providing outcomes from some (possibly adversarial) distribution q ∈ ∆(A)2. Take N samples from244

q, {Y q
n }1≤N . Recall that since the learner is naive, it still updates its posterior based on the data:245

P q
1 (θ) ∝ P0(θ)

N∏
n=1

pA∗,θ(Y
q
n ) = P0(θ) exp

( N∑
n=1

log pA∗,θ(Y
q
n )
)
. (7)

Observe that this is a specific form of a misspecified Bayesian inference problem; the agent is trying246

to infer a posterior thinking the data is coming from pA∗,θ, and uses a corresponding likelihood,247

while the data is in fact sampled from a different q [Nott et al., 2023]. Let us use lqN (θ) :=248

1
N

∑N
n=1 log pA∗,θ(Y

q
n ), and observe that again lqN (θ) = H(q) − DKL(q∥pA∗,θ) + δqN (θ). The249

optimal action distribution under the misspecified posterior P q
1 is3250

P q
1 (a = A∗) =

∫
θ∈Θ∗

a
P0(θ)e

NlqN (θ)dθ∑
b∈A

∫
θ∈Θ∗

b
P0(θ)eNlqN (θ)dθ

=

∫
θ∈Θ∗

a
P0(θ)e

N(−DKL(q∥pA∗,θ)+δqN (θ))dθ∑
b∈A

∫
θ∈Θ∗

b
P0(θ)eN(−DKL(q∥pA∗,θ)+δqN (θ))dθ

.

For N → ∞, from established misspecified Bayes results [Berk, 1966, Bochkina, 2019] and under251

mild assumptions (measurability, compact Θ∗
a, P0(θ) > 0...) the posterior P q

1 (a = A∗) will252

concentrate probability mass around the set Θq := {θ ∈ Θ : minθ DKL(q∥pA∗(θ),θ)}; in other253

words, the set of parameters that result in an optimal action distribution that is as close as possible to254

q. We discuss therefore two possible scenarios.255

2This is a generalisation over previous sections; take q = p∗A∗ and we recover the benign expert.
3The derivation follows the same step as in the proof of Proposition 1.
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The expert agent makes mistakes The simplest example of robustness failure is the case where the256

expert agent provides samples from a mixture Ỹ ∗
t ∼

∑
a∈A wapa, where w ∈ ∆(A) is some mixture257

vector indicating how often the expert samples from each action. The asymptotic effect on the offline258

posterior P q
1 will depend on the specific problem instance. For example, take wA∗ = 1 − ϵ, and259 ∑

a∈A\A∗ wa = ϵ ≈ 0. If ϵ is small, then θ∗ will still be the minimiser θ∗ = minθ DKL(q∥pA∗(θ),θ).260

In this case, the posterior will still concentrate around θ∗ asymptotically and the agent will learn in261

the limit, but at a slower rate. For an empirical example on this, see Appendix B.262

The expert agent is adversarial A more aggressive example is one where the expert is adversarial263

(and possibly deceptive), and samples with probability ϵ ∈ [0, 1] a true optimal outcome from p∗A,264

and with probability 1− ϵ an adversarial outcome that steers the agent’s beliefs over θ to the worse265

possible parameter (this is know as the Huber contamination model [Huber, 1992]). In other words,266

the parameter θadv ∈ Θ such that θadv := minθ∈Θ µ(A∗(θ), θ∗). In this case, depending on the267

problem instance, there is a threshold ϵ∗ after which the agent will inevitably incur linear regret;268

whenever DKL((1− ϵ)pA∗(θ∗) + ϵpA∗(θ∗)∥pA∗(θ∗)) ≤ DKL((1− ϵ)pA∗(θ∗) + ϵpA∗(θ∗)∥pA∗(θadv)),269

the agent will end up being confidently wrong. For an empirical example on this, see Appendix B.270

5 Experiments271

We present now a set of bandit experiments to showcase the results presented in previous sections.272

Symmetric Countable Worlds: Countable Θ = {θ1, θ2, ..., θM} where all bandits have the same273

set of actions A with finite supports, but shuffled. That is, each bandit will have the same optimal274

action distribution assigned to a different action. In this case, there is no information gain from expert275

data.276

Asymmetric Countable Worlds: Countable Θ = {θ1, θ2, ..., θM} where all bandits have the same277

number of actions with equal support, but the probability distributions pθ,a are generated at random278

for each θ, a by adding normally distributed noise to a uniform distribution. That is, every bandit279

has (similar) but numerically different action distributions. In this case, using expert data should280

asymptotically lead to zero regret.281

Strongly Asymmetric Countable Worlds: Countable Θ = {θ1, θ2, ..., θM} where all bandits have282

the same number of actions with equal support, the probability distributions pθ,a are generated at283

random for each θ, a, but we fix the true bandit θ∗ to have pA∗,θ∗(y∗) = 1 for some fixed y∗ with284

positive reward. On average, this problem is similarly hard to a traditional Thompson Sampling agent,285

but an agent learning from expert data should infer with few samples the true θ∗286

We fix all experiments to M = 500, |A| = 50, Y = {−50,−49, ..., 49, 50}, R(Y ) = Y is the287

identity map and unless specifically stated, supp(pθ,a) = Y for all θ, a. We restrict the experiments288

to countable worlds and finite actions since this allows us to express priors and posteriors with289

categorical distributions and compute Bayesian updates exactly.290

5.1 Symmetric Bandits291

We present first the learning results on the symmetric bandits with countable parameter set. We292

generate M = 500 bandit models (parameters) by generating 50 arms from adding random noise to a293

uniform distribution over Y and normalizing. Then, we select one model at random from the 500294

parameters to be the true model. The prior is P0(θ) = uniform(Θ) in all cases. We run each scenario295

with 50 different random seeds and present all runs in transparent color, and the means in thicker296

opaque lines. In all cases, we plot the cumulated regret rate Reg(T )/T .297

Results in Symmetric Bandits The results are presented in Figure 1. First, we can see how offline298

learning with expert samples does not improve the Thompson Sampling regret at all in the symmetric299

bandit case. Having information over the optimal action distribution does not help when all bandits300

for any θ have the same optimal action distribution. Second, the fastest learning rate is obtained for301

the case where the agent only considers their own data at every time-step. Learning from expert data302

only results in linear regret (no learning). Additionally, as mentioned in Remark 1, we can see how303
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(a) Regret with priors P0 computed with 50, 100,
500 and 2000 expert samples.

(b) Regret of agents running Algorithm 1, estimat-
ing MI from 1, 50 or 200 samples (dp).

Figure 1: Regret obtained by TS agents with expert data in symmetric bandits.

estimating MI and attempting to learn from the maximum information source results in catastrophic304

performance when the MI is estimated from just 1 sample. As the number of samples increase, the305

performance gets closer to the no expert data baseline.306

5.2 Asymmetric Bandits307

We simulated agents with M = 500 bandits, where for each θ the distributions pa,θ are generated308

as a (renormalised) uniform distribution over Y with gaussian zero mean noise in each entry. This309

results in bandit instances that are hard to distinguish, but that have different distributions for each310

a, θ. In principle, in this case the agent would be able to solve the bandit problem in one step if it had311

access to infinite expert data.

(a) Regret with priors P0 computed with 50, 100,
500 and 2000 expert samples.

(b) Regret of agents running Algorithm 1, estimat-
ing MI from 1, 50 or 200 samples (dp).

Figure 2: Regret obtained by TS agents with expert data in asymmetric bandits.

312

Results in Asymmetric Bandits We present the corresponding results in Figure 2. In this case,313

we can observe how having access to an expert dataset offline yields heavy improvements in total314

regret when running Thompson Sampling with the resulting posteriors. In the case with 2000315

expert samples, the resulting agents achieve almost zero regret from the start of the Thompson316

Sampling phase. Interestingly, in this case the selection of information source does result in an overall317

improvement in learning speed. In particular, when comparing the regret rate at low time-steps,318

the agents running Algorithm 1 with 10 and 200 samples get an improvement of −7% and −4.7%319

correspondingly with respect to the fastest learning single source agent (No Expert Data)4.320

4These values may seem moderate, but they are in fact quite significant considering the overall setting. It
means that, across a wide range of randomly generated problem instances, selecting information sources based
on past data results in a ≈ 7% learning rate improvement over an (already efficient) Thompson Sampling agent
at no additional sampling cost.
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5.3 Strongly Asymmetric Bandits321

To test the cases where having expert data solves the bandit problem almost immediately, we simulated322

agents with M = 500 bandits, with distributions generated identically to the previous asymmetric323

experiments, but with one change. Once the true parameter θ∗ is selected (at random), one of the324

action distributions a′ is replaced by a (Dirac delta) distribution pa′,θ∗(2) = 1. This results in all325

cases in a′ = A∗. Since the agent knows the problem class, solving the bandit in a traditional326

Thompson Sampling approach will still require a (relatively) large amount of steps, but having expert327

samples would allow the agent to immediately infer θ∗.

(a) Regret with priors P0 computed with 1 and 5
expert samples.

(b) Regret of agents running Algorithm 1, estimat-
ing MI from 1 or 10 samples (dp).

Figure 3: Regret obtained by TS agents with expert data in strongly asymmetric bandits.
328

Results in Strongly Asymmetric Bandits The results are presented in Figure 3. Observe that,329

in the left hand plot, having a single expert sample to compute an offline prior causes the regret330

rate to drop almost immediately after a few Thompson Sampling steps. For only 5 expert samples,331

the resulting offline posterior yields a zero regret Thompson Sampling algorithm for all times in all332

instances computed. In this case, the improvements in regret rates are dramatic for agents running333

Algorithm 1. In particular, for agents using a single sample to estimate the MI, after 500 steps the334

improvement in regret is of −99% when compared to regular Thompson Sampling. This means the335

agents are successfully able to estimate that the gains in mutual information from the expert source336

are very beneficial (even with a single sample) and choose to learn from this source at all times5.337

6 Discussion338

In this work we studied the problem of Bayesian online learning when agents have access to expert339

outcomes, and are able to use these outcomes to improve their learning. We first propose and340

formally justify how to use offline expert data to update a Bayesian prior and second, we propose an341

information-directed algorithm that adaptively chooses between self-generated and expert-provided342

data and study its implications empirically. We showed empirically how expert information is most343

valuable in asymmetric worlds where it provides discriminative evidence to prune the parameter space.344

In such settings, both offline pre-training and our simultaneous learning algorithm dramatically reduce345

regret. We also highlight a critical limitation: the one-step, one-sample MI estimate is high-variance346

and can mislead the agent, suggesting that more sophisticated density estimation techniques are347

necessary for robust performance.348

Limitations and Future Work Parts of our analysis were conducted in countable parameter and349

action spaces, which enabled exact posterior updates. Extending this framework to continuous spaces350

with function approximation is a significant next step, likely requiring variational or particle-based351

approximations of mutual information. Additionally, the adversarial expert case deserves a deeper352

analysis, both theoretical and empirical. Furthermore, our agent model assumes full trust in the353

expert’s optimality. Future work could explore models where the agent also maintains a belief over354

the expert’s reliability, allowing it to explicitly reason about when to trust the provided information.355

5The agent seems to learn slower for the case where the MI is estimated from 10 samples, but this is an
artifact given that the agent chooses their own data until 10 samples have been collected, and only switches then.

9



References356

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In357

Proceedings of the twenty-first international conference on Machine learning, page 1, 2004.358

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem.359

In Conference on learning theory, pages 39–1. JMLR Workshop and Conference Proceedings,360

2012.361

Shubhada Agrawal, Sandeep Juneja, Karthikeyan Shanmugam, and Arun Sai Suggala. Optimal362

best-arm identification in bandits with access to offline data. arXiv preprint arXiv:2306.09048,363

2023.364

Dilip Arumugam and Benjamin Van Roy. Deciding what to learn: A rate-distortion approach. In365

International Conference on Machine Learning, pages 373–382. PMLR, 2021.366

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed367

bandit problem. SIAM journal on computing, 32(1):48–77, 2002.368

Robert H Berk. Limiting behavior of posterior distributions when the model is incorrect. The Annals369

of Mathematical Statistics, 37(1):51–58, 1966.370

Natalia Bochkina. Bernstein–von mises theorem and misspecified models: A review. Foundations of371

modern statistics, pages 355–380, 2019.372

Simina Brânzei and Yuval Peres. Multiplayer bandit learning, from competition to cooperation. In373

Conference on Learning Theory, pages 679–723. PMLR, 2021.374

Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire, and375

Manfred K. Warmuth. How to use expert advice. J. ACM, 44(3):427–485, May 1997. ISSN376

0004-5411. doi: 10.1145/258128.258179. URL https://doi.org/10.1145/258128.258179.377

William Chang and Yuanhao Lu. Multiplayer information asymmetric contextual bandits. arXiv378

preprint arXiv:2503.08961, 2025.379

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. Advances in neural380

information processing systems, 24, 2011.381

Wang Chi Cheung and Lixing Lyu. Leveraging (biased) information: Multi-armed bandits with382

offline data. arXiv preprint arXiv:2405.02594, 2024.383

John D Geanakoplos and Heraklis M Polemarchakis. We can’t disagree forever. Journal of Economic384

theory, 28(1):192–200, 1982.385

Michael Gimelfarb, Scott Sanner, and Chi-Guhn Lee. Reinforcement learning with multiple experts:386

A bayesian model combination approach. Advances in neural information processing systems, 31,387

2018.388

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics: Methodology389

and distribution, pages 492–518. Springer, 1992.390

Dennis V Lindley. On a measure of the information provided by an experiment. The Annals of391

Mathematical Statistics, 27(4):986–1005, 1956.392

Yoram Moses and Gal Nachum. Agreeing to disagree after all. In Proceedings of the 3rd conference393

on Theoretical aspects of reasoning about knowledge, pages 151–168, 1990.394

David J Nott, Christopher Drovandi, and David T Frazier. Bayesian inference for misspecified395

generative models. Annual Review of Statistics and Its Application, 11, 2023.396

Benjamin Plaut, Juan LiÃŠvano-Karim, and Stuart Russell. Asking for help enables safety guarantees397

without sacrificing effectiveness. arXiv preprint arXiv:2502.14043, 2025a.398

Benjamin Plaut, Hanlin Zhu, and Stuart Russell. Avoiding catastrophe in online learning by asking399

for help. In Forty-second International Conference on Machine Learning, 2025b.400

10

https://doi.org/10.1145/258128.258179


Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured401

prediction to no-regret online learning. In Proceedings of the fourteenth international conference on402

artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings,403

2011.404

Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed sampling.405

Advances in neural information processing systems, 27, 2014.406

Daniel Russo and Benjamin Van Roy. An information-theoretic analysis of thompson sampling.407

Journal of Machine Learning Research, 17(68):1–30, 2016.408

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on409

thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.410

William R. Thompson. On the likelihood that one unknown probability exceeds another in view411

of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933. ISSN 00063444. URL412

http://www.jstor.org/stable/2332286.413

Le Yang, Vincent YF Tan, and Wang Chi Cheung. Best arm identification with possibly biased offline414

data. arXiv preprint arXiv:2505.23165, 2025.415

11

http://www.jstor.org/stable/2332286


A Mathematical Proofs416

Proposition 1. First, let us write
∑N

i=1 log pA∗,θ(Y
∗
i ) = N

(
1
N

∑N
i=1 log pA∗,θ(Y

∗
i )
)
. Now we have417

N

(
1

N

N∑
i=1

log pA∗,θ(Y
∗
i )

)
= N

(
EY∼p∗

A∗ [log pA∗,θ(Y )] + δN (θ)
)
,

and δN (θ) := 1
N

∑N
i=1 log pA∗,θ(Y

∗
i ) − EY∼p∗

A∗ [log pA∗,θ(Y )], which goes to zero almost surely418

as N → ∞ by the law of large numbers. Observe that EY∼p∗
A∗ [log pA∗,θ(Y )] is the cross entropy419

between p∗A∗ and pA∗,θ, and thus420

EY∼p∗
A∗ [log pA∗,θ(Y )] = −H(p∗A∗)−DKL(p

∗
A∗ ||pA∗,θ).

Then, substituting back in the posterior update,421

P1(θ | D∗
N ) =

∏N
i=1 pA∗,θ(Y

∗
i )P0(θ)∑

ν∈Θ

∏N
i=1 pA∗,ν(Y ∗

i )P0(ν)
=

exp
(∑N

i=1 log pA∗,θ(Y
∗
i )
)
P0(θ)∑

ν∈Θ exp
(∑N

i=1 log pA∗,ν(Y ∗
i )
)
P0(ν)

=

=
exp

(
N
(
EY∼p∗

A∗ [log pA∗,θ(Y )] + δN (θ)
) )

P0(θ)∑
ν∈Θ exp

(
N
(
EY∼p∗

A∗ [log pA∗,ν(Y )] + δN (ν)
))

P0(ν)
=

=
exp

(
N (−H(p∗A∗)−DKL(p

∗
A∗ ||pA∗,θ) + δN (θ))

)
P0(θ)∑

ν∈Θ exp
(
N (−H(p∗A∗)−DKL(p∗A∗ ||pA∗,ν) + δN (ν))

)
P0(ν)

=

=
exp

(
N (−DKL(p

∗
A∗ ||pA∗,θ) + δN (θ))

)
P0(θ)∑

ν∈Θ exp
(
N (−DKL(p∗A∗ ||pA∗,ν) + δN (ν))

)
P0(ν)

,

where the last step holds since exp(−H(p∗A∗))N does not depend on θ and it cancels out with the422

normalization constant. Observe that, from the definition of almost sure convergence, for any ϵ > 0423

there exists a N ′ < ∞ such that δN < ϵ almost surely for any N > N ′. Then, taking ϵ0 ∈ (0, 1) and424

ϵ = ϵ0 minθ∈Θ\Θ̃ DKL(p
∗
A∗ ||pA∗,θ),425

lim
N→∞

exp
(
N (−DKL(p

∗
A∗ ||pA∗,θ) + δN (θ))

)
= lim

N→∞
exp

(
(N +N ′) (−DKL(p

∗
A∗ ||pA∗,θ) + δN+N ′(θ))

)
≤

≤ lim
N→∞

exp
(
(N +N ′) (−(1− ϵ0)DKL(p

∗
A∗ ||pA∗,θ))

)
= exp(−∞) = 0.

(8)
Now, let us consider the subsets Θ̃ and Θ \ Θ̃. First, take θ ∈ Θ̃. For any such theta, the posterior426

update is427

lim
N→∞

P1(θ | D∗
N ) = lim

N→∞

exp
(
NδN (θ)

)
P0(θ)∑

ν∈Θ exp
(
N (−DKL(p∗A∗ ||pA∗,ν) + δN (ν))

)
P0(ν)

∀ θ ∈ Θ̃.

Dividing the numerator and denominator by exp
(
NδN (θ)

)
,428

lim
N→∞

P1(θ | D∗
N ) = lim

N→∞

P0(θ)∑
ν∈Θ exp

(
N (−DKL(p∗A∗ ||pA∗,ν) + δN (ν)− δN (θ))

)
P0(ν)

∀ θ ∈ Θ̃.

First, any term in the denominator with ν ∈ Θ̃ has the same likelihood function for the optimal action.429

Therefore, δN (ν)− δN (θ) = 0 a.s. for any ν, θ ∈ Θ̃. Second, by the same argument as (8), any term430

ν /∈ Θ̃ goes to zero. Therefore,431

lim
N→∞

P0(θ)∑
ν∈Θ exp

(
N (−DKL(p∗A∗ ||pA∗,ν) + δN (ν)− δN (θ))

)
P0(ν)

=

=
1∑

ν∈Θ̃ P0(ν)
P0(θ) ∀ θ ∈ Θ̃.
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Now consider θ ∈ Θ \ Θ̃. Pick an arbitrary reference ν0 ∈ Θ̃. We can bound the limit fraction as:432

lim
N→∞

exp
(
N (−DKL(p

∗
A∗ ||pA∗,θ) + δN (θ))

)
P0(θ)∑

ν∈Θ exp
(
N (−DKL(p∗A∗ ||pA∗,ν) + δN (ν))

)
P0(ν)

≤

≤ lim
N→∞

exp
(
N (−DKL(p

∗
A∗ ||pA∗,θ) + δN (θ))

)
P0(θ)

exp
(
NδN (ν0)

)
P0(ν0)

∀ θ ∈ Θ \ Θ̃.

Now, re-arranging terms,433

lim
N→∞

exp
(
N (−DKL(p

∗
A∗ ||pA∗,θ) + δN (θ))

)
P0(θ)

exp
(
NδN (ν0)

)
P0(ν0)

=

= lim
N→∞

exp
(
N (−DKL(p

∗
A∗ ||pA∗,θ)− δN (ν0) + δN (θ))

) P0(θ)

P0(ν0)
.

By the same argument as (8), the exponent limit goes to zero, and thus434

lim
N→∞

exp
(
N (−DKL(p

∗
A∗ ||pA∗,θ) + δN (θ))

)
P0(θ)∑

ν∈Θ exp
(
N (−DKL(p∗A∗ ||pA∗,ν) + δN (ν))

)
P0(ν)

≤ 0 ∀ θ ∈ Θ \ Θ̃.

This completes the proof, and we have435

lim
N→∞

P1(θ | D∗
N ) =

I[p∗A∗ | θ]∑
ν∈Θ̃ P0(ν)

P0(θ).

436

Proposition 2. The event A = A∗ under the posterior density can be written as437

P1(A = A∗) =

∫
Θ∗

A

P0(θ | D∗
N )dθ =

∫
Θ∗

A

pA,θ(D
∗
N )P0(θ)∫

Θ
pA,ν(D∗

N )P0(ν)dν
dθ =

∫
Θ∗

A
pA,θ(D

∗
N )P0(θ)dθ∫

Θ
pA,ν(D∗

N )P0(ν)dν
.

(9)
Now observe, by Bayes’ Theorem,438

P0(A = A∗ | D∗
N ) =

P (D∗
N | A = A∗)P0(A = A∗)

P0(D∗
N )

. (10)

The likelihood P (D∗
N | A = A∗) represents the likelihood of the expert samples given that A is439

optimal. This can be computed by marginalising over all parameters that make A optimal,440

P (D∗
N | A = A∗) =

∫
Θ

p(D∗
N | θ)P0(θ | A = A∗)dθ =

∫
Θ∗

A

pA,θ(D
∗
N )

P0(θ)

P0(A = A∗)
dθ =⇒

=⇒ P (D∗
N | A = A∗)P0(A = A∗) =

∫
Θ∗

A

pA,θ(D
∗
N )P0(θ)dθ,

(11)
where the last equality is simply a conditional probability relation, and the last step holds since441

P (A = A∗) does not depend on θ. Therefore, substituting (10) and (11) in (9):442

P1(A = A∗) =

∫
Θ∗

A
pA,θ(D

∗
N )P0(θ)dθ∫

Θ
pA,ν(D∗

N )P0(ν)dν
=

P (D∗
N | A = A∗)P0(A = A∗)∫
Θ
pA,ν(D∗

N )P0(ν)dν
= P0(A = A∗ | D∗

N ).

443

Theorem 1 (Regret Reduction from Offline Expert Data). The result follows directly from the444

information-theoretic analysis of Russo and Van Roy [2016], which bounds the Bayesian regret of445
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a Thompson Sampling agent by the entropy of the optimal arm under its current belief distribution.446

Agent TS1 has belief P1. The regret, conditioned on a specific realization of D∗
N , is bounded by:447

E[RegTS1
(T ) | D∗

N ] ≤ C
√

T ·H1(A∗)

To find the unconditional expected regret, we take the expectation over the expert data D∗
N ∼ pA∗(θ∗),448

where the uncertainty about θ∗ is captured by the prior P0:449

E[RegTS1
(T )] = ED∗

N
[E[RegTS1

(T ) | D∗
N ]] ≤ ED∗

N

[
C
√
T ·H1(A∗)

]
.

Applying Jensen’s inequality we have E[
√
X] ≤

√
E[X], which gives:450

E[RegTS1
(T )] ≤ C

√
T · ED∗

N
[H1(A∗)].

From Proposition 2, we have P1(A = A∗) = P0(A = A∗ | D∗
N ). Therefore, the entropy H1(A

∗) is451

precisely the conditional entropy of the optimal arm given the expert data, under the original measure452

P0:453

H1(A
∗) = −

∑
a∈A

P1(A = A∗) logP1(A = A∗) = −
∑
a∈A

P0(A = A∗ | D∗
N ) logP0(A = A∗ | D∗

N ) =: H0(A
∗ | D∗

N ).

Substituting this into the bound, we get:454

E[RegTS1
(T )] ≤ C

√
T · ED∗

N
[H0(A∗ | D∗

N )].

Finally, from the definition of mutual information: ED∗
N
[H0(A

∗ | D∗
N )] = H0(A

∗)− I0(A∗;D∗
N ).455

This yields the main result:456

E[RegTS1
(T )] ≤ C

√
T (H0(A∗)− I0(A∗;D∗

N )).

This completes the proof.457

B Adversary Experiments458

We include here empirical results on the adversarial cases described in Section 4.1. We use the same459

asymmetric countable world setting as in Section 5. We compute results for the following:460

• A scenario with a ’mistaken’ expert, where the expert samples with probability ϵ a true461

optimal outcome and samples with probability 1 − ϵ an outcome from a uniform action462

distribution over A \A∗.463

• A scenario with an ’adversarial’ expert, where the expert samples with probability ϵ a true464

optimal outcome and samples with probability 1− ϵ an outcome from an optimal action in465

an adversarial world θadv .466

Results for Adversary Experiments As discussed in Section 4.1, we can see how the mistaken467

expert, in the worst case, induces no improvement of regret, which is reasonable since it samples468

from all actions uniformly. As ϵ increases, the only minimiser in Θq becomes θ∗ since this is an469

asymmetric bandit class. Then, the cumulated regret still converges to zero, but at a much slower rate.470

For the adversarial expert results, we can see how for low ϵ the regret actually increases away from471

the mean ’uninformed’ initial value; the expert forces the agent to believe it lives in a completely472

different world θadv . Similarly, as ϵ increases, the set Θq becomes a singleton (θ∗) and the agent still473

manages to achieve zero regret.474
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(a) Regret when learning from mistaken expert data. (b) Regret when learning from adversarial expert data.

Figure 4: Regret obtained by TS agents with mistaken or adversarial expert data.
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