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ABSTRACT

Building autonomous UI agents that automate user interactions with interfaces has
long been a vision in the field of artificial intelligence. Central to these agents is
the capability for UI element grounding, which involves accurately locating UI
elements (e.g., buttons and links) based on referring expression, such as user intents
and functionality descriptions. Developing these agents with robust grounding
capabilities using vision-language models (VLMs) offers a promising path forward.
However, a practical framework for creating VLMs with strong element grounding
capabilities remains under-explored. To address this gap, we conduct systematic
experiments within the design space of VLMs to uncover an effective recipe for
building VLMs with strong UI element grounding ability. Firstly, we find that
fine-tuning with general visual grounding tasks as a warming-up step mitigates the
challenges of fine-tuning with downstream UI element grounding data. Next, we
explore different fine-tuning sequences of UI grounding training data from various
sources and find that a simple-to-complex fine-tuning curriculum can maximize
data utility. Moreover, we find that scaling up the size of either the warming-up
data or the UI grounding data in downstream fine-tuning significantly enhances UI
element grounding accuracy. Lastly, we explore various image feature compression
techniques and find that using a convolution-based compressor to compress UI sub-
image features significantly enhances the grounding capabilities on high-resolution
UI images. Integrating these insights, we successfully develop UI-Pro, an expert
VLM that achieves state-of-the-art UI grounding accuracy with fewer parameters
across multiple benchmarks. We hope this work serves as a valuable roadmap for
researchers in the UI-VLM domain and inspires future research.

1 INTRODUCTION

The concept of autonomous UI agents capable of clicking, typing, and scrolling on behalf of humans
as personal assistants is an enticing prospect, as illustrated in Fig. 1. Imagine a UI agent navigating
the Internet to perform daily tasks such as using search engines and managing emails, as well as more
complex activities like comparing prices across e-commerce platforms and collecting the latest news
on stock markets.

At the core of autonomous UI agents is UI element grounding, which involves recognizing and locating
elements associated with referring expressions. These elements serve as the fundamental building
blocks that carry UI functionalities. Accurate grounding allows UI agents to interact effectively
with UI components such as buttons, text fields, and images, enabling them to perform tasks like
clicking, filling out forms, and extracting information according to user instructions. Developing these
agents based on vision-language models (VLMs) (Yin et al., 2023) offers a promising pathway toward
realizing this vision. A VLM-based UI agent can directly perceive and interact with UIs as humans do,
provided the agent possesses vision and comprehension capabilities that align with those of humans.
Although a few prior studies, such as SeeClick (Cheng et al., 2024) and CogAgent (Hong et al.,
2023) have explored developing UI-related VLMs, a practical recipe for building VLMs with robust
UI grounding capabilities from scratch remains under-explored. Specifically, it is unclear which
combination of data is most effective for instilling UI grounding capabilities in VLMs and whether
non-UI-related multimodal understanding tasks can serve as useful training data. Furthermore,
the optimal design of model architectures and training procedures to enhance the models’ ability
to perform element grounding on high-resolution UI screenshots is still uncertain. Addressing
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VisualWebBench Action Gnd.ScreenSpot

Anno. Type: Brief descriptions

Query: Windows settings

Target: (X=3,Y=80)

Anno. Type: Action intent

Query: View the content in Chinese

Target: (X=56,Y=64)

MOTIF

Anno. Type: Displayed 
Text

Query: chose “how to cut 
pineapple”

Target: (X=50,Y=41)

FuncPred

Anno. Type: Elem. Functionality

Query: This element adjusts the size of 
the content

Target: (X=44,Y=17)

(a) Autonomous UI agent example (b) Examples of the UI grounding benchmarks

Go to the London City Airport.

After multi-turn 
interaction, I found these 
ways:

42min Public Transport
2 hr 31 min Walking

(Google Map)

4 min arrive your 
location (Uber)

Figure 1: Examples of an autonomous UI agent (left) and existing benchmarks evaluating UI
grounding performance (right).

these questions necessitates thorough exploration within the vast design space of VLMs. While
several studies (Tong et al., 2024; McKinzie et al., 2024; Laurençon et al., 2024) have examined
the significance of various model components and data choices, they predominantly focus on visual
question answering (VQA) in natural images, overlooking the complex challenges presented by UI
grounding scenarios.

This paper aims to bridge the gap in existing research by providing a practical framework for building
VLMs capable of UI grounding. Drawing on pioneering research (Tong et al., 2024; McKinzie et al.,
2024; Baechler et al., 2024), we pinpoint three key areas where different studies make distinct design
choices: (a) model architecture, particularly vision-language connection modules that enhance the
accuracy of locating small elements within high-resolution UI screenshots, presenting new challenges
rarely addressed in visual grounding for natural images; (b) training data curation; and (c) fine-tuning
procedures. We systematically compare various design choices in a controlled setting to derive
empirical insights for each area.

Our findings reveal that: (a) warming up VLMs with general visual grounding task data is essential
before fine-tuning the models on downstream UI grounding tasks; (b) organizing UI grounding
training data in a simple-to-complex curriculum significantly maximizes data utility through multi-
stage fine-tuning; (c) increasing the sizes of both the warming-up data and UI grounding data
results in substantial performance gains, well beyond saturation; and (d) a lightweight convolution-
based connector is effective for compressing visual features of high-resolution UI images, enabling
processing at the original ratio.

Our work distinguishes itself from previous studies (Yao et al., 2022; Cheng et al., 2024; Hong et al.,
2023; You et al., 2024b) on UI-oriented VLMs by exploring previously unexamined areas, including
warming-up data selection, multi-stage training methodologies, data scaling effects, and UI-oriented
connector design. Our findings provide a hidden recipe for building powerful UI VLMs from scratch,
circumventing reliance on fine-tuning open-source models.

Based on these insights, we have trained UI-Pro, a VLM with 2.8 billion parameters. UI-Pro demon-
strates exceptional performance across multiple UI grounding benchmarks, including grounding by
action intents, element appearance, and complex functionality descriptions. Notably, UI-Pro matches
the performance of previous UI-oriented models that are nine times its size. We hope our work will
benefit the research community and accelerate advancements in UI autonomous agents.

2 PRELIMINARIES

2.1 UI ELEMENT GROUNDING TASK

UI element grounding is to locate visual elements within UIs given element annotations. These
annotations can be brief, including details such as element appearance, location, and displayed text,
or complex, encompassing contextual functionality and action intents, as shown in Fig. 1.
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Several element grounding benchmarks have been established for research purposes (Fig 1).
ScreenSpot (Cheng et al., 2024) is a benchmark for mobile, desktop, and web scenarios, requiring
models to locate elements based on brief descriptions. RefExp (Bai et al., 2021) focuses on locating
elements on mobile devices using crowd-sourced referring expressions. VisualWebBench (Liu
et al., 2024c) evaluates VLMs in content-rich web environments. In contrast to these benchmarks,
AutoGUI Test (FuncPred) features complex tasks that require models to locate elements specified
by context-specific functionality descriptions. For all these benchmarks, we report the grounding
accuracy (%): Acc =

∑N
i=1 1 (predi inside GT bbox i) /N × 100

where 1 is an indicator function and N is the number of test samples. This formula denotes the
percentage of samples for which the predicted points lie within the bounding boxes of the elements.

Unlike visual grounding aimed at natural scenes (Yu et al., 2016), UI element grounding introduces
distinct challenges: 1) High resolution: UIs are typically rendered as high-resolution images, ne-
cessitating models that can process large visual inputs effectively. 2) Fine-grained comprehension:
UIs often display numerous small elements, which occupy significantly less area than objects in
datasets like RefCOCO (Yu et al., 2016) and Visual Genome (VG) (Krishna et al., 2016), requiring
enhanced visual understanding to distinguish between highly similar elements. 3) Data insufficiency.
Due to the substantial cost of human annotation, the scale of existing open-source datasets for UI
understanding is significantly lower than natural image datasets such as COCO (Lin et al., 2014) and
LAION-5B (Schuhmann et al., 2022).

2.2 BASICS OF VLMS

We adopt the popular architecture used by recent VLMs, such as LLaVA (Liu et al., 2023) and
Qwen-VL (Bai et al., 2023). These architectures typically combine a pre-trained visual backbone
fϕ (e.g., ViT (Dosovitskiy et al., 2021)) and a large language model (e.g., Llama Touvron et al.
(2023)) to build a model capable of processing both textual and visual inputs. Formally. the visual
backbone maps an input image I ∈ RH×W×3 to an L-length sequence of patch features Vimg ∈ RL×h

that are then projected into the embedding space of the LLM. Subsequently, the projected visual
features Eimg ∈ RL×D are concatenated with the S-length textual embeddings Etxt ∈ RS×D

before being fed to the LLM for response generation. The generation process can be formulated
as o = LLMθ([Projω(fϕ(I)), Embed(t)]; where t, Proj, and Embed denotes the text prompt, the
vision-language projector, and the embedding module in the LLM, respectively. Given a training
sample (I, t, o), the VLM is optimized by minimizing the loss L(ϕ, ω, θ) = − log p(o|I, t) via
gradient descent.

In this paper, we aim to explore the intricate design space of VLMs to develop a comprehensive
recipe for building VLMs capable of UI element grounding.

2.3 DOWNSTREAM UI ELEMENT GROUNDING TRAINING DATASETS

To fulfill our aim, two training datasets are utilized as the sources for downstream fine-tuning:

SeeClick (Cheng et al., 2024) provides a dataset that integrates existing tasks in UI element grounding,
captioning, and summarization. It comprises two parts: (a) a web portion containing element text
grounding and OCR tasks derived from 300k web pages in the latest Common Crawl repository1;
and (b) a mobile device portion that includes element grounding and captioning tasks generated by
applying instruction-following templates to the Widget Captioning and RICO annotations. As shown
in Fig. 1, this dataset mainly comprises brief element annotations.

AutoGUI (AutoGUITeam, 2024) is introduced to complement SeeClick. AutoGUI contains 625k UI
functionality grounding and captioning tasks that require VLMs to grasp the functional semantics of
various UI elements. This dataset is collected on multi-resolution and multi-device screenshots across
diverse data domains, providing detailed element functionality annotations related to UI contexts (see
Fig. 1). Given that the functionality annotations in this AutoGUI dataset are more detailed and longer
than those in SeeClick and that associating these annotations with unique elements among hundreds
of counterparts is challenging, this dataset is expected to enhance VLMs’ UI element grounding
capabilities, albeit with increased complexity.

1https://index.commoncrawl.org/

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Vision Transformer (ViT)

Patch Feature Compressor

VL-Projector

Large Language Model (LLM)

2. User intent: I need to select the check-in date.

4. Functionality Grounding: This element allows the user to search for and select travel destinations.

Instruction-Tuning
Data Curation

Compressor
Design

Multi-Stage Training
Recipe

Grounding Result 2: (X=44,Y=51)

Grounding Result 4: (X=10,Y=52)

Data Scaling
Effects

UI screenshot Local patches

24

Strong UI grounding capability

3. Brief Description: The second item in the navigation bar.

Grounding Result 3: (X=15,Y=12)

1. Action grounding: Open the log-in page.

Grounding Result 1: (X=94,Y=3)

3
1

Patch tokens Text tokensGlobal tokens

Key areas explored in 
the UI-Pro  recipe

Various grounding types:

Visual 
Input

Model
Response

Text
Input

E
m

b
e
d
d
in

g

Figure 2: The UI-Pro pipeline and training recipe. The recipe includes (a) Data Curation, (b) Com-
pressor Design, (c) Training Recipe, and (d) Data Scaling for enhancing UI grounding capabilities, as
explored in this work. Extensive experiments (conducted in this paper) demonstrate that constructing
datasets for warm-up phases, curriculum-based training, scaling datasets, and employing appropriate
compression modules play crucial roles in enhancing UI-element grounding performance.

3 EXPLORING THE DESIGN SPACE OF VLMS FOR IMPROVED UI GROUNDING

This section investigates design choices related to instruction-tuning data, training procedures, and
patch feature compression techniques for UI VLMs. A LLaVA model (Liu et al., 2023) with a
pre-trained vision-language projector is utilized as the base model. To process high-resolution UI
screenshots, a parameter-free image division strategy (Ye et al., 2023a; Zhang et al., 2024b) is
employed to crop the shape-variable screenshots into fixed-size image patches. Please see Fig. 2 for
the full pipeline. More implementation details are listed in the Appendix.

3.1 WHICH DATA TYPE CAN BE USED TO WARM UP VLMS?

Our preliminary studies found that directly fine-tuning the base VLM using UI element grounding
data resulted in poor grounding accuracy. We hypothesize that the base model needs warming up to
adapt to UI element grounding tasks, which require models to output precise numerical coordinates
based on cluttered UI screenshots.

To explore suitable warming-up data sources, multiple instruction-tuning tasks shown in Fig. 3 are
collected for comparison:

Visual Grounding on Natural Images requires VLMs to output the bounding boxes of target objects
given the object descriptions. We convert the bounding box annotations in RefCOCO (Yu et al.,
2016), RefCOCO+ (Yu et al., 2016), RefCOCOg Nagaraja et al. (2016), and VG (Krishna et al.,
2016) into visual grounding and referring tasks by applying instruction-tuning templates, resulting in
5.7M samples in total.

Question Answering on Natural Images involves generating natural language responses by fol-
lowing text instructions, without coordinate outputs. We utilize the VQA subset, including LLaVA-
Pretrain (Liu et al., 2023), COCO Lin et al. (2014), and SAM (Kirillov et al., 2023), of the
ShareGPT4V-SFT dataset (Chen et al., 2023a), resulting in 530k samples in total.
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Please provide the
bounding box coordinate
of the region this sentence
describes: the right bear.
Answer: [362, 256, 423, 400]

Grounding on Natural Images
What did the man rid?
Answer: Horse.

QA on Natural Images
Predict the bounding box of
the text “London Gatwick”
Answer: [32,343,592,386]

Text LocalizationQA for Text Understanding
Who is the author of this
book?
Answer: Wallace Nutting

Chart-Related QA
Which year has the most
divergent opinions about
Brazil’s economy?
Answer: 2015

Visual Mathematics Reasoning
In triangle ABC, AD = 3 and 
BD = 14. Find CD.
Choices:
A. 6.0 B. 6.5 C. 7.0 D. 8.5
Answer: B

Figure 3: Examples of the task types tested and compared in the warming-up stage.

Table 1: Evaluating the base model warmed up with various tasks. The base model is first
fine-tuned using a warming-up task and then trained on the downstream AutoGUI task. We can
see that visual grounding on natural images significantly enhances accuracy grounding accuracy.
Text localization also yields high accuracy. Text-QA, Chart-related QA, and Visual mathematical
reasoning tasks provide minimal benefit. VQA on natural images is also not pretty useful. Although
ShareGPT4V-SFT includes a variety of tasks, it performs worse than using either pure natural image
grounding or text localization task data. Notably, directly fine-tuning with AutoGUI data without
warming up results in inferior performance.

Warming-up Task FuncPred ScreenSpot MOTIF RefExp VWB EG VWB AG

Gnd. on Natural Images 42.6 19.4 28.3 11.5 8.5 8.7
QA on Natural Images 40.2 12.8 19.8 9.6 5.3 1.9

Text Localization 46.3 12.5 24.3 8.1 4.8 2.9
Text-QA 39.0 10.4 21.1 9.2 3.6 1.0

Chart-Related QA 36.2 12.3 16.4 10.8 3.6 1.9
Visual Math. Reasoning 37.0 7.9 15.2 5.7 0.7 0.0

ShareGPT4V SFT 35.7 7.5 9.2 7.6 5.1 3.9
None 35.2 4.2 9.6 1.2 1.7 1.0

Question Answering for Text Understanding (Text-QA) focuses on recognizing and interpreting
textual contents in images to answer questions. We extract the combination of the TextVQA (Singh
et al., 2019), ShareTextQA, and OCR-VQA (Mishra et al., 2019) portions from the ShareGPT4V-SFT
dataset, resulting in 102k samples in total.

Text Localization combines text grounding and recognition tasks, requiring the prediction of bound-
ing boxes for situated texts and their recognition. We use the 1M text localization subset of the
DocStruct4M data proposed by mPLUG-DocOwl-1.5 (Hu et al., 2024).

Visual Mathematics Reasoning requires VLMs to understand complex mathematical diagrams and
formulas for multi-modal reasoning. We combine Inter-GPS (Geometry Problem Solving) (Lu et al.,
2021), GeoQA Chen et al. (2021), and MATH-Vision (Wang et al., 2024a), obtaining 82.5k samples.

Chart-Related Question Answering tasks VLMs with answering questions about data visualizations,
e.g. scientific diagrams and statistical tables from textbooks and academic papers, challenging visual
and logical reasoning over charts. We collect data from ArXivQA Li et al. (2024a), ChartQA (Masry
et al., 2022), ScienceQA (Lu et al., 2022), TabMWP (Lu et al., 2023), TextbookQA (Kembhavi et al.,
2017), AI2D (Kembhavi et al., 2016), and DVQA (Kafle et al., 2018), curating 394k samples in total.

ShareGPT4V SFT is also used to explore whether combining various types is beneficial. This dataset
contains 665k samples, including VQA, visual grounding, and Text-QA tasks.
We restrict the number of samples to 355k by randomly sampling from tasks with more than 355k
and resampling those with fewer. This experiment follows a two-stage fine-tuning approach: the
base model is first fine-tuned with warming-up tasks, followed by fine-tuning with 125k samples
from the AutoGUI dataset. Tab. 1 shows that visual grounding on natural images as the warming-up
task significantly enhances accuracy accuracy on the UI grounding benchmarks. Text localization
also achieves high accuracy on FuncPred but performs poorly on ScreenSpot. Although text QA,
chart-related QA, and visual mathematical reasoning tasks are aimed at enhancing the fine-grained
understanding capabilities of VLMs, their overall gains are limited. Interestingly, ShareGPT4V-SFT,
which includes diverse tasks, does not provide benefits in the downstream fine-tuning stage for the
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Table 2: Experiments on the fine-tuning curriculum of the warming-up, SeeClick, and AutoGUI
datasets. The fine-tuning procedure is divided into three stages, each of which fine-tuning the base
model with a different dataset. Notably, fine-tuning with SeeClick containing simple UI grounding
tasks and then with AutoGUI containing complex functionality grounding tasks contributes to high
accuracy over the two benchmarks (row 6). Reversing or mixing the two UI datasets leads to
deteriorated performance on FuncPred (rows 7 and 8). These results indicate that organizing the two
UI grounding datasets with a simple-to-complex curriculum helps to maximize data utility.

No. SFT-1 SFT-2 SFT-3 FuncPred ScreenSpot

r1 - SeeClick - 17.3 39.9
r2 - - AutoGUI 46.3 14.3
r3 - SeeClick AutoGUI 56.7 41.1
r4 Gnd. SeeClick - 20.8 44.0
r5 Gnd. - AutoGUI 52.0 24.9
r6 Gnd. SeeClick AutoGUI 57.7 44.7
r7 Gnd. AutoGUI SeeClick 22.3 43.9
r8 Gnd. - SeeClick+AutoGUI 52.0 44.4

UI dataset, suggesting that this diverse dataset is not an ideal warming-up source for enhancing UI
element grounding capabilities, despite its common use in existing VLM studies (McKinzie et al.,
2024; Tong et al., 2024). In summary, these results demonstrate that grounding tasks from either the
natural image or text-rich scenarios serve as desirable warming-up data sources.

Finding 1. Directly fine-tuning VLMs with UI element grounding data can lead to training difficulty. 

Utilizing visual grounding tasks from either natural or text-rich scenarios as a warming-up step significantly 

enhances downstream fine-tuning with UI element grounding tasks.

Finding 2. In the downstream fine-tuning stage after warming up, structuring UI grounding task datasets in 

a simple-to-complex curriculum significantly enhances data utility.

Finding 3. Scaling warming-up data and UI grounding data significantly enhances element grounding 

accuracy. It is also important to remain cautious of potential overfitting when finetuning with complex UI 

grounding data.

Finding 4. Employing compression modules to reduce patch features is crucial for VLMs that utilize an 

image division strategy. The use of convolutional networks to compress local patch features significantly 

enhances the UI grounding capabilities of VLMs.

3.2 WHAT FINE-TUNING CURRICULUM CAN MAXIMIZE DATASET UTILITY?

Given a warming-up dataset, a UI grounding dataset with simple annotations (SeeClick), and one
with complex functionality semantics (AutoGUI), a question arises of how we can optimize the
fine-tuning order to fully leverage the advantages of these datasets. In this experiment, we aim to
find a suitable fine-tuning procedure for utilizing datasets from various sources to enhance VLMs’
UI element grounding capability. We explore different fine-tuning orders of the three datasets and
compare the performances. Specifically, the fine-tuning process is divided into three stages: the first
stage uses visual grounding on natural images (355k samples) to warm up the base model according
to the finding in Sec. 3.1; the second uses 355k samples from the simple tasks in SeeClick; the third
uses the 625k complex tasks in AutoGUI. Each stage is run for one epoch.

The results in Tab. 2 demonstrate that initial fine-tuning with the warming-up task consistently
enhances downstream fine-tuning with UI grounding data (r4 vs. r1, r5 vs. r2, and r6 vs. r3),
especially when the downstream task is the hard functionality grounding task of AutoGUI. This
observation aligns with findings in Sec. 3.1. Fine-tuning with first SeeClick (simple) and then
AutoGUI (complex) generally yields better performance than variants that fine-tune exclusively with
either SeeClick or AutoGUI (r3 vs. r1 and r2). This trend persists even when models are warmed
up, obtaining accuracy gains of 5.7 and 18.8 on the FuncPred and ScreenSpot, respectively (r6 vs.
r5). An exception appears when comparing r6 and r4, where performance on ScreenSpot remains
unchanged despite a significant increase on FuncPred, likely due to a small domain gap between
the functionality grounding task of AutoGUI and the grounding-by-brief-descriptions task of the
ScreenSpot benchmark.

Interestingly, reversing the order of SeeClick and AutoGUI (r7 vs. r6) leads to a significant perfor-
mance drop of 35.4 on AutoGUI. Additionally, mixing these tasks for fine-tuning leads to a decrease
in FuncPred (r8 vs. r6). These findings indicate that the base model requires warming up with the
simpler UI grounding task before fine-tuning with more complex tasks. In summary, these results
indicate that organizing the three datasets in a simple-to-complex curriculum maximizes data utility.
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Finding 1. Directly fine-tuning VLMs with UI element grounding data can lead to training difficulty. 

Utilizing visual grounding tasks from either natural or text-rich scenarios as a warming-up step significantly 

enhances downstream fine-tuning with UI element grounding tasks.

Finding 2. In the downstream fine-tuning stage after warming up, structuring UI grounding task datasets in 

a simple-to-complex curriculum significantly enhances data utility.

Finding 3. Scaling warming-up data and UI grounding data significantly enhances element grounding 

accuracy. It is also important to remain cautious of potential overfitting when finetuning with complex UI 

grounding data.

Finding 4. Employing compression modules to reduce patch features is crucial for VLMs that utilize an 

image division strategy. The use of convolutional networks to compress local patch features significantly 

enhances the UI grounding capabilities of VLMs.
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Figure 4: Scaling effects for the warming up, simple UI grounding (SeeClick), and complex UI
grounding (AutoGUI) data. This figure highlights that increasing the warming-up and UI grounding
data remarkably improves performance. Scaling the AutoGUI data shows modest gains, with peak
performance observed at 125k samples for MOTIF and ScreenSpot, suggesting potential overfitting.

3.3 WHAT IS THE SIGNIFICANCE OF FINE-TUNING DATA SIZE?

Exploring the effects of data size scaling in training VLMs is pivotal for optimizing performance as
increased data has been observed to lead to enhanced model generalization and performance (Kaplan
et al., 2020; Brown et al., 2020; Zhao et al., 2023; Liu et al., 2024a; Karamcheti et al., 2024).

We systematically assess how varying fine-tuning data sizes impact the performance of VLMs in the
UI element grounding tasks. Following the insight in Sec. 3.2, we adopt a three-stage fine-tuning
procedure, employing the warming up, SeeClick, and AutoGUI data in stages 1, 2, and 3, respectively.

Scaling warming-up data in stage 1. Inspired by the power-law scaling observed in (Kaplan et al.,
2020), we scale the visual grounding on natural image data, as discussed in Sec. 3.1, across seven
levels: 0, 1.6k, 8k, 40k, 200k, 1M, and 5M samples. 212k samples of SeeClick data are used in stage
2 and 625k AutoGUI data are used in stage 3.

Scaling simple UI-grounding data in stage 2. The SeeClick training data is scaled across five
levels: 8.5k, 42k, 212k, 1.06Mk, and 5.3M samples. 5M samples of the warming-up data are used in
stage 1 and 625k AutoGUI data are used in stage 3.

Scaling complex UI-grounding data in stage 3. The AutoGUI training data is extracted and scaled
across four levels: 0, 25k, 125k, and 625k samples. This experiment utilizes 5M samples of the
warming-up data and 212k samples of SeeClick data.

The results in Fig. 4 show that scaling up the warming-up data in stage 1 contributes to significant
improvements in benchmark performance, even though the domain of this data (natural images) differs
from the UI-specific data used in subsequent fine-tuning stages. This suggests that the model acquires
a preliminary capability of fine-grained spatial localization and numerical coordinate generation,
which are essential for tackling the more challenging UI grounding tasks downstream. Scaling up
SeeClick data in stage 2 also brings significant performance gains across all the benchmarks, with the
scale of 212k serving as a critical reflection point. Scaling the AutoGUI data in stage 3 results in
modest improvements, peaking at 125k on MOTIF and ScreenSpot. The FuncPred accuracy continues
to rise, likely due to its alignment with the AutoGUI task domain, while performance on the other
benchmarks plateaus or slightly declines, possibly indicating overfitting to the AutoGUI task format.
In summary, while scaling the warming-up and UI grounding data enhances performance, attention
should be paid to the risk of overfitting.
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Finding 1. Directly fine-tuning VLMs with UI element grounding data can lead to training difficulty. 

Utilizing visual grounding tasks from either natural or text-rich scenarios as a warming-up step significantly 

enhances downstream fine-tuning with UI element grounding tasks.

Finding 2. In the downstream fine-tuning stage after warming up, structuring UI grounding task datasets in 

a simple-to-complex curriculum significantly enhances data utility.

Finding 3. Scaling warming-up data and UI grounding data significantly enhances element grounding 

accuracy. It is also important to remain cautious of potential overfitting when finetuning with complex UI 

grounding data.

Finding 4. Employing compression modules to reduce patch features is crucial for VLMs that utilize an 

image division strategy. The use of convolutional networks to compress local patch features significantly 

enhances the UI grounding capabilities of VLMs.
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Figure 5: Comparing the patch feature compressors. (a) Merger concatenates the nearby 4 tokens
into a new token along the channel dimension and then reduces the channel dimension to 1/4 with
an MLP. (b) Resampler uses a fixed set of learnable latent queries that interact with each patch
feature through cross-attention, outputting a fixed-length visual feature. (c) C-Abstractor employs
a traditional convolution network to compress patch features. (d) H-Reducer uses a convolution
network whose kernel size and stride size are set as 1× 4 to fuse horizontal 4 visual tokens.

3.4 WHICH PATCH FEATURE COMPRESSION APPROACH IS BENEFICIAL?
UIs captured at super-high resolutions result in thousands of visual tokens when processed with the
division technique. For example, a 720p screenshot will be converted into 4608 tokens and a 4kHD
will exceed 48k. These extensive features may possess redundant details that interfere with VLM
inference and cause an unbearably high computational budget.

To build a UI VLM capable of efficiently processing high-resolution screenshots, we explore various
designs of the patch feature compressor, as shown in Fig. 5: (a) Merging compressor (Merger)(Ye
et al., 2023a): This compressor concatenates N = 4 adjacent tokens in square regions along
the channel dimension andcompresses the concatenated features using a single-layer MLP. (b)
Resampler (Alayrac et al., 2022): This compressor reduces visual features to a fixed number of tokens
by utilizing a set of learnable queries to cross-attend to the visual features. (c) Convolution-based
compressor: This compressor reshapes the visual features to align them with image dimensionality,
processes them through a convolutional network, and flattens them back into visual tokens. Apart
from convolution with square-shaped kernels, i.e., C-Abstractor (Cha et al., 2024), we also test
the H-reducer (Dong et al., 2024), a type with stripe-shaped kernels (1× 4), which is tailored for
horizontal text layouts in document understanding scenarios. (d) MLP: Directly using an MLP to
process the patch features without compression.

This experiment uses 1M warming-up samples, 1.1M SeeClick data, and 125k AutoGUI data to
fine-tune the base model for one epoch. To ensure a fair comparison, the numbers of parameters of
these compressors are roughly equalized by adjusting their hyper-parameters.

The results in Tab. 3 show that the two convolution-based compressors achieve superior grounding
accuracy, with C-Abstractor leading on five benchmarks. Although H-Reducer is tailored for docu-
ment inputs, it is inferior to C-Abstractor which uses square-shaped kernels, probably because the UI
screenshots display a higher proportion of flexibly arranged visual contents (i.e., icons and images),
compared to text-rich documents. Resampler performs poorly as its cross-attention mechanism
possibly leads to a loss of spatial information, which is crucial for grounding tasks that require
precise annotation-region associations (Cha et al., 2024). In contrast, Merger simply fuses nearby
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Table 3: Comparing the performances of introducing different patch feature compressors.
The convolution-based compressor obtains higher accuracy than the other types, with C-Abstractor
exhibiting leading performances on five benchmarks. Without a compressor, the model can only
employ the low-resolution raw image, resulting in significantly inferior performance.

Compressor Type FuncPred ScreenSpot MOTIF RefExp VWB EG VWB AG

None 20.1 3.8 18.0 4.2 1.5 1.0
MLP (Liu et al., 2024b) 26.2 13.6 36.1 20.0 7.0 20.4
Merger (Ye et al., 2023a) 35.9 38.5 51.3 26.0 16.0 26.2

Resampler (Alayrac et al., 2022) 35.1 29.2 50.3 21.6 13.6 13.6
C-Abstractor (Cha et al., 2024) 34.3 42.1 58.0 32.0 16.5 30.1
H-Reducer (Dong et al., 2024) 37.0 39.7 55.3 28.3 10.2 27.2

Table 4: Comparing UI-Pro with leading VLMs on the UI element grounding benchmarks. The
results demonstrate that UI-Pro achieves impressive grounding accuracy with much fewer parameters.
AnyRes means that the method uses an image division strategy to handle images with variable
resolutions.

Model Size Input Res. FuncPred ScreenSpot MOTIF RefExp VWB EG VWB AG

LLaVA-1.5 (Liu et al., 2024a) 7B 336 3.2 5.0 7.2 4.2 12.1 13.6
LLaVA-1.5 (Liu et al., 2024a) 13B 336 5.8 11.2 12.3 20.3 16.7 9.7
LLaVA-1.6 (Liu et al., 2024b) 34B AnyRes 4.4 10.3 7.0 29.1 19.9 17.0
SliME (Zhang et al., 2024b) 8B AnyRes 3.2 13.0 7.0 8.3 6.1 4.9

MiniCPM-V-2.6 (Yao et al., 2024) 8B AnyRes 16.5 33.0 12.9 29.3 9.4 21.7
Qwen-VL (Bai et al., 2023) 10B 448 3.0 5.2 7.8 8.0 1.7 3.9

Qwen2-VL (Wang et al., 2024b) 7B AnyRes 7.8 26.1 16.7 32.4 3.9 3.9
CogAgent (Hong et al., 2023) 18B 1120 29.3 47.4 46.7 35.0 55.7 59.2
SeeClick (Cheng et al., 2024) 10B 448 19.8 53.4 11.1 58.1 39.2 27.2

UI-Pro-Gemma-2B (ours) 2.8B AnyRes 46.3 56.3 64.3 44.6 43.8 33.0

four tokens, surpassing Resampler by a large margin. The MLP-based variant and the one without
compression both show weak UI grounding ability, suggesting the necessity of a compression module.
In summary, these results suggest that convolution-based compressors are suitable for enhancing
VLMs’ UI grounding capabilities.

Finding 1. Directly fine-tuning VLMs with UI element grounding data can lead to training difficulty. 

Utilizing visual grounding tasks from either natural or text-rich scenarios as a warming-up step significantly 

enhances downstream fine-tuning with UI element grounding tasks.

Finding 2. In the downstream fine-tuning stage after warming up, structuring UI grounding task datasets in 

a simple-to-complex curriculum significantly enhances data utility.

Finding 3. Scaling warming-up data and UI grounding data significantly enhances element grounding 

accuracy. It is also important to remain cautious of potential overfitting when finetuning with complex UI 

grounding data.

Finding 4. Employing compression modules to reduce patch features is crucial for VLMs that utilize an 

image division strategy. The use of convolutional networks to compress local patch features significantly 

enhances the UI grounding capabilities of VLMs.

4 STATE OF THE ART PERFORMANCE OF UI-PRO

Finally, we leverage the findings from the previous experiments to build UI-Pro. We train UI-Pro
using Gemma-1.1-2B (Team et al., 2024) and LLaMA-3.2-Instruct-3B AI@Meta (2024) as the base
LLM and OpenAI CLIP ViT-L/14@336 (Dosovitskiy et al., 2021) as the visual encoder. The training
process begins with 5M samples of visual grounding on natural images for warming up, followed
by fine-tuning with 5.3M SeeClick and 125k AutoGUI samples, adhering to a simple-to-complex
curriculum. We utilize C-Abstractor as the patch feature compressor.

Tab. 4 show that compared with existing VLMs, UI-Pro exhibits impressively high accuracy on the
UI element grounding benchmarks. Notably, it achieves this with only one-fifth the model size of
CogAgent, a leading UI-oriented VLM, surpassing it across five benchmarks and establishing a new
state-of-the-art. In contrast, VLMs primarily designed for universal multimodal comprehension,
such as Qwen-VL, MiniCPM-V-2.6, and LLaVA-1.6, struggle with UI element grounding tasks,
highlighting a potential disconnect between their design strategies and the complexities of UI
grounding scenarios. Overall, with our four key findings, we can build VLMs that possess strong UI
element grounding capabilities.
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5 RELATED WORKS

5.1 RECENT ADVANCEMENT OF VLMS

There has been a significant rise in reasearch focused on improving LLMs by integrating both visual
and textual data (Alayrac et al., 2022; Chen et al., 2023b; Li et al., 2023; Lin et al., 2023a; Liu et al.,
2023; Lin et al., 2023b; Chen et al., 2023c; Lu et al., 2024; Bai et al., 2023; Wang et al., 2024b; Zhu
et al., 2024; Wang et al., 2024c; Li et al., 2024b; Zhang et al., 2024a; You et al., 2024a; Laurençon
et al., 2024; Peng et al., 2024; Driess et al., 2023), which has led to the development of VLMs.
Flamingo (Alayrac et al., 2022), utilizes combined visual and language prompts and has demonstrated
exceptional few-shot visual question-answering abilities. With the advancements brought by GPT-
4 (Team, 2024), both academic and industrial efforts have been made to make its multimodal
reasoning capabilities more accessible. LLaVA (Liu et al., 2023) and LLaMA-Adapter (Zhang et al.,
2024a) have worked to align vision encoders (Dosovitskiy et al., 2021) with LLMs to support visual
instruction following. Models like VisionLLM (Wang et al., 2024c), Ferret (You et al., 2024a), and
Qwen-VL (Bai et al., 2023) have further developed strong visual grounding abilities. LLaVA-Next Liu
et al. (2024b), Monkey Li et al. (2024b), LLaVA-UHD Guo et al. (2024), Qwen2-VL Wang et al.
(2024b) enhanced the perception resolution of VLMs. Moreover, research is expanding to VLM
applications in contexts with rich textual imagery (Tang et al., 2022; Ye et al., 2023b;a; Liu et al.,
2024d) and embodied interactions (Driess et al., 2023; Mu et al., 2023), unlocking new possibilities
in multimodal reasoning. Additionally, some works Laurençon et al. (2024); McKinzie et al. (2024)
give a comprehensive study on building VLMs, highlighting the impact of various design components
and data choices on model performance. Despite these advancements, there has been no systematic
approach proposed for data collection, model design, or training frameworks specifically targeting
VLMs in UI environments, highlighting a critical gap in the research.

5.2 EXISTING UI DATASETS AND BENCHMARKS

In contrast to well-established natural image datasets (Russakovsky et al., 2014; Schuhmann et al.,
2022), datasets focused on UI understanding have received less attention in the field of computer
vision. Some efforts have been made to develop datasets for mobile UI modeling (Wang et al., 2021;
Li et al., 2020a;b; Bai et al., 2021; Burns et al., 2022), with many of these efforts centered on the
RICO dataset (Deka et al., 2017), which contains 72K Android app screenshots. Notable examples
include Widget Captioning (Li et al., 2020a), which examines the captions and linguistic features of
UI elements, and RICOSCA (Li et al., 2020b), which maps single-step instructions to corresponding
UI elements. More recently, MoTIF (Burns et al., 2022) has gained attention alongside the growing
interest in web-based scenarios. WebShop (Yao et al., 2022), for instance, was an early effort to
introduce a simplified simulator for web navigation tasks. Subsequent projects like Mind2Web (Deng
et al., 2024) and WebArena (Zhou et al., 2023) have focused on creating realistic and reproducible
web environments to enhance web agent performance. VisualWebBench (Liu et al., 2024c) has
also contributed by establishing a robust evaluation framework for VLMs, specifically targeting UI
grounding. To address the issue of limited data, recent studies like SeeClick (Cheng et al., 2024) and
CogAgent (Hong et al., 2023) have leveraged Common Crawl data to construct large-scale datasets,
though these datasets often include noisy HTML code snippets. AITW (Rawles et al., 2023) has
been introduced to focus on interpreting high-level instructions in Android environments. Existing
UI-VLMs have primarily focused on fine-tuning open-source models using these datasets, but there
is still a lack of detailed solutions for effectively enhancing their UI grounding capabilities.

6 CONCLUSION

This paper introduces a practical framework for building VLMs with strong UI element grounding
capability. We identified key strategies, including warming up with visual grounding tasks, employing
a simple-to-complex fine-tuning curriculum, and scaling data sizes, all of which significantly optimize
grounding accuracy. Our findings on image feature compression further improve grounding accuracy
for high-resolution UI images. The integration of these findings resulted in UI-Pro, a state-of-the-
art VLM that achieves impressive grounding accuracy with fewer parameters. Hope this research
provides a roadmap for future studies in intelligent UI agent development.
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REPRODUCIBILITY STATEMENT

UI-Pro is fully reproducible. The fine-tuning code is based on the open-source LLaVA repo and all
the used training data in the experiments are also open-sourced. As the four findings proposed in
the paper are easy to put into practice, readers can reproduce our results by modifying LLaVA repo
according to the model designs Fig. 5, fine-tuning curriculum in Sec 3.2, and hyperparameter settings
in the Appendix.
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Table A: The training hyper-parameters used for fine-tuning UI-Pro in the experiments.

Hyper-Parameter Value

Epoch 1
Global batch size 128

#GPUs 8
Learning rate for all stages 3e-5

weight decay 0.0
ADAM Beta2 0.95
Warm-up ratio 0.03
LR scheduler Cosine

Model max length 2048
Frozen module ViT

DeepSpeed ZeRO-2
Data type BFloat16

A APPENDIX

A IMPLEMENTATION DETAILS

A.1 DATA CURATION DETAILS

We found that certain datasets, such as RefCOCO and SeeClick include samples containing multi-turn
dialogues while others do not, leading to potential imbalance issues caused by this multi-turn trait and
resulting in unfair comparison. Additionally, excessively long dialogs exceed the context window of
2048 of UI-pro, causing training bugs. To resolve these issues, we reorganize the multi-turn dialogs
to ensure each dialog contains no more than 650 text tokens to balance all samples.

A.2 FINE-TUNING DETAILS

The hyper-parameters of training UI-Pro is shown in Tab. A. All experiments are conducted with
8 L20 GPUs each with 48GB memory. The three-stage fine-tuning (stage 1: warming-up; stage
2: simple UI grounding task fine-tuning; stage 3: complex UI grounding task fine-tuning) spend
approximately 22 hours in total.

Although the parameter numbers of the compressors can not be flexibly adjusted due to discrete
parameter space and hardware efficiency issues, we try our best to match their sizes: (a) Merger:
10,488,832, (b) Resampler: 8,998,912, (c) C-Abstractor: 9,100,032, (d) H-Reducer: 10,489,344, (e)
MLP: 8,392,704.

B LIMITATIONS

Despite the impressive UI element grounding capability, UI-Pro still encounters several limitations:

1. Model Diversity. This paper is targeted at LLaVA-like architectures that typically comprise a
vision encoder, a vision-language connector, and an LLM. In practice, there exist various VLM
architectures, such as Flamigo (Alayrac et al., 2022) and Emu (Sun et al., 2024) with multi-modal
inputs and outputs. Future work can extend our findings to these architectures to generalize the
insights.

2. UI Data Diversity. As UI-related datasets are much more scarce than natural image datasets,
this work mainly conducts experiments with SeeClick and AutoGUi training datasets, which are the
largest ones to date. This data insufficiency issue may be the cause of slight over-fitting observed in
the data size scaling experiments, as shown in Fig 4. We hope future work can collect more diverse
data to consolidate our findings.

3. Resource Intensiveness. Fine-tuning VLMs like UI-Pro can be extremely resource-intensive, re-
quiring substantial computational power and time, which may limit accessibility for some researchers
or developers. Due to such a resource restriction, this work uses small LLMs, i.e. Gemma-2B. We
will extend our work to a larger scale by integrating larger LLMs like Llama-3-8B.
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