
Explain My Surprise: Learning Efficient Long-Term
Memory by Predicting Uncertain Outcomes

Artyom Sorokin
AIRI, MIPT

Moscow, Russia
asorokin@airi.net

Nazar Buzun
AIRI

Moscow, Russia
buzun@airi.net

Leonid Pugachev
MIPT

Dolgoprudny, Russia
puleon@mail.ru

Mikhail Burtsev
AIRI, MIPT

Moscow, Russia
burtsev@airi.net

Abstract

In many sequential tasks, a model needs to remember relevant events from the
distant past to make correct predictions. Unfortunately, a straightforward appli-
cation of gradient based training requires intermediate computations to be stored
for every element of a sequence. This requires to store prohibitively large inter-
mediate data if a sequence consists of thousands or even millions elements, and
as a result, makes learning of very long-term dependencies infeasible. However,
the majority of sequence elements can usually be predicted by taking into account
only temporally local information. On the other hand, predictions affected by
long-term dependencies are sparse and characterized by high uncertainty given
only local information. We propose MemUP, a new training method that allows
to learn long-term dependencies without backpropagating gradients through the
whole sequence at a time. This method can potentially be applied to any recurrent
architecture. LSTM network trained with MemUP performs better or comparable
to baselines while requiring to store less intermediate data.

1 Introduction

Two dominating approaches for memory augmentation in deep learning include recurrent neural
networks [1; 2; 3; 4; 5; 6; 7; 8; 9]) and Transformers [10; 11; 12; 13; 14; 15]. Historically, recurrent
networks and Transformers have been primarily developed for applications in natural language
processing, which is characterized by strong dependencies between closely located elements. On the
other hand, in the reinforcement learning setting, the agent often has to remember only a few bits of
information but for a very long time [16].

Evolution of neural architectures tackling the problem of learning long-term dependencies follows
the path of increasing size and complexity [6; 8; 17]. For example, Transformers[18] and memory
augmented neural networks [7] perform much better than the classical LSTM in tasks with long-term
temporal dependencies. Still, even gigantic language models like GPT-3 [19] process sequences only
up to 2048 elements due to quadratic complexity of self-attention. So, these architectures are much
more demanding in terms of the memory capacity and computational power required for training.

To learn a long-term dependency between a distant observation in the past and agent’s actions
in the current state, both the recurrent networks trained with back propagation through time and
Transformers need to store gradients for all intermediate steps. Taking into account, that the minimum
distance between useful information in the past and the moment of its utilization can be measured
in thousands or millions of time steps, such solutions seem unrealistic given the current hardware
capabilities. We propose a training method that allows an agent to find and store dependencies
between temporarily distant events without the need to process intermediate steps.

Our contributions are the following:
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• We propose a new formulation for the problem of memory learning as maximisation of
conditional mutual information between memory state and future outcomes.

• We introduce an original method MemUP (Memory for Uncertainty Prediction) for efficient
long-term memory training by minimizing uncertainty of predictions for states where local
information is not enough.

• We show that implementation of our method for recurrent neural networks is able to learn
long-term dependencies better than baselines while propagating gradients only through
a small fractions of a sequence in one optimization step. Notably, the applications of
MemUP are successful in supervised learning tasks with different loss functions as well as
in reinforcement learning tasks.

2 Memory to explain surprise

The main idea of our approach is very simple. Find the most surprising events or elements of a
sequence and train a memory to detect and store information that allows to explain out these events.
Below we formulate this idea in the framework of information theory.

Lets consider a sequence τ with inputs {xt}Tt=0 and targets {yt}Tt=0. A model is trained to predict
targets given inputs. An ideal memory could just store all previous inputs {xi}ti=0 at each step t and
predict yt from them, but it is too computationally expensive. In practice a memory model gθ has to
selectively store some aggregation of this sequence in a memory state mt = gθ(xt,mt−1) . Then it
should be decided what to write and what to remove from the memory.

Estimating past information importance. Consider an arbitrary time step k. The past element xt
has useful information about the target yk, if yk depends on xt given current xk, i.e. p(yk|xk, xt) ̸=
p(yk|xk). In this case, we can say that there is a temporal dependency with the length of k − t
steps, that starts at step t and ends at step k. The strength of temporal dependency or importance of
remembering xt can be measured as an amount of change in the distribution of yk given a knowledge
of xt . Multiplication of the both parts of the inequality above by p(xt|xk) and application of
KL-divergence as a measure of the difference between distributions leads to the conditional mutual
information as a measure of xt importance:

I(yk;xt|xk) = IExk
KL[p(yk, xt|xk)∥p(yk|xk)p(xt|xk)], (1)

where xk is taken from sequences stored in some dataset or generated by an agent over interaction
with the environment.

Objective function for memory training. Then, the problem of learning what to store in the
memory can be defined as maximization of the mutual information between memory states and
prediction targets with respect to the parameters θ:

max
θ

T∑
k=t

I(yk;mt = gθ(xt,mt−1)|xk). (2)

The sum in eq. 2 allows us to process each memory update in a separate gradient step. As accounting
for all future steps prevents loss of information that can be helpful in the distant future. Unfortunately,
this still requires the entire remaining (future) sequence to be processed for every update and has the
complexity O(T ) with respect to the sequence length.

Reducing the cost of memory training. Fortunately, updating the memory for all future steps is
not necessary for the majority of real-world tasks. As the distance between events increases, the
number of dependencies also decreases. This phenomenon is sometimes called locality of reference
[20]. In other words, information from the greater part of past inputs may be useless for yk prediction
given xk. Accordingly, most of the elements in the sum (eq. 2) will be close to zero. Therefore,
depending on the structure of the problem, we could vary the number of elements in the sum, leaving
only those for which long-term memory is critical for correct predictions. The main problem is to
find such steps in the sequence.

Lets assume that the ideal memory m∗
t that stores all possible information from the past is available.

Then the conditional mutual information at a step t:
I(yt,m

∗
t |xt) = H(yt|xt)−H(yt|m∗

t , xt), (3)
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shows the potential utility of memory for prediction at this step. When the number of elements in
the sum in eq. 2 is minimized to reduce computations, the steps with the highest value of mutual
information from eq. 3 should be preserved to assure good quality of prediction. Naturally, we cannot
estimate I(yt,m

∗
t |xt) directly, because m∗

t is not available to us.

As seen from the eq.3, m∗
t participates only in the second entropy, which indicates how well one can

predict the future in the presence of ideal memory and ideal model. On the other hand, the local en-
tropy H(yt|xt) can be easily estimated. A value of local entropy would be sufficient for our task if we
could use it to determine the ordering for values of the potential memory utility I(yt,m

∗
t |xt). Specif-

ically, for every pair of elements i, j if H(yi|xi) > H(yj |xj) then I(yi,m
∗
i |xi) > I(yj ,m

∗
j |xj).

This becomes true under one of two possible conditions: (1) H(yt|xt) ≫ H(yt|m∗
t , xt) or (2)

H(yt|m∗
t , xt) ∼ ϵ. The first condition means that given a perfect memory and a model, one could

make high-quality predictions for the task at hand. The second condition means that the real distribu-
tion of the target variable yt has a similar amount of noise at each step.

If our task satisfies either one of these two conditions, then valuable information from the past could
make the biggest contribution for the elements with the highest values of average "surprise" H(yt|xt).
We should note that estimation of I(yj ,m∗

j |xj) by the local entropy makes MemUP vulnerable to the
Noisy-TV problem[21], when the conditions we have described are not satisfied. Sensitivity tests for
the Noisy-TV problem are discussed in Section 7.

Thus, instead of optimizing the memory for each future step, we introduce a new objective function
that allows us to train it only for steps where the potential gain from the past information is maximal:

max
θ

∑
k∈Ut

I(yk;mt = gθ(xt,mt−1)|xk) , (4)

here Ut denotes the set of top-K indices of steps from t to T with the highest estimated local entropy
H(yk|xk). The hyperparameter K controls fraction of a sequence to be processed in one gradient
step. On the other hand, maximizing the mutual information between the memory mt and an arbitrary
distant event at step k > t allows to learn long-term dependencies.

Optimization. Directly optimizing mutual information can be a challenging task. In our case, we
use variational lower bound on mutual information proposed by [22]. Using the lower bound we can
maximize mutual information by minimizing Cross-Entropy (CE) between the empirical and model
distribution for all selected high entropy events:

min
θ,ϕ

∑
k∈Ut

IExk,yk

[
− log qϕ(yk|mθ

t , xk)
]
, (5)

where mθ
t is a shortcut for mt = gθ(xt,mt−1), qϕ is a predictor network with parameters ϕ, that

estimates probability of yk given xk and mt. For a detailed derivation of eq. 5 see Appendix A in
Supplementary Materials.

Collection of elements with high uncertainty Ut requires a special uncertainty detector dψ model.
The main requirement for dψ is to produce uncertainty estimates st = dψ(xt). In the simplest case,
the detector estimates “surprise” − log p(yt|xt) (prediction error), which can be seen as a single point
estimate of uncertainty. Other models that directly estimate the uncertainty or a whole distribution
[23; 24] can also be used.

3 MemUP for Recurrent Neural Architectures

Recurrent neural net implementation of MemUP consists of (1) training of uncertainty detector model
dψ, (2) selection of elements with highest uncertainty Ut and (3) training memory gθ and predictor
qϕ models. A pseudocode for RNN MemUP training is shown in Appendix G.

Uncertainty detector training. Information maximization reasoning does not limit the choice of
solutions for uncertainty detector dψ. In our experiments on algorithmic tasks we use a recurrent
neural classifier trained with Cross-Entropy Loss. In this case detector’s "surprise" − log dψ(yt|xt)
is used as an uncertainty estimate.
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CE Loss

Inputs

Events selected with uncertainty detector 

- important information observed

- high uncertainty event

 - backpropogation: off

 - backpropagation: on

. . .Targets

TBPTT Length

Figure 1: MemUP gradient update. The recurrent memory gθ processes a sequence. The number of prediction
targets K = 2 and TBPTT length r = 2. Blue circles denote states with the highest uncertainty estimates
dψ(yk|xk). Here x2 marked by red circle contains information that can help to predict outcomes yT−2 and
yT . At the end of RNN TBPTT rollout these states are selected to form a set U3 = {T − 2, T}. Then, m3,
xT−2, yT−2, xT , yT are used to compute CE-Loss according to eq. 5. While states 2 and T could be separated
by many millions steps, MemUP allows memory to capture the utility of information from x2 by propagating
gradients only through the sequence of K + r = 4 elements at a time.

In Reinforcement Learning experiments we use distributional algorithm QRDQN [24] trained to
predict discounted future returns Rt (yt = Rt in RL experiments). As QRDQN approximates a
whole distribution of the future returns, estimating uncertainty becomes a simple task.

Processing a sequence with the memory network. MemUP allows to learn long term-dependencies
without propagating gradients through the whole sequence. To demonstrate that in our experiments we
use Truncated BPTT to train memory network gθ. In the majority of supervised learning experiments
we set rollout length r between 10 and 60 steps. In all Reinforcement Learning experiments r = 1, i.e.
recurrent memory is trained without actually using backpropagation through time. In All Experiments
gθ is a simple LSTM network with additional input encoder.

Selecting states with high uncertainty. Given uncertainty estimates {si}Ti=t for each future element
in the sequence, we use softmax sampling p(k) = esk/τ/

∑T
i=t(e

si/τ ) without replacement with
τ = 0.02. To implement sampling without replacement Gumbel-Max Trick [25] is used. A scheme
illustrating a single gradient update is shown in Figure 1.

4 Related work

The problem of learning long-term dependencies has long been studied in both supervised learning [26;
27] and reinforcement learning domains [28]. However, most of the research related to recurrent
networks architectures is aimed at solving the problems of exploding and vanishing gradients [2; 29;
7; 30]. The common trend is that many of the existing solutions to deal with vanishing gradients
simultaneously increase the cost associated with the calculation of these gradients [29; 7]. For
example, Transformers[10] generally require to store O(N2) of intermediate results for training on
sequences of length N . The recently proposed Linformer [31] and BigBird [20] architectures allow
training Transformers with linear complexity in space. However, most of these new Transformers
have not yet found their way in the reinforcement learning setting.

In the field of deep reinforcement learning, the dominant approaches to implementation of memory are
based on recurrent neural networks in combination with modern reinforcement learning algorithms [5;
32; 33; 34]. There are many studies that propose memory architectures for specific features of
the reinforcement learning problems [9; 8]. In the paper by Parisotto and Salakhutdinov [35], a
specifically modified DNC [7] architecture learned long-term dependencies of several hundred steps
in the setting of 2D and 3D navigation tasks. The downside of this architecture is that the agent needs
access to the information about its absolute or relative location in a 2D/3D environment. In another
work, Ha and Schmidhuber [36] used a complex procedure with pre-training of memory and state
embeddings. Their overall learning procedure is similar to ours. However, their memory/world model
is trained to make predictions about the next step observations only, while we train memory to make
predictions about events that can be arbitrarily far in the future.

Wayne at al. [17] demonstrated the state of the art results with the MERLIN algorithm. MERLIN’s
memory kept observation embeddings trained with a complex variational autoencoder in a DNC-
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like [7] list. The memory module was also trained separately from the policy. Hung et al. [37]
followed up on the MERLIN architecture’s success and used the soft attention mechanism over all
past embeddings to encourage exploratory actions in the POMDP environment. Their experiments
showed models learning temporal dependencies with a length of 500+ steps. In contrast to our work,
both of these solutions still require processing an arbitrarily long sequence of state embeddings by
the policy networks at each step.

The direct attempts in applying Transformer architecture in reinforcement learning setting resulted
in conclusion that Transformers are too unstable to work properly in RL [38]. Parisotto et al. [18]
were able to overcome the instability of Transformers, showing state of the art result in the memory
dependent 3D tasks. Another recent work, by Loynd et al. [39], has also applied Transformers to
the POMDP problems, but the WMG architecture relies on availability of factored observations
to the agent which imposes additional requirements on the environment. Switching focus from
Transformers and complex architectures, Beck et al. [16] proposed AMRL architecture: a simple
modification to the LSTM architecture to combat the problem of learning long-term dependencies in
environments with a significant amount of observational noise.

5 Supervised Learning Experiments

For evaluation and comparison of our method we use four tasks: Copy [40], Scattered copy, Add [2]
and permuted sequential MNIST (pMNIST) [41]. All these tasks are benchmarks that are used for
testing models with long-term memory. In the original Copy task a sequence of length l (l = 10 in out
experiments) should be copied after a T − l steps (T ∈ {120, 520, 1020, 5020} in our experiments),
and in Scattered copy task a model has to make predictions in locations inside range [l, T − 1] that are
chosen at random. We add this task in order to make detection of high-uncertainty locations harder.
For Copy, Scattered copy and Add tasks train and test datasets have sizes 10K and 1K, for pMNIST
60K and 10K. For detailed tasks description see Appendix B.

In these experiments predictor qϕ consists of a three-layered MLP and a recurrent input encoder. The
encoder E rnn consists of a single fully-connected layer followed by two LSTM-layers with 128
hidden units and dropout probability 0.1. E rnn is used to encode bigger local context than original
inputs corresponding to indices in the Ut set (it is also possible to use a feedforward network for this
task). Memory gθ has the same architecture as E rnn with separate weights.

We do not train a separate detector dψ. Uncertainty at each step is estimated by prediction error
from the predictor module qϕ. For more information you can look at our implementation ( link in
Appendix E).

In the Add Task the model is trained with MSE loss, which is a special case of CE loss under
the model-assumption that target distribution is a Gaussian with unit variance. Both memory and
encoder are trained with the same Truncated BPTT length. Truncation length equals 10 in all tasks
with sequence length < 1000, 20 in tasks with length ≥ 1000 and 30, 60 in pMNIST 784, 3136
respectively.

We compare MemUP with LSTM [2] and Transformer [10] models from pytorch library, as well as
a recurrent network SRNN [30] which is designed for training on long sequences and has reduced
saturation of gradients. LSTM* and SRNN* have the same architecture as E rnn with 3 layered
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Figure 2: Final performance on supervised learning tasks. X-Axis shows task scaling, while Y-axis
correspond to metric score at the end of training. Metrics: Inverted Accuracy (1. - Accuracy) in Copy,
Scattered copy and pMNIST tasks, MSE in Add task. All curves are averaged over 3 runs.
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MLP on top. In the case of SRNN baselines, we have replaced all LSTM layers with SRNN layers.
The Transformer model consists of a single FC layer followed by 4 self-attention layers and the
same 3 layered MLP on top. Baselines were trained in two modes. In the first mode (columns
with Transformer, SRNN, LSTM) all elements of input sequence of length T were fed into a model
simultaneously, so gradients propagate through the whole sequence during the training. We don’t
have results for Transformer on sequences of 5000+ steps since it didn’t fit into our GPU RAM. In
the second mode (Transformer Tr., SRNN Tr., LSTM Tr.) BPTT rollout for recurrent architectures
and attention window for Transformer were truncated to process the same number of steps as
MemUP (r +K).

Results in Figure 2 show that only MemUP allows to achieve a good quality of prediction in all tasks.
In truncated BPTT setting (solid lines) MemUP is significantly better than LSTM tr, SRNN tr or
Transformer tr due to MemUP ability to learn temporal dependencies longer that the length of BPTT
rollout. When full information about the sequence is available to LSTM, SRNN and Transformer
(dashed lines) but not MemUP, the latter still shows the best results for longest versions of Copy,
Scattered Copy, pMnist, and has better overall performance.Moreover, when compared with Full
BPTT baselines, MemUP requires to store much less intermediate computations (10-250 times) due
to usage of short Truncated BPTT rollouts.

6 Reinforcement Learning Experiments

Performance of the MemUP algorithm is studied in two reinforcement learning tasks. The first task is
classic T-Maze environment where the main difficulty is a long-term dependency between a hint at
the starting position and location of a reward at the exit (see Figure 3.1). The main advantage of this
problem is that it allows to test the agent’s memory mechanisms in isolation because of primitive
policy and the observation space. We base our experiments on the noisy version introduced by [16].

The second task is the color dependent object collection in the Doom environment [42; 43] which
requires long-term memory in combination with a more complex policy and rich observation space.
In the task introduced by [44], the agent is placed in a room filled with acid (see Figure 3.2.) and
constantly loses health. Objects of green and red colors are scattered throughout the environment.
Object of one color replenish the agent’s health and give a +1 reward, while others take away health
and give a -1 reward. The correspondence between effects and colors is determined randomly at the
beginning of each episode. This information is conveyed by a column whose color matches the color
of health replenishing items. In our version the column disappear after first 45 steps (see Figure 3.3).
The episode ends when the agent’s health drops to zero or after 1050 time steps.

The most straightforward extension of the MemUP algorithm to a reinforcement learning problem is
to use memory state mt as an additional input to an RL agent. There are several possible solutions
to combine MemUp’s training with agent’s policy training: (1) pre train MemUP and then train an
agent, (2) use alternating memory and agent training phases, train memory and agent in parallel, (3)
combining the MemUP and RL agent into a single into an end-to-end network. In these experiments,
we test the simplest version: train MemUP on trajectories generated with a frozen policy, then train
an agent with a frozen MemUP memory. The second version is also implemented in the code (link in
Appendix E).

L L

R

1.
  Final ChoiceHint

Agent

2. 3.

Figure 3: Environments for testing long-term time dependencies. 1. T-Maze environment. The agent should
reach the T-shaped junction and choose one of the arms (L or R). A hint about what arm to choose is provided at
the very beginning. 2. and 3. Vizdoom-Two-Colors environment. The agent is in the room and constantly loses
health. To replenish his health and recieve a reward the agent needs to collect items of the same color as the
column. The color of the column is chosen randomly from red or green options at the beginning of the episode.
After 45 steps from the beginning the column disappears. The episode lasts for a maximum of 1050 steps.
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Figure 4: a) Learning curves for MemUP and baselines in T-Maze-LNR-1000. b) Learning plots in the
Vizdoom-Two-Colors environment for all agents. All curves are averaged over 3 runs. Translucent areas around
each curve show the standard deviation computed over all runs. The memory pre-training phase of MemUP agent
is marked with the dashed line. TBPTT length/attention span for each baseline is specified in the parenthesis.

Inputs xt are formed from observations ot and previous action at−1. This time Observations are
encoded using convolutional networks or fully connected networks. We use discounted future returns
Rt =

∑T
i=t γ

i−tri. as targets yt. In the experiments, MemUP is compared with the following
baselines:

PPO-LSTM is a recurrent version of PPO [45] with a single LSTM-layer [2]. We use PPO-LSTM
implementation from the RLPyt library [46].

IMPALA-ST is an IMPALA [47] agent using Stabilized Transformer[10] architecture. Stabilized
Transformer was presented by Parisotto et al. [18]. For experiments, we use the only available open
implementation of this algorithm [48].

AMRL is proposed by [16] for the Noisy T-Maze Task. In the original study AMRL was compared
with many different memory architectures including DNC, multi-layered LSTM and outperformed
all of them on T-Maze-LN-100 task as well as other memory experiments. AMRL is similar to
PPO-LSTM baseline, but extends LSTM with AMRL Layer.

In all experiments we use the same encoder networks for observation embeddings for all baselines and
MemUP. Additionally the size of an LSTM-layer is the same for the memory module gθ, PPO-LSTM
and PPO-AMRL baselines. Results for the T-Maze-LNR-1000 (10 times longer dependency than
in [16]) environment are presented in Figure 4a. The designation T-Maze-LNR-1000 means that the
maze length (and corresponding tempral dependency) in each episode can be from 1000 to 1009
steps. Several rollout lengths are tested for RNN-based baselines. We could not successfully train a
single PPO-LSTM or AMRL agent even with TBPTT rollout of r = 10001.

During MemUP pre-training phase, episodes are generated with a random policy. We use the
discounted future reward with γ = 0 as a prediction target. A policy training for the MemUP agent
starts after the memory pre-training phase is completed. The time spent in the pre-training phase
is marked with a dashed line in all figures. As shown in Figure4a the agent learns almost instantly,
given a memory pre-trained with our method. For the MemUP agent we train all components
including memory module and uncertainty detector for each individual run from scratch. Additionally,
Appendix Dshows that MemUp can be trained to solve T-maze-LNR-20000.

Results for the Vizdoom-Two-Colors environment are shown in Figure 4b. IMPALA-ST(attn=8)
with a short attention span could not learn any reasonable policy. On the other hand, IMPALA-
ST(attn=100) solves the problem and reliably survive in the environment for 1050 steps. Both
PPO-LSTM and AMRL baselines with TBPTT rollouts of 128 and 8 steps could not learn to survive
longer than a random agent. While the rollout of 128 steps is potentially enough to remember the
color of the column or a previously collected items, PPO-LSTM and AMRL agents are unable to
utilize long-term information from the past.

1We tested our AMRL implementation on T-Maze-LNR-100 with full rollout and get results aligning with the
original paper. But the algorithm did not withstand 10 times increase in episode length and truncation constraints
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For MemUP we use the discounted future reward with γ = 0.8 as a prediction target. The memory
module gθ is trained with the rollout length of 1 step. In Vizdoom-Two-Colors we set number of
targets K = 3. Thus, to train the memory gθ we use 4 separate observations per episode for one
gradient update. In ViZDoom, we train PPO (MemUP+PPO) and QRDQN (MemUP+QRDQN)
agents with MemUP pretraining.

Both MemUP+PPO and MemUP+QRDQN learn to survive in the environement for full 1050 steps
by collecting healing items. Though the final performance of IMPALA-ST(attn = 100) is slightly
better. We speculate that this is due to the fact that the pre-trained memory M has learned to store
mostly information about the color of the column, while IMPALA-ST (attn=100) has slightly better
spatial awareness. On the other hand, MemUP use significantly fewer resources in terms of the size
of processed sequences during training/pre-training and evaluation. As well, MemUP significantly
outperforms baselines with comparable resource requirements, like IMPALA-ST (attn=8), PPO-
LSTM(r=8) and AMRL-MAX(r=8).

7 Sensitivity to the Noisy-TV problem

In section 2 we discussed conditions on true uncertainty of targets yt given a perfect memory m∗
t . The

goal was to set conditions under which we can make a good guess about relative values of potential
memory utility I(yt|m∗

t , ct) by estimating local entropy H(yt|ct). However, this may not be the case.
For example, some targets yt may be completely unpredictable and no information from the past can
reduce the entropy for the distribution of yt: H(yt|xt) ∼ H(yt|m∗

t , xt). Then the local entropy is
large, while potential utility of memory for yt predictions is close to zero. Training memory to predict
such targets is pointless and prevents MemUP from focusing on events for which training long-term
memory is essential. The problem of over-emphasis on unpredictable surprising events is called
Noisy-TV problem[21]. Noisy-TV problem is often encountered by algorithms using curiocity-based
exploration in reinforcement learning[49]. To test robustness of MemUp to the Noisy-TV problem,
we have modified T-maze-LNR-100 environment.

Noisy T-maze With Distractors. In this version, agent can receive +4 or -3 rewards in D+1 decision
points. Their location in the corridor is chosen randomly at a distance of at least 50 steps from the
hint. All of them can be detected when ot[1]! = 0. element in observation vector ot. Decision points
are distinguishable from each other. Each decision point has a unique value of ot[1]. Only in one
decision point, the next reward depends on the agent’s action and the value of the hint (ot[1] = 1.
in this case ). In other D decision points, the next rewards are completely random ( chosen with a
probability of 0.5 ). Thus, Noisy T-maze With Distractors generate sequences with one long-term
dependency and D events acting as Noisy-TV distractors.

D=1
D=2

D=4
D=9

D=19

K=1

K=2

K=3

K=5

K=10

1920 3000 8460 18840 UND

1020 1740 3600 8880 30300

1200 1260 2880 7920 33480

1200 1440 1980 5580 17280

1620 1860 2160 3540 11400

MemUP: #updates before solving the task

Figure 5: Each cell shows the mean number of updates required for the memory to correctly predict
(achieving 0.1 RMSE) the reward after the decision point connected with the temporal dependency.
The x-axis shows the number of unpredictable decision points in the environment. The Y-axis shows
number of events predicted by MemUP. Darker colors means slower solution.
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We conducted 25 experiments with 6 independent runs in each (150 runs in total). The differences in
the experiments come down to two parameters: number of distracting events D (X-axis in Fig. 5) and
number of events sampled for prediction K (Y-axis in Fig. 5). More distracting events make the task
of learning the temporal dependency harder. Increasing the size of Ut set( by changing K) improves
the chance of selecting a future event that is a part of temporal dependency. On the other hand, with
an increase in Ut, the resource cost for memory training also increase. The TBPTT rollout length in
these experiments is 1.

Results in Fig. 5 show that with an increase in the number of distractions, memory learning speed
decreases. However, increasing the set Ut allows to alleviate this problem. For the experiment (D=19,
K=1), none of the runs solved the task in the first 45000 updates. In experiments (D=19, K=2) and
(D=19, K=3) only 4 out of 5 runs solved the task. The results show that the agent can learn the time
dependency fairly quickly even if the uncertainty detector select noisy events 80% of the time.

8 Ablation study

To study an effectiveness of our core idea, i.e. training memory by predicting long-term future events
with high uncertainty, we compared MemUP with baselines that exclude core MemUP features while
sharing the same neural architecture.

In these experiments, we carefully consider the process of learning memory (without further training
the RL agent) on the T-Maze-LNR problems. The following memory ablation baselines were studied:

MemUP: Proposed in this paper. See section 2.

Rnd-Pred: Same as MemUP, but steps for future outcome prediction are selected randomly and
uniformly among all future timesteps. This randomization verify whether predicting steps with high
uncertainty helps MemUP to overcome the problem of learning long-term dependencies with small
BPTT rollouts.

Default: Same as MemUP, but it is trained to predict return Rt at each step t, as oposed to an
arbitrarily distant future events as in MemUP and Rnd-Pred. Thus, Default is the same as the LSTM
baseline in the Supervised Learing Experiments (see 5). But in this study we test this baseline on all
intermediate Truncated BPTT lengths.

All versions have the same architecture, and hyperparametes. They were trained in T-Maze-LNR-100
and T-Maze-LNR-1000 problems. Episodes were generated by a random strategy. All versions are
trained with 5 different Truncated BPTT lengths: 1, 5, 10, 50, 100. Testing metric is a root-mean-
squared error(RMSE) between the models’ prediction and the actual return at the final step of the
episode. The evaluation was conducted on the 100 separately recorded episodes.

Figure 6 shows the results of the experiments. On the x-axis, we have specified the length of the
Truncated BPTT in decreasing order, i.e. in the order of increasing task complexity. For every rollout
length there is a corresponding absolute value of error between predictions of the model and targets
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Figure 6: Averaged over 6 runs prediction error at the end of training for each ablation baseline
with respective TBPTT length. Vertical bars show standard deviation computed over 6 runs. a)
T-Maze-LNR-100. b) T-Maze-LNR-1000.
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at the end of training (3e4 updates for T-Maze-LNR-100 and 3e5 for T-Maze-LNR-1000). Smaller
values represent better predictions.

The Default modification is unable to learn a long-time dependency exceeding the length of the tested
rollouts. This is the same as the results of the PPO-LSTM agent on the T-Maze-LNR Reinforcement
Learining experiments.

The Rnd-Pred modification solves the task with rollouts 100 and 50 in T-Maze of length 100, but for
shorter rollouts and for longer T-Maze-LNR-1000 results deteriorate significantly. In the majority of
runs in T-Maze-LNR-1000, the memory has not been learned. The relative success of Rnd-Pred is
expected because random selection of prediction target still allows to sample a useful future event
with some small probability.2 Thus, random sampling of prediction targets allows to learn casual
dependency that is 2 times longer than TBPTT, but already struggles at ratio of 10.

On the other hand, the MemUP is able to solve the problem regardless of the rollout length, i.e.
MemUP demonstrated an ability to learn casual dependencies that 1000 times longer than its TBPTT
length in this setting. In this study MemUP is successfully trained with TBPTT of length 1, in other
words, without using backpropagation through time at all.

9 Conclusion

In this paper, we proposed a new method for training long-term memory. The main idea is to train
a memory network to predict future outcomes of high uncertainty and skip all others. Predicting
a small number of arbitrarily distant future outcomes substantially saves computational resources
required to backpropagate gradients. At the same time, the emphasis on high uncertainty outcomes
allows not to miss long-term dependencies in the task.

Experimental results show that our training algorithm allows to learn temporal dependencies signifi-
cantly longer than the number of steps processed for a single gradient update. None of the baseline
architectures trained in a classical way demonstrate such ability. All these baselines with comparable
results require to store at least 200 times more intermediate calculations for the Add, Copy, Scattered
Copy, pMNIST tasks as well as at least 500 times more for the T-maze, and 625 times more for the
Vizdoom-Two-Colors (Stabilized Transformer baseline has quadratic complexity while processing 25
times more steps).

Even using fewer resources, MemUP outperforms non-truncated baselines that has simultaneous
access to all elements of a sequence (including Transformer) on pMNIST(3136), Copy and Scattered
Copy tasks. On T-maze and Vizdoom-Two-Colors tasks, MemUP is better than all recurrent baselines.
Another advantage is that MemUP can be combined with any recurrent architecture and applied both
to supervised as well reinforcement learning settings.

We believe that the MemUP algorithm applied to recurrent networks has shown promising results,
and the main idea demonstrates exciting avenues for future research.
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