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Abstract

Learning agents are increasingly deployed alongside existing experts, such as hu-
man operators or previously trained agents. While Bayesian methods like Thomp-
son Sampling offer principled approaches to trade-offs between reward learning
and information gain, it is unclear how a learner should optimally incorporate
expert information, which differs in kind from its own action-outcome experiences.
We study this problem of online Bayesian learning next to an expert in multi-armed
bandits. We consider: (i) an offline setting, where the learner receives a dataset of
outcomes from the expert’s optimal arm before interaction, and (ii) a simultaneous
setting, where the learner must choose at each step whether to update its beliefs
using its own experience or the expert’s concurrent outcome. We formalize how
expert data influences the learner’s posterior, and prove that pretraining on expert
outcomes tightens information-theoretic regret bounds by the mutual information
between the expert data and the optimal arm. For the simultaneous setting, we pro-
pose an information-directed rule where the learner processes the data source that
maximizes the one-step information gain about the optimal arm. We empirically
validate our findings, showing that the value of expert information is highest in
asymmetric environments where it can significantly prune the parameter space, and
we demonstrate that our information-directed agent successfully leverages this to
accelerate learning.

1 Introduction

Many learning systems are deployed next to other learners: an agent learning online may co-exist with
a party that already knows how to act well in the same environment (a human operator, a calibrated
controller, or a previously trained policy). Examples of this are clinical decision support (learning
beside clinicians), robotics (learning beside a safe supervisor), and online platforms (learning beside
a well-tuned baseline). While Bayesian bandit algorithms and Thompson Sampling in particular offer
efficient exploration strategies with information—theoretic regret guarantees [Thompson, 1933} Russo
and Van Roy, 2014, 2016], it remains unclear how a Bayesian learner should optimally use expert
information that differs in kind from its own action—outcome experience. In particular, we study online
Bayesian learning next to an expert in multi-armed bandits. The learner interacts with a bandit with
unknown characteristics, while an expert (who knows the optimal action A*(6*)) reveals observable
outcomes. We consider two settings of access to expert information: (i) an offline dataset of outcomes
from the optimal arm collected before interaction, and (ii) simultaneous learning where, at each
round, the learner may process either its own action—outcome pair or an expert outcome. These raise
two basic questions. How should expert data be incorporated in a Bayesian bandit? Intuitively,
knowledge of the optimal action distribution should prune parameter values that cannot induce that
optimal arm distribution. We formalize this intuition and show that using an expert dataset to update
the prior via the likelihood of the optimal arm yields a posterior that converges to the ideal update that
conditions directly on a known optimal distribution (Proposition[I). Moreover, probabilities of arm
optimality computed under this posterior coincide with the usual Bayesian posterior over the optimal
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arm (Proposition [2). Plugging these identities into the information—ratio framework of Russo and
Van Roy|[2016]], we obtain that the expected regret of Thompson Sampling with the expert-updated
prior is governed by the reduction in entropy of the optimal-arm random variable (Theorem ). In
expectation over expert data, pretraining on expert outcomes strictly decreases the entropy of A*,
and thus tightens the regret bound. When learning online, which source should the learner pay
attention to? In the simultaneous mode, the learner can observe expert outcomes but not actions.
Alternatively, the learner’s experiences contain both actions and outcomes. Because rewards do not
depend on which source is processed, an information—theoretic decision rule emerges: at each round,
process the source that maximizes the mutual information (MI) with the optimal arm. We propose
a simple particle-based estimator that compares one-step posterior entropies after hypothetically
conditioning on either source and chooses the larger information gain (Algorithm|[I)). The rule hinges
on Bayesian experimental design [Lindleyl [1956]], with the farget being the optimal action rather than
the parameter.

Contributions We study an online Bayesian learning next to an expert. (i) We show that the
proposed Bayesian inference on finite expert datasets converge to the ideal infinite-information update
(Proposition [I)) and that arm-optimality probabilities computed under this posterior equal the standard
posterior over A* (Proposition [2). (ii) Leveraging [Russo and Van Roy| [2016]], we show tighter
Bayesian regret bounds and a clean measure of the value of expert data (Theorem|I). (iii) We propose
a particle-based algorithm to choose between expert and self information by maximizing one-step
mutual information about A* (Algorithm|I), and we discuss bias/variance trade-offs of one-sample
estimates. (iv) Empirically we show expert information provides no gains in a symmetric bandit case
(as expert outcomes add no discriminative information about 6), substantial regret reductions from
offline expert data in asymmetric worlds, and dramatic improvements in strongly asymmetric worlds
where expert outcomes nearly identify 6*.

Main Insight Expert information is most valuable when it moves probability mass between optimal
arms; its value is exactly the reduction in uncertainty about the optimal action. Framing who to learn
from as information acquisition about the optimal arm yields both interpretable theory and practical
algorithms that result in agents knowing when to listen to the expert.

1.1 Related Work

Bandits and Beliefs Thompson Sampling [Thompson,|1933]] has been a prevalent Bayesian al-
gorithm for online learning for decades [[Agrawal and Goyal, |2012} (Chapelle and Li}, [2011} Russo
et al., [2018]]. Russo and Van Roy|[2016] made the explicit connection between the regret bounds
and efficiency of Thompson Sampling and information theoretic quantities on the agent decision
rules. There are also many examples of multi-agent bandit problems [Branzei and Peres| [2021},|Chang
and Lul |2025] where the question of agent information is introduced. To the best of our knowledge,
these works do not consider how to incorporate expert samples in a Bayesian update and how this
affects Thompson Sampling regrets. Additionally, our work traces back to early game-theoretic and
theory-of-mind ideas. Works as |Geanakoplos and Polemarchakis| [[1982]], Moses and Nachum|[[1990]
discussed the implications of agents with different belief structures sharing information to learn. Our
work considers how do these ideas apply to a reward maximisation (online learning) problem.

Learning from Experts and Demonstrations Our work is also connected to the broad literature
on learning from expert feedback. Particularly, imitation learning and inverse reinforcement learning
focus on inferring a policy or reward function from an expert’s actions [[Abbeel and Ng, {2004, Ross
et al., 2011]]. Our approach differs fundamentally: we do not observe the expert’s actions, but rather
the outcomes generated by their known-optimal policy. This shifts the inference problem from
“what did the expert do?” to “what must the world be like for the expert’s policy to be optimal?”.
Furthermore, our setting diverges from the (frequentist) bandits with expert advice framework [Cesa+
Bianchi et al.,|1997| |Auer et al.| 2002, RL with expert information [Gimelfarb et al., 2018]] or best
arm selection problems with offline data [[Agrawal et al., 2023} |Yang et al., 2025, [Cheung and Lyu,
2024]). Here, we assume a single, observable expert, and the central point is the optimal integration of
their information with the learner’s Bayesian framework.

Active Learning and Information Sources Our results on deciding to learn from an expert echo a
form of Bayesian experimental design [Lindley||1956| and are closely related to Information-Directed
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Sampling (IDS), which selects actions to optimize the trade-off between immediate reward and
information gain about the optimal action [[Russo and Van Royl 2014]]. However, where standard
IDS chooses an arm to pull, our agent makes a meta-decision about which data stream to process.
This connects to Arumugam and Van Roy|[2021] where the authors propose rate distortion to allow
online learners to choose samples to learn from. Additionally, there are connections to recent work
on regret bounds for online learning from expert feedback [Plaut et al.} 2025alb], where authors study
the setting where agents can ask experts for which action is best.

2 Single-Agent Bandit Problem

To first formally define the sequential decision-making problem considered, we introduce some
notions and necessary concepts from information theory.

Preliminaries We define our problem on a probability space (€2, F, P) with all quantities including
the true parameter of the bandit, and the agent’s sampled parameters, actions, and outcomes, being
considered random variables on this space. For a discrete random variable X, E[X] is the expected
value of X, and the entropy of a (discrete) random variable X with probability mass function
p(z) is H(X) := = >, c» p(z)logp(x) = E[-logp(X)]. The conditional entropy of X given
another random variable Y is H(X|Y") := E[— log p(X|Y)], representing the remaining uncertainty
in X once Y is known. The mutual information between X and Y is defined as I(X;Y) :=
H(X) — H(X]Y). It quantifies the reduction in uncertainty about X resulting from observing Y.
Throughout the paper, we use a subscript ¢ to denote conditioning on the history of variables up to time
t, H: = {As, Y} s<+. For instance, the posterior probability of X is denoted P;(X) := P(X | Hs).
Similarly, the conditional entropy of a random variable X given the history is H; (X)) := H(X | H;),
and the conditional mutual information is I;(X; V) := I(X; Y | H:).

Single Agent Bandit An agent chooses actions a € A at every time-step ¢t € N, with A being a
finite set of actions. Each action produces a (possibly random) outcome Y; , € Y, and the agent
obtains a reward R(Y,g7,,,), with R : Y — R. The outcomes are drawn from distributions p,, of
which the agents do not have knowledge of. We assume the outcome distribution pg := (pg.a)ac.A
to be parameterised by some 6 € O such that for any action, the (mean) reward is a function of 6,
p(a, 0) :=Eyp, . [R(y)]. For some parameter 6, the optimal action A* € A is then the action that
satisfies A*(0) = argmax,e4 14(a, ). The objective of such agent is to maximize the expected
cumulative reward (or equivalently, minimize the expected regret relative to the best action). The

regret is defined as
T

Reg(T) =Y R(Y;) = R(Y),
t=1
where Y;* ~ pg 4, and weuse Y; =Y} 4,.

Thompson Sampling Thompson sampling is a Bayesian algorithm for bandit problems that works
by sampling actions according to the (posterior) probability that they are the optimal action. Let
Hy := {A¢, Y 1<i<r—1 be the history of the actions taken and outcomes observed up to (not
including) time 7". Thompson Sampling works by assuming the agent samples actions from a
posterior distribution (or prior before any new observations) P(f | H;) (abbreviated as P;(6))
conditioned on H; such that P,(A = A*) = P,(A = A;). Then, the agent samples a parameter

9t ~ P;(0), and selects the action that maximises expected rewards under the model 9t:
A 0,).
t € argmax u(a, 0y)

Then, a new outcome Y; is observed (when choosing A;), and the belief P;(0) is updated according
to the history Hy11 = {H¢, {As, Ya, }} via Bayes’ rule:
Pyy1 () = P(6r | Hesr) o< py, 5, (Vo) POy | Hy).

For Bayesian decision makers, one usually considers the expected regret

E[Reg(T)] = E

)

Y R(Y)) = R(YY)
t=1
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where the expectation is taken with respect to the outcomes and the parameters sampled 0,. We define
finally a quantity that will be of use for some of the results in the paper. From Russo and Van Roy
[2016], we define the information ratio in a Bandit as Ty := B, [Reg(T)]* /I;(A*, (A, Yy)). In other
words, it is the ratio of the squared expected regret at time ¢ given the past history against the mutual
information between the optimal action distribution and the current observation.

3 Learning from Expert Data

Consider the case where one player ¢ has no prior knowledge of the environment, and the second
player j is an expert (i.e. knows 6*). Assume player j can share some information with player 1.
This can manifest via (i) Player ¢ gets an initial dataset D%, = {Y,* }1<,<n and (ii) Player ¢ gets to
observe new samples Y," as they start learning.

3.1 With Expert Prior Data

Infinite Information To start our analysis, assume first that N — oo and we can construct an
unbiased density estimator with no errors, or, in other words, player ¢ has access to the likelihood
ph« (Y). Treating this as an offline data scenario, we can interpret the knowledge of pa-(Y') as
an observation to be incorporated into the player’s knowledge via posterior inference. Intuitively,
knowing p 4~ (Y") should restrict the set of non-zero likelihood parameters in our posterior to those
which satisfy © := {# € © : max,c4pgo = ply~}. LetI[ph. | 0] = 1 if max,e 4 po,q = Ply--
Then, for the posterior to be consistent with the observed data, we want it to satisfy

Py(6 | piy-) o< Po(0)I[pia- | 0] (1

We use P to refer to the initial prior the player has over the parameters ©, and P, as the (offline)
posterior resulting from incorporating the expert data. This posterior in (I)) will assign zero mass to
any parameter 6 which induces an optimal action distribution that does not match p%.. From the
set of parameters that induce such a distribution, we cannot distinguish (have equal likelihood), so
the prior will dominate the posterior mass. We show that this posterior update is consistent in the
upcoming section, by showing it can be derived as a result of an infinite data limit.

Finite Information Next, consider the case where N < oo, and therefore player ¢ starts with a
finite dataset D} = {Y,}1<n<n of samples from the optimal arm, but cannot identify (yet) what
arm these correspond to. Following the intuition in the case of infinite information, one would want to
incorporate this off-line information into the prior, to afterwards proceed normally with TS, hopefully
with a prior that is better informed.

Recall that, under parameter § € O, the likelihood of a given sample Y* being sampled from the
bandit 6 is pa~ ¢(Y ™). Then, given a set of N samples D} = {Y,*}1<,<n, we can infer a posterior
under the likelihood that the data comes from the current model as

P(0| DN) o< Py(0)pa-o(Dy)- (2)

Since the expert samples are i.i.d., we can write the right hand side as

N N
Py(0)pa-o(Dy) = Po(6) H pa- o (V") = Po(6) exp () _logpa- o(Y7")). 3)

i=1

Proposition 1. Assume a countable set ©. As the number of samples increases N — 0o, the posterior
update in (3) converges to the infinite data update in (I). In other words,

lim Pi(0| Dy)=Pi(0]py) as. 4)
N —o00

Regret Bounds with Offline Expert Data To estimate the Bayesian regret improvement of the
agents when having access to offline expert data, let us first define the following concepts. The
probability Po(A = A*) under measure Py is the probability of A being optimal under the prior
distribution Py(0). Let ©% := {0 € © : a = argmaxyea p(a’,8)}; in other words, ©% is the
subset of parameters that yields a to be the optimal action. Observe we can then write Po(A =
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A*) = | o Py(6)d6. Then, define Hy(A*) to be the entropy of the optimal action distribution under
measure Py, or equivalently:

Ho(A*) = Y Po(A= A%)log Py(A = A%).
acA

To prove posterior consistency, we need to show that the probability density of A = A* under posterior
Py(0 | D) (denoted as Py (A = A*) is equal to the posterior probability Po(A = A* | D) under
prior Py ().

Proposition 2. The probability of an action A being optimal under measure P(0 | DY) is equal to

the posterior probability:
Pi(A=A")=Py(A=A"|Dy).

Russo and Van Roy|[2016] established that the Bayesian regret of a Thompson Sampling algorithm is

upper bounded by /H;(A*). We can now show that under expert data, the entropy of the (offline)
posterior Py(6 | D) is guaranteed to decrease in expectation over the observed data.

Theorem 1 (Regret Reduction from Offline Expert Data). Let TSy be a Thompson Sampling agent
with prior Py(0), and TSy be a Thompson Sampling agent whose prior is the expert-updated posterior
Py(0) = P(0 | D). The expected Bayesian regret of T'S1, taken over all sources of randomness
including the expert data D%, is bounded by the regret of T'Sy:

E[Regrs, (T)] < C\/T (Ho(A*) — To(A*; D)) < E[Regrs, (T)],

where C' is a problem-dependent constant, Hy(A*) is the prior entropy of the optimal arm and
Io(A*; D%) is the mutual information between the optimal arm and the expert data under P,.

Intuitively, this means that if the mutual information between the expert data and the optimal action
distribution is high (i.e. the expert samples allow the agent to reduce the set of possible parameters to
a much smaller subset), then the resulting regret will be significantly lower.

4 Simultaneous Learning: Learning Next to an Expert

Consider now the problem where the player has no prior information on what the optimal arm
distribution looks like, but as it learns, it will observe both the (action, outcome) pair (A, Y;) it
generated itself and the (optimal) outcome Y,* the expert player generated (and thus also knows
R(Yy).

In this case, we assume that the observer player can only learn from one sample at the time. Therefore,
the player needs to choose at every step ¢ whether they learn from the expert outcome Y;* (which
does not include action index), or their own sampled pair (A4;,Y;). We assume the player will still
receive it’s own reward R(Y}), and thus the expected instantaneous regret E[R(Y;*) — R(Y;)] does
not depend on the expert sample, or on the agent’s choice on which information source to incorporate.
This simplifies the analysis of the decision the agent needs to make. From Russo and Van Roy|[2016]]
and|[Russo and Van Roy|[2014], the expected regret of (general) Bayesian online learners is bounded

by \/TH;(A*)T, where T is an upper bound for the information ratio. Given that the agent’s choice

over what information to incorporate does not change the immediate rewards, this choice needs to be
driven by the information gain from each source. Let D; € {Y;*, (Y, A;)} be the random variable
representing the data processed at time ¢, which can be either the expert outcome or the pair (outcome,
action) from the player themselves. Then, the choice of data to learn from can be expressed through
the choice:

arg r%in E[Ht(A* ‘ Dt)} = arg r%in Ht(A*) — I[t(A*,Dt) = arg IIlDaX ]It(A*, Dt) (5)

In other words, the agent should choose to learn from the sample that maximises the mutual in-
formation with the optimal action distribution. This is effectively a Bayesian experimental design
framework [Lindleyl [1956], where the experiments (self-generated data vs. expert data) need to be
selected to maximise information gai

'Bayesian experimental design is usually framed in terms of the information gain of model parameters 6. In
our case, we care about the mutual information between (A = A*, D).



216
217
218

219
220
221

222
223
224
225
226
227
228
229

231
232
233
234
235
236
237

238

239
240
241
242
243
244
245

246
247
248

249

251
252
253
254
255

Conditional Entropy Estimations From (), the agent can estimate their optimal information
source at every time-step based on the estimated conditional entropy from each source. For this, let
us write the posterior measures P11 (A = A*) resulting from the expert and learner’s data,

Pia(A=A") = /

S}

Ph(A=A") = /

S}

1[A*(0) = AJPA(0 | Y,")d0 /@ 1[A*(0) = Alpp.a- o (V7" P2 (0) 6,
(6)

LLA*(6) = AP0 Yio A0 x| 114°(6) = Alpo (V)P (0)d0.

Observe that, although computing posterior densities can be computationally complex, sam-
pling from the posteriors in (6) can be done relatively fast through particle samples.

Remark 1. Agents following Algorithm|l|to de-
cide where to learn from estimate MI between
data and A* one step at a time. This is bound to
introduce bias and variance issues. First, from
Jensen’s inequality, computing the entropy of an
estimated distribution will have a bias. Second,
the conditional entropy in () is taken in expec-
tation over data, but one step ahead the agents
only have one sample to compute this estimate.
A better approach, if the agents can sustain a

Algorithm 1 Information Choice: Who To Learn
From
Sample {8}, <, <x from P;(6).
for a € Ado .
Approximate P (e = A*) =
=2, LA (6™) = Alpgny 4= (g(m) (Y5").
Approximate P7 (a = A*) =

7 20 LA (0™) = Alpge 4, (Y2).
end for

buffer, would be to collect a number N' >> 0
samples from both the expert and their own ex-
perience, and estimate the information gain. We
showcase in Section [3 how this is indeed the
case, and one-step ahead MI estimation results
in learning collapse.

Renormalise Pteﬂ(a = A*), Py y(a = A%).
Estimate ¢ (A*), H$ (A*).
Select arg max e (¢ o3 {H{ (A*)}.

4.1 Exploiting Naive Expert Trust

Until now, the analysis has focused on the setting in which the learning agent fully trusts the expert;
there is an implicit assumption that expert samples are drawn (with full confidence) from the optimal
arm distribution p 4~. A natural question that follows is how this can be affected by misaligned,
imperfect, or adversarial experts. This can introduce robustness failure modes in agent learning, some
of which can be more severe than others. To formalise this, consider the expert is sampling and
providing outcomes from some (possibly adversarial) distribution g € A(.A)El Take N samples from
¢, {Y,7}1<n. Recall that since the learner is naive, it still updates its posterior based on the data:

N N
P{(8) oc Po(6) [ [ pa-o(Yd) = Po(8) exp (Y logpa- o(Y,d))-

n=1

)

n=1

Observe that this is a specific form of a misspecified Bayesian inference problem; the agent is trying
to infer a posterior thinking the data is coming from p 4+ ¢, and uses a corresponding likelihood,
while the data is in fact sampled from a different ¢ [Nott et al., 2023]. Let us use [%(0) :=

+ ZnN:1 logpa~(Y,2), and observe that again [%(0) = H(q) — Dxr(qllpa~e) + 6% (6). The
optimal action distribution under the misspecified posterior P/ if]

N12.(0) N(=Drr(qllpax.0)+6%(6))
pi(a = 4y = Jreoz PO 00 Jpcoy Po@)e” T v o TR
Svea Jycor Po(@)eNn®do 37, Joco: Py(0)eN(=Prrlalpax,o)+0k () g
b

For N — oo, from established misspecified Bayes results [Berkl 1966} Bochkina, [2019] and under
mild assumptions (measurability, compact ©%, Py(6) > 0..) the posterior Pl(a = A*) will
concentrate probability mass around the set ©, := {6 € © : ming Dx1(q|[pa-(s),0)}: in other
words, the set of parameters that result in an optimal action distribution that is as close as possible to
q. We discuss therefore two possible scenarios.

“This is a generalisation over previous sections; take ¢ = p’. and we recover the benign expert.
3The derivation follows the same step as in the proof of Proposition
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The expert agent makes mistakes The simplest example of robustness failure is the case where the
expert agent provides samples from a mixture Y;* ~ > 1 wapa, where w € A(A) is some mixture
vector indicating how often the expert samples from each action. The asymptotic effect on the offline
posterior P will depend on the specific problem instance. For example, take w4+ = 1 — ¢, and
ZGGA\A* w, = € ~ 0. If € is small, then 0* will still be the minimiser 6* = ming Dx1,(ql[pa-(6),0)-
In this case, the posterior will still concentrate around 8* asymptotically and the agent will learn in
the limit, but at a slower rate. For an empirical example on this, see Appendix [B]

The expert agent is adversarial A more aggressive example is one where the expert is adversarial
(and possibly deceptive), and samples with probability € € [0, 1] a true optimal outcome from p?,
and with probability 1 — € an adversarial outcome that steers the agent’s beliefs over 6 to the worse
possible parameter (this is know as the Huber contamination model [Huber, [1992]). In other words,
the parameter % € © such that #?% := mingce pu(A*(),6*). In this case, depending on the
problem instance, there is a threshold €* after which the agent will inevitably incur linear regret;
whenever Dg 1, ((1 — €)pA*(9*) +€epax (o) ‘pA*(g*)) < Dgr((1- €)pA*(9*) + €pax(9) [P A~ (gadv ),
the agent will end up being confidently wrong. For an empirical example on this, see Appendix

5 Experiments
We present now a set of bandit experiments to showcase the results presented in previous sections.

Symmetric Countable Worlds: Countable © = {61, 05, ..., 0, } where all bandits have the same
set of actions A with finite supports, but shuffled. That is, each bandit will have the same optimal
action distribution assigned to a different action. In this case, there is no information gain from expert
data.

Asymmetric Countable Worlds: Countable © = {61, 05, ..., 0, } where all bandits have the same
number of actions with equal support, but the probability distributions py , are generated at random
for each 0, a by adding normally distributed noise to a uniform distribution. That is, every bandit
has (similar) but numerically different action distributions. In this case, using expert data should
asymptotically lead to zero regret.

Strongly Asymmetric Countable Worlds: Countable © = {6, 0, ..., 65, } where all bandits have
the same number of actions with equal support, the probability distributions pg , are generated at
random for each 6, a, but we fix the true bandit 8* to have p 4+ ¢« (y*) = 1 for some fixed y* with
positive reward. On average, this problem is similarly hard to a traditional Thompson Sampling agent,
but an agent learning from expert data should infer with few samples the true 6*

We fix all experiments to M = 500, |A| = 50, Y = {-50,—49,...,49,50}, R(Y) = Y is the
identity map and unless specifically stated, supp(pg,.) = Y for all 6, a. We restrict the experiments
to countable worlds and finite actions since this allows us to express priors and posteriors with
categorical distributions and compute Bayesian updates exactly.

5.1 Symmetric Bandits

We present first the learning results on the symmetric bandits with countable parameter set. We
generate M = 500 bandit models (parameters) by generating 50 arms from adding random noise to a
uniform distribution over ) and normalizing. Then, we select one model at random from the 500
parameters to be the true model. The prior is Py(#) = uniform(©) in all cases. We run each scenario
with 50 different random seeds and present all runs in transparent color, and the means in thicker
opaque lines. In all cases, we plot the cumulated regret rate Reg(T") /T

Results in Symmetric Bandits The results are presented in Figure|[I] First, we can see how offline
learning with expert samples does not improve the Thompson Sampling regret at all in the symmetric
bandit case. Having information over the optimal action distribution does not help when all bandits
for any 6 have the same optimal action distribution. Second, the fastest learning rate is obtained for
the case where the agent only considers their own data at every time-step. Learning from expert data
only results in linear regret (no learning). Additionally, as mentioned in Remark 1, we can see how
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Figure 1: Regret obtained by TS agents with expert data in symmetric bandits.

estimating MI and attempting to learn from the maximum information source results in catastrophic
performance when the MI is estimated from just 1 sample. As the number of samples increase, the
performance gets closer to the no expert data baseline.

5.2 Asymmetric Bandits

We simulated agents with M/ = 500 bandits, where for each 6 the distributions p, ¢ are generated
as a (renormalised) uniform distribution over ) with gaussian zero mean noise in each entry. This
results in bandit instances that are hard to distinguish, but that have different distributions for each
a, 6. In principle, in this case the agent would be able to solve the bandit problem in one step if it had
access to infinite expert data.

T T T T T T T T T T T T T
—— Mean Regret - No Expert Data —— Mean Regret - No Expert Data
Mean Regret - 50 Expert Samples 125 b —— Mean Regret - Only Expert Data
—— Mean Regret - Max MI 1dp.
Mean Regret - Max MI 10dp.

Mean Regret - Max MI 200dp.

Mean Regret - 100 Expert Samples 1

Mean Regret - 500 Expert Samples
Mean Regret - 2000 Expert Samples

0.00 ] 0.00 1
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
Time step Time step
(a) Regret with priors Py computed with 50, 100, (b) Regret of agents running Algorithm estimat-
500 and 2000 expert samples. ing MI from 1, 50 or 200 samples (dp).

Figure 2: Regret obtained by TS agents with expert data in asymmetric bandits.

Results in Asymmetric Bandits We present the corresponding results in Figure[2] In this case,
we can observe how having access to an expert dataset offline yields heavy improvements in total
regret when running Thompson Sampling with the resulting posteriors. In the case with 2000
expert samples, the resulting agents achieve almost zero regret from the start of the Thompson
Sampling phase. Interestingly, in this case the selection of information source does result in an overall
improvement in learning speed. In particular, when comparing the regret rate at low time-steps,
the agents running Algorithm with 10 and 200 samples get an improvement of —7% and —4.7%
correspondingly with respect to the fastest learning single source agent (No Expert Dataﬂ

“These values may seem moderate, but they are in fact quite significant considering the overall setting. It
means that, across a wide range of randomly generated problem instances, selecting information sources based
on past data results in a = 7% learning rate improvement over an (already efficient) Thompson Sampling agent
at no additional sampling cost.
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5.3 Strongly Asymmetric Bandits

To test the cases where having expert data solves the bandit problem almost immediately, we simulated
agents with M = 500 bandits, with distributions generated identically to the previous asymmetric
experiments, but with one change. Once the true parameter 6* is selected (at random), one of the
action distributions a’ is replaced by a (Dirac delta) distribution p, ¢+ (2) = 1. This results in all
cases in ' = A*. Since the agent knows the problem class, solving the bandit in a traditional
Thompson Sampling approach will still require a (relatively) large amount of steps, but having expert
samples would allow the agent to immediately infer 6*.

. T T T T T — )5 T T T T

=7 —— Mean Regret - No Expert Data - —— Mean Regret - No Expert Data

—— Mean Regret - 1 Expert Sample ’ —— Mean Regret - Only Expert Data
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0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
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(a) Regret with priors Py computed with 1 and 5 (b) Regret of agents running Algorithm estimat-
expert samples. ing MI from 1 or 10 samples (dp).

Figure 3: Regret obtained by TS agents with expert data in strongly asymmetric bandits.

Results in Strongly Asymmetric Bandits The results are presented in Figure 3] Observe that,
in the left hand plot, having a single expert sample to compute an offline prior causes the regret
rate to drop almost immediately after a few Thompson Sampling steps. For only 5 expert samples,
the resulting offline posterior yields a zero regret Thompson Sampling algorithm for all times in all
instances computed. In this case, the improvements in regret rates are dramatic for agents running
Algorithm[I] In particular, for agents using a single sample to estimate the MI, after 500 steps the
improvement in regret is of —99% when compared to regular Thompson Sampling. This means the
agents are successfully able to estimate that the gains in mutual information from the expert source
are very beneficial (even with a single sample) and choose to learn from this source at all timeﬂ

6 Discussion

In this work we studied the problem of Bayesian online learning when agents have access to expert
outcomes, and are able to use these outcomes to improve their learning. We first propose and
formally justify how to use offline expert data to update a Bayesian prior and second, we propose an
information-directed algorithm that adaptively chooses between self-generated and expert-provided
data and study its implications empirically. We showed empirically how expert information is most
valuable in asymmetric worlds where it provides discriminative evidence to prune the parameter space.
In such settings, both offline pre-training and our simultaneous learning algorithm dramatically reduce
regret. We also highlight a critical limitation: the one-step, one-sample MI estimate is high-variance
and can mislead the agent, suggesting that more sophisticated density estimation techniques are
necessary for robust performance.

Limitations and Future Work Parts of our analysis were conducted in countable parameter and
action spaces, which enabled exact posterior updates. Extending this framework to continuous spaces
with function approximation is a significant next step, likely requiring variational or particle-based
approximations of mutual information. Additionally, the adversarial expert case deserves a deeper
analysis, both theoretical and empirical. Furthermore, our agent model assumes full trust in the
expert’s optimality. Future work could explore models where the agent also maintains a belief over
the expert’s reliability, allowing it to explicitly reason about when to trust the provided information.

The agent seems to learn slower for the case where the MI is estimated from 10 samples, but this is an
artifact given that the agent chooses their own data until 10 samples have been collected, and only switches then.
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26 A  Mathematical Proofs

417 Proposition[l] First, let us write Z logpa- o(Y*) = N(% Zf\;l log pa~,0(Y;*)). Now we have

N
N (;V glogm*ﬂ(yz‘*)) = N (Eynps. logpa- o(Y)] + ()

ss and Oy (0) == Zi\il logpa-6(Y;") — Ey~ps,. [logpa«¢(Y)], which goes to zero almost surely
a19  as N — oo by the law of large numbers. Observe that Ey - , [logpa=,¢(Y)] is the cross entropy
420 between p’. and pa- ¢, and thus

Eyp. [logpaso(Y)] = —H(pi+) — Dxr(Pa-[|pa-6)-

421 Then, substituting back in the posterior update,

v I pace(VH)P0) exp (XL logpa- oY) Po(6)
P (6| D) = —
ZVE@ Hz 1A~ »(Y7)Po(v) Eye@ exXp (Zz 1 1ngA* (Y:*)) Po(v

)
exp (N (EYij,*[logpA*,( )]+ 6n (0 ))Po<9)
(

2o €XP (N (EY~p;* [logpa=.(Y)] + on( )) )Po
exp (N (=H(p}-) = Dir(Pi-|Ipa-,6) +n(6)) ) Po(6)
2o eXP (N (~H(p%4-) — Drr(ph-llpas,v) + on(v ) o
exp (N (=D (py-lpa-.6) + on(6)) ) Po(0)
S seo e (N (=Dicp(Pi-llpars) + v () ) Ro(v)

a2 where the last step holds since exp(—H(p%.))" does not depend on 6 and it cancels out with the
423 normalization constant. Observe that, from the definition of almost sure convergence, for any € > 0
424 there exists a N’ < oo such that 6y < € almost surely for any N > N’. Then, taking ¢ € (0, 1) and

425 €= ¢ mineee\é Dy, (ph|lpa~.0)

lim_exp (N (=Dt (- Ipac0) + 8n(6)) ) = lim_exp (N + N') (= Dier, (-
N—o0 N

bde el

pA*’g))) = exp(—o00) = 0.

paca) +0nan(9)) ) <

< lim exp ((N + N') (—=(1 — €0) Dk (Pl

N —o0

~ ~ ~ ®)
a6 Now, let us consider the subsets © and © \ ©. First, take § € ©. For any such theta, the posterior
427 update is

Nén(0))Py(0 -
Jim Pi(8] Dy) = Jim exp (Now (0) Fo(9) Vo e 6.
ooy o €Xp (N (=Drr(p|lpaxu) +on(v)) )Po(’/)
428 Dividing the numerator and denominator by exp (Ndy (6)),
Jim Py(0| D) = Jim P () Vo e ®.

NN e oxp (N (—Drr(ph.llpasw) +0n(v) — 5N(9)))po(y)

429 First, any term in the denominator with v € © has the same likelihood function for the optimal action.
430 Therefore, iy (v) — dn () = 0 a.s. for any v, 6 € O. Second, by the same argument as (8), any term
a3t v ¢ © goes to zero. Therefore,

lim Py(0) _
N ZuE@ exp (N (_DKL(p*A* pA*,l/) + 6N(V) - 6N(9)) )Po(l/)
1 -
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433

434

435

436

437

438

439
440

441
442

443

444
445

Now consider 6 € © \ O. Pick an arbitrary reference 1y € ©. We can bound the limit fraction as:
lim &P (N (=Dx1 (- lpa-,0) +n () ) Po(6)
NI S eo @b (N (= Dicr (P l[pasu) +n(v) ) Po(v)
< lim &P (N (=D (py-|lpa~.0) + 6n(0)) ) Po(6)
- Noee exp <N5N(I/0))P0(l/0)

Vheo\o.

Now, re-arranging terms,

exp (N (=Dxr(ph-|lpa-6) + 0n(0)) ) Po(6)

lim =

N—oo exp (N(SN(VO))PO(VO)
= lim exp (N (=Drr(pa-|lpa-0) — on(vo) + 5N(9))) o)
N oo ArliPAn0 ’ Po(vo)

By the same argument as (8)), the exponent limit goes to zero, and thus
e (N (=Drcr (0 [[pa- ) + v (0)) ) Po(0)
N2 S e e (N (= Dicn (- pas.v) + ox () ) Po(v)

This completes the proof, and we have

<0 Vheco\b.

. I[p%. | 6]
lim P(0 | Dy) = =———<Py(0).
Jim Pi(0] i) = = EE R0
O
Proposition[2] The event A = A* under the posterior density can be written as
Dy P Jor, P46 (DY) Po(6)d0
Pi(A=A")= [ Py(6]|D%)do = paol {f) 00) 4o 204 il .
o o4 JoPav(Dy)Po(v)dy Je Pav(Dy)Po(v)dv
©))
Now observe, by Bayes’” Theorem,

Py(Dy)

The likelihood P(D3%, | A = A*) represents the likelihood of the expert samples given that A is
optimal. This can be computed by marginalising over all parameters that make A optimal,

Po(0)

Dy)—————
pA,O( N)PO(A:A*)dQ ==

P(Di | A=A%) = [ p(Di [O)P(0] 4= A7) = |
) o

= PO} | A= AR =2) = [ pas(Di)RO)d
i (11)

where the last equality is simply a conditional probability relation, and the last step holds since
P(A = A*) does not depend on 6. Therefore, substituting and in (9):

 Joy, pas(DN)Po(0)d0  p(Dx | A= A%)Py(A = A¥)

P = A = DB~ o pay (D) Bo0)

= Py(A= A" | DY).
O

Theorem|[I|(Regret Reduction from Offline Expert Data). The result follows directly from the
information-theoretic analysis of Russo and Van Roy|[2016]], which bounds the Bayesian regret of
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446 a Thompson Sampling agent by the entropy of the optimal arm under its current belief distribution.
447 Agent T'S; has belief P;. The regret, conditioned on a specific realization of D3, is bounded by:

E[Regrs, (T) | Dn] < C+/T - H; (A*)

a4 To find the unconditional expected regret, we take the expectation over the expert data D%, ~ pa~(6*),
449 where the uncertainty about 6* is captured by the prior Fy:

E[Regrs, (T)] = Epy, [E[Regrs, (T) | Dy < Epy, |CVT-Hi(A7)) .

450 Applying Jensen’s inequality we have E[v/X]| < y/E[X], which gives:

E[Regrs, (T)] < C\/T - Eps, [Hy (A7),

451 From Proposition[2] we have P (A = A*) = Py(A = A* | D}). Therefore, the entropy Hy (A*) is
452 precisely the conditional entropy of the optimal arm given the expert data, under the original measure
453 Py
Hy(A*) ==Y Pi(A=A")log P(A=A*) = =) Py(A=A"| Dy)log Po(A = A* | D) =: Ho(A" | D).
acA acA

454  Substituting this into the bound, we get:

E[Regrs, (T)] < Cy/T - Epy, [Ho(A* | Dy)]

ss5  Finally, from the definition of mutual information: Ep+ [Ho(A* | Dy)] = Ho(A*) — Io(A*; DRy).
456 This yields the main result:

E[Regrs, (T)] < C\/T (Ho(47) — To(A*; D).
457 This completes the proof. O
s B Adversary Experiments

459 We include here empirical results on the adversarial cases described in Section 4.1} We use the same
460 asymmetric countable world setting as in Section[5] We compute results for the following:

461 * A scenario with a mistaken’ expert, where the expert samples with probability € a true
462 optimal outcome and samples with probability 1 — € an outcome from a uniform action
463 distribution over A \ A*.

464 * A scenario with an "adversarial’ expert, where the expert samples with probability € a true
465 optimal outcome and samples with probability 1 — € an outcome from an optimal action in
466 an adversarial world 647,

467 Results for Adversary Experiments As discussed in Section 4.1} we can see how the mistaken
a8 expert, in the worst case, induces no improvement of regret, which is reasonable since it samples
469 from all actions uniformly. As € increases, the only minimiser in ©, becomes 6* since this is an
470 asymmetric bandit class. Then, the cumulated regret still converges to zero, but at a much slower rate.
471 For the adversarial expert results, we can see how for low e the regret actually increases away from
472 the mean ’uninformed’ initial value; the expert forces the agent to believe it lives in a completely
473 different world #29%. Similarly, as € increases, the set O, becomes a singleton (6*) and the agent still
474 manages to achieve zero regret.
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Figure 4: Regret obtained by TS agents with mistaken or adversarial expert data.
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