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Abstract

Estimating heterogeneous treatment effects (HTEs) of continuous-valued inter-
ventions on survival, that is, time-to-event (TTE) outcomes, is crucial in various
fields, notably in clinical decision-making and in driving the advancement of next-
generation clinical trials. However, while HTE estimation for continuous-valued
(i.e., dosage-dependent) interventions and for TTE outcomes have been separately
explored, their combined application remains largely overlooked in the machine
learning literature. We propose DoseSurv, a varying-coefficient network designed
to estimate HTEs for different dosage-dependent and non-dosage treatment options
from TTE data. DoseSurv uses radial basis functions to model continuity in dose-
response relationships and learns balanced representations to address covariate
shifts arising in HTE estimation from observational TTE data. We present experi-
ments across various treatment scenarios on both simulated and real-world data,
demonstrating DoseSurv’s superior performance over existing baseline models.

1 Introduction

Estimating the causal effects of interventions at the individual level is essential for informed decision
making in fields such as personalized medicine [48], public health [39], social and economic policy
[62], and marketing and retail [44]. Within the machine learning (ML) literature, predominant
attention has been directed toward estimating heterogeneous treatment effects (HTEs) on continuous
and binary outcomes [1, 2, 62, 70, 63, 60, 9, 16]. By contrast, time-to-event (TTE) outcomes,
which capture the time until an event of interest, have received comparatively less attention. More
specifically, the existing ML literature on HTE estimation with TTE outcomes has focused on
quantifying causal effects of binary (non-dosage) interventions with “treatment” or “no treatment”
(control) being the only options [14, 58]. However, in practice, treatment settings are typically more
complex, comprising several, possibly continuous-valued treatment options, characterized by their
dosage or frequency of administration.

TTE outcomes have immense practical relevance, for example, in clinical studies that analyze survival
time or time to discharge. Equally, studying the causal effects of continuous-valued treatments is an
important problem in healthcare, with relevant areas including chemotherapy [18], insulin regimens
[36], and cardiovascular treatments [21]. Underlying dose-response relationships can be complex and
non-monotonic, with multiple stimulatory and inhibitory phases. Although average dose-response
curves across a population can be characterized in randomized controlled trials (RCTs) and may
appear simple, dose-response relationships at the patient level are often more intricate. Individual
patient characteristics can complicate these relationships, leading to patient-specific ideal dosages
and necessitating continuous modeling of treatments at the individual level.

While neural network (NN) models for HTE estimation have been developed separately for continuous-
valued interventions [60, 9, 51] and for TTE outcomes [12, 14, 58], their joint application remains
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largely unexplored in the current ML literature. Therefore, we propose DoseSurv, a deep learning
survival model that estimates the conditional hazard function—the probability of experiencing the
event at a given time—under different treatments and dosages. Unlike many (semi-)parametric survival
models—such as the Cox proportional hazards model [13] and related treatment-effect models [58]—our
model does not require covariate effects on the hazard to be constant over time.

Instead, we adopt NN-based discrete-time survival models that estimate conditional hazards through
a series of binary classification tasks [10, 24], following their adaptation for HTE estimation with
binary treatments by Curth et al. [14]. From the estimated conditional hazards, we can derive more
practically relevant measures, such as treatment-specific survival functions and the (restricted) mean
survival time, which in turn allow us to define treatment effects and dose-response relationships.
The core component of DoseSuryv is the radial basis function (RBF) hazard estimator, which mod-
els the survival hazard as a treatment-specific continuous function of dosage via Gaussian RBFs,
leveraging the varying-coefficient network framework introduced by Nie et al. [51]. Through shared
representations, DoseSurv also draws on information across different treatment options. Furthermore,
it incorporates balanced representation learning via integral probability metric (IPM) regularization
to mitigate various covariate shifts encountered in TTE and observational datasets [62, 14]. Here,
event occurrence (survival), censoring (e.g., loss to follow-up), as well as treatment and dosage
assignment, typically depend on individual patient characteristics leading to different covariate shifts
[14]. We therefore evaluate DoseSurv on real and synthetic datasets spanning these covariate shifts
and different treatment scenarios to assess its ability to mitigate the resulting biases.

Contributions Our contributions are fivefold: (i) We address the problem of HTE estimation
for single- and multi-arm treatment regimens with mutually exclusive continuous-valued (dosage-
dependent) and non-dosage treatment options, as well as TTE outcomes—a setting that has been
largely overlooked despite its high practical relevance. (ii) We propose DoseSurv, a novel varying-
coefficient network based on layer-specific RBFs and designed for HTE estimation in settings such as
the one described above. (iii) We adopt a computationally efficient IPM regularization technique to
mitigate various biases arising in HTE estimation from observational TTE data and continuous-valued
treatments. (iv) Moreover, we create synthetic TTE datasets for different continuous-valued treatment
types, and (v) we propose an extension of the classical Twins dataset, as a real-world benchmark for
continuous-valued treatment settings with TTE data. Our results show that DoseSurv outperforms
existing baselines under different treatment scenarios and covariate shifts.

2 Related Work

ML methods for estimating HTEs from binary interventions are well-studied and include model-
agnostic meta-learners (e.g., S- and T-learners) [40, 47, 72] and model-specific approaches like
multi-task architectures that leverage shared information across treatment groups while also allowing
treatment-specific modeling [62, 16, 2]. Implementations typically span tree-based models [69, 6]
and NNs [34, 62, 63, 16], and most works consider binary interventions only.

For continuous-valued interventions, classical approaches use the generalized propensity score [30],
while recent NN-based architectures directly model dose-response relationships. Some methods
discretize dosage into bins with treatment-specific heads [60], offering regional flexibility at the
expense of strict continuity; others adopt varying-coefficient formulations in which parameters
change smoothly with dosage [51, 61], preserving continuity. Adversarial approaches have also been
explored for continuous-valued interventions [9]; in TTE settings, however, censoring and temporal
dependence complicate defining faithful discrimination targets and stable training objectives.

In survival analysis, traditional models such as the Cox proportional hazards model [13] have been
extended using NNs [20, 37]. Non-parametric alternatives include random survival forests [32] and
discrete-time NN approaches [10, 45, 24], alongside survival clustering methods that group samples
with similar risk profiles [33]. Integrating HTE estimation directly into survival models remains
comparatively underexplored: most existing work addresses binary treatments using tree-based [29]
or NN approaches [14, 58], with no support for continuous-valued treatments.

We provide an extended review of methods for survival analysis and HTE estimation—including those
targeting continuous-valued interventions—in Appendix D, and summarize the applicability of related
neural approaches across settings in Table D.1.



3 Problem Statement

3.1 Definitions

We aim to analyze an observational TTE dataset D comprising /N individuals, each of whom is
treated with one of M different continuous-valued treatments. Throughout, we largely follow
notation and discrete-time survival formulations similar to those in [14]. The dataset can then be
represented as D = {x;, 7, 8;, (a;, ¢;) } Y., where each patient i is a realization of random variables

(X,T,A,(A,Q)) ~ P. In this context, X € X refers to a vector of random variables associated
with the patient covariates. Furthermore, we use 7' € T and C' € T to represent the random variables
for the event time (e.g., the time until death or onset of disease) and the censoring time (i.e., the time
until loss of follow-up). The observed patient outcomes are given by A = 1(7 < C), indicating
whether either the event or censoring was observed, and 7' = min(7', C'), representing the time of that
observation. We denote the random variable for the treatment assignmentas A € A = {0, ..., M—1}.
Each of these treatments A € A is associated with a continuous random variable ) € Q = [0,1] C R,
representing the (normalized) dosage for the respective treatment.! We treat time as discrete, with a
finite time horizon ¢, such that 7 = {1,--- , ¢, }. Based on the notation above, the probability of
the event occurring at time 7 for a given patient with covariates z and intervention® (a, ¢) who has
not experienced an event prior to 7 is defined as [14]

which is also known as conditional hazard. From this, we can compute the survival function
S(t|x,a,q) = [[,«,(1 = A(t|z, a, q)), representing the probability that the event will not occur up
until time 7. To infer the conditional hazards (and thus the survival function), we follow a typical
approach in discrete-time survival analysis by estimating A(7|x, a,¢) from covariates and time
intervals using a non-parametric ML model. We transform the TTE data into person-period (long)
format [66] and treat the estimation of the discrete conditional hazard function as a series of binary
classification problems associated with different time intervals. More specifically, we can fit an NN
model to the binary event indicator at each discrete time interval, with x, a, g, and 7 as predictors.

3.2 Relationship to Potential Outcomes Framework

In HTE estimation, our aim is not primarily to estimate outcomes conditional on the intervention, as
presented above. Instead, we want to estimate the potential outcome that will occur in the event that a
particular action is performed. Following the Rubin causal model [31], we can adopt the survival
function as a potential outcome of interest under a potential intervention (a, ¢) [14]

Saq(TlX) =P(T >7|X =x,do(A=0a,Q =q,C > 1)), )
where the do-operator [53] shows that a specific action is being taken. Here, we have to treat censoring

as an action we can intervene on by setting C' > 7, so that potential outcomes reflect uncensored
event times and causal effects are identifiable [64].

The HTE between two potential interventions (a, ¢) and (a, §) may then, for example, be defined
as the (time-dependent) difference in survival probabilities Ve (T|) = Sq q(7T|2) — Sa.4(T|2).
Alternatively, we may compute the restricted mean survival time (RMST) until the time horizon
tm under an intervention (a,q) as a time-independent potential outcome of interest: ¢:'(x) =

:161 Sa,q(t|z). The HTE can then be defined as vimg () =157 (x) — 5% (x) [14]. Moreover,
for a fixed treatment a, the function g — tfl’fl;t(:c) defines a patient-specific dose-response curve that

summarizes expected survival as a function of dosage.

To identify and quantify HTEs and dose-responses from TTE data, we make the following as-
sumptions, which are standard in the literature on (dosage-dependent) treatment effect estimation
[9, 60, 14] (Assumptions 1-3) and TTE outcomes [19, 50, 14] (Assumptions 4-5), and extend them
for continuous-valued treatments. We denote the potential event time under a potential intervention

(a,q) as Tg 4.

"For simplicity, we focus here on a set of continuous-valued treatments only, i.e., A = A“™. However,
DoseSurv can also accommodate the more general case with continuous-valued (dosage-dependent) and categor-
ical (non-dosage) treatment options, i.e., A= A" UA; for the latter, ¢ is a dummy with no effect.

*In the following, we refer to the tuple (a, q) as “intervention” to distinguish it from a “treatment” a with
associated “dosage” q.



Assumption 1 (Unconfoundedness) For all a € A and ¢ € Q, the intervention and the potential
event time are conditionally independent given covariates: (4,Q) L T, 4 | X.

Assumption 2 (Positivity of Interventions) For all x € X and all a € A:
(2a) Positivity of Treatment: There exists ¢ > O suchthate <P(A=a | X =) <1 —e.

(2b) Positivity of Dosage: For any admissible dose ¢ € Q and any small interval { C Q around g,
PQQeU|A=a, X =x)>0.

Assumption 3 (Consistency) The potential event time will actually be observed under the observed
intervention without being affected by any other external factors, i.e., if A = a and @ = ¢, then
T =T,

Assumption 4 (Independent Censoring) For all a € A, q € Q, the potential event time and the cen-
soring time are conditionally independent given covariates and intervention: 7, , L C' | X, (4, Q).

Assumption 5 (Positivity of Events and Censoring) Forallx € X,a € A,q € Q,and allt € T:
(5a) Positivity of Events: P(T' >t | X =x,A=a,Q = q) > € for some € > 0.
(5b) Positivity of Censoring: P(C >t | X =x, A =a,Q = q) > € for some € > 0.

Under Assumptions 1, 3, and 4, we can identify the interventional hazard from the observational
one, i.e., AN(T|z,a,q) = Ag(t|2) = P(T = 7|T >7,X = x,do(A =a,Q =¢q,C > 7)).
The corresponding potential outcome survival function can then be computed as S, ,(7|x) =
[Ti<, (1 = X q(t|)). A brief mathematical derivation of this identification is given in Appendix F.
Assumptions 2 and 5 further provide the overlap and non-degeneracy conditions for treatment,
dosage, and at-risk sets required for non-parametric estimation [14]. We provide the causal diagram
underlying the assumed data-generating process in Appendix G.

4 DoseSurv

4.1 Model Architecture

Based on the definition of the problem presented above, we propose an NN-based discrete-time
survival model, called DoseSurv, which is depicted in Fig. 1, and is tailored for survival predictions
in single- and multi-arm treatment regimens with dosage-dependent (and non-dosage) treatments.
DoseSurv consists of a representation network, ® : X — R, which is implemented as a fully
connected NN and shared across all treatments a, dosages ¢, and times 7. It is followed by treatment-
specific hazard estimators, implemented as individual networks, each performing multi-output binary
classification h(®) : R x Q — [0, 1]“‘, which allow us to estimate the survival hazards at each time
point 7 for a specific continuous-valued treatment a

Ar|@, a,q) = K (®(),q), 3)
where h(Ta) is the output of h(@) corresponding to time 7. The treatment-specific estimators enable the
learning of features unique to each respective treatment option. To enable the learning of the dosage
dependency in the hazard estimates, we take two steps: (1) we add ¢ as an additional feature to the

shared representation ® (). (2) more importantly, we use Gaussian RBFs to explicitly model the
network parameters (weights and biases) as continuous functions of ¢, as described below.’

4.2 The RBF Hazard Estimator

For continuous-valued treatments a, we want to preserve the prominent role of ¢ and prevent
its influence from vanishing in a high-dimensional feature space. Therefore, we implement the
treatment-specific hazard estimators as flexible varying-coefficient networks, where the network
parameters 6 are functions of dosage ¢, following prior work by Nie et al. [S1]. We depart from
that formulation by modeling the network parameters as linear combinations of treatment- and
layer-specific RBFs with learnable centers and bandwidths. Concretely, let the hazard estimator

3For non-dosage treatments a € A, h(®) : R — [0, 1]'™ is implemented as a standard fully connected NN.
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Figure 1: DoseSurv features a shared representation network that captures common features across
treatments, dosages, and time intervals. To address covariate shifts arising from treatment-selection
bias, dosage-selection bias, censoring, and event-induced shifts, we introduce an IPM regularization
term based on a custom discretization of dosage (¢ — q) and time (¢t — t), enabling the learning of
balanced representations ® across treatments, dosages, and event times. For continuous treatments,
a € A", the model extends to the RBF hazard estimator, which consists of treatment-specific
network heads. These heads use treatment- and layer-specific RBF bases {zbl("}c)},le to model
parameters as continuous functions of ¢, ensuring continuity of discrete-time hazard estimates with
respect to dosage. The hazard estimates allow for the computation of treatment- and dosage-specific
survival curves, enabling dose-response analysis.

h(®) comprise .J; parameters (weights and biases) in each layer [ € {1, ..., L}, which are given by
6 (q) = (9%?1) (q), 9;‘3) (@,..., 95,‘:7)1 (q))T. Each of these parameters, indexed by j, is modeled as a
continuous function of ¢
K
07 (a) = > B (@), )
k=1

where {wl(?}kK:I are the K basis functions in layer [ for treatment a, and Bj(.%)k are the learnable
coefficients [51]. We can therefore write

0" (q) = B/ @\ (g) )
(a) (a)
1,1,1 1,1, K
B"=| . |eR"VE 0 (g) = (67(e). 0% (@), ..., v (q)) € RE.

(@) (@)
'B.]l,L,l 5,},,1,1{

We propose the use of Gaussian RBFs as basis functions

a a a)\ 2 a

(@) =wii exp [~ (1= 6R)"/ (2005)%)] (©)
with learnable centers (cl(fll), cl(g), ... 7Cl(f11)<)’ shape parameters (ofﬁ), Ul(f;), ... ,al(j?{) and additional
weights (wz(?l)7 wl(g), ceey wl(“})()4 This flexibility, together with the universal approximation property

of Gaussian RBF expansions in ¢, implies that-given sufficiently many centers and suitable band-
widths—our ¢-dependent parameterization can represent any continuous dose-response function on
compact intervals [52]. Moreover, Gaussian RBFs provide global support over the dosage range,
potentially aiding in low-overlap regions. Furthermore, because complex survival likelihoods and
their gradients interact nonlinearly with basis functions, our approach aims to boost optimization by
learning not only the varying coefficients but also the properties of the basis functions themselves.

“While not explored here, coupling these amplitude weights across clinically similar treatments would
provide a simple route to induce soft cross-treatment information sharing between hazard estimators.



4.3 Loss Function and Representation Balancing

DoseSurv uses both empirical risk minimization and representation balancing to learn hazard estimates
in the presence of biases in treatment and dosage selection, as well as censoring and event occurrence.

Empirical Risk Loss We minimize the empirical risk through the following loss term [24, 41]

11 @ o
Lise = 577 O BCE (yi(0). by (). ), @

M p=1 47>t

where y;(t) = 1{6; = 1 A 7; = t} denotes the observed event indicator for patient 4 in person-
period (long) format. In this formulation, L is proportional to the negative discrete-time hazard
log-likelihood—that is, the average binary cross-entropy (BCE) computed over at-risk rows only.
Minimizing it corresponds to maximum-likelihood estimation of per-interval hazards, and censoring
is handled via the at-risk conditioning ¢:7; >t.

Representation Balancing To mitigate the effects of confounding, as well as censoring and event-
induced shifts, DoseSurv aims to learn a representation ® () in which features are balanced across
at-risk populations at different times under different treatments and dosages. For this purpose, we
adapt an IPM regularization scheme for binary treatments [14], to minimize the Wasserstein distance
[68] between feature distributions of individual time-, treatment-, and dosage-specific subpopulations
and the overall baseline population. We discretize the continuous dosage ¢ into £ equally-sized bins
{[01 I/D)v [1/D7 Q/Q)a Tty [(Q - 1)/27 1}}’ indexed by q S {15 27 e 32}7 and denote by qi the
dosage-bin index for sample ¢. To prevent oversegmentation into overly small subpopulations—which
can reduce computational efficiency, generalizability, and stability—we also discretize time ¢ into T
intervals of lower temporal resolution, indexed by t € {1,2,--- ,T}. Let t; be the coarse time-bin
index for sample ¢, obtained by mapping the observed time 7; to one of these ¥ intervals. We then
define the IPM regularization loss as the sum of Wasserstein distances between the representations of
the total baseline population and that of each subpopulation

111 =
Lipm = Aas SO Wass({@(2i) Y A(®0) gy —a > qi—a)- (®)
acAq=1 t=1
Consequently, Lipy penalizes, for each treatment a, time bin t, and dosage bin g, the discrepancy
in ® between the corresponding at-risk subpopulation and the overall baseline population.’ In
principle, one could complement or replace our IPM regularization with observation reweighting
tailored to dynamic survival settings with continuous treatments. Such an approach would require
estimating generalized propensity scores for treatment and dosage given covariates, as well as
conditional at-risk (survival) probabilities over time. In practice, these quantities are difficult to
estimate reliably—especially with continuous dosages and time-varying risk sets—and often yield
extreme or unstable weights under limited overlap, which can inflate variance and destabilize training.
To avoid these issues, we focus on IPM-based representation balancing.

We calculate the total loss function as the sum of the empirical loss and the IPM regularization term
L = Lis + vLipm- ©

Here, ~ is a hyperparameter that controls the influence of the regularization term. More details on the
implementation of DoseSurv are provided in Appendix E.

5 Experiments

5.1 Experimental Setup

Following previous work on HTE estimation with continuous-valued treatments [60, 9] and TTE
outcomes [ 14, 58], we first evaluate the performance of our model on synthetic data, which provides
access to counterfactual outcomes and ground-truth survival curves for individual patients, and is
therefore essential for a thorough evaluation of causal effect estimation. In addition, we evaluate
DoseSurv on real-world data, namely the Twins dataset.

>For non-dosage treatments a € A, stratification of at-risk populations reduces to (a, t); we retain the same
normalization to keep IPM loss contributions comparable across continuous-valued and non-dosage arms.



5.1.1 Synthetic Datasets

We consider three simulated treatment scenarios (S1-S3) and create synthetic TTE datasets with
different underlying outcome generation processes for each of them. Patient covariates are correlated
in each of the datasets. In S1, we evaluate model performance for a single continuous-valued treatment,
ie., As; = {0}. In S2, we consider two continuous-valued treatment options Ags = {0, 1}.
Finally, we investigate DoseSurv’s performance in a setting with one non-dosage treatment option

&% = {0} and one continuous-valued treatment option A" = {1}. Extensive descriptions of the
data generation process are provided in Appendix A.l. Our dosage assignment mechanism includes
a parameter 7) that controls the level of dosage selection bias in the observed policy. When n = 0,
the dosage is sampled from a uniform distribution between [0, 1]. As 7 increases, dosage selection
becomes increasingly confounded. Throughout all experiments, we simulate dosage assignment for
n € {0,1,2,3,4}. In addition, we simulate a fixed treatment selection bias for scenarios S2 and
S3, which comprise multiple treatment options, and employ an informed censoring process, which
introduces an additional censoring bias over time.

5.1.2 Ablations on DoseSurv Design

To examine the impact of certain design elements of DoseSurv, we conduct ablation studies. We
compare the standard DoseSurv model (5 RBFs with layer-specific, learnable centers initialized at
{0,0.25,0.5,0.75,1}) with 5 different variants: The first ablation (A1) corresponds to the standard
DoseSurv model, except with fixed (non-learnable) RBF centers. For the second variant (A2), we
replace the RBF basis with a truncated polynomial (power) basis

k
(a) _ )1 fork=0,...,d 0
Vi (a) {max(q—cl(ak?_d,O)d fork=d+1,...,d+k (10)
to construct splines of degree d = 2, with k = 5 learnable knots, cl(flk)f 4+ initialized at

{0,0.25,0.5,0.75,0.95}. This results in a total of K = 8 basis functions, and thus higher com-
plexity than the standard DoseSurv model. The third ablation (A3) corresponds to the standard
DoseSurv model, but with only three basis functions (3 centers initialized at {0.2, 0.5, 0.8}). For
ablation A4, we do not add q as an additional feature to the shared representation ® (), incorporating
it only implicitly by modeling the network parameters using the RBFs that depend on g. In the
final ablation (AS5), we employ the varying-coefficient network design proposed by Nie et al. [51]
for non-TTE data. This design features a truncated polynomial basis of degree d = 2 with Kk =2
non-learnable knots at {1/3,2/3}, and omits ¢ as an additional input feature. This results in K =5
basis functions, yielding a complexity comparable to our standard DoseSurv model.

5.1.3 Real-world Dataset

Additionally, we evaluate DoseSurv on the Twins dataset, a well-established benchmark in the HTE
literature for binary treatments. This dataset provides survival times for twins born in the United
States between 1989 and 1991 [3]. The original use of this dataset focuses on binary treatment
assignment—classifying the heavier twin as "treated" and the lighter twin as "control" [46, 70]. First,
we keep this notion and validate DoseSurv in a binary treatment scenario, without dosages, similar to
[14]. Second, we extend the scope of the dataset by replacing the binary treatment indicator with the
actual birth weight, treating birth weight as a continuous "dosage". This reinterpretation allows the
dataset to represent two potential outcomes for each sample exposed to two distinct dosages. Details
on the dataset and the implemented censoring mechanism are provided in Appendix A.2.

5.1.4 Baselines
We benchmark DoseSurv against well-established and state-of-the-art ML models for TTE analysis:

* DeepSurv [37]: A continuous-time survival model that extends the Cox proportional hazards model
by incorporating NNs while retaining the assumption of proportional hazards.

¢ DeepHit [45]: A discrete-time NN method modeling the event-time distribution, trained with
composite likelihood and ranking losses; permits non-proportional hazards.

* RSF (Random Survival Forest) [32]: A non-parametric ML ensemble of decision trees (bootstrap
sampling, log-rank splits) for right-censored survival data.



* NSC (Neural Survival Clustering) [33]: A method combining NNs and clustering to model TTE
data by grouping samples with similar survival patterns and learning hazard functions per cluster.

By default, we implement all baselines as single models (S-learner) with treatment and dosage
information as additional covariates. For scenarios S2 and S3 where multiple treatment options are
available, we also compare against treatment-specific versions (T-learner) of the baseline models
described above—trained separately per arm with the corresponding dosage included as an input
feature—and refer to them as DeepSurv-T, DeepHit-T, RSF-T and NSC-T. Moreover, we consider
a version of DoseSurv without IPM regularization, DoseSurv (no IPM). For the binary treatment
scenario on the Twins dataset, we additionally compare DoseSurv against existing binary HTE
survival models, namely SurvITE [14] and BITES [58].

5.1.5 Performance Measures

For simulated data, we have access to the ground-truth individual dose-response relationships for
every treatment a and dosage ¢ € [0,1]. We can therefore quantify how closely the estimated
patient-specific dose-response curves match the true underlying curves across dosages and treatments
using the mean integrated squared error (MISE)® [60, 9], with RMST as the outcome of interest

rrmt rmst 2
MISE—mNZZ/ (Bt (@) — to™ ()~ dg. an

acA i=1

For continuous-valued treatments a € A", we also evaluate the mean dosage policy error (DPE)
[60], i.e., the mean squared error between the ground-truth outcome under the estimated optimal
dosage §;, = argmax,c(o 1] toy (%i) and the true optimal dosage ¢; , = argmax,co 1 tag (Zi),
maximizing RMST. This is given by

_ rms rms 2
DPE = WN Z Zt () —ts (@)% (12)

aeAcom =1

The performance measures described above require knowledge of the outcome generation mechanism
and are thus impractical for real-world applications. Therefore, we also provide common metrics
in survival analysis based on observed (factual) outcomes: the time-dependent C-index (C'Y), the
integrated Brier score (IBS), and the integrated negative binomial log-likelihood (INBLL). Details on
these metrics and corresponding model performance are provided in Appendix B.

In the Twins dataset adapted for continuous-valued treatments, for each sample i, we have access to

the event times T(z) *T( )(0> and T}" (1) *TO( I under the lower dosage (birth weight) q( ) and the

higher dosage ql(l) of the same treatment .A = {0}, but not across the whole dosage range. Instead of

computing MISE, we therefore provide the MSE between the observed and the estimated HTE

N
1L
MSE = — > " (Drmsti — Vimst.i) (13)

i
where Vimst i :min(TO(fglm : tm)—min(To(fglgm ytm) and Dy i = t”‘“h) (x;)— t"‘“Eo) (x;) are the observed
and estimated HTEs in terms of the RMST. Analogously, we compute the MSE between estimated
and observed HTEs for the non-dosage (binary) treatment case, A = A% = {0, 1}, where Tl(i)
represents the survival time of the heavier twin (treated) and To(i) of the lighter twin (control).

5.2 Results and Discussion

5.2.1 Main Results

Fig. 2 shows model performance across five runs for scenarios S1-S3 under varying levels of dosage
selection bias (n € {0,1,2,3,4}). In all experiments, either DoseSurv or its derivative without
IPM regularization consistently achieved the best performance in terms of both MISE and DPE,

%For non-dosage treatments a € A™, t3"'(z) is constant over g, reducing MISE to a regular MSE between
predicted and ground-truth RMST.
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Figure 2: Model performance for scenarios S1-S3 under different levels of dosage-assignment bias,
7, averaged across 5 runs. Smaller values for v MISE and +/DPE indicate better performance.

outperforming all baseline models. As expected, performance generally declined slightly with
increasing 7 for both metrics. Notably, IPM regularization substantially improved performance in
most scenarios, particularly in S2, which involves two continuous-valued treatments, and primarily
in terms of MISE. IPM regularization also yielded performance improvements even in the absence
of dosage-selection bias (7 = 0) and treatment-selection bias (S1). We attribute this to its ability to
mitigate other covariate shifts inherent in TTE data, such as event- or censoring-induced shifts.

The baseline models did not exhibit a clear performance trend. Among them, RSF and RSF-T
generally achieved the lowest DPE. NSC performed comparably well in terms of DPE for S1,
but showed the worst MISE performance in S2 and S3. DeepSurv(-T), DeepHit(-T), and NSC-T
consistently demonstrated similar performance across all metrics and experiments.

Table 1 summarizes the performance on the real-world Twins dataset. Modeling the problem
as a continuous treatment scenario and incorporating dosage information substantially improved
performance across all models, highlighting the importance of continuous treatment modeling in
survival analysis. DoseSurv demonstrated the best performance in estimating the HTE in both
binary and continuous treatment settings, with substantial performance improvement observed in the
continuous case. Among the baselines, DeepHit achieved the highest performance in the continuous
setting, while RSF and DeepHit performed equally well in the binary setting.

Table 1: Model performance on the Twins dataset across 5 runs (mean4+95% CI). For baselines, we
also show the relative difference compared to DoseSurv.

Methods Twins (continuous) Twins (binary)
MSE MSE

DeepSurv 14.461+£0.217 (+15.7%) 16.235+0.151 (+4.1%)
DeepHit 13.27240.203 (+6.2%) 15.97440.090 (+2.4%)
RSF 14.230+0.092 (+13.8%) 15.923+0.022 (+2.1%)
NSC 14.288+0.554 (+14.3%) 16.694+0.123 (+7.0%)
BITES — 16.177+0.161 (+3.7%)
SurvITE — 19.599+4.725 (+25.6%)
DoseSurv 12.50140.063 15.601+0.531

5.2.2 Ablation Study Results

Figure 3 illustrates DoseSurv’s performance for scenario S2 (1 = 1), compared to various ablations
(A1-AS), described in Section 5.1.2. The proposed design consistently achieved the best performance
across all metrics compared to other variants. In particular, each individual design choice yielded a
performance improvement over a DoseSurv implementation based on a traditional varying-coefficient

network design. Moreover, the use of RBFs results in fewer basis functions and coefficients, ﬁ;‘ll) &>
and thus lower model complexity, for the same number of centers/knots.
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better performance. We indicate model complexity in terms of the number of basis functions, K.

6 Conclusion

In this paper, we presented an RBF-based varying-coefficient network for estimating HTEs from
TTE data in single- and multi-arm treatment regimens with continuous-valued (dosage-dependent)
and non-dosage treatment options. We demonstrated in various experiments the benefit of the
varying-coefficient design in TTE settings with continuous treatments. Furthermore, we demonstrated
significant performance improvements by incorporating an IPM regularization scheme tailored for
these settings, effectively mitigating covariate shifts caused by confounding factors and the nature of
TTE data.

Limitations Like all HTE methods, our model relies on certain assumptions. In practice, leveraging
expert and domain knowledge helps assess these and understand the impact of possible violations.
Another challenge is tuning hyperparameters—especially the IPM regularization strength y—under
covariate shift. One way to address this is to select the largest y that preserves discrimination and
calibration (e.g., via INBLL) on the validation set, balancing regularization and predictive power [14].
Finally, as with most deep learning models, performance benefits from sufficient training data; our
sample size ablation in Appendix C.I indicates degradation with small training sets.

Broader Impact A promising future application of models like those explored in this work is
adaptive clinical trials, where integrating observational TTE data and leveraging ML can optimize
trial designs. This approach could enable dynamic adjustments in patient recruitment, treatment,
and dosage options, ultimately improving trial outcomes and patient care. However, analyses must
contend with covariate shifts—including treatment- and dosage-selection bias in observational settings
and event- or censoring-induced shifts inherent to survival data—which, if unaddressed, can bias effect
estimates and hinder optimal care.
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Appendix

A Data Description

A.1 Synthetic Data Generation

We generate covariates from a correlated multivariate normal distribution, X ~ N(0,X) with

Y=01-pI+ p11T and p = 0.2. We generate 20,000 samples with 40 covariates for scenario
S1 and 20 covariates for S2 and S3. To simulate event times, we randomly sample a number of
parameter vectors relevant to define the event-processes of each scenario, u3', u3*, u3® ~ N(0,17)

and normalize them v = wf /||uf||, where || - || is the Euclidean norm, and S € {S1, 82, S3}.
In scenarios S2 and S3, involving two treatment options, we aim to simulate an event process that
reflects shared characteristics across treatments (e.g., common risk factors such as age) while also
incorporating treatment-specific properties in the event process We denote shared parameter vectors

as v and treatment-specific parameter vectors as vj “. Finally, for the three scenarios S1, S2, S3,
we use the following event processes, where o (+) is the sigmoid function:

S1 (1 continuous-valued treatment option)

X0.q(t|2) =0.250 (v} @) o (—205 @ sin(27v5 @(q + 1)t /tm)—
3.5sin(6mgo (v @ + 2/3) + vi @) — sgn(vy @)q°)

S2 (2 continuous-valued treatment options)

0.1o(vie), if t<5
0.50 (v$2x) (5 sin( 57rq+v§2’0 )—l—2f1§2’0:1:q2)7 ift >5

AO,q(ﬂm):{

\ 0.10(vi%x), ift<5
t =
La(tl2) 0.50(v’x)o (5 sgn(ﬁfz’l )srn(47rq—|—'u52 ' )"‘f’fz’lqu) , 125

S3 (1 non-dosage and 1 continuous-valued treatment option)

0.10(v*x), ift<5
Xo(t
o(tlz)= {0 230502 — 1), ift>5

\ 0.10(vPx), ift<5
tlx)=
La(tle) 0.50(vi’x)o (551n(57rq+1153’1 )+21~J§3’1mq2)7 ift>5

Fig. A.1 (A) shows simulated ground-truth survival curves for scenario S1 for 6 different samples and
dosages ¢ = 0.2,0.5,0.8. Fig. A.1 (B) depicts the corresponding dose-response relationships, where
we define the outcome of interest as the RMST. We define the covariate-dependent, informative,
censoring process as

cens(t‘x) =0. 020( censw)

where v is another randomly sampled and normalized parameter vector, introducing an additional
censoring bias, and therefore covariate shift over time. Furthermore, we assume administrative
censoring at t;,, = 30. To assign dosages, we follow an approach similar to [9] and [61]. More
specifically, for each continuous treatment option, a, we sample the dosages from a Beta distribution

qa ~ Beta(7], byx)

with by« = () — 1)/q;; + 2 — 7, where the mode of the Beta distribution is given by the true optimal
dosage, ¢, maximizing the RMST for the respective patient under treatment a.” This mechanism
mimics a realistic medical scenario in which the dosage assignment is informed by the true optimal

"To maintain symmetry, we sample ¢ ~ Beta(bg:, ) with bgx = (7 — 1)/(1 — qi) + 2 — 7 if ¢ < 0.5.
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Figure A.1: Simulated (continuous) ground-truth survival curves for scenario S1 for 6 different
samples and dosages ¢ = 0.2, 0.5, 0.8 (A). Corresponding dose-response relationships with RMST as
the outcome of interest (B).

dosage. The parameter 7 = 1) — 1 controls the dosage assignment, i.e., how much influence the
covariates have on the dosage assignment. With n = 0, the dosage is sampled from a uniform
distribution, while the dosage assignment becomes increasingly confounded towards the optimal
dosage as 7 increases.

To simulate confounded treatment assignment in scenarios S2 and S3, we design a mechanism that
links the observed treatment type a with the individual patient covariates. For this, we sample M
parameter vectors u, ~ N (0,1%) and normalize them v, = wu,/||u,||. Then, we standardize the
covariates  and compute the probabilities for observing treatment a

exp(xv,)
Po=——"""—.
2 aen XP(2Va)
Next, we compute the modulated probabilities
~ (pa)5

Pe e S ea(a)®)

where ¢ controls the treatment selection bias or confounding, i.e., how much influence the covariates
have on the treatment decision (with £ = 0 indicating a random treatment decision). For both
scenarios S2 and S3 we choose £ = 1.5 and sample the treatment from the multinomial distribution

a ~ Multinomial ({Pg tacA),

suitable for any number of treatment options. Figure A.2 illustrates the covariate shift in two selected
covariates, x11 + %19, between the two different treatment groups in scenario S2. The histograms
represent the at-risk populations at different time points (f = 0, 10, 20) under different values of

t=0 t=10 t=20

-50 -25 00 2. -50 -25 00
X +xs xu+x9 X +xg

£=15

50 -25 00 25
x4 xs

Figure A.2: Histograms of x1; + x19 for at-risk populations across time for different treatments,
a = 0 and a = 1, in scenario S2. Covariate shifts arise with increasing time ¢ and bias parameter .
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the treatment selection bias parameter (¢ = 0, 1.5). As ¢ increases, the covariate shifts become
more pronounced. Additionally, shifts evolve over time due to differing event probabilities between
treatment groups [14].

Across all scenarios, we employ 17,000 samples for training, 1,000 samples for validation, and 2,000
samples for testing.

A.2 Twins Data

The Twins data is sourced from all US births between 1989—-1991 [3], where we extract data on twins
only, similar to [46, 70, 14]. Moreover, we select twins weighing less than 1,100 grams, extract 45
features predominantly related to parental factors, pregnancy, and birth, and include only samples
with no missing features. We analyze 30-day survival, retaining twin pairs with no death after day
30; twins without a recorded death are treated as administratively censored at day 30. Moreover, we
keep the original time resolution of 1 day as the length of the time intervals (¢, = 30). We create
a semi-synthetic observational TTE dataset by selecting one twin from each pair. For this, we use
a similar mechanism as previously for the treatment assignment in the simulated scenarios S2 and
S3: First, we randomly sample two parameter vectors ul"", ut*™ ~ A (0, 1?) and normalize them
o{VN = Vi /][] |, o = V0 /| |u0| | After standardizing the covariates x, we define the
probability for observing the lower-welght twin or higher-weight twin as

exp(zvlMin)
Zae{o,l} exp(zvlyin)’

Next, we compute the modulated probabilities

DPa =

5= (Pa)*
‘ Zae{O,l}((pa)£)7

where we choose £ = 20. We apply a synthetic censoring mechanism inspired by Schrod et al. [58]
to introduce early censoring into samples which are not already administratively censored at day 30.
As previously, we generate a normalized random vector vien and compute a censoring score s$* for
each patient 7, by computing the dot product with the standardized covariates: s;°" = vi¥ing,. After
standardlzlng 55" across all samples, we censor all remaining samples where sce“S > 0 (i.e., ~ 50%
of the remaining samples) at a random fraction f; ~ U(0, 1) of the sample’s true observed survival
time. Note that following this process we simulate a scenario where the independent censoring

assumption is violated.

The final cohort contains 5,601 samples. For our analysis, we use 70% of samples for training. From
the remaining samples, we extract 30% for validation and 70% for testing.

B Metrics Based on Observed Outcomes

B.1 Definitions

In the following, we provide definitions of the additional metrics used to measure the performance
of survival models based on observed (factual) outcomes. Here we treat time as continuous and
interpolate accordingly.

Time-dependent C-index (C'%): Following the definition from [4, 43], we compute C' as

O = P(S(Fi|®;) < S(Fi|z;)| 7 < 7, 0: = 1).
This metric is not limited to settings where the proportional hazard assumption holds, but can be
biased since only uncensored individuals are taken into account [49].

Integrated (IPCW) Brier Score (IBS): The IBS [26, 25] can be interpreted as a measure of the
mean accuracy of the predicted survival probability over time, adjusting for censoring by incorporating
inverse probability of censoring weights (IPCW). It is computed as

max(7;) N
< = N2 {+
Bs—_ 1 / Z t|wl ]1{7'Z t,0,=1} + S(t|wz)) {7 >t} .
max(7 G(7) G(t)
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where we denote the Kaplan-Meier estimator applied to the censoring times as G/(¢ (t) =P(C > t).
Here, biases may arise due to dependencies between censoring distribution and covariates [42, 43].

Integrated (IPCW) Negative Binomial Log-likelihood (INBLL): The INBLL measures the
performance of a survival model in terms of discrimination and calibration, averaged over time. It is
calculated as [43]

G(t) G(%)

We use this metric for hyperparameter optimization of the baseline models (see Section E.2).

max(7;) A

] )1 log[1 — N7 < t.6:=1

INBLL= — / § :[ og[5 tk”’ {ri >t} n og[l — S(ta;)|1{7; <t,6;=1}
7-z

B.2 Results on Observable Metrics

Fig. B.1 illustrates the model performance, measured by C'4 IBS, and INBLL, for scenarios S1-S3,
averaged over five runs. The results align closely with the synthetic data metrics presented in the main
paper (see Fig. 2). Overall, DoseSurv consistently outperforms other models across most metrics
and scenarios, with its variant without IPM regularization typically ranking second. Among the
baseline models, DeepSurv generally achieves the best performance in terms of C', IBS, and INBLL
in scenario S1, while RSF-T demonstrates high performance in scenarios S2 and S3.

3
0.75 .——’-\./.: 0.66
- e
070 0.64
——— | o062
O 0.65 ./,/
— — 0.60

—_——

—
065775
\‘/-/—J-/' 0.65
0.60 —_—
—
4 | o
@ 055
= o.
— | oss

—e— DoseSurv —e— DeepSurv —e— DeepHit RSF —e— NSC
—e— DoseSurv (no IPM) ~-e-- DeepSurv-T --e-- DeepHit-T RSF-T ~-=-- NSC-T

Figure B.1: Model performance for scenarios S1-S3, in terms of C'Y, IBS and INBLL under different
levels of dosage-assignment bias 1), averaged across 5 runs. Greater values of C'¢ and lower values of
IBS and INBLL indicate better performance.

C Additional Experiments

C.1 Ablation Study on Sample Size

We conducted an ablation study to examine the impact of training dataset size on model performance
in scenario S1 (n = 0). We performed experiments using 5 different training sample sizes: 2,000,
6,000, 10,000, 14,000 and 18,000. Each training dataset was independently and randomly sampled
from the combined training and validation pool. The same hyperparameters as in the main experiment
for S1 were employed. For methods using early stopping (DoseSurv, DeepHit, DeepSurv, NSC), we
reserved 10% of each sampled dataset for validation; RSF was trained on the full sampled set. The
results are depicted in Fig. C.1. DoseSurv achieved the best performance across all sizes and metrics,
except at the smallest size.
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Figure C.1: Model performance across 5 runs (mean+95% CI) for scenario S1 (n = 0) for different
training dataset sizes.

C.2 Binary Treatment Scenario: Hormone Therapy in Breast Cancer Patients

We outline a potential application of DoseSurv to optimize binary treatment decisions, specifically
hormone therapy for breast cancer patients. This external validation scenario has been previously
explored by [57, 37, 58]. Although binary treatment settings are not the main focus of DoseSurv, the
same approach could be applied to a continuous-valued treatment problem.

Following the methodology established in the referenced literature, we use data from 1,545 breast
cancer patients in the Rotterdam Tumor Bank [22]. From this observational dataset, we extract six
features: age, menopausal status, number of cancerous lymph nodes, tumor size, and progesterone
and estrogen receptor statuses. Since treatment assignment in the Rotterdam dataset is non-random,
we use these data for model training (85% training, 15% validation).

For testing, we use data from 686 patients enrolled in a randomized controlled trial conducted by
the German Breast Cancer Study Group (GBSG) [59], ensuring external validation. The same six
patient characteristics are extracted from this dataset. To simplify the analysis, survival times were
discretized into 30 equally-sized intervals for DoseSurv and all baseline models.

The results, summarized in Table C.1, demonstrate that DoseSurv, although designed primarily for
continuous-valued treatments, can be applied effectively in binary treatment settings. In particu-
lar, DoseSurv achieved better calibration accuracy (lower IBS and INBLL) than baseline models.
Furthermore, IPM regularization led to improvements in model performance.

Table C.1: Model performance on the GBSG dataset across 5 runs (mean+95% CI).

Methods cu IBS INBLL

DeepSurv 0.68340.004 0.11840.004 0.384+0.012
DeepHit 0.680+0.009 0.12140.022 0.39440.055
RSF 0.685+0.001 0.12240.001 0.40340.002
NSC 0.6724+0.012 0.108+0.020 0.370+0.058
BITES 0.675+0.013 0.11540.004 0.38140.008
SurvITE 0.665+0.037 0.18740.072 0.539£0.174
DoseSurv (no IPM) 0.670+0.008 0.110+0.005 0.356+0.012
DoseSurv 0.688+0.002 0.098+0.003 0.338+0.009

C.3 Experiments under Different Time Discretization

Like other discrete-time NN survival models, DoseSurv supports flexible discretization of survival
times into any number of intervals. In our main experiments, we used 30 time intervals, aligning with
common practice in the literature [45, 14]. However, DoseSurv can readily operate under different
temporal resolutions. Here, we perform additional experiments on data simulated using a finer
time discretization of 60 intervals and compare DoseSurv to the continuous-time, CoxPH-inspired
DeepSurv model, which may offer greater robustness. Table C.2 presents the corresponding results for
data simulated under Scenario S1 (n = 1). We find that DoseSurv yields metrics comparable to those
obtained with 30 intervals in the main experiment, whereas DeepSurv continues to underperform
relative to DoseSurv.
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Table C.2: Model performance of DoseSurv and DeepSurv under Scenario S1 (7 = 1) with a
finer time discretization (60 intervals). For reference, we include performance metrics achieved by
DoseSurv in the corresponding main experiment with 30 intervals. Metrics are averaged over 5 runs.

Intervals Method VvMISE +DPE CY 1IBS
30 DoseSurv 4.46 7.97 0.75 0.16
60 DoseSurv 5.51 8.00 076 0.14

DeepSurv (CoxPH) 8.44 1043 0.61 0.20

C.4 Sensitivity Analysis

To assess the robustness of DoseSurv to hyperparameter choices, we conducted a sensitivity analysis
under Scenario S1 (n = 1). We varied the learning rate (Ir), batch size, and IPM regularization
strength (), while keeping all other hyperparameters fixed. Results are averaged over 3 independent
runs. The model demonstrates consistent performance across a broad range of settings, indicating
relative stability with respect to these key hyperparameters.

Table C.3: Sensitivity of DoseSurv to learning rate, batch size, and IPM regularization under Scenario
S1 (n = 1). Metrics are averaged over 3 runs.

Ir BatchSize ~ |, VMISE +DPE (CY IBS

0.001 500 0.01 4.58 794 075 0.16
0.001 500 0.10 4.48 7.88 075 0.16
0.001 1000 0.01 4.66 8.09 0.75 0.16
0.001 1000 0.10 4.70 8.07 0.75 0.16
0.005 500 0.01 547 839 0.73 0.17
0.005 500 0.10 5.73 843 0.72 0.17
0.005 1000 0.01 4.81 8.04 0.74 0.16
0.005 1000 0.10 4.95 8.10 0.74 0.16

C.5 Visualizing Dose-Response Curves

Fig. C.2 shows an example dose-response curve predicted by DoseSurv in a single run under scenario
S1 (n = 0) for a selected sample in red. The corresponding ground truth curve is depicted in green.
In practice, dose-response curves can be obtained by evaluating the model for a range of dosage
values ¢ and using the predicted RMST as the outcome of interest.
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Figure C.2: Example of predicted and ground-truth dose-response curves under scenario S1 (n = 0).
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D Extended Literature Review

D.1 ML Methods for HTE Estimation.

Inferring HTEs of binary treatments has been studied extensively in the recent ML literature. Fol-
lowing Curth and van der Schaar [16], methods can typically be categorized into model-specific and
model-agnostic approaches. The latter, also referred to as “meta-learners” [40], can be implemented
using any kind of ML method. The most common types of meta-learners (indirect estimators) aim to
obtain the HTE as the difference between regression estimates of the two potential outcome functions.
T-learners [40, 47], fit two (or more) regression models (one for each treatment group) separately,
while S-learners [23, 34, 40, 72] fit a single regression model where the treatment variable is added as
an extra feature. Meta-learners have been implemented using a wide range of ML models, particularly
tree-based models [23, 47, 69, 40, 6] and NNs [34, 72]. On the other hand, model-specific approaches
rely on unique properties of the underlying ML model. These include approaches which could be
described as hybrids between S- and T-learners [15]. Such methods are typically implemented as
“multi-task learning” models, which learn different treatment responses simultaneously, allowing
some information flow between treatments [1, 2, 62, 63, 16]. Beyond architecture, balancing and
reweighting strategies are also used to mitigate confounding and covariate shift, including IPM-based
representation balancing [62], counterfactual representation learning with balancing weights [5],
importance-sampling reweighting [27], and propensity-based regularization [63].

HTE estimation of continuous-valued interventions is less explored in the literature. Traditional
statistical approaches typically rely on the generalized propensity score [30]. The dose-response-
networks proposed by Schwab et al. [60] extend the multi-task learning NN architecture for binary
treatments, first presented by Shalit et al. [62], by subdividing the treatment-specific layers, into
multiple network heads, each assigned to a different dosage interval. This facilitates the regression of
the dose-response function across different dosage regions. A drawback of this architecture is that
bin-specific heads produce separate outputs for different dosage intervals, breaking the continuity
in the dose-response curves. Inspired by [28], Nie et al. [51] aim to overcome this limitation by
employing a varying-coefficient network (VCNet) in the prediction head. Here, the network weights
are modeled as continuous functions of the dosage. Schweisthal et al. [61] extended this approach to
learn the effect of combinations of multiple dosage-dependent treatments. A different approach by
Bica et al. [9] extends the GAN framework proposed by Yoon et al. [70], and introduced a hierarchical
discriminator specifically tailored for continuous-valued treatment settings. However, leveraging
adversarial learning for counterfactual survival analysis is challenging due to censoring and time
structure, which complicate defining faithful discrimination targets and stable training objectives.
Existing balancing methods for continuous-valued treatments assume clustered data [11], which
limits its applicability in settings where natural clusters are absent. Moreover, Bellot et al. [8] provide
a generalization bound, but their method relies on estimating complex integrals over representation
and treatment spaces, which makes it likely to be sensitive to function and kernel choices.

D.2 Survival Analysis and HTE Inference with TTE Data.

ML methods for survival analysis have gained significant attention in recent years. Notable approaches
include adaptations of the Cox-proportional hazards model [13], where traditional linear predictors
are replaced with feedforward NNs [20, 37]. In addition, TTE has been modeled via accelerated
failure time (AFT) regression [35] and deep generative models [55]. Random survival forests have
also emerged as a flexible approach to predict cumulative hazard functions in a non-parametric
tree-ensemble manner [32]. Deep learning-based classifiers [10, 24, 56, 41] have gained popularity
for this purpose. Alternatively, Lee et al. [45] parameterize the likelihood in discrete-time settings
using the probability mass function. Finally, survival clustering methods have been proposed to
identify groups of samples based on their survival patterns [7, 33].

Despite advances in survival analysis, adapting these models for HTE estimation remains understudied.
Early investigations focus primarily on binary treatment settings, leveraging tree-based methods such
as causal trees [71], Bayesian additive regression trees (BART) [29], and random forests [67] to
measure the effect of binary treatments on expected survival time. More recent approaches, such as
that by Chapfuwa et al. [12], explore representation learning and generative modeling to estimate
event times for different treatments. A seminal work by Curth et al. [14] adopts a multi-task NN
architecture with time- and treatment-specific network heads to predict discrete conditional hazard

22



functions, incorporating balanced representations to address covariate shifts. Schrod et al. [58]
simplify this approach by combining a dichotomous multi-task architecture with a Cox-proportional
hazard loss [37]. However, such works focus on binary interventions. In comparison, our DoseSurv
model is more versatile and can handle single- and multi-arm treatment regimens with mutually
exclusive continuous-valued (dosage-dependent) and non-dosage treatment options.

D.3 Comparison of DoseSurv with Related Work

Table D.1 compares key ML methods for HTE estimation, specifically targeting continuous-valued
treatments or TTE outcomes. Unlike related work, DoseSurv uniquely integrates TTE analysis with
complex treatment settings that include continuous-valued treatments, non-dosage treatments, and
mixed treatment scenarios. Due to the lack of HTE estimation models for such settings, our baseline
comparisons rely on standard survival models, implemented as model-agnostic T- and S-learners.
Although not explicitly studied here, DoseSurv is generally also applicable to treatment scenarios
with more than two treatment options.

Table D.1: Overview of selected key neural methods for HTE estimation under continuous-valued
treatments or TTE outcomes and their applicability across different settings.

Model Continuous-valued Mixed Dosage and More than Two TTE
(Dosage) Treatments  Non-dosage Options ~ Treatment Options ~ Outcomes
DRNet [60] v X v X
SCIGAN [9] v ) v X
VCNet [51] v X X X
SurvITE [14] X X X v
BITES [58] X X X v
DoseSurv (ours) v v v v

E Implementation

E.1 DoseSurv

The source code of DoseSurv will be made available at: https://github.com/mgoegl/DoseSurv.

Experiments were performed on a single GPU machine (specifications: CPU — Intel Xeon W5-2445,
GPU - NVIDIA RTX A4000, and RAM — 64GB DDRS, OS — Linux). DoseSurv is implemented
in PyTorch. The training time of DoseSurv was under 30 seconds per run for Scenario S1 ( = 0)
without IPM regularization. Per-epoch training time generally ranges from under a second to a few
seconds, depending on whether IPM regularization is applied. Overall, computation time increases
with the number of IPM bins.

Across all main experiments, we implemented DoseSurv with 1 hidden layer in the representation
network and 3 hidden layers in each treatment-specific head of the RBF hazard estimator, each layer
comprising 100 nodes. For each layer in the RBF hazard estimator, we use 5 Gaussian RBFs with
centers, initialized at {0,0.25,0.5,0.75, 1}. The shape parameters al(;) are initialized at 0.7. For
each experiment, we chose y from {0.1,0.01} based on the lowest INBLL achieved on the validation
data. For experiments on synthetic data, we optimized v under = 2. Network parameters were
optimized using Adam optimizer [38] with learning rate of 0.001. We use ReLU activation functions,
dropout probability of 0.1, and a batch size of 500. Moreover, we implement DoseSurv with batch
normalization layers, and employ early stopping after 30 epochs without model improvement on the
validation data. We adopt the implementation of the finite-sample approximation of the Wasserstein
distance from [14], which in turn follows the implementation in [5, 17], and improve computational
efficiency by parallelizing its computation across treatments a, dosage bins ¢, and time bins t. We
use the same parameters, i.e., an entropic regularization strength of Ay, = 10 and 10 Sinkhorn
iterations. Moreover, we choose £Q = 3 and ¥ = 5.

Deviating from the primary experiments, we configure DoseSurv for the additional experiment
described in C.2 with a representation network consisting of 3 layers of 200 nodes each and a
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representation size of 50. The treatment-specific hazard estimators are designed with 2 layers of 100
nodes each, without applying batch normalization. Moreover, we choose 2 = 1 and ¥ = 10.

E.2 Baseline Models

We benchmarked DoseSurv against publicly available implementations of four state-of-the-art ma-
chine and deep learning models for survival analysis, DeepSurv®, DeepHit®, RSF’ and NSC'".
We adopt these implementations as both T- and S-learners. First, we standardize covariates and
treatment-specific dosages. For the standard (S-learner) baselines, we use slot-based (continuous
one-hot) encoding of treatment and dosage information. We add the dosage information for each
treatment option as additional continuous covariates. In scenarios with more than one treatment
option, we set the dosage values for unobserved treatments to —10, which does not normally fall
within the standardized dosage range, ensuring that the models do not mistakenly interpret this value
as a valid dosage. For categorical (non-dosage) treatments, we set the dosage parameter for the
observed treatment to 1. In addition, for scenarios S2 and S3 with more than one treatment group, we
implement T-learner versions of the baseline models: DeepSurv-T, DeepHit-T, RSF-T, and NSC-T.
Here, we split the data into the respective treatment groups, and train separate versions of the model
on each treatment group individually, including the corresponding dosage as an additional covariate.

We optimize hyperparameters based on a grid search. We choose the optimal hyperparameter
combination based on the minimum INBLL, which comprises both calibration and discrimina-
tive performance. For DeepSurv we optimize the number of layers and nodes, choosing from
{[100], [100, 100], [100, 100, 100], [200, 200] }. Additionally, for DeepHit, we optimize the parame-
ters apeeprit € {0.2,0.5} and opeepnit € {0.1, 1}, which control the contribution and properties
of the ranking loss. For NSC, we choose network sizes of the mixture weights and survival net-
works from {[100, 100, 100], [200, 200]}. Furthermore, we choose the number of components for the
mixture from {4, 6}, and the size of the latent cluster representation from {10, 100}. For RSF, we
optimize the number of trees {100, 300} as well as the minimum numbers of samples required to
split an internal node ({6, 12}) or be at a leaf node ({3, 6}). For all network-based baseline models,
as for DoseSurv, we use a dropout rate of 0.1, a batch size of 500, batch normalization, and early
stopping after 30 epochs.

For experiments on the Twins and breast cancer datasets under binary treatments, we additionally
compare against adapted public implementations of the HTE models BITES'' and SurvITE'?
to ensure compatibility with our environment. For SurvITE, we choose the standard network
architecture (representation network: [100, 100, 100]; hazard estimators: [100, 100]). For BITES, we
choose the standard representation network of size [7, 5], and optimize the treatment-specific heads
from {[5, 3], [3]}. As for DoseSurv, we choose the IPM regularization strength for both models from
{0.01,0.1} and BITES’s blur parameter from {0.05, 0.1}.

F Remarks on HTE Estimation and Assumptions

In HTE inference, we generally aim to estimate

vie) =E[Y; - Y| X = z]
=EMW|X =] - E[Yp| X = ]
where Yj and Y7 are two continuous potential outcomes under treatments 0 and 1, and X = x are the

patient covariates. The potential outcomes can also be expressed using the do-operator [53] indicating
an intervention to be made:

v(z)=E[Y|do(A=1), X =z] — E[Y|do(A=0), X =x|.

$https://github.com/havakv/pycox

%scikit-survival [54]
Ynhttps://github.com/Jeanselme/NeuralSurvivalClustering
"https://github.com/sschrod/BITES

Zhttps://github. com/ch18856/survITE
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For HTE estimation between two dosage-dependent interventions (a, ¢) and (@, ¢) and the time-
specific survival probabilities as outcome of interest, this translates into

Vsur (t|) = P(T g > t| X = x,do(C > t))—
P(Ts4 > t|X = a,do(C > t))
= Saq(tlz) — Sa4(t]).
However, since ground-truth survival functions are unknown in real-world settings, we focus on
estimating the HTE in terms of the RMST (up until the time horizon, t;,) given by
Vimst (@) =E [min(Ty ¢, tm) | X =] —E [min(T; 4, tm)| X=]

=ty (@) — 155 ()
tm—1 tm—1

= > Sagtl®) = Y Sasltlz)
t=0 t=0

tm—1

= vn(t|z).
t=0

Since S, q(tx) = [[,<,(1 = Aa,q(7|)), we therefore need to compute A, ¢(7|2) in order to find
unbiased estimates for both vy (t|2) and vy,e (). We can rewrite

Aag(T|T) =
=P(T=7T>7, X =x,do(A=0a,Q=q,C>7))
=P(Toq=7|Taq >7,X =x,do(C > 7)).

Using Assumptions 1, 3—4, outlined in Section 3.2, we obtain [14]
Aayq(T]T) =

O (T, =7|Tuy>7 X =2, A=a,Q=q,do(C > 1))

(é) P(Tﬂyq:T|Ta,qZT7X:m7A:a7Q:(I7O Z T)

O pr=rT>r X =2,A=a,Q=q,C>7)
= ]P’(T:T,A:HX::E,A =a,Q=q,T> T)
= A7z, a,q),

which can be estimated non-parametrically under the additional assumptions that treatment and
dosage assignment (Assumption 2) and the survival and censoring processes (Assumption 5) satisfy
positivity (i.e., are non-deterministic).

G Causal Diagram

The directed acyclic graph (DAG) [53] for our setting is shown in Fig. G.1 and follows prior work
on HTE estimation with TTE data [14, 65], extended here to include the dosage ). We define
N(@t) = 1T < t,A =1)and No(t) = 1(T < t,A = 0) as counting processes indicating, over
time, whether an event (death) or, respectively, censoring has occurred. By definition, N (t) and
Nc (t) are O for t = 0 and switch to 1 for ¢ > T, i.e., when either the event or censoring occurs at

time 7.

X consists of (possibly overlapping) subgroups X, X2, X3, and X, of covariates that influence
(1) the event process, (2) treatment assignment, (3) dosage assignment, and (4) the censoring process.
These subgroups and their causal influences are associated with covariate shifts arising from (1)
event-induced bias, (2) treatment-selection bias, (3) dosage-selection bias, and (4) censoring bias,
respectively [14].

The causal diagram describes how A and N¢ evolve over time under the influence of covariates
X, treatment A, and dosage (), and is in line with the Assumptions formulated in Section 3.2. The
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temporal dependencies shown (N (¢t — 1) — N (¢) and N (t — 1) — N (t), N (t)) reflect the fact
that these counting processes are sequential—an individual’s event status at time ¢ depends on their
status at the previous time step ¢ — 1. In other words: once N'(t — 1) = 1 (event occurred by time
t — 1), then N'(¢) = 1; similarly, once N (t — 1) = 1 (censored by time ¢ — 1), then N (¢) = 1 and
N (t) = 0 (no event can occur after censoring). Furthermore, N'(t) — N¢(t) captures the logical
constraint that an event precludes censoring—if ' (¢) = 1, then N¢(¢) = 0.

BEOOE

Figure G.1: Assumed DAG for our discrete-time survival analysis setting with continuous-valued
treatment, extending prior formulations [14, 65].
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification:

* We address the problem of HTE estimation for single- and multi-arm treatment regimens
with continuous-valued (dosage-dependent) and non-dosage treatment options, as well
as TTE outcomes—a practically important but largely underexplored area. (See Section
3)

* We propose a novel varying-coefficient network with layer-specific RBFs, specifically
designed for HTE estimation in the above setting. (See Section 4.)

* We introduce a computationally efficient IPM regularization approach to address biases
in HTE estimation from observational TTE data with continuous-valued treatments.
(See Section 4.)

* We validate our model across diverse scenarios and datasets, including a reinterpretation

of the classical Twins dataset, serving as a real-world benchmark for continuous-valued
treatments with TTE outcomes. (See Section 5.)

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations of the work in Section 6.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are explicitly stated in Section 3.2. Further mathematical
derivations related to estimating the HTE of continuous-valued interventions from TTE data
and the corresponding assumptions, are provided in Appendix F.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present the experimental settings in Section 5 and provide implementation
details and hyperparameters for our model and baselines in Appendix E. The data-generation
processes are described in Appendix A. Reviewers can find the source code in the supple-
mental material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Reviewers can find the source code in the supplemental material. All raw
real-world datasets are publicly available. Additionally, the code will be made available on
GitHub later.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide these details in Appendix E.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All main experiments are repeated across multiple runs. We report 95%
confidence intervals to capture variability—except in Fig. 2 and Fig. 3, where they are omitted
for visual clarity.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the details of computer resources used in Appendix E.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We conform to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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10.

11.

12.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the potential societal impact of our work in Section 6.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: No such risks for our paper.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

15.

Answer: [Yes]

Justification: We cite the original papers that are used for our code implementation and
discuss details in Appendix E.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide implementation details in Appendix E and describe the generation
process of the (synthetic) datasets we produce in Appendix A.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: This research does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .

Justification: The usage of LLMs did not form an original, or non-standard component of
the core method.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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