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ABSTRACT

Recent advances in applying reinforcement learning (RL) to large language models
(LLMs) have led to substantial progress. In particular, a series of remarkable yet
often counterintuitive phenomena have been reported in LLMs, exhibiting patterns
not typically observed in traditional RL settings. For example, notable claims
include that a single training example can match the performance achieved with
an entire dataset, that the reward signal does not need to be very accurate, and
that training solely with negative samples can match or even surpass sophisticated
reward-based methods. However, the precise conditions under which these obser-
vations hold—and, critically, when they fail—remain unclear. In this work, we
identify a key factor that differentiates RL observations: whether the pretrained
model already exhibits strong Model-Task Alignment, as measured by pass@k accu-
racy on the evaluated task. Through a systematic and comprehensive examination
of a series of counterintuitive claims, supported by rigorous experimental validation
across different model architectures and task domains, our findings show that while
standard RL training remains consistently robust across settings, many of these
counterintuitive results arise only when the model and task already exhibit strong
model-task alignment. In contrast, these techniques fail to drive substantial learning
in more challenging regimes, where standard RL methods remain effective.

Strong Model-Task Alignment Weak Model-Task Alignment

Before RL

Standard RL

Spurious reward

Test-Time RL

One-shot RL

Negative-

sample tra
ining

x Math

Before RL

Standard RL

Spurious reward

Test-Time RL

One-shot RL

Negative-

sample tra
ining

x Counterfactual

x Operation

x Puzzle

x Math

x Cipher

pa
ss

@
k

k

pa
ss

@
k

k

Figure 1: Model-task alignment, which is measured by pass@k accuracy on the evaluated task, drives
distinct outcomes from the same series of RL approaches.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton et al., 1998) has emerged as a transformative post-training
technique for Large Language Models (LLMs), enabling them to follow instructions (Ouyang et al.,
2022) and align with human preferences (Ziegler et al., 2019; Rafailov et al., 2024). A particularly
prominent application focuses on enhancing reasoning capabilities, as exemplified by breakthrough
models such as OpenAI-o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025), QwQ (Team,
2025), and Kimi-1.5 (Team et al., 2025). These systems demonstrate remarkable performance across
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reasoning-intensive domains including coding (Jain et al., 2024), mathematics (Lewkowycz et al.,
2022; He et al., 2024), and logical reasoning (Liu et al., 2025; Chen et al., 2025).

While RL yields significant performance improvements in LLM reasoning—mirroring the success of
RL in traditional domains such as games (Silver et al., 2017a;b)—we also observe several remarkable
yet often counterintuitive empirical phenomena. These effects appear to be unique to LLMs and
would be considered unexpected in traditional RL settings. For instance, single training examples
can match or rival full-dataset training performance (Wang et al., 2025), ground-truth reward may
be surprisingly dispensable (Shao et al., 2025), and training with negative samples alone can match
sophisticated reward-based methods (Agarwal et al., 2025).

Although these findings have generated considerable enthusiasm, the precise conditions under
which they hold, and when they break down, remain insufficiently explored. Given that these
observations may have important implications for RL practices, it is concerning that the conclusions
are largely based on limited experimental settings, where Qwen models (Qwen et al., 2025) trained
on mathematical tasks dominate the landscape.

To this end, we carry out a systematic empirical investigation of several notable RL claims, supported
by rigorous experimental validation across diverse model architectures and task domains. Concretely,
we experiment with both Qwen and non-Qwen models on math and other tasks. Our controlled
experiments reveal that model-task alignment, defined as the degree to which model capabilities match
task requirements, is a critical indicator for categorizing RL observations. Specifically, models benefit
from noisy rewards, test-time RL (Zuo et al., 2025), minimal training, and negative-sample training
primarily within their domains of expertise, where these techniques fail for unfamiliar tasks even
though standard RL training can succeed. Interestingly, we also observe that certain meta-patterns
hold consistently across different settings. For instance, one-shot RL training is generally effective for
the specific task to which the training example belongs, and negative-sample training helps stabilize
model entropy, even though it does not always lead to overall improvements in accuracy.

We evaluate the “alignment” between model capabilities and task requirements using pass@k accuracy,
which we find to be a reliable indicator for distinguishing these counterintuitive RL phenomena.
Our hypothesis is that strong, inherent model capabilities can be readily activated through minimal
training, even when guided by incorrect reward signals, whereas unfamiliar tasks demand substantially
more effort—cases that we argue dominate when scaling up RL compute. Concurrent work (Wu
et al., 2025) investigates the mechanism behind spurious rewards and attributes their effectiveness
primarily to data leakage in Qwen models on the test set. However, our results suggest otherwise: we
find that spurious rewards remain effective even in the absence of contamination, provided the model
already exhibits strong alignment on the evaluated task.

Our study reveals that, unlike traditional RL training, distinct RL mechanisms emerge in the context
of LLMs, depending on whether the pretrained model is already familiar with the target tasks. On the
one hand, this suggests that RL phenomena should be interpreted with extra caution, as they may only
reflect one of these two mechanisms. On the other hand, it also opens up opportunities for jointly
optimizing base model pretraining (or mid-training) and RL post-training. For example, one might
enhance the domain-specific capabilities of the base model during mid-training, enabling effective
RL with limited training data and potentially inaccurate reward signals, or alternatively, allocate most
compute resources to the RL stage using carefully curated training data and precise reward signals.

2 ON UNIQUE PHENOMENA OF RL TRAINING IN LLM REASONING

Reinforcement Learning from Verifiable Rewards (RLVR) has achieved significant success in im-
proving language model reasoning. While similar gains in accuracy from standard training have
also been observed in traditional RL domains such as games, we have noticed several phenomena
that appear unique to LLMs and would not typically be expected in conventional settings. For
example, we highlight several remarkable, and at times counterintuitive, observations below: (a)
Unexpected robustness to unreliable or absent rewards: Shao et al. (2025) demonstrate that
random and incorrect reward signals can improve model performance, while Agarwal et al. (2025)
show that reward-free, entropy-minimization objectives can rival reward-based approaches. Test-
Time Reinforcement Learning (TTRL) proposed by Zuo et al. (2025) further reinforces this trend by
generating reward signals through aggregating majority-vote outcomes, thereby guiding the model
to evolve itself on the test set. Together, these suggest surprising fault tolerance in RL training that
challenges standard assumptions about the critical role of accurate reward signals. (b) One-shot
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training sufficiency: Wang et al. (2025) report that training on a single carefully selected example
can match or exceed performance from full dataset training, challenging assumptions about data
volume requirements. (c) Negative-only signal effectiveness: Zhu et al. (2025) demonstrate that
using exclusively negative reward signals achieves comparable results to standard RL training while
maintaining beneficial entropy properties.

These findings carry significant implications. If broadly confirmed, they would necessitate shifts in
resource allocation—such as prioritizing data selection algorithms over dataset scale, questioning the
necessity of highly accurate reward modeling, and potentially introducing new research directions.
Therefore, we believe it is important to assess whether these conclusions hold in general, and if
not, under what conditions they succeed or fail. Clarifying these patterns would not only help
us understand the limitations of the current findings but also, in the opposite direction, reveal
new opportunities for modifying models so that these findings become valid, thereby making RL
training substantially easier. In this work, we will investigate these observations through controlled
experiments comprehensively.

2.1 CENTRAL HYPOTHESIS: MODEL-TASK ALIGNMENT DEPENDENCY

As most of the findings discussed above are based on mathematical reasoning tasks using Qwen
models (Qwen et al., 2025; Yang et al., 2025), a natural question arises: do these results generalize to
other settings? For instance, Shao et al. (2025) reported that spurious rewards were ineffective with
Llama (Meta, 2024) models on mathematical tasks. However, we argue that treating Qwen+math
as merely a special case is an overly superficial categorization. It remains unclear what specifically
makes Qwen+math unique, and what the deeper, more essential factors might be. We propose a
guiding hypothesis for designing and categorizing experimental settings, which we call Model-Task
Alignment Dependency: the effectiveness of these unique RL findings fundamentally depend on the
degree of alignment between a model’s inherent capabilities and the requirements of the task domain.
In other words, they depend on the model’s proficiency on the evaluated task. This hypothesis may
or may not hold, but we will use it as a framework to categorize experimental settings in terms of
whether the model–task combination is aligned or misaligned.

Quantifying Model-Task Alignment with pass@k. To systematically evaluate the degree of
alignment between a model’s inherent capabilities and the requirements of specific task domains, we
employ the pass@k metric as our primary measure of model-task proficiency. Pass@k represents the
probability that at least one correct solution appears among k independent samples generated by the
model for a given problem. This metric effectively captures how well a model’s existing knowledge
and reasoning patterns align with the demands of a particular task.

Formally, for a problem xi from evaluation dataset D, we generate n samples (n ≥ k) and count
the number of correct samples as ci, then the unbiased estimator of pass@k over the dataset is:
pass@k := Exi∼D

[
1−

(
n−ci
k

)
/
(
n
k

)]
.

2.2 STRATEGIC MODEL AND TASK SELECTION

Building on our Model-Task Alignment Dependency hypothesis outlined in Section 2.1, we strategi-
cally design model-task combinations that test the boundaries of current claims in RL for language
model reasoning. Our experimental design is motivated by the critical need to distinguish between
findings that represent universal RL properties versus those that emerge from specific model-task
capability alignments. We evaluate two representative language models from different families:
Qwen2.5-7B-Base (Qwen et al., 2025) and Llama-3.1-8B-Instruct (Meta, 2024), enabling system-
atic comparison across model architectures with varying baseline capabilities while controlling for
architectural differences at comparable parameter scales.

Our evaluation encompasses mathematical and logical reasoning domains. For mathematical reason-
ing, we employ AIME24 (AIME, 2024), MATH500 (Hendrycks et al., 2021) and AMC23 (AMC,
2023). For logical reasoning, we utilize SynLogic (Liu et al., 2025) (synthetic puzzles with 35
task types, we use the validation split), BBH (Suzgun et al., 2022) (multi-step reasoning tasks),
BBEH Kazemi et al. (2025) (extended-difficulty version), and KOR-Bench (Ma et al., 2024)
(knowledge-orthogonal reasoning across five categories).

To operationalize our hypothesis, we systematically measure alignment strength using pass@k metrics
across all model-task combinations. As demonstrated in Figure 2, models exhibit markedly different
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Figure 2: Pass@k for different tasks. Different LLMs have significantly different abilities on different
tasks, which will affect how the RL techniques perform across model-task combinations.

inherent capabilities across domains. Based on comprehensive evaluation (full results in Appendix C),
we identify cases of strong model-task alignment, such as Qwen2.5 on mathematical domains and
both models on Operation and Counterfactual subsets of KOR-Bench, as well as weak model-task
alignment cases, such as Llama3.1 on mathematical domains and both models on other logical
reasoning tasks. This categorization enables us to test whether counterintuitive RL phenomena are
artifacts of specific model-task alignments or represent fundamental properties of reinforcement
learning in language model reasoning.

2.3 THE CONTAMINATION HYPOTHESIS

Concurrent work from Wu et al. (2025) proposed an alternative hypothesis, where they specifically
focus on the spurious reward pattern and suggest that it stems primarily from dataset contamination
during pre-training. They further confirmed the presence of data leakage in the Qwen models on
several mathematical benchmarks. While we acknowledge contamination as a valid concern, our hy-
pothesis diverges by emphasizing the distinction between contamination and inherent task proficiency.
In particular, models may demonstrate strong task performance without direct contamination of the
test data. In what follows, we categorize different experimental settings based on their contamination
and inherent model-task alignment status. Later, in our experiments, we will empirically show that
contamination is not the underlying cause; instead, model-task alignment serves as a more reliable
differentiator.

Model Portion
AMC 23 MATH500 Puzzle Operation

ROUGE EM ROUGE EM ROUGE EM ROUGE EM

Qwen2.5-7B
0.4 63.78 23.91 50.36 8.20 19.56 0.00 21.37 0.00
0.6 64.42 33.73 60.98 21.20 19.62 0.00 24.25 0.00
0.8 73.23 49.39 66.42 40.20 19.24 0.00 20.18 0.00

Llama-3.1-8B
0.4 27.18 0.00 23.09 0.60 18.27 0.00 21.83 0.00
0.6 30.64 0.00 40.56 3.80 17.31 0.00 18.34 0.00
0.8 44.54 4.81 48.33 17.8 15.85 0.00 16.75 0.00

Table 1: Contamination Analysis across model-task combinations. Portion refers to the truncation
ratio of the prompt used to test whether models can complete the remaining content. Red indicates
potential contamination with strong model-task alignment; Gray indicates no contamination with
weak model-task alignment; Green indicates no contamination with strong model-task alignment.
To verify our hypothesis, we extend contamination analysis beyond Qwen-Math combinations.
Following Wu et al. (2025), we evaluate model generation given partial prompts while preserving word
boundaries (more details are provided in Appendix D). We employ greedy decoding and calculate
both exact match (EM) rates and ROUGE-L scores, where ROUGE-L scores of 1.0 indicate perfect
reconstruction. Table 1 alongside Appendix D show that Operation and Counterfactual subsets have no
contamination, yet both models demonstrate strong inherent reasoning capabilities with high pass@k
scores (see Appendix C). As we will show in our experiments, contamination is not the necessary
condition for the effectiveness of these RL phenomena. Based on our contamination analysis and
pass@k measurements, we categorize experimental settings into three groups: Red (Potential
Contamination + Strong Model-Task Alignment): Qwen2.5 on mathematical domains. Gray
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(No Contamination + Weak Model-Task Alignment): Llama3.1 on mathematical domains; both
models on SynLogic, BBH, BBEH, and Logic, Cipher, Puzzle subsets of KOR-Bench. Green (No
Contamination + Strong Model-Task Alignment): Both models on Operation and Counterfactual
subsets of KOR-Bench.

3 EXPERIMENTAL SETUP

Training Datasets and Evaluation. Except for the experiments on Test-Time RL (Section 4.2),
we use DeepScaleR (Luo et al., 2025) as the training set for mathematical tasks and the training
split of SynLogic-Easy (Liu et al., 2025) for logical tasks. Evaluation datasets are as described in
Section 2.2. Following SynLogic (Liu et al., 2025), all evaluations are conducted in a zero-shot
setting, with avg@8 metrics computed for AIME 2024 and SynLogic to mitigate variance.

Training Configuration. Our experiments default to using the DAPO algorithm with a group
size of 16. Its effectiveness has been demonstrated on math (Yu et al., 2025) and logic tasks (Liu
et al., 2025). We set ϵlow = 0.2, ϵhigh = 0.28,max prompt length = 2048,max generation length =
8192. We use dynamic sampling, which is crucial for improving the reward on SynLogic, and set
max_num_gen_batches = 2. For logical tasks, each sampled batch often contains very few samples
with non-zero reward variance. We apply two strategies: (1) if neither generated batch contains
samples with non-zero reward variance, the second batch is used for training; (2) if the number of
available samples is smaller than the batch size, samples are duplicated. We do not use a length penalty.
In most experiments, we set lr = 1e−6, batch size = 128,mini batch size = 64, temperature = 1.0.
We fix all key hyperparameters across experiments to ensure that observed differences primarily
reflect model–task alignment rather than tuning effort.

4 RQ1 – REWARD SIGNAL: HOW CRITICAL IS IT?

This section investigates the role of reward signal quality and its impact on RL performance for LLMs.
Previous work in Reinforcement Learning with Human Feedback has shown that more accurate
reward models do not always lead to better downstream performance (Chen et al., 2024). In the
specific context of LLM reasoning, initial studies found that models with strong inherent reasoning
abilities exhibit surprising robustness to noisy reward signals, whereas weaker models show poor
noise tolerance (Lv et al., 2025; Shao et al., 2025). Building on these findings, we extend the analysis
by considering diverse reward signals across different model-task combinations. Hyperparameters
follow Section 3, and training runs for 300 steps (see Appendix B for more details).

4.1 RESULTS

We present results in Table 2. From the results, we identify three critical findings regarding the impact
of reward signal quality on model performance (Appendix D.3 provides additional discussion):

Ground Truth Rewards Consistently Outperform All Alternatives. Across both model families
and all task domains, utilizing ground truth rewards consistently yields the highest performance
improvements. For instance, Qwen2.5-7B achieves substantial gains on AIME24 (14.2 vs. baseline
3.3) and MATH500 (71.0 vs. baseline 40.8) when trained with accurate reward signals. This
establishes ground truth rewards as the gold standard for RL training in reasoning tasks.

Model-Task Alignment Determines Robustness to Noisy Rewards. The effectiveness of noisy
reward signals depends on model-task alignment strength across our three experimental categories. In
settings with strong alignment (Red and Green categories), models demonstrate surprising robustness
to spurious rewards, with Qwen2.5-7B maintaining reasonable performance on mathematical tasks
and both models showing improvements on Operation and Counterfactual tasks even with random
rewards. Conversely, in weak alignment settings, spurious rewards consistently fail to provide
meaningful improvements, as seen with Llama3.1-8B on mathematical tasks and both models on
challenging logical reasoning benchmarks. This pattern confirms that alignment strength, rather than
contamination alone, determines robustness to noisy rewards.

Limited Effectiveness of Self-Rewarded Methods. Self-Rewarded Reinforcement Learning
methods, including majority voting and entropy minimization, consistently underperform compared
to external reward-based approaches. While self-rewarded methods shows some promise on math-
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Math Tasks Logic Tasks

AIME24 MATH500 AMC SynLogic BBH BBEH
KOR Benchmark

OP CF Puzzle Logic Cipher

Qwen2.5-7B Family
Base 3.3 40.8 31.0 1.5 45.2 1.2 27.2 17.2 0.8 8.0 4.8

RLVR (External Reward)
Correct 14.2+10.9 71.0+30.2 62.4+31.4 42.6+41.1 62.7+17.5 6.8+5.6 82.4+55.2 79.6+62.4 16.8+10.0 46.4+38.4 20.4+15.6

Random 10.0+6.7 57.5+16.7 45.7+14.7 10.2+8.7 32.7−12.5 0.0−1.2 53.6+26.4 30.8+13.6 1.2+0.4 6.8−1.2 3.6−1.2

Incorrect 6.7+3.4 57.0+16.2 43.1+12.1 0.0−1.5 30.3−14.9 0.0−1.2 60.8+33.6 12.8−4.4 0.4−0.4 6.4−1.6 3.2−1.6

Format 6.7+3.4 55.3+14.5 48.9+17.9 1.50.0 44.4−0.8 2.4+1.2 37.2+10.0 21.6+4.4 0.80.0 6.8−1.2 4.4−0.4

Self-Rewarded Reinforcement Learning
Vote 13.3+10.0 69.4+28.6 58.2+27.2 2.8+1.3 33.6−11.6 0.0−1.2 56.4+29.2 16.3−0.9 0.80.0 6.8−1.2 3.2−1.6

EM 11.6+8.3 70.8+30.0 57.8+26.8 1.50.0 37.5−7.7 0.0−1.2 67.2+40.0 27.2+10.0 0.80.0 6.8−1.2 3.2−1.6

Llama3.1-8B-Instruct Family
Base 3.3 32.5 20.2 0.8 38.6 4.1 60.4 86.4 2.0 28.8 8.4

RLVR (External Reward)
Correct 6.7+3.4 38.6+6.1 25.1+4.9 21.0+20.2 49.1+10.5 4.3+0.2 76.0+15.6 88.8+2.4 15.6+13.6 34.4+7.6 11.6+3.2

Random 3.30.0 26.8−5.7 21.3+1.1 0.0−0.8 32.1−6.5 4.10.0 69.2+8.8 87.2+0.8 0.8−1.2 23.6−5.2 4.4−4.0

Incorrect 2.1−1.2 26.4−6.1 18.7−1.5 0.80.0 30.2−8.4 3.8−0.3 70.0+9.6 83.2−3.2 0.8−1.2 19.2−9.6 4.4−4.0

Format 3.1−0.2 31.5−1.0 18.7−1.5 0.80.0 36.4−2.2 4.10.0 68.8+8.4 85.6−0.8 2.00.0 28.0−0.8 6.4−2.0

Self-Rewarded Reinforcement Learning
Vote 4.6+1.3 37.7+5.2 23.0+2.8 1.5+0.7 35.9−2.7 4.3+0.2 67.2+6.8 83.2−3.2 2.00.0 28.0−0.8 8.8+0.4

EM 5.1+1.8 38.3+5.8 25.0+4.8 0.80.0 34.8−3.8 4.10.0 73.6+13.2 87.2+0.8 2.00.0 23.6−5.2 7.6−0.8

Table 2: Comprehensive evaluation of different reward signals in RL. “Vote” denotes Majority
Voting, “EM” means entropy minimization on self-generated samples only; OP: Operation ; CF:
Counterfactual. Red indicates potential contamination with strong model-task alignment; Gray
indicates no contamination with weak model-task alignment; Green indicates no contamination with
strong model-task alignment.

ematical tasks for Qwen2.5-7B (majority vote achieves 69.4 on MATH500), it fails to match the
performance of ground truth external rewards and shows poor generalization to logical reasoning
tasks across both model families.
4.2 TEST-TIME RL

Test-Time Reinforcement Learning (TTRL) (Zuo et al., 2025) addresses a fundamental challenge
in LLM development: how to improve model performance on unlabeled test data without access to
ground-truth labels for reward signals. It prompts the model to generate multiple responses to each
test question and use the most frequent answer as the label for reward signals. Although the model
is trained on the unlabeled test set, this approach is essentially no different from Self-Rewarded
Reinforcement Learning when majority voting is employed. Thus, we are also curious whether TTRL
remains effective for different models and in domains beyond mathematics.

Table 3 shows the results of the Qwen and Llama models on different tasks. Due to the limited scale
of the test dataset, we trained for 30 steps on all test datasets. It could be observed that in settings
where the model–task alignment is strong, TTRL yields substantial improvements, as exemplified by
Qwen on math tasks and Operation subset. For tasks in which the model lacks initial prior knowledge,
TTRL fails to deliver improvements or yields only marginal gains. As discussed by Zuo et al. (2025),
majority voting is the foundation of TTRL. We also recorded the variation of Maj@16 during the
training process; the results are shown in Table 9. We can observe that, in settings where TTRL yields
substantial improvements, Maj@16 consistently rises throughout training. Especially for Qwen on
Operation subset, it achieves an absolute gain of 16.4 points. This further underscores that TTRL’s
efficacy hinges on strong model–task alignment, rather than on contamination.

5 RQ2 – IS ONE-SHOT ENOUGH FOR RL TO WORK?
Wang et al. (2025) demonstrated that training on a single carefully selected question can yield
performance comparable to full dataset training, challenging conventional assumptions about data
volume requirements in RL. Wang et al. (2025) designs a selection algorithm based on the variance
of training rewards, and we denote samples selected by this algorithm as mselected for mathematical
tasks and lselected for logical tasks. In addition to that, we also randomly selected one or two samples
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Model MATH500 SynLogic OP Model MATH500 SynLogic OP
Qwen2.5-7B 40.8 1.5 27.2 Llama-3.1-8B-Instruct 32.5 0.8 60.4
+TTRL 62.1+21.3 1.8+0.3 55.6+28.4 +TTRL 41.2+8.7 0.80.0 83.6+23.2

Table 3: Test-Time Reinforcement Learning (TTRL) performance changes. TTRL produces signifi-
cant gains only when model-task alignment is strong (red and green cells).

from the dataset to form (mrandom, lrandom) and (m′
random, l′random) for comparison. The specific

examples we used are detailed in Appendix K. The remaining experimental settings are consistent
with those described in Section 3, and we train models for 300 steps.

Dataset

Math Tasks Logic Tasks

AIME24 MATH500 AMC SynLogic BBH BBEH
KOR Benchmark

OP CF Puzzle Logic Cipher

Qwen2.5-7B

∅ 3.3 40.8 31.0 1.5 45.2 1.2 27.2 17.2 0.8 8.0 4.8
full set 14.2+10.9 71.0+30.2 62.4+31.4 42.6+41.1 62.7+17.5 6.8+5.6 82.4+55.2 79.6+62.4 16.8+10.0 46.4+38.4 20.4+15.6

random-1 10.7+7.4 58.7+17.9 53.1+22.1 0.8−0.7 40.2−5.0 0.0−1.2 60.4+33.2 36.8+19.6 0.80.0 6.4−1.6 4.4−0.4

random-2 12.5+9.2 63.0+22.2 55.7+22.7 2.4+0.9 43.1−2.1 1.20.0 67.2+40.0 56.8+39.6 2.0+1.2 3.2−4.8 4.80.0
selected-1 12.3+9.0 65.2+24.4 55.2+24.2 0.8−0.7 39.9−5.3 0.0−1.2 69.2+42.0 38.4+21.2 0.80.0 8.00.0 6.4+1.6

Llama3.1-8B-Instruct

∅ 3.3 32.5 20.2 0.8 38.6 4.1 60.4 86.4 2.0 28.8 8.4
full set 6.7+3.4 38.6+6.1 25.1+4.9 21.0+20.2 49.1+10.5 4.3+0.2 76.0+15.6 88.8+2.4 15.6+13.6 34.4+7.6 11.6+3.2

random-1 3.8+0.5 30.5−2.0 21.1+0.9 0.80.0 35.1−3.5 3.8−0.3 73.6+13.2 85.6−0.8 1.2−0.8 28.0−0.8 8.8+0.4

random-2 2.7−0.6 33.1+0.6 21.1+0.9 0.80.0 36.7−1.9 4.10.0 70.0+9.6 86.40.0 2.8+0.8 27.2−1.6 8.40.0
selected-1 3.7+0.4 30.3−2.2 22.3+2.1 0.80.0 34.4−4.2 3.8−0.3 69.2+8.8 88.8+2.4 2.00.0 19.2−9.6 6.8−1.6

Table 4: One-shot RL Results. OP: Operation; CF: Counterfactual. We only observe the effectiveness
of one-shot reinforcement learning in settings with strong model-task alignment (red and green).
5.1 RESULTS

We present results in Table 4. Based on the experimental results, we identify two critical findings
regarding the effectiveness of one-shot reinforcement learning:

One-shot RL Success Depends on Model-Task Alignment. The effectiveness of one-shot re-
inforcement learning is highly contingent on the alignment between model capabilities and task
domain requirements. In strong alignment settings (Red and Green categories), both models demon-
strate remarkable ability to generalize from single examples: Qwen2.5-7B achieves performance
comparable to full dataset training on mathematical tasks (MATH500: 65.2 vs. full training 71.0),
while both Qwen2.5-7B and Llama3.1-8B-Instruct show substantial improvements on Operation
and Counterfactual tasks (e.g., Llama on Operation: 69.2 vs. baseline 60.4). However, this success
does not extend to weak alignment settings, where both models show minimal improvements across
challenging logical reasoning benchmarks. This suggests that one-shot RL serves as an effective
fine-tuning mechanism only when models already possess strong foundational capabilities.

Sample Selection Strategy Shows Limited Impact. Contrary to expectations, the sophisticated
sample selection algorithm proposed by Wang et al. (2025). does not consistently outperform
random sample selection. For Qwen2.5-7B on mathematical tasks, both selected and random samples
achieve similar performance levels (MATH500: selected 65.2 vs. random 58.7 and 63.0), while for
Llama3.1-8B-Instruct, the differences are negligible across all benchmarks. This finding challenges
the assumption that reward variance-based selection provides substantial advantages over simpler
random sampling approaches.
5.2 DISCUSSION

Wang et al. (2025) showed that training on a single sample for mathematical tasks can quickly improve
the accuracy of that sample and also lead to improvements on the test set. We attempt to verify this
conclusion on logical tasks. Considering that the initial rollout accuracy of the model on lselected is 0,
we additionally sample two examples whose initial rollout accuracies on Qwen2.5-7B are 5/16 and
1/16 (on Llama-3.1-8B-Instruct are 3/16 and 1/16), denoted as lsimple and lmid. During training,
we track three metrics: the rollout accuracy of these examples acc1−shot, the accuracy of the subtask
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Figure 3: The changes in two models’ accuracy during the training. If the initial rollout accuracy
is non-zero, both models rapidly fit the employed samples (lsimple, lmid) and exhibit generalization
within the same subtask; however, we observe no generalization to puzzles of other types.

to which this example belongs (in-distribution) accid, and the accuracy of other subtasks in SynLogic
(out-of-distribution) accood. The results are shown in Figure 3.

One-shot RL possesses the ability to generalize within the distribution. When the problem is
relatively simple (with an initial rollout accuracy that is not zero), the model’s rollout accuracy on
that sample quickly increases. Although the initial rollout accuracy of lmid on Qwen is only one-fifth
that of lsimple (on Llama is one-third), it still attains a high rollout accuracy within a few dozen steps.
Since GRPO and DAPO compute advantages via intra-group normalization, the model is unable to
derive any informative feedback from samples whose initial rollout accuracy is zero. Moreover, we
observe that the test accuracy for the same subtask also continues to improve, demonstrating effective
within-distribution generalization.

One-shot RL struggles to generalize to other types of logic puzzles. We find that while models can
improve on tasks similar to their training example, they fail to transfer learning to different puzzle
types. This suggests that one-shot learning primarily exploits existing model capabilities rather than
developing new reasoning skills.

6 RQ3 — DOES RL WORK WITH ONLY NEGATIVE SAMPLES?
Recent work (Zhu et al., 2025) has demonstrated that training exclusively on negative samples can be
surprisingly effective for model reasoning. However, these findings are primarily observed in scenar-
ios with strong model-task alignment. We investigate whether negative-only training generalizes to
weak model-task alignment scenarios, where models lack strong foundational capabilities.

Implementation Details. In our implementation, negative Sample Reinforcement (NSR) masks
out all trajectories with reward 1 (correct answers) when computing the policy gradient, leaving
only negative-rewarded samples to drive updates. Conversely, Positive Sample Reinforcement (PSR)
ignores trajectories with reward 0 and optimizes only on positively rewarded samples. All other
hyperparameters remain identical to the DAPO baseline described in Section 3.

6.1 RESULTS

Table 5 summarizes the performance of NSR and PSR relative to the full-signal DAPO baseline
across our three experimental categories. It reveals distinct patterns based on model-task alignment:

Strong Model-Task Alignment Enables Effective Negative-Sample Learning. In settings with
strong model-task alignment (Red and Green categories), both NSR and PSR show comparable
effectiveness, recovering most of the performance gains achieved by full-signal DAPO. For Qwen2.5-

8
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Math Tasks Logic Tasks

AIME24 MATH500 AMC SynLogic BBH BBEH
KOR Benchmark

OP CF Puzzle Logic Cipher

Qwen2.5-7B 3.3 40.8 31.0 1.5 45.2 1.2 27.2 17.2 0.8 8.0 4.8

DAPO 14.2+10.9 71.0+30.2 62.4+31.4 42.6+41.1 62.7+17.5 6.8+5.6 82.4+55.2 79.6+62.4 16.8+10.0 46.4+38.4 20.4+15.6

NSR 13.9+10.6 68.7+27.9 63.5+32.5 1.50.0 41.2−4.0 1.6+0.4 60.4+33.2 36.8+19.6 2.0+1.2 6.8−1.2 4.80.0
PSR 14.0+10.7 70.3+29.5 63.1+32.1 24.8+23.3 57.1+11.9 4.3+3.1 73.6+46.4 38.4+21.2 9.2+8.4 31.2+23.2 11.2+6.4

Llama3.1-8B 3.3 32.5 20.2 0.8 38.6 4.1 60.4 86.4 2.0 28.8 8.4

DAPO 6.7+3.4 38.6+6.1 25.1+4.9 21.0+20.2 49.1+10.5 4.3+0.2 76.0+15.6 88.8+2.4 15.6+13.6 34.4+7.6 11.6+3.2

NSR 7.9+4.6 36.9+4.4 24.7+4.5 0.0−0.8 34.2−4.4 4.3+0.2 67.2+6.8 86.40.0 2.00.0 28.0−0.8 5.2−3.2

PSR 7.9+4.6 35.7+4.2 23.6+3.4 13.0+11.5 43.3+4.7 4.10.0 69.2+8.8 89.6+3.2 12.0+11.2 34.4+7.6 10.8+2.4

Table 5: Results of NSR and PSR under different settings. When Model-Task alignment is strong,
both NSR and PSR yield pronounced performance gains for all models (Red and Green). Conversely,
under weak alignment, NSR-trained models exhibit no noticeable improvement (Gray).

7B on mathematical tasks, both approaches achieve ~95% of the DAPO improvement (MATH500:
NSR 68.7 and PSR 70.3 vs. DAPO 71.0). This demonstrates that when models already possess strong
domain capabilities, either positive-only or negative-only signals can effectively drive learning.

Weak Model-Task Alignment Reveals Superior Performance of Positive-Only Signals. In weak
alignment settings (Gray category), PSR consistently outperforms NSR across logical reasoning
tasks. For instance, on SynLogic, PSR enables meaningful improvements (Qwen2.5-7B: 1.5 vs.
24.8, Llama3.1-8B: 0.8 vs. 13.0), while NSR shows minimal gains. Overall, while PSR and NSR
demonstrate comparable effectiveness in strong alignment settings, PSR emerges as the more robust
approach in challenging domains where models lack expertise.

6.2 DISCUSSION
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Figure 4: Entropy Dynamics of Qwen2.5-7B during Training. NSR can
maintain the exploration space of RL, but a larger exploration space is
not always favorable, as in logical tasks.

The relationship between
positive and negative
samples in reinforcement
learning is fundamen-
tally connected to the
exploration-exploitation
trade-off, with entropy
serving as a key mediator.
To elucidate these dynamics
in our experimental context,
we examine how different
sample types affect the
exploration-exploitation
balance through their
impact on training entropy.

Negative Signals Help
Maintain Exploration. Figure 4 plots token-level entropy throughout training. Consistent with
Zhu et al. (2025), NSR slows entropy collapse, especially on mathematical tasks—suggesting that
penalising only erroneous trajectories can preserve output diversity. However, the flatter entropy
curve on logical tasks corresponds to poorer final accuracy.

7 CONCLUSION

This work reveals that Model-Task Alignment strength, measured by pass@k accuracy, serves as
the fundamental determinant of when counterintuitive RL phenomena emerge in language model
reasoning. We demonstrate that remarkable behaviors—including robustness to spurious rewards, one-
shot training effectiveness, and negative-only signal sufficiency—manifest primarily when models
already possess strong foundational capabilities in the target domain, functioning more as capability
elicitation mechanisms rather than genuine learning drivers for unfamiliar tasks.
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REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our results, we conduct all experiments using publicly available mod-
els and datasets. We provide complete implementation code, detailed hyperparameter configurations,
and step-by-step reproduction instructions in the supplementary material.
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A LLM USAGE STATEMENT

As non-native English speakers, we used LLMs solely to assist with grammatical correction and
linguistic polishing of the manuscript. The LLM was not involved in any aspect of conceptual
development, experimental design, data analysis, or interpretation of results. All scientific content,
including hypotheses, methodology, figures, and conclusions, was generated independently by the
authors. The use of the LLM was strictly limited to improving clarity and fluency of expression in
English, ensuring that language barriers do not impede the accurate communication of our research
contributions.

B IMPLEMENTATION DETAILS

Following the setting described in Section 3, we train with different rewards for 300 steps on
mathematical and logical reasoning tasks, respectively. The format reward is different from that of
Shao et al. (2025), we use the same format as SynLogic:

<think>thinking process</think><answer>final answer</answer>

We set γ = 0.5 for the random reward. For incorrect rewards, we reward rollouts that produce
incorrect answers during training for logic and code tasks. Apart from these changes, the definition
of the reward functions remains consistent with spurious reward (Shao et al., 2025).

C MORE PASS@K RESULTS
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Figure 5: Pass@k for math tasks. Qwen demonstrates strong capabilities across all three mathematical
evaluation datasets.

D CONTAMINATION EVALUATION

D.1 IMPLEMENTATION DETAILS

Our contamination analysis follows a systematic prompt truncation methodology to evaluate potential
data leakage across model-task combinations. Original prompts are truncated at varying ratios (0.4,
0.6, and 0.8) while preserving word boundaries, and models are asked to complete the remaining
content using greedy decoding for deterministic outputs. We measure contamination using ROUGE-L
scores between model completions and the actual remaining prompt content, where a perfect score of
1.0 indicates complete reconstruction and potential contamination. The evaluation pipeline employs
distributed processing to handle complex mathematical expressions and prevent evaluation timeouts,
with results aggregated across multiple rollouts to ensure statistical reliability.

D.2 MORE RESULTS

D.3 DISCUSSION ABOUT RQ1

How Different Reward Signals Affect the Behavior of LLMs. Shao et al. (2025) observed that
in mathematical tasks, employing ground truth rewards decreases the frequency of code usage in

13
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Figure 6: Pass@k for KOR-Bench. Both models demonstrate strong inherent reasoning capabilities
in Operation and Counterfactual subtasks, but exhibit limited inherent logical reasoning abilities in
Cipher, Puzzle and Logic.

Task Type Benchmark Model
Portion=0.4 Portion=0.6 Portion=0.8

ROUGE EM ROUGE EM ROUGE EM

M
at

h
Ta

sk
s AMC 23

Qwen2.5-7B 63.78 23.91 64.42 33.73 73.23 49.39
Llama-3.1-8B 27.18 0.00 30.64 0.00 44.54 4.81

MATH500
Qwen2.5-7B 50.36 8.20 60.98 21.20 66.42 40.20

Llama-3.1-8B 23.09 0.60 40.56 3.80 48.33 17.8

AIME24
Qwen2.5-7B 44.64 10.00 48.69 13.33 60.08 30.00

Llama-3.1-8B 26.08 0.00 30.80 0.00 50.50 13.33

L
og

ic
Ta

sk
s

Puzzle
Qwen2.5-7B 19.56 0.00 19.62 0.00 19.24 0.00

Llama-3.1-8B 18.27 0.00 17.31 0.00 15.85 0.00

Operation
Qwen2.5-7B 21.37 0.00 24.25 0.00 20.18 0.00

Llama-3.1-8B 21.83 0.00 18.34 0.00 16.75 0.00

Counterfactual
Qwen2.5-7B 18.88 0.00 19.96 0.00 18.66 0.00

Llama-3.1-8B 19.02 0.00 19.39 0.00 18.94 0.00

Logic
Qwen2.5-7B 22.08 0.00 27.28 0.00 28.23 0.00

Llama-3.1-8B 21.38 0.00 28.37 0.00 28.42 0.00

Cipher
Qwen2.5-7B 34.61 0.00 41.03 0.00 44.77 0.00

Llama-3.1-8B 29.59 0.00 36.95 0.00 42.93 0.00

Table 6: Extended Contamination Analysis across model-task combinations. Red indicates potential
contamination with strong baseline performance; Gray indicates no contamination with weak baseline
performance; Green indicates no contamination with strong baseline performance.

model responses. Their study also revealed that, in contrast to Qwen2.5-Math (Yang et al., 2024),
the accuracy improvement of the Qwen2.5 Base model was primarily attributed to a shift from
code-based reasoning to language-based reasoning. As shown in Table 7, we identify analogous
trends in mathematical tasks. Specifically, for logic puzzles, the application of ground truth rewards
similarly reduces the incidence of code in responses. However, other types of rewards, particularly
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format and random rewards, do not demonstrate a significant impact on diminishing code usage
frequency. We speculate that, throughout the RL training process, ground truth rewards can steer
the model away from its old reasoning pattern ( i.e., producing reasoning responses with code ) and
toward a more natural, language-based reasoning pattern.

Reward Type
MATH500 SynLogic

Before RL After RL Before RL After RL
Correct

89.1

12.4

57.3

21.7
Random 94.2 48.2
Format 96.7 50.7
Incorrect 28.1 28.3

Table 7: Code Usage Count of Qwen2.5-7B before and after RL training with different rewards.

As shown in Table 2, spurious rewards are effective only on the Operation and Counterfactual for the
Llama model; consequently, we also report the frequency of code-based reasoning before and after
training on these two tasks. As shown in Table 8, we observe that, both before and after RL training,
Llama almost never invokes code during the reasoning process. We attribute the sporadic use of code
(0.8) to the fact that some SynLogic tasks explicitly require outputs to be presented as code blocks.
This indicates that Llama and Qwen exhibit distinct reasoning patterns even though they both benefit
from noisy reward signals in these settings.

Reward Type
Operation Counterfactual

Before RL After RL Before RL After RL
Correct

0.0

0.8

0.0

0.0
Random 0.0 0.0
Format 0.0 0.0
Incorrect 0.0 0.0

Table 8: Code Usage Count of Llama-3.1-8B-Instruct before and after RL training on two tasks.

E MORE TTRL RESULTS

Step 0 Step 5 Step 10 Step 15 Step 20 Step 25 Step 30

Qwen+Math500 54.2 60.6 64.3 68.2 67.1 69.3 70.5+16.3
Qwen+SynLogic 2.2 3.0 3.7 4.4 4.4 4.4 5.2+3.0
Qwen+OP 46.0 53.6 55.6 57.2 58.8 60.0 60.0+16.4

Llama+Math500 46.3 48.6 51.3 53.2 53.9 55.0 54.7+8.4
Llama+SynLogic 1.5 1.5 2.2 1.5 2.2 2.2 2.2+0.7
Llama+OP 73.6 78.0 79.6 84.0 83.6 86.8 88.4+14.8

Table 9: The variation of Maj@16 as training progresses. In tasks where TTRL brings significant
improvements (red and green), Maj@16 continues to improve with training.

F MORE DISCUSSION ABOUT DIFFICULT EXAMPLE IN ONE-SHOT RL

During training with lselected, apart from the rollout accuracy (reward) remaining consistently at 0,
metrics such as entropy and response length also exhibit almost no changes. As shown in Figure 7,
after 300 training steps, the model still maintains a large reinforcement learning exploration space.

G RESULTS ON CODE GENERATION TASKS

We additionally include code-generation tasks to further validate the generality of our findings. Specif-
ically, we evaluate on HumanEval (Chen et al., 2021) and LiveCodeBench (2024.8–2025.1) (Jain
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Figure 7: Training Dynamics of Qwen2.5-7B when trained with lselected. Entropy and response
length exhibit almost no changes.

et al., 2024). The live nature of LiveCodeBench ensures that data contamination is almost impossible.
However, both models achieve relatively high Pass@1 scores on HumanEval. To assess whether
these high scores may result from contamination, we conduct an analysis analogous to that in Table 1.
The results are shown in Table 10. Similar to the math tasks, we observe a higher risk of data
contamination in Qwen. Accordingly, we categorize Qwen/HumanEval as red and Llama/HumanEval
as green. And we show the Pass@K curves for LiveCodeBench in Figure 8. Neither model exhibits
sufficiently strong capability on this benchmark; as K increases, their performance does not rise
as sharply as it does on tasks such as Operation (shown in Figure 6). Consequently, we categorize
Qwen/LiveCode and Llama/LiveCode as gray.

Model Portion ROUGE EM Model Portion ROUGE EM

Qwen2.5-7B
0.4 56.32 9.7

LLama3.1-8B
0.4 23.42 0.0

0.6 60.89 14.3 0.6 32.13 1.2
0.8 66.81 36.7 0.8 47.32 8.4

Table 10: Contamination Analysis on HumanEval.
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Figure 8: Pass@K curves for LiveCodeBench.

For training, we use code-r1-12k (Liu, 2025) as the training data. Importantly, to keep the setup
consistent with the math and logic tasks, we assign a correctness reward of 1 only when the generated
code passes all test cases; otherwise, the model receives no correctness reward at all. Because code
outputs are difficult to aggregate via majority voting, we do not evaluate the Vote setting in this task.
To reduce variance, we report avg@8, following the same protocol as SynLogic and AIME24.

The results of the two code evaluation tasks are shown in Table 11. From the table, we can see
that under the standard RL setting, the model shows clear improvements on both HumanEval and
LiveCodeBench. Under non-standard settings, only the red-category case—Qwen/HumanEval and
the green-category case Llama/HumanEval—exhibit small gains, while no consistent improvement is
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HumanEval LiveCodeBench HumanEval LiveCodeBench

Qwen2.5-7B 52.4 6.2 Llama3.1-8B 68.4 8.3

Correct 65.2+12.8 15.4+9.2 Correct 75.1+6.7 12.0+3.7

Format 58.5+6.1 5.2−1.0 Format 69.2+0.8 8.9+0.6

Random 56.1+3.7 5.0−1.2 Random 67.4−1.0 7.3−1.0

Incorrect 53.0+0.6 4.2−2.0 Incorrect 68.8+0.4 6.0−2.3

EM 58.1+5.7 6.2+0.0 EM 70.4+2.0 8.0−0.3

1-shot 51.5−0.9 6.0−0.2 1-shot 69.0+0.6 6.5−1.8

NSR 55.1+2.7 7.4+1.2 NSR 70.4+2.0 6.8−1.5

Table 11: Code-generation results on HumanEval and LiveCodeBench. The 1-shot samples are
selected based on Wang et al. 2025’s method.

observed in the weak-alignment setting. This is consistent with our observations on math and logic
tasks.

H RESULTS OF A MORE WEAKLY ALIGNED MODEL: MISTRAL-7B-V0.1

We additionally include Mistral-7B-v0.1 (Jiang et al., 2023) in the weak-alignment setting. Its
performance on math and logic tasks is worse than that of Llama-3.1-8B-Instruct, which allows us
to provide more weakly aligned settings. Results are shown in Table 12. We can see that Mistral
shows stable improvements on math and logic tasks only under the standard RL setting. This further
reinforces the validity of our conclusions under the weak-alignment setting.

Math Tasks Logic Tasks

AIME24 MATH500 AMC SynLogic BBH BBEH
KOR Benchmark

OP CF Puzzle Logic Cipher

Mistral-7B-v0.1 (Weakly Aligned)
Base 0.0 6.8 3.4 0.0 27.1 0.4 11.2 22.8 2.4 28.4 2.4

RLVR (External Reward)
GroundTruth 3.3+3.3 17.6+10.8 12.5+9.1 14.6+14.6 38.9+11.8 3.2+2.8 26.8+15.6 43.4+20.6 9.8+7.4 46.2+17.8 8.8+6.4

Format 0.0+0.0 6.4−0.4 2.0−1.4 0.0+0.0 24.3−2.8 0.0−0.4 14.6+3.4 26.2+3.4 2.0−0.4 26.8−1.6 3.2+0.8

Random 0.0+0.0 6.4−0.4 3.2−0.2 0.4+0.4 21.2−5.9 0.4+0.0 9.2−2.0 19.4−3.4 2.0−0.4 22.4−6.0 2.0−0.4

Incorrect 0.0+0.0 5.6−1.2 1.0−2.4 0.0+0.0 13.4−13.7 0.0−0.4 9.0−2.2 19.2−3.6 1.8−0.6 21.0−7.4 1.8−0.6

Self-Rewarded Reinforcement Learning
Vote 0.4+0.4 5.8−1.0 3.2−0.2 0.0+0.0 14.2−12.9 0.4+0.0 12.8+1.6 28.6+5.8 1.2−1.2 18.8−9.6 3.6+1.2

EM 0.0+0.0 7.8+1.0 2.4−1.0 0.8+0.8 23.4−3.7 0.4+0.0 10.4−0.8 19.2−3.6 1.4−1.0 24.4−4.0 2.0−0.4

Few-shot Reinforcement Learning
1-shot (selected) 0.4+0.4 8.4+1.6 2.8−0.6 0.0+0.0 22.4−4.7 0.0−0.4 8.8−2.4 19.8−3.0 2.4+0.0 29.6+1.2 2.0−0.4

Negative Sampling Reinforcement Learning
NSR 0.8+0.8 6.4−0.4 3.0−0.4 0.0+0.0 24.2−2.9 0.4+0.0 12.4+1.2 23.2+0.4 2.8+0.4 24.0−4.4 2.0−0.4

Table 12: Results of Mistral-7B-v0.1.

H.1 DISCUSSION

In Tables 2 and 5, although Llama–Math is a weakly aligned model–task pair, both self-rewarded
methods and NSR consistently lead to performance improvements. Here we provide an explanation
for this phenomenon: Although we categorize Llama–Math as a weakly aligned model–task pair, its
alignment is still noticeably stronger than that of Llama–Logic. We see two reasons for this:

1. As shown in Table 1, although we do not observe the severe contamination found in Qwen,
the Llama–Math combination exhibits a higher risk of data contamination compared with
Llama–Logic (EM = 0)

2. As shown in Figure 5, while the model’s performance does not increase rapidly as K grows,
its curve is still significantly sharper than that of tasks such as Puzzle in Figure 6
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That being said, model–task alignment strength may be more continuous rather than falling into
just three discrete categories. When the alignment is slightly stronger, as in the case of LLama
on math tasks, some RL methods may begin to take effect. The results on Mistral further support
our conclusion: due to its weaker alignment, neither NSR nor the self-reward method achieves
consistent performance gains on the math tasks. Identifying such an “emergence boundary” in terms
of model–task alignment strength is an interesting direction for future work.

I KL DIVERGENCE BETWEEN THE INITIAL AND TRAINED POLICIES

During training, consistent with DAPO (Yu et al., 2025), we removed the KL regularization term
from the loss function. This enables us to fairly compare the impact of different training methods on
the output distribution under varying levels of alignment.

We explore it in three representative settings: Qwen on MATH500 (red), Qwen on Operation (green),
and Qwen on SynLogic (gray). Specifically, we use trained policies to generate trajectories via
greedy decoding. Then, we feed these trajectories into the untrained reference model to obtain the
log-probabilities for each token. We follow the approach used in DeepSeek-R1 (Guo et al., 2025) for
computing KL divergence:

KL(πθ||πref ) =
πref (oi|q, o<i)

πθ(oi|q, o<i)
− log

πref (oi|q, o<i)

πθ(oi|q, o<i)
− 1 (1)

and compute the average KL over all tokens. We present the results in the Figure 9. From the results,
we can observe that:

• In the standard RL setting, weaker model–task alignment leads to a larger divergence
between the pre- and post-training output distributions (the gray is substantially higher than
the green and red ones).

• In the weak-alignment setting (gray), only standard RL and PSR can drive the model away
from the reference model and achieve substantial performance improvements (+41.1 and
+23.3 on SynLogic).

• In the strong-alignment setting (green and red), neither the reward choices nor the sampling
methods substantially amplify the divergence between the pre- and post-training output
distributions.
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Figure 9: KL divergence between the initial and trained policies under different settings.

Based on these results, we hypothesize that in the strong-alignment setting, large deviations from the
initial policy are unnecessary; small updates are sufficient to improve performance. This also helps
explain why spurious-reward methods can still be effective, as the initial policy is already close to
the correct solution. In contrast, in the weak-alignment setting, merely oscillating around the initial
policy does not yield meaningful gains—substantial improvement requires moving further away
under the guidance of correct rewards to form a stable and effective reasoning pattern.
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I.1 POTENTIAL CHANGES INTRODUCED BY ADDING KL REGULARIZATION

A natural question is whether introducing KL regularization during training would affect our con-
clusions. Considering that the difference between the pre- and post-training output distributions is
small in the strong-alignment setting, we believe that introducing KL regularization does not affect
the overall trend of performance changes, although it may influence convergence speed (Yu et al.,
2025). To assess the impact under the weak-alignment setting, particularly for standard RL and PSR,
we set the KL penalty coefficient to 0.001 and retrain Qwen on the logic tasks. The experimental
results are shown in Table 13. Introducing KL regularization leads to a slight drop in performance.
However, the overall trend remains the same as in the setting without regularization, indicating that
the presence or absence of KL regularization does not affect our conclusions.

SynLogic BBH BBEH

Pretrain 1.5 45.2 1.2
Standard 42.6+41.1 62.7+17.5 6.8+5.6

Standard + KL 33.6+32.1 52.1+6.9 6.8+5.6

PSR 24.8+23.3 57.1+11.9 4.3+3.1

PSR + KL 17.3+15.8 49.1+3.9 3.8+2.6

Table 13: Performance of different training methods with and without KL regularization under the
weak-alignment setting.

I.2 DISCUSSION

From Figure 9, we believe that the divergence between the pre- and post-training output distributions
in a successful standard RL run (without collapse) can serve as a complementary indicator of
model–task alignment strength. This is also consistent with our intuition: in the strong-alignment
setting, the model does not need to extensively explore regions far from the initial policy to achieve
performance gains. In contrast, in the weak-alignment setting, a successful training process must
sufficiently explore regions farther away from the initial policy in order to discover an effective
reasoning pattern. Moreover, the consistency between KL divergence and Pass@K further reinforces
that Pass@K can be viewed as a reliable proxy for model–task alignment.

J CORRELATION BETWEEN PASS@K AND RL GAINS

In Figure 10, we present the relationship between RL gains and Pass@K. Each data point in the figure
is derived from the results reported in Tables 2, 3, 4, and 5. And each point represents a task, with
points in the first column averaged over different reward signals. We can find that across different
K values (32, 128, 512) and across the various RL phenomena we study, we consistently observe
that performance improvements grow as Pass@K increases. This further strengthens the connection
between model–task alignment strength and performance gains.

K FEW-SHOT RL EXAMPLE DETAILS
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Figure 10: Pass@K versus performance gains across tasks and RL settings.

Details of example mselected

How many positive divisors do 9240 and 13860 have in common?

Details of example mrandom

The angles of quadrilateral PQRS satisfy ∠P = 3∠Q = 4∠R =
6∠S. What is the degree measure of ∠P?
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Details of example m′
random

Given a finite sequence S = (a1, a2, . . . , an) of n real numbers,

let A(S) be the sequence
(

a1+a2

2 , a2+a3

2 , . . . , an−1+an

2

)
of n − 1

real numbers. Define A1(S) = A(S) and, for each integer m,
2 ≤ m ≤ n − 1, define Am(S) = A(Am−1(S)). Suppose x > 0, and let
S = (1, x, x2, . . . , x100). If A100(S) =

(
1

250

)
, then what is x? AND If

x, 2x + 2, 3x + 3, . . . are in geometric progression, the fourth term
is:

Details of example lselected

Here’s a mathematical expression: ?-?+(6%5)*2-?+?/?/?/4/2
= 2. The digits on the left side of the equation have been
replaced with question marks. Each question mark corresponds
to a digit between 0 and 9. You need to try replacing
the question marks with the correct digits to restore the
expression.Please put the complete expression with the filled
- in digits between [[ and ]] at the end of your response,
with no other content, like this: [[2 + 4 * 3 - 4 = 10]]

Details of example lrandom

Solve this cryptarithm: RRYUU + UYR + U = RYUUU (where
RRYUU is a 5-digit number, UYR is a 3-digit number, U is a
1-digit number, and RYUUU is a 5-digit number). Each letter
represents a unique digit. Find the digit substitution that
makes the equation true.
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Details of example l′random

In this Number Wall puzzle, add walls (marked as ’A’) to
divide the grid into islands. Each island must contain
exactly one number, and its size must equal that number.
Grid:
+---+---+---+
| X | 3 | X |
+---+---+---+
| X | X | X |
+---+---+---+
| X | X | X |
+---+---+---+
Rules:
- Each island must contain exactly one number.
- The total number of cells in an island (including the
number cell) must equal the value of that number.
- All cells within an island must be connected horizontally
or vertically.
- Walls (marked as ’A’) cannot form 2×2 or larger continuous
rectangles.
- All islands must be separated by walls.
AND
In the cryptarithm: MMII + MIXIMM = MMXIIX, each letter
stands for a different digit (MMII is 4 digits, MIXIMM is 6
digits, and MMXIIX is 6 digits). Determine what each letter
represents to make the equation true.

Details of example lsimple

In this word sorting challenge, you need to rearrange
words in increasing based on a modified alphabet
where l,z and a are the first letters. Words to sort:
yachted,coelomic,harateen. Write your final answer inside:
\boxed,like this: \boxedword1,word2,word3.
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1188
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1215
1216
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Details of example lmid

You are an expert proficient in Dyck language, where you must
complete all types of unclosed brackets (e.g., [], , <>) in
language sequences. You need to analyze the steps of bracket
pairing according to Dyck language rules. Given an initial
Dyck language sequence and steps for deriving the closed
bracket sequence (presented in a thinking process format),
your task is to identify locations with incorrect reasoning
in the Dyck language, and there may be multiple errors. This
could be forgetting to close a bracket, using the wrong
closing bracket, or incorrectly copying a subsequence of
closing brackets in the next step. Task: Check the sequence
to ensure brackets are properly closed. Input: [[(){}]]{}
Thought 1: We should process the input one by one and track
the stack configuration.
Thought 2: Stack: Empty
Thought 3: [ ; Stack: Empty
Thought 4: [ ; Stack: [[
Thought 5: ( ; Stack: [[(
Thought 6: ) ; Stack: [[
Thought 7: { ; Stack: [[{
Thought 8: } ; Stack: [[
Thought 9: ] ; Stack: [
Thought 10: ] ; Stack: Empty
Thought 11: { ; Stack: {
Thought 12: } ; Stack: Empty
Thought 13: Now, we have reached the end. The final stack
is empty.
Question: Are there any reasoning errors in this sequence?
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