
Language-Conditioned Semantic Search-Based Policy
for Robotic Manipulation Tasks

Jannik Sheikh
Bielefeld University
Bielefeld, Germany

jsheikh@techfak.uni-bielefeld.de

Andrew Melnik
Bielefeld University
Bielefeld, Germany

andrew.melnik.papers@gmail.com

Gora Chand Nandi
Indian Institute of Information Technology

Allahabad, India
gcnandi@iiita.ac.in

Robert Haschke
Bielefeld University
Bielefeld, Germany

rhaschke@techfak.uni-bielefeld.de

Abstract

Reinforcement learning and Imitation Learning approaches utilize policy learn-
ing strategies that are difficult to generalize well with just a few examples of a
task. In this work, we propose a language-conditioned semantic search-based
method to produce an online search-based policy from the available demonstration
dataset of state-action trajectories. Here we directly acquire actions from the most
similar manipulation trajectories found in the dataset. Our approach surpasses
the performance of the baselines on the CALVIN benchmark and exhibits strong
zero-shot adaptation capabilities. This holds great potential for expanding the
use of our online search-based policy approach to tasks typically addressed by
Imitation Learning or Reinforcement Learning-based policies. Project webpage:
https://j-sheikh.github.io/behavioral-search-policy

1 Introduction

In recent years, the field of robotics has significantly evolved, with robots becoming more powerful,
versatile, and interactive, due to progress in the field of natural language processing, computer vision
(Rana et al. 2023), reinforcement learning (Schilling & Melnik 2019, Nguyen & La 2019, Bach et al.
2020), and imitation learning (Hussein et al. 2017).

Motivation The ability of any agent to interact within an environment seamlessly depends largely
on its capacity to collect, process, and understand data that are largely unstructured. This data forms
the agent’s perception and guides its decisions, actions, and reactions. Instead of the traditional
approach of complex training of a policy to solve specific tasks, our work explores a framework for
solving various robot manipulation tasks by using a semantic search-based approach to generate an
online search-based policy, inspired by the work of Malato et al. (2023), Beohar & Melnik (2022),
Beohar et al. (2022), Rana et al. (2023).

2 Data

The CALVIN benchmark (Mees, Hermann, Rosete-Beas & Burgard 2022) contains four different
tabletop environments (A, B, C, and D) as seen in Figure 1. Those environments always contain
a desk with stationary and movable objects to interact with, whose initial positions vary over the

NeurIPS 2023 Workshop on Foundation Models for Decision Making, New Orleans

https://j-sheikh.github.io/behavioral-search-policy

Static Camera View Gripper Camera View

Env. A

Env. B

Env. C

Env. D

Figure 1: Overview of all four different environments in CALVIN. During inference, the Search-
Based Policy searches for the most similar state in environments A, B and C with respect to the
current state from environment D.

environments. A drawer and sliding door can be opened and closed. A button toggles an LED light
and a switch operates a light bulb. Further three different-sized, colored, and shaped blocks are
somewhere located on the desk. A 7-DoF robot arm with a parallel gripper is used to interact with
the environment.

The demonstration dataset of the benchmark was obtained from teleoperated "play" data, thus
consisting of state xi and action ai pair trajectories τ . Therefore τ contains the exact information of
how the agent, controlled by a human, got from some initial state x0 to a goal state xg , for completing
a task. This guarantees that the goal state is reachable from the initial state under the performed
actions. This results in a dataset Dplay = {τ |τ = {(xi, ai)}ni=0 and 0 ≤ n ≤ 64}.

The authors labeled less than 1% of the collected data, making it possible to identify trajectories that
correspond to specific tasks. By annotating these trajectories, they made it possible to describe any of
the trajectories, and thus the corresponding tasks, by natural language instructions.

3 Method

Instead of training a policy to solve tasks, we used search in the latent space of object shapes (Melnik
et al. 2021, Rothgaenger et al. 2023) to identify similar states in a demonstration dataset, and after
finding similar representations for a given scene and text task, we clone the corresponding actions
to solve the given tasks until the divergence threshold is exceeded between the current state and the
selected trajectory.

2

Model Similarity Search

Copy A
ctions

Current State Current State

Dataset Dataset

Te
xt

 in
st

ru
ct

io
n

0.6

0.89

0.34

Scores

Figure 2: Overview of our framework. Given xt, we obtain a binary mask of the object of interest in
the static and gripper camera views and then compute simzs to find the most similar state in dataset
trajectories and start cloning the corresponding actions.

Masking Since all objects over all the environments are of color, we first experimented with
transforming the current state xt obtained by the static and the gripper camera views into latent spaces
zts and ztg by color-based and low-level feature-based segmentation methods. Concretely, we use the
HSV (Hue, Saturation, and Value) color space to detect and segment objects in our environments. We
further enhanced our segmentation by adding positional filtering. Concretely, since there exist three
different gray color handles we consider the position of the object in the image to help identify the
correct one. This is easily applicable to the static camera view. The gripper camera added additional
complexity because this camera is constantly in motion. Here we considered the surrounding pixels
as well as the area and orientation of the object to make better and more accurate decisions. To be
able to find the object of interest in our dataset, we apply a mapping to recognize the objects of
interest in different environments based on the task description.

Search We obtain reference images imgts and imgtg from the static and gripper camera view, cap-
turing the current state t in the environment. By passing imgts and imgtg through our segmentation
pipeline conditioned on text l we obtain two latent representations: zts and ztg .

Each τ ∈ Dplay|l consists of a series of xis and xig, where xis refers to the RGB images of xi the
static camera and xig of the gripper camera. Both xis and xig give a visual representation of the
agent’s progress toward the target object. Analogous to our approach described for the reference
images, these sequences can be processed to obtain the corresponding latent representations sis and
sig . By selecting images at every ith step from τ , we further optimize for computational efficiency.

Similarity Measurement Given the reference latent representations zts and ztg for state t, and
the latent representations sis and sig from a trajectory τ ∈ Dplay|l, we derive a weighted similarity
coefficient as follows:

simzs = α · score(ztg, sig) + (1− α) · score(zts, sis) (1)

Here, the score is defined by the Dice coefficient:

2|A ∩B|
|A|+ |B|

=
2TP

2TP + FP + FN

3

In addition, we scale the dice coefficient by a size coefficient. This coefficient serves to help identify
latent representations containing objects of similar size, thus capturing the physical proximity of the
robot arm to the objects. This primarily influences the relationship between ztg and sig , since zts and
sis are always captured from the same distance to the table. When objects in the binary masks mtg

and mig have nearly equivalent sizes, it indicates that the robot arm is at a similar distance from the
objects in both scenarios. The size coefficient, size_coef , is then defined as the ratio between ztg
and sig .

Finally, the weighted dice coefficient is calculated as:

weighted_dice_coef (score) = dice_coef × size_coef (2)

Initiating the Search Process Given that the length of each trajectory is finite and contains at
most 64 state-action pairs and over time the observed state will differ from the initial search and,
consequently, from the trajectory we copy, we keep track of the standard deviation of simzs. After
each execution of ai ∈ τ , we collect the next state xi+1 from τ and generate si+1s and si+1g.
Concurrently, we obtain the newly observable state in the environment xt, from which we derive zts
and ztg. We then compute simzs and store the results. If the change in the standard deviation over
the last two steps exceeds a certain threshold T or if there are no actions left in the current pursued
trajectory, we trigger a new search with the current state xt.

Switching Trajectories If the similarity score simzs between zts,ztg and sis, sig is greater than
the similarity value of the currently pursued trajectory, we switch to the ith step of that new trajectory.
Moreover, if there are no actions left in the current trajectory we pursue, we switch to τ corresponding
to the highest simzs computed in the given step.

Executing Actions Our action set has both absolute (aabs) and relative (arel) actions. aabs enable
long-range movements that allow the agent to quickly reduce the distance to the target object. In
contrast, arel, allows finer movements that are important for local control and adjustment. Once
ztg contains non-zero values and our similarity score simzs exceeds a certain threshold, the agent
switches to arel.

4 Results

CALVIN benchmark offers different evaluation environments. The search-based policy uses the
dataset that contains only three of the four CALVIN environments (A, B, and C), and is evaluated on
the unseen environment D (see Figure 1).

Evaluation Settings We evaluated the agent’s performance in two different ways (see Table 1):

1. The agent performs each of the 34 tasks for 10 rollouts. Every evaluation starts by resetting
the environment and agent to the initial state x0 of an unseen demonstration.

2. The agent is evaluated over 1000 individual task instructions. At the beginning of each task
evaluation, the robot arm is placed in a neutral position and the environment is initialized.
The agent’s goal is to successfully perform the given task within a maximum of 360 steps.

There are two baseline models, MCIL (Lynch & Sermanet 2021) and HULC (Mees, Hermann &
Burgard 2022), although HULC is evaluated only in the second setting.

Hyperparamters: For both evaluation settings we assign a value of 0.9 to α (Eq. 1), emphasizing the
latent representation of the gripper camera in our search. This choice is influenced by our intention to
prioritize the gripper camera as soon as an object is detected in its view to allow precise maneuvers
and finer adjustments. The static camera primarily helps in approaching the object and provides
slight guidance in the further course. In order to fasten the processing time of finding the most similar
representation in the training data, we uniformly take only 8% of the annotated data from each of the
three environments A, B, and C, and search within this subset. Finally, we only consider every fourth
image in a trajectory. We trigger a new search if the standard deviation of simzs is greater than 0.03.
If zg is empty, we set the threshold to 0.003 based on the Equation 1.

4

Method Input Success Rate First Setting Success Rate Second Setting

Baseline Static RGB & Gripper RGB 38% 30.4%
HULC Static RGB & Gripper RGB 41.8%
Ours Static RGB & Gripper RGB 61.4% 57.2%

Table 1: Combined results for the Zero-Shot Multi Environment in different evaluation settings.

First evaluation setting): As seen in Table 1 our proposed method outperforms the current baseline
by more than 23% in the first setting.

A detailed breakdown across all tasks can be found in Table 2.

Task Success Rate Task Success Rate
push pink block left 100% rotate pink block left 80%
push red block left 100% rotate red block left 90%
push blue block left 70% rotate blue block left 30%
push pink block right 90% rotate pink block right 40%
push red block right 20% rotate red block right 70%
push blue block right 80% rotate blue block right 40%
push into drawer 0% unstack block 70%
lift pink block drawer 90% stack block 0%
lift red block drawer 70% turn on led 90%
lift blue block drawer 90% turn off led 50%
lift pink block slider 50% turn on lightbulb 70%
lift red block slider 20% turn off lightbulb 80%
lift blue block slider 10% place in drawer 100%
lift pink block table 40% place in slider 30%
lift red block table 30% move slider right 80%
lift blue block table 50% move slider left 70%
open drawer 100% close drawer 90%

Table 2: Our results over all tasks in the first evaluation setting.

Second evaluation setting: The results for the second evaluation setting are also shown in Table 1.

The agent completes 75% of the tasks in 125 steps or fewer. It is important to emphasize that we set
the maximum step size of our evaluation to 180. This decision arises from the observations of prior
experiments, which indicate that the probability of failure is high if our strategy does not solve the
task within this step range, and also to further reduce the computation time for each task.

Large-Scale Models Since we have natural language instructions that can serve as targets xg , these
instructions can be used to identify the relevant objects that we want to encapsulate in our latent
space. With large language models, we can encode our task instructions and use the resulting latent
representation to drive the segmentation process, which can also be replaced with an additional
foundation model to identify the objects needed to solve the task.

We leverage the large pre-trained text embedding model GTEbase (Li et al. 2023) which is based
on the BERT framework (Devlin et al. 2019) and can be used for various downstream tasks. We
further fine-tuned the model for three epochs using an A100-GPU using the task instructions of our
training data. Afterward, we use the fine-tuned model to generate embeddings of size R768 for our
train and test instructions. Our results are visualized in Figure 3 for the train instructions and in
Figure 4 for the test instructions. In order to objectively measure the quality and separability of the
clusters generated from our embeddings, we further report the Silhouette Score, Adjusted Rand Index
(ARI), and Normalized Mutual Information (NMI) from scikit-learn (Pedregosa et al. 2011). The
silhouette score ranges from -1 to 1, with a high value indicating that the embedding fits well with its
own cluster and poorly with neighboring clusters. ARI measures the similarity between true labels
and predicted labels and NMI measures the similarity between true labels and predicted labels. The
clustering results of our embeddings are shown in Table 3. These scores indicate an almost perfect
separation.

5

close_drawer

lift_blue_block_drawer
lift_blue_block_slider

lift_blue_block_table

lift_pink_block_drawer

lift_pink_block_slider

lift_pink_block_table
lift_red_block_drawer

lift_red_block_slider
lift_red_block_table

move_slider_left

move_slider_right

open_drawer

place_in_drawer

place_in_slider push_blue_block_left

push_blue_block_right

push_into_drawer

push_pink_block_left

push_pink_block_right

push_red_block_left

push_red_block_right

rotate_blue_block_left

rotate_blue_block_right

rotate_pink_block_left

rotate_pink_block_right

rotate_red_block_left

rotate_red_block_right

stack_block turn_off_led

turn_off_lightbulb

turn_on_led

turn_on_lightbulb

unstack_block

-0.5 0 0.5-0.5

0

0.5

Figure 3: Visualization of the clustered natural language instructions with PCA in a 2D space. For
clustering, we fit K-Means to the train embeddings of size R768 generated by the fine-tuned GTE
model (Li et al. 2023) and set the number of clusters to k, where k represents the total number of
tasks, 34. Each data point represents a unique natural language instruction corresponding to a task,
and the cluster labels denote the respective tasks. The plot shows the embeddings from our training
data.

close_drawer

lift_blue_block_drawer

lift_blue_block_slider

lift_blue_block_table

lift_pink_block_drawer

lift_pink_block_slider

lift_pink_block_table

lift_red_block_drawerlift_red_block_slider

lift_red_block_table

move_slider_left

move_slider_right

open_drawer

place_in_drawer

place_in_slider

push_blue_block_left

push_blue_block_right

push_into_drawer

push_pink_block_left

push_pink_block_right

push_red_block_left

push_red_block_right

rotate_blue_block_left

rotate_blue_block_right

rotate_pink_block_left

rotate_pink_block_right

rotate_red_block_left

rotate_red_block_right

stack_block
turn_off_led

turn_off_lightbulb

turn_on_led

turn_on_lightbulb

unstack_block

-0.5 0 0.5-0.5

0

0.5

Figure 4: Visualization of clustered natural language test instructions with PCA in a 2D space. We
generate the embeddings from the fine-tuned GTE model (Li et al. 2023) and use the fitted K-Means
algorithm to predict the clusters of the test embeddings of size R768.

6

Metric Score
Silhouette Score 0.943

Adjusted Rand Index 1.0
Normalized Mutual Information 1.0

Table 3: Clustering Evaluation Metrics

5 Discussion

Our work shows that using an online search-based policy that exploits latent representations achieves
notable success in solving a variety of robot manipulation tasks. By searching for similar la-
tent representations in a demonstration dataset and mirroring the associated actions, our proposed
method outperforms the current baseline models in both evaluation settings and generalizes for
multi-environments. This highlights the compelling effectiveness of using a search-based policy
within the latent space, a result consistent with the research of Malato et al. (2022, 2023) within the
dynamic world of Minecraft.

The first evaluation setting provided insight into the overall effectiveness of our approach across
all tasks and highlighted its consistent performance over numerous rollouts. The second evaluation
setting demonstrates the robustness and efficiency of our method, as the agent navigated from a
neutral position to the target object and then completed the task reasonably fast. This highlights
the potential to address robot manipulation challenges without relying on complex reinforcement or
imitation learning policies.

The performance differences between similar tasks (see Table 2) with differently sized blocks indicate
that the decision process for starting a new search and transitioning to an alternative trajectory
requires more research to enable better precision and adaptive interactions. When interacting with the
large (pink) block, the success rate across all corresponding tasks is almost 20% higher than when
interacting with the small (blue) block. Possible improvements could include the use of specific
cost, exponential function, or other non-linear functions. Such approaches could offer advantages
in effectively modeling the relationships between the latent representations of the static and gripper
cameras and improve decision-making.

We further had to reduce the dataset due to the computing time when performing our search. The
search process itself to find the most similar state in Dplay|l is performed on the CPU and takes
between 1.4 and 1.9 ms. Future research could investigate the effectiveness of initially generating a
dataset of latent representations and then using clustering and indexing techniques to improve search
speed. This approach provides flexibility to easily incorporate new latent representations and thus
allows for new tasks to be performed.

Finally, foundation models seamlessly align with our suggested architecture (see Figure 2). Models
such as GLIP (Li et al. 2022) and FastSAM (Zhao et al. 2023) show promising capabilities in
generating latent representations of the object of interest conditioned by natural language. Further
research is needed to evaluate such models in combination with our online search-based policy.

6 Conclusion

In this work, we propose a method for solving various robot manipulation tasks using semantic search
in the demonstration dataset and copying actions from the best-matching trajectory. We show that the
proposed method generalizes for multi-environments.

References
Bach, N., Melnik, A., Schilling, M., Korthals, T. & Ritter, H. (2020), Learn to move through a

combination of policy gradient algorithms: Ddpg, d4pg, and td3, in ‘Machine Learning, Optimiza-
tion, and Data Science: 6th International Conference, LOD 2020, Siena, Italy, July 19–23, 2020,
Revised Selected Papers, Part II 6’, Springer, pp. 631–644.

Beohar, S., Heinrich, F., Kala, R., Ritter, H. & Melnik, A. (2022), ‘Solving learn-to-race autonomous
racing challenge by planning in latent space’, arXiv preprint arXiv:2207.01275 .

7

Beohar, S. & Melnik, A. (2022), ‘Planning with rl and episodic-memory behavioral priors’, arXiv
preprint arXiv:2207.01845 .

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. (2019), ‘Bert: Pre-training of deep bidirectional
transformers for language understanding’.

Hussein, A., Gaber, M. M., Elyan, E. & Jayne, C. (2017), ‘Imitation learning: A survey of learning
methods’, ACM Computing Surveys (CSUR) 50(2), 1–35.

Li, L. H., Zhang, P., Zhang, H., Yang, J., Li, C., Zhong, Y., Wang, L., Yuan, L., Zhang, L., Hwang,
J.-N., Chang, K.-W. & Gao, J. (2022), ‘Grounded language-image pre-training’.

Li, Z., Zhang, X., Zhang, Y., Long, D., Xie, P. & Zhang, M. (2023), ‘Towards general text embeddings
with multi-stage contrastive learning’.

Lynch, C. & Sermanet, P. (2021), ‘Language conditioned imitation learning over unstructured data’.

Malato, F., Leopold, F., Hautamaki, V. & Melnik, A. (2023), ‘Behavioral cloning via search in
embedded demonstration dataset’, arXiv preprint arXiv:2306.09082 .

Malato, F., Leopold, F., Raut, A., Hautamäki, V. & Melnik, A. (2022), ‘Behavioral cloning via search
in video pretraining latent space’, arXiv preprint arXiv:2212.13326 .

Mees, O., Hermann, L. & Burgard, W. (2022), ‘What matters in language conditioned robotic imitation
learning over unstructured data’, IEEE Robotics and Automation Letters 7(4), 11205–11212.

Mees, O., Hermann, L., Rosete-Beas, E. & Burgard, W. (2022), ‘Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks’, IEEE Robotics and Au-
tomation Letters (RA-L) 7(3), 7327–7334.

Melnik, A., Harter, A., Limberg, C., Rana, K., Sünderhauf, N. & Ritter, H. (2021), Critic guided
segmentation of rewarding objects in first-person views, in ‘KI 2021: Advances in Artificial
Intelligence: 44th German Conference on AI, Virtual Event, September 27–October 1, 2021,
Proceedings 44’, Springer, pp. 338–348.

Nguyen, H. & La, H. (2019), Review of deep reinforcement learning for robot manipulation, in ‘2019
Third IEEE International Conference on Robotic Computing (IRC)’, pp. 590–595.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M. & Duchesnay, E. (2011), ‘Scikit-learn: Machine learning in Python’, Journal of
Machine Learning Research 12, 2825–2830.

Rana, K., Melnik, A. & Sünderhauf, N. (2023), ‘Contrastive language, action, and state pre-training
for robot learning’, arXiv preprint arXiv:2304.10782 .

Rothgaenger, M., Melnik, A. & Ritter, H. (2023), ‘Shape complexity estimation using vae’, arXiv
preprint arXiv:2304.02766 .

Schilling, M. & Melnik, A. (2019), An approach to hierarchical deep reinforcement learning for a
decentralized walking control architecture, in ‘Biologically Inspired Cognitive Architectures 2018:
Proceedings of the Ninth Annual Meeting of the BICA Society’, Springer, pp. 272–282.

Zhao, X., Ding, W., An, Y., Du, Y., Yu, T., Li, M., Tang, M. & Wang, J. (2023), ‘Fast segment
anything’.

8

	Introduction
	Data
	Method
	Results
	Discussion
	Conclusion

