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Abstract

Perceptual similarity metrics have progressively become more correlated with human judg-
ments on perceptual similarity; however, despite recent advances, the addition of an im-
perceptible distortion can still compromise these metrics. In our study, we systematically
examine the robustness of these metrics to imperceptible adversarial perturbations. Fol-
lowing the two-alternative forced-choice experimental design with two distorted images and
one reference image, we perturb the distorted image closer to the reference via an adversar-
ial attack until the metric flips its judgment. We first show that all metrics in our study
are susceptible to perturbations generated via common adversarial attacks such as FGSM,
PGD, and the One-pixel attack. Next, we attack the widely adopted LPIPS metric us-
ing spatial-transformation-based adversarial perturbations (stAdv) in a white-box setting
to craft adversarial examples that can effectively transfer to other similarity metrics in a
black-box setting. We also combine the spatial attack stAdv with PGD (ℓ∞-bounded) attack
to increase transferability and use these adversarial examples to benchmark the robustness
of both traditional and recently developed metrics. Our benchmark provides a good start-
ing point for discussion and further research on the robustness of metrics to imperceptible
adversarial perturbations.

1 Introduction

Comparison of images using a similarity measure is crucial for defining the quality of an image for many
applications in image and video processing. Recently, perceptual similarity metrics have become vital for
optimizing and evaluating deep neural networks used in low-level computer vision tasks (Dosovitskiy & Brox,
2016; Zhu et al., 2016; Johnson et al., 2016; Ledig et al., 2016; Sajjadi et al., 2017; Kettunen et al., 2019a;
Zhang et al., 2020; Son et al., 2020; Niklaus & Liu, 2020; Karras et al., 2020). Learned perceptual image patch
similarity (LPIPS) metric by Zhang et al. (2018b) is one such widely adopted perceptual similarity metric.
Apart from these image enhancement and generation tasks, similarity metrics are also used in optimizing,
constraining, and evaluating adversarial attacks (Szegedy et al., 2014; Goodfellow et al., 2015; Carlini &
Wagner, 2017; Kurakin et al., 2017; Hosseini & Poovendran, 2018; Dong et al., 2018; Shamsabadi et al.,
2020; Laidlaw & Feizi, 2019). More recently, Laidlaw et al. (2020) employed LPIPS to optimize adversarial
examples, introducing adversarial attacks based on a neural perceptual threat model, and subsequently
a defense method that could generalize well against unforeseen adversarial attacks. However, it remains
unanswered whether LPIPS itself is robust towards imperceptible adversarial perturbations. The question
then arises, “How robust are perceptual similarity metrics against imperceptible adversarial perturbations?”

We begin by examining whether it is possible to find imperceptible adversarial perturbations that can over-
turn perceptual similarity judgments. It is well known that machine learning models are easy to fool with
adversarial perturbations imperceptible to the human eye (Szegedy et al., 2014). Interestingly, similar imper-
ceptible perturbations can bring about a sizeable change in the measured distance of a distorted image from
its reference. As shown in Figure 1, we examine this change in measured distances using a two-alternative
forced choice (2AFC) test example, where the participants were asked, “which of the two distorted images
(I0 and I1) is more similar to the reference image (Iref )”. Then, we apply an imperceptible perturbation to
the distorted image that has the lower perceptual distance (i.e., more similar to Iref ) to see if the similarity
judgment for the sample overturns. In such a scenario, human opinion remains the same, while perceptual
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Figure 1: I1 is more similar to Iref than I0 according to all perceptual similarity metrics and humans. We
attack I1 by adding imperceptible adversarial perturbations (δ) such that the metric (f) flips its earlier
assigned rank, i.e., in the above sample, I0 becomes more similar to Iref .

similarity metrics often overturn their judgment. Interestingly, recent work began to investigate the per-
ceptual robustness of image quality assessment methods via adversarial perturbations Zhang et al. (2022)
and Lu et al. (2022). However, these studies focus on no-reference image quality assessment methods. The
robustness of perceptual similarity metrics, often used as full-reference image quality assessment methods,
has not been studied.

There are two approaches to examining the robustness of perceptual similarity metrics: (1) addition of small
amounts of hand-crafted geometric distortions such as translation, rotation, dilation, JPEG compression,
and gaussian blur, and (2) analysis of more advanced adversarial perturbations. For the former, seminal
contributions have been made (Ma et al., 2018; Ding et al., 2020; Bhardwaj et al., 2020; Gu et al., 2020).
However, in contrast to previous work, we focus on performing the latter as it has not received considerable
attention. In our work, we demonstrate that threats to similarity metrics can be easily created using common
gradient-based iterative white-box attacks, such as fast gradient sign method (FGSM) (Goodfellow et al.,
2015) and projected gradient descent (PGD) (Madry et al., 2018). These attacks do not deform the structure
but rather manipulate pixel values in the image. However, in recent research, questions regarding the
robustness of perceptual similarity metrics towards geometric distortions are of central interest (as discussed
above). Hence, we also use the spatial adversarial attack stAdv (Xiao et al., 2018), which geometrically
deforms the image. It utilizes optical flow for crafting perturbations in the spatial domain. We use this
attack to generate adversarial samples for comparing the robustness of various metrics.

We also examine whether perceptual metrics can be attacked in black box settings. To this end, we first use
the One-pixel attack (Su et al., 2019) that uses differential evolution (Storn & Price, 1997) to optimize a
single-pixel perturbation on the adversarial image. While compared to white box attacks such as FGSM and
PGD, this One-pixel attack does not need the model parameters of a similarity metric, it needs to access
its output. Therefore, we furthermore explore transferable attacks (Liu et al., 2017; Xie et al., 2018; 2019)
which requires no information about the model. Specifically, we generate adversarial examples using the
parameters of a source model and use them to attack a target model. In our study, we use LPIPS(AlexNet)
as the source model and attack it via stAdv. We extend the successfully attacked examples onto a target
perceptual similarity metric. It is a black-box setting as it does not require access to the target perceptual
metric’s parameters. In our work, we combine stAdv (spatial attack) with PGD (ℓ∞-bounded attack) that
strengthens the severity of the adversarial examples.

The main contribution of this paper is the first systematical investigation on whether existing perceptual
similarity metrics are susceptible to state-of-the-art adversarial attacks. Our study includes a set of carefully
selected attacking methods and a wide variety of perceptual similarity metrics. Our study shows that all
these similarity metrics, including both traditional quality metrics and recently proposed deep learning-based
metrics, can be successfully attacked by both white-box and black-box attacks.

2 Related Work

Earlier metrics such as SSIM (Wang et al., 2004) and FSIMc (Zhang et al., 2011) were designed to ap-
proximate the human visual systems’ ability to perceive and distinguish images, specifically using statistical
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features of local regions in the images. Whereas, recent metrics (Zhang et al., 2018b; Prashnani et al.,
2018; Ma et al., 2018; Kettunen et al., 2019b; Ding et al., 2020; Bhardwaj et al., 2020; Ghildyal & Liu,
2022) are deep neural network based approaches that learn from human judgments on perceptual similarity.
LPIPS (Zhang et al., 2018b) is one such widely used metric. It leverages the activations of a feature extrac-
tion network at each convolutional layer to compute differences between two images which are then passed
on to linear layers to finally predict the perceptual similarity score.

In recent years, apart from making the perceptual similarity metrics correlate well with human opinion,
there has been growing interest in examining their robustness towards geometric distortions. Ma et al.
(2018) benchmarked the sensitivity of various metrics against misalignment, scaling artifacts, blurring, and
JPEG compression. They then trained a CNN with augmented images to create the geometric transformation
invariant metric (GTI-CNN). In a similar study, Ding et al. (2020) suggested computing global measures
instead of pixel-wise differences and then blurred the feature embeddings by replacing the max pooling layers
with l2-pooling layers. It made their metric, deep image structure and texture similarity (DISTS), robust
to local and global distortions. Bhardwaj et al. (2020) developed the perceptual information metric (PIM).
PIM has a pyramid architecture with convolutional layers that generate multi-scale representations, which
get processed by dense layers to predict mean vectors for each spatial location and scale. The final score
is estimated using symmetrized KL divergence using Monte Carlo sampling. PIM is well correlated with
human opinions and is robust against small image shifts, even though it is just trained on consecutive frames
of a video, without any human judgments on perceptual similarity. Czolbe et al. (2020) used Watson’s
perceptual model (Watson, 1993) and replaced discrete cosine transform with discrete fourier transform
(DFT) to develop a perceptual similarity loss function robust against small shifts. Kettunen et al. (2019b)
compute the average LPIPS score over an ensemble of randomly transformed images. Their self-ensembling
metric E-LPIPS is robust to the Expectations over Transformations attacks (Athalye et al., 2018; Carlini &
Wagner, 2017). Our attack approach is similar to an attack investigated by Kettunen et al. (2019b), where the
adversarial images look similar but have a large LPIPS distance (smaller distance means more similarity).
However, they only investigate the LPIPS metric. So far, the majority of prior research has focused on
geometric distortions, while no study has systematically investigated the robustness of various similarity
metrics to more advanced adversarial perturbations that are more perceptually indistinguishable. We seek
to address this critical open question, whether perceptual similarity metrics are robust against imperceptible
adversarial perturbations. In our paper, we show that the metrics often overturn their similarity judgment
after the addition of adversarial perturbations, unlike humans, to whom the perturbations are unnoticeable.

There exists a considerable body of literature on adversarial attacks (Szegedy et al., 2014; Goodfellow et al.,
2015; Liu et al., 2017; Papernot et al., 2016; Carlini & Wagner, 2017; Xie et al., 2018; Hosseini & Poovendran,
2018; Madry et al., 2018; Xiao et al., 2018; Brendel et al., 2018; Song et al., 2018; Zhang et al., 2018a;
Engstrom et al., 2019; Laidlaw & Feizi, 2019; Su et al., 2019; Wong et al., 2019; Bhattad et al., 2019; Xie
et al., 2019; Zeng et al., 2019; Dolatabadi et al., 2020; Tramèr et al., 2020; Laidlaw et al., 2020; Croce et al.,
2020; Wu & Zhu, 2020), but none of the previous investigations have ever considered attacking perceptual
similarity metrics. This paper builds upon this line of research and carefully selects a set of representative
attacking algorithms to investigate the adversarial robustness of similarity metrics. We briefly describe these
methods and how we employ them to attack similarity metrics in Section 3. In parallel, Lu et al. (2022)
developed an adversarial attack for neural image assessment (NIMA) (Talebi & Milanfar, 2018) to prevent
misuse of high-quality images on the internet. NIMA is NR-IQA with scores ∈ [1, 10], while we systematically
investigate several FR-IQA methods, with scores ∈ [0, ∞), against various attacks.

Recent work underlines the importance of perceptual distance as a bound for adversarial attacks (Laidlaw
et al., 2020; Wang et al., 2021; Zhang et al., 2022). Laidlaw et al. (2020) developed a neural perceptual threat
model (NPTM) that employs the perceptual similarity metric LPIPS(AlexNet) as a bound for generating
adversarial examples and provided evidence that lp-bounded and spatial attacks are near subsets of the
NPTM. Similarly, Zhang et al. (2022) developed a perceptual threat model to attack no-reference image
quality assessment (IQA) methods by constraining the perturbations via full-reference IQA, i.e., perceptual
similarity metrics such as SSIM, LPIPS, and DISTS. They posit that the metrics are “approximations to
human perception of just-noticeable differences” (Zhang et al., 2022), therefore, can keep perturbations
imperceptible. Moreover, Laidlaw et al. (2020) found LPIPS to correlate well with human opinion when

3



Under review as submission to TMLR

evaluating adversarial examples. However, it has not yet been established whether LPIPS and other perceptual
similarity metrics are adversarially robust. We investigate this in our work, and the findings in our study
indicate that all metrics, including LPIPS, are not robust to various kinds of adversarial perturbations.

3 Method

Dataset. Our study uses the Berkeley-Adobe perceptual patch similarity (BAPPS) dataset, originally used
to train a perceptual similarity metric (Zhang et al., 2018b). Each sample in this dataset contains a set of
3 images: 2 distorted (I0 and I1) and 1 reference (Iref ). For perceptual similarity assessment, the scores
were generated using a two-alternative forced choice test where the participants were asked, “which of two
distortions is more similar to a reference” (Zhang et al., 2018b). For the validation set, 5 responses per
sample were collected. The final human judgment is the average of the responses. The types of distortions in
this dataset are traditional, CNN-based, and distortions by real algorithms such as super resolution, frame
interpolation, deblurring, and colorization. Human opinions could be divided, i.e., all responses in a sample
may not have voted for the same distorted image. In our study, to ensure that the two distorted images in
the sample have enough disparity between them, we only select those samples where humans unanimously
voted for one of the distorted images. In total, there are 12,227 such samples.

Attack Models. As observed in Figure 1, the addition of adversarial perturbations can lead to a rank flip.
We make use of existing attack methods such as FGSM (Goodfellow et al., 2015), PGD (Madry et al., 2018),
One-pixel attack (Su et al., 2019), and spatial attack stAdv (Xiao et al., 2018) to generate such adversarial
samples. These attack methods were originally devised to fool image classification models, therefore, we
introduce minor modifications in their procedures to attack perceptual similarity metrics.

We select one of the distorted images, I0 or I1, that is more similar to Iref to attack. The distorted image
being attacked is Iprey, and the other image is Iother; accordingly, for the sample in Figure 1, I1 is Iprey

and I0 is Iother. Consider si as the similarity score between Ii and Iref
1. Before the attack, the original

rank is sother > sprey, but after the attack Iprey turns into Iadv, and when the rank flips, sadv > sother. In
image classification, a misclassification is used to measure the attack’s success, while for perceptual similarity
metrics, an attack is successful when the rank flips.

Fast Gradient Sign Method. FGSM is a popular white-box attack introduced by Goodfellow et al. (2015).
This attack method projects the input image I onto the boundary of an ϵ sized ℓ∞-ball, and therefore, restricts
the perturbations to the locality of I. We follow this method to generate imperceptible perturbations by con-
straining ϵ to be small for our experiments. This attack starts by first computing the gradient with respect to
the loss function of the image classifier being attacked. The signed value of this gradient multiplied by ϵ gen-
erates the perturbation, and thus, Iadv := I + ϵ · sign(∇IJ(θ, I, target)), where θ are the model parameters.

𝐿𝑃𝐼𝑃𝑆: 0.1439

𝐼!"#𝜖 ⋅ 𝑠𝑖𝑔𝑛(∇$!𝐽(𝜃, 𝐼%, 𝐼&, 𝐼'()))

=

𝜖 = 0.024

𝐼%

+

𝐿𝑃𝐼𝑃𝑆: 0.0445

Figure 2: FGSM attack on LPIPS(AlexNet). In
this white-box attack, we use the LPIPS network
parameters to compute the signed gradient. With
increase in ϵ, the severity of the attack increases.
In this example, the adversarial perturbations are
hardly visible. The RMSE between the prey image
I1 and the adversarial image Iadv is 3.53.

We adopt this method to attack perceptual similarity
metrics. We formulate a new loss function for an un-
targeted attack as:

J(θ, Iprey, Iother, Iref ) =
(

sother

sother + sprey
− 1

)2
(1)

We maximize this loss, i.e., move in the opposite direc-
tion of the optimization by adding the perturbation to
the image. The human score of all the samples in our
selected dataset is either 0 or 1, unanimous vote. Hence,
we can easily employ the loss function in Equation 1,
because if the metric predicts the rank correctly then
(sother/(sother + sprey)) would be ≈ 1. Afterwards, if
the attack is successful then (sother/(sother + sadv)) be-
comes less than 0.5, causing the rank to flip.

1smaller si means Ii is more similar to Iref
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Figure 3: PGD attack on LPIPS(AlexNet). In this
white-box attack, we use the LPIPS network pa-
rameters to compute the signed gradient. Increas-
ing the attack iterations, increases the severity of
the attack. In this example, perturbations in Iadv

are not visible. The RMSE between the prey image
I1 and the adversarial image Iadv is 2.10.

Algorithm 3 (refer Appendix A) provides the details for
the FGSM attack. First, Iprey is selected based on the
original rank. The model parameters remain constant,
and we compute the gradients with respect to the input
image Iprey. To increase perturbations in normalized
images, we increase the ϵ in steps of 0.0001 starting
from 0.0001. When ϵ is large enough, the rank flips. It
would mean that the attack was successful (see Figure 2
for example). If the final value of ϵ is small then the
perturbation is imperceptible, making it hard to discern
any difference between the original input image and its
adversarial sample.

Projected Gradient Descent. PGD attack by
Madry et al. (2018) takes a similar approach to FGSM,
but instead of a single large step like in FGSM, it
takes multiple small steps for generating perturbation δ.

Algorithm 1: PGD attack on Similarity Metrics
Input: I0, I1, Iref , metric f , ϵ (perturbation limit 0.1),

max_iterations (40), α (step size 0.001)
Output: attack_success True on rank flip

1 s0 = f(Iref , I0); s1 = f(Iref , I1); rank = int(s0 > s1);
2 // If I0 is more similar to Iref then rank is 0 else 1
3 if rank = 1 then Iprey = I1; sother = s0;
4 else Iprey = I0; sother = s1;
5 δ = zeros_like(Iprey) // perturbation
6 k = 0
7 while k ≤ max_iterations do
8 Iadv = clip(Iprey + δ, min = −1, max = 1)
9 sadv = f(Iref , Iadv)

10 if sadv > sother then return True // Attack successful
11 J =

(
(sother/(sother + sadv)) − 1

)2
// Loss

12 signed_grad = sign
(

∇Iadv
J
)

13 I′
adv = Iadv + α ∗ signed_grad

14 δ = clip(I′
adv − Iprey , min = −ϵ, max = +ϵ)

15 k = k + 1
16 return False // Attack unsuccessful

Hence, the projection of I stays either inside or on
the boundary of the ϵ-ball. Each time δ > ϵ, the
projection operator under ℓ∞ constraint, restricts
the pixel values to a predefined range [−ϵ, +ϵ]. This
multistep attack is defined as:

It+1
adv = Pc

(
It

adv+
α · sign(∇It

adv
J(θ, It

adv, Iother, Iref )
) (2)

where J is the loss defined in Equation 1. The
perturbation on each pixel is bounded to a prede-
fined range using the projection constraint Pc. We
implement Pc using a clip operation on the final
perturbation δ (Line 15 Algorithm 1). As shown
in Algorithm 1, the signed gradient is multiplied
with step size α, and this adversarial perturbation
is added to It

adv. The final perturbation δ is the dif-
ference between It

adv and Iprey, and in our method,
δ is bounded by l∞ norm. Hence, the PGD attack
is an ℓ∞-bounded attack.

One-pixel Attack. The previous two approaches are white-box attacks. We now use a
black-box attack, the One-pixel attack by Su et al. (2019) that perturbs only a single pixel
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Figure 4: One-pixel attack on LPIPS(AlexNet).
This is a black-box attack as it does not require
LPIPS network parameters to generate the adver-
sarial perturbation. The one pixel perturbation is
hardly visible. The RMSE between the prey image
I1 and the adversarial image Iadv is 1.38.

using differential evolution (Storn & Price, 1997). The
objective of the One-pixel attack is defined as:

maximize
e(Iprey)∗

f(Iprey + e(Iprey), Iref )

subject to ||e(Iprey)||0 ≤ d
(3)

where f is the similarity metric, and the vector e(Iprey)
is the additive adversarial perturbation, and d is 1 for
the One-pixel attack. This algorithm aims to find a
mutation to one particular pixel such that a similarity
metric f , such as LPIPS, will consider Iprey is less sim-
ilar to Iref than it is originally, and thus, the rank is
flipped. Note, for LPIPS, a larger score indicates the
two images being less similar. Please refer to Su et al.
(2019) for more details of this attack algorithm.
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Algorithm 2: stAdv attack on LPIPS
Input: I0, I1, Iref , LPIPS f , max_iterations (250)
Output: attack_success True on rank flip

1 Function stAdv_attack(flow, f , Iprey, Iref , sother):
2 Iadv = warp(flow,Iprey) // Backwarp via bilinear

interpolation
3 sadv = f(Iref , Iadv)
4 Lrank, Lperturb = calc_loss(Iref , Iprey , Iadv , sother, f)
5 L = Lrank + Lperturb

6 gradient = ∇flowL
7 if sadv > sother then return 0, gradient, flow //

Attack successful
8 else return L, gradient, flow // Attack unsuccessful
1 s0 = f(Iref , I0); s1 = f(Iref , I1);
2 rank = int(s0 > s1) // If I0 is more similar to Iref then

rank is 0 else 1
3 if rank = 1 then Iprey = I1; sother = s0;
4 else Iprey = I0; sother = s1;
5 // Initialize a flow vector with zeros
6 flow = zeros_like(2 * Iprey height * Iprey width)
7 converge, grad, flow = L-BF GS(func=stAdv_attack,

args=(flow, f , Iprey , Iref , sother),
iterations=max_iterations) // Optimize flow vector

8 if converge = 0 then attack_success = True
9 else attack_success = False

10 return attack_success

Spatial Attack (stAdv). The goal of the stAdv
attack is to deform the image geometrically by dis-
placing pixels (Xiao et al., 2018). It generates ad-
versarial perturbations in the spatial domain rather
than directly manipulating pixel intensity values.
This attack synthesizes the spatially distorted ad-
versarial image (Iadv) via optimizing a flow vector
and backward warping with the input image (Iprey)
using differentiable bilinear interpolation (Jaderberg
et al., 2015). For each sample, we start with a flow
initialized with zeros and then optimize it using L-
BFGS (Liu & Nocedal, 1989) for the following loss.

L = αLrank + βLflow (4)

Lflow =
pixels∑

p

neighbors(p)∑
q

√
(up − uq)2 + (vp − vq)2

(5)

where (u, v) is the displacement vector at pixel lo-
cation p and its 4 neighbors q.

Lrank =
(

sother

sother + sadv

)2
(6)

𝐿𝑃𝐼𝑃𝑆: 0.1465
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Backward warping via Bilinear Interpolation

Figure 5: Spatial attack stAdv on LPIPS(AlexNet).
We attack LPIPS(AlexNet) to create adversarial im-
ages. This attack optimizes a flow vector to create
perturbations in the spatial domain. In this exam-
ple, flow distorts the structure of the horse to gener-
ate the adversarial image. The RMSE between the
prey image I1 and the adversarial image Iadv is 2.50.

where α is 50 and β is 0.05.

As we minimize Lrank, the perturbations in sadv will
increase, and thus rank will flip. Simultaneously, we
also minimize Lflow which defines the amount of per-
turbations generated by flow to distort the image. It
enforces the perturbations to be constrained to make
as little change to the attacked image Iprey as possi-
ble. Xiao et al. (2018) performed a user study to test
the perceptual quality of the images having perturba-
tions generated by the stAdv attack and found them to
be indistinguishable by humans. By visual inspection,
we found the adversarial perturbations on the images
imperceptible in our studies as well.

4 Experiments and Results

We experiment with a wide variety of similarity metrics including both traditional ones, such as L2,
SSIM (Wang et al., 2004), and FSIMc (Zhang et al., 2011), and the recent deep learning based ones, such as
WaDIQaM-FR (Bosse et al., 2018), GTI-CNN (Ma et al., 2018), LPIPS (Zhang et al., 2018b), E-LPIPS (Ket-
tunen et al., 2019b), DISTS (Ding et al., 2020), Watson-DFT (Czolbe et al., 2020), and PIM (Bhardwaj
et al., 2020). We adopt the BAPPS validation dataset (Zhang et al., 2018b) for our experiments. Following
Zhang et al. (2018b) we scale the image patches from size 256 × 256 to 64 × 64. As mentioned in Section 3,
we believe that the predicted rank by a metric will be easy to flip on samples close to the decision boundary;
therefore, we take a subset of the samples in the dataset which have a clear winner, i.e., all human responses
indicated that one was distinctly better than the other. Now, in our dataset, we have 12,227 samples. We
report the accuracy of metrics on the subset of selected samples and compare it with their Two-alternative
forced choice (2AFC) scores on the complete BAPPS validation dataset. As shown in Table 1, all these
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Table 1: Accuracy on the subset selected for our experiments correlates with the 2AFC score computed on
the complete BAPPS validation dataset.

Network 2AFC (%) on complete BAPPS Accuracy (%) on a subset of BAPPS
(36344 samples) (12227 samples)

L2 63.2 79.7
SSIM (Wang et al., 2004) 63.1 80.8
WaDIQaM-FR (Bosse et al., 2018) 66.5 83.3
LPIPS(Alex) (Zhang et al., 2018b) 69.8 92.4
LPIPS(VGG) (Zhang et al., 2018b) 68.1 89.8
DISTS (Ding et al., 2020) 68.9 91.3

Table 2: FGSM, PGD, and One-pixel attack results. Larger ϵ allows more perturbations, and lower RMSE
relates to higher imperceptibility.

Network

Same Rank
by Human
& Metric

Total
Samples

FGSM (ϵ < 0.05) PGD One-pixel

#Samples
Flipped

Mean
ϵ

RMSE #Samples
Flipped

% pixels with ϵ RMSE #Samples
Flippedµ σ >0.001 >0.01 >0.05 µ σ

L2 ✓ 9750 3759/39% 0.023 2.9 1.7 2348/24% 84.4 56.1 0.0 1.9 1.0 4225/43%
✗ 2477 1550/63% 0.017 2.2 1.6 1202/49% 82.0 42.7 0.0 1.5 1.0 1412/57%

SSIM ✓ 9883 6922/70% 0.018 2.5 1.7 5297/54% 94.6 53.6 0.0 1.8 1.0 1787/18%
(Wang et al., 2004) ✗ 2344 2013/86% 0.011 1.6 1.3 1843/79% 87.3 32.0 0.0 1.3 0.8 1005/43%
WadIQaM-FR ✓ 10191 8841/87% 0.006 1.0 1.0 10176/100% 69.2 4.3 0.0 0.7 0.3 3130/31%
(Bosse et al., 2018) ✗ 2036 2012/100% 0.001 0.6 0.3 2035/100% 41.2 0.1 0.0 0.5 0.1 1598/79%
LPIPS(Alex) ✓ 11303 7247/64% 0.018 2.4 1.7 8806/78% 86.8 28.7 0.0 1.3 0.6 9255/82%
(Zhang et al., 2018b) ✗ 924 912/99% 0.004 0.9 0.7 917/99% 59.5 3.2 0.0 0.8 0.3 921/100%
LPIPS(VGG) ✓ 10976 8434/77% 0.012 1.7 1.5 9689/88% 81.6 15.6 0.0 1.0 0.5 7212/66%
(Zhang et al., 2018b) ✗ 1251 1244/100% 0.003 0.8 0.5 1246/100% 52.3 1.6 0.0 0.7 0.2 1219/98%
DISTS ✓ 11158 3043/27% 0.025 3.3 1.8 2306/21% 97.0 75.4 0.0 2.6 1.3 7416/67%
(Ding et al., 2020) ✗ 1069 795/74% 0.016 2.2 1.7 723/68% 91.9 50.0 0.0 2.0 1.3 1033/97%

metrics consistently correlated better with the human opinions on the subset of BAPPS than on the full
dataset, which is expected as we removed the ambiguous cases.

In this section, we first show that similarity metrics are susceptible to both white-box and black-box attacks.
Based on this premise, we hypothesize that these similarity metrics are vulnerable to transferable attacks. To
prove this, we attack the widely adopted LPIPS using the spatial attack stAdv to create adversarial examples
and use them to benchmark the adversarial robustness of these similarity metrics. Furthermore, we add a
few iterations of the PGD attack, hence combining our spatial attack with ℓ∞-bounded perturbations, to
enhance transferability to other perceptual similarity metrics.

4.1 Adversarial Attack on Perceptual Similarity Metrics

Through the following study, we test our hypothesis that similarity metrics are susceptible to adversarial
attacks. We first determine whether it is possible to create imperceptible adversarial perturbations that
can overturn the perceptual similarity judgment, i.e., flip the rank of the images in the sample. We try to
achieve this by simply attacking with widely used white-box attacks like FGSM, and PGD, and a black-box
attack like the One-pixel attack. As reported in Table 2, all these attacks can successfully flip the rank
assigned by both traditional metrics such as L2, and SSIM (Wang et al., 2004), and learned metrics such
as WaDIQaM-FR (Bosse et al., 2018), LPIPS (Zhang et al., 2018b), and DISTS (Ding et al., 2020), in a
significant amount of samples.

For the PGD attack, none of the samples needed a perturbation of more than 0.052. Therefore, to report
the results of the FGSM attack, we use the threshold ϵ < 0.05. We present the results separately for samples
where the originally predicted rank by the metric matches the rank provided by humans. Now, focusing
only on the samples where the metric matches with the ranking by humans, we found L2 and DISTS to
be the most robust against FGSM and PGD with only about 30% of the samples flipped, while LPIPS
and WadIQaM-FR were the least robust, with about 80% of the samples flipped. The same conclusion can
also be reached by observing ϵ (or perturbations) required to attack them. Next, despite being a black-box

2All ϵ (or perturbation) values in this paper were computed from normalized images in the range [-1,1].
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Table 3: Comparing samples where the rank by metric was the same as assigned by humans versus samples
where it was not.

Network Same Rank by
Human & Metric

Similarity Difference
abs(s0 − s1)

L2 ✓ 0.036
✗ 0.025

SSIM ✓ 0.114
(Wang et al., 2004) ✗ 0.054

WadIQaM-FR ✓ 0.231
(Bosse et al., 2018) ✗ 0.064

LPIPS(Alex) ✓ 0.169
(Zhang et al., 2018b) ✗ 0.024

LPIPS(VGG) ✓ 0.174
(Zhang et al., 2018b) ✗ 0.037

DISTS ✓ 0.103
(Ding et al., 2020) ✗ 0.022

attack, the One-pixel attack can also successful flip ranks. LPIPS(AlexNet) has the least robustness to the
One-pixel attack with 82% of the samples flipped, and this lack of adversarial robustness is consistent across
all three attacks. SSIM and WadIQaM-FR are more robust to this attack, with only 18% and 31% samples
flipped. It is interesting to note that similar results are achievable by using just the score of the adversarial
image, i.e., sadv as loss for optimization.

Not surprisingly, it is easier to flip rank for the samples where the metric does not match with human opinion.
As reported in Table 2, a much higher number of those samples flip where the rank by metric and humans
did not match. These samples have a lower ϵ, which means that lesser perturbations were required to flip
the rank. We attribute the easy rank-flipping for these samples to the fact that the distorted images in each
sample, i.e., Iother and Iprey, are much closer to the decision boundary for the rank flip. To test this, we
calculate the absolute difference between sother and sprey, i.e., the perceptual distances of Iother and Iprey

from Iref . As reported in Table 3, the similarity difference for these samples is much lesser than samples
where the rank predicted by metric is the same as the rank assigned by humans. This result indicates that
the samples where rank predicted by metric is not the same as the rank assigned by humans lie closer to the
decision boundary, causing them to flip easier.

Imperceptibility. We discuss the imperceptibility of the adversarial perturbations by comparing the root
mean square error (RMSE3) between the original and the perturbed image. As expected, the PGD attack
is stronger than FGSM as it is capable of flipping a significant number of samples with lesser adversarial
perturbations. As reported in Table 2, for the PGD attack, a good portion of the adversarial image (Iadv)
has ϵ < 0.01, while for FGSM, the amount of pixel perturbation all over the image is a constant ϵ value which
moreover is higher for a successful attack. Thus, on average, the Iadv generated via PGD has lower RMSE
and a higher PSNR (see Table 4) with the original image Iprey, compared to the Iadv generated via FGSM.
We also perform a visual sanity check and find the perturbations satisfactorily imperceptible. Only a single
pixel is perturbed for Iadv generated via the One-pixel attack, which we consider suitably imperceptible.

4.2 Transferable Adversarial Attack

In a real-world scenario, the attacker may not have access to the metric’s architecture, hyper-parameters,
data, or outputs. In such a scenario, a practical solution for the attacker is to transfer adversarial examples
crafted on a source metric to a target perceptual similarity metric. Previous studies have suggested reliable
approaches for creating such black-box transferable adversarial examples for image classifiers (Tramèr et al.,
2017; Zhou et al., 2018; Inkawhich et al., 2019; Huang et al., 2019; Li et al., 2020; Hong et al., 2021). This
paper focuses on perceptual similarity metrics and how they perform against such transferable adversar-
ial examples. Specifically, we transfer the stAdv attack on LPIPS(AlexNet) to other metrics. We chose
LPIPS(AlexNet) as it is widely adopted in many computer vision, graphics, and image / video processing
applications. Furthermore, we combine the stAdv attack with PGD to increase the transferability of the

3Throughout this paper, RMSE was calculated on images with pixel values ranging [0,255].
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Table 4: Comparing PSNR of adversarial images generated via FGSM vs. PGD. The ϵ for the adversarial
images generated via FGSM is < 0.05. A higher mean PSNR of the PGD examples shows that the adversarial
perturbations are less perceptible.

Network
Same Rank by

Human & Metric

FGSM PGD

PSNR PSNR
µ σ µ σ

L2 ✓ 40.81 6.49 44.15 5.49
✗ 43.75 7.00 46.08 5.70

SSIM ✓ 42.51 6.55 44.60 5.31
(Wang et al., 2004) ✗ 46.39 6.09 47.19 5.16

WadIQaM-FR ✓ 50.81 5.60 52.19 3.47
(Bosse et al., 2018) ✗ 53.92 3.25 54.35 2.73

LPIPS(Alex) ✓ 42.80 6.70 46.82 4.09
(Zhang et al., 2018b) ✗ 49.98 4.19 50.80 3.14

LPIPS(VGG) ✓ 45.96 6.38 48.68 3.72
(Zhang et al., 2018b) ✗ 50.56 3.27 51.09 2.46

DISTS ✓ 39.50 6.22 41.19 5.75
(Ding et al., 2020) ✗ 43.64 6.95 44.41 6.39

Table 5: Transferable adversarial attacks on perceptual similarity metrics. The adversarial examples were
generated by attacking LPIPS(AlexNet) via stAdv. In total, there are 2726 samples. Next, we attacked
LPIPS(AlexNet) using PGD(10). Then, we combined stAdv+PGD(10) by perturbing the stAdv generated
images with PGD(10). Accurate samples are the ones for which the predicted rank by metric is equal to the
rank assigned by humans. The transferability increases when the attacks are combined.

Network
#Accurate

Samples

# Accurate Samples Flipped

PGD(10) PGD(20) stAdv stAdv + stAdv + stAdv + stAdv +
PGD(5) PGD(10) PGD(15) PGD(20)

L2 2099/77% 101/5% 174/8% 77/4% 134/6% 189/9% 200/10% 257/12%
SSIM (Wang et al., 2004) 2093/77% 237/11% 442/21% 78/4% 180/9% 339/16% 370/18% 540/26%
FSIMc (Zhang et al., 2011) 2025/74% 222/11% 325/16% 202/10% 233/12% 302/15% 310/15% 393/19%
WaDIQaM-FR (Bosse et al., 2018) 2083/76% 95/5% 186/9% 59/3% 85/4% 146/7% 156/7% 238/11%
GTI-CNN (Ma et al., 2018) 1946/71% 448/23% 480/25% 494/25% 488/25% 504/26% 510/26% 543/28%
DISTS (Ding et al., 2020) 2413/89% 311/13% 576/24% 146/6% 257/11% 510/21% 546/23% 801/33%
LPIPS(Squz.) (Zhang et al., 2018b) 2503/92% 298/12% 656/26% 114/5% 221/9% 519/21% 555/22% 886/35%
LPIPS(VGG) (Zhang et al., 2018b) 2317/85% 435/19% 814/35% 131/6% 288/12% 643/28% 685/30% 992/43%
E-LPIPS (Kettunen et al., 2019b) 2442/90% 503/21% 643/26% 517/21% 552/23% 641/26% 655/27% 817/33%
Watson-DFT (Czolbe et al., 2020) 2179/80% 387/18% 614/28% 216/10% 324/15% 532/24% 562/26% 750/34%
PIM-1 (Bhardwaj et al., 2020) 2468/91% 696/28% 814/33% 756/31% 772/31% 826/33% 852/35% 958/39%
PIM-5 (Bhardwaj et al., 2020) 2457/90% 751/31% 844/34% 765/31% 791/32% 864/35% 893/36% 963/39%

adversarial examples to other metrics. In this study, we only consider samples for which the metrics and the
human opinions agree on their rankings.

stAdv. As shown in Figure 5, stAdv has the capability of attacking high-level image features. As a white-
box attack on LPIPS(AlexNet), out of the 11,303 accurate samples from total 12,227 samples, stAdv was
able to flip judgment on 4658 samples with a mean RMSE of 2.37 with standard deviation 1.42. Because
we need high imperceptibility, we remove samples with RMSE > 3 and are left with 3327 samples. We then
perform a visual sanity check and remove some more with ambiguity, keeping only strictly imperceptible
samples. In the end, we have 2726 samples, with a mean RMSE of 1.58 with standard deviation 0.63, which
we transfer to other metrics as a black-box attack. As reported in Table 5, all metrics are prone to the
attack. WaDIQaM-FR (Bosse et al., 2018) is most robust, while PIM (Bhardwaj et al., 2020) that was
found robust to small imperceptible shifts is highly susceptible to this attack, although PIM is 15% more
accurate than WaDIQaM-FR. Finally, we saw that, on average, learned metrics are more correlated with
human opinions, but traditional metrics exhibit more robustness to the imperceptible transferable stAdv
adversarial perturbations.

PGD(10). We now attack the original 2726 selected samples with the PGD attack. As shown in Section 4.1,
perturbations generated via PGD have low perceptibility; hence, we create adversarial samples using PGD.
In stAdv, we stopped the attack when the rank predicted by LPIPS(AlexNet) flipped. While in PGD, for
comparison’s sake, we fix the number of attack iterations to 10 for each sample to guarantee the transferability
of perturbations. We call this transferable attack PGD(10), and the mean RMSE of the adversarial images

9
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Figure 6: Comparing traditional metrics (L2, SSIM (Wang et al., 2004), and FSIMc (Zhang et al., 2011))
versus learned metrics (WaDIQaM-FR (Bosse et al., 2018), GTI-CNN (Ma et al., 2018), LPIPS (Zhang et al.,
2018b), DISTS (Ding et al., 2020), E-LPIPS (Kettunen et al., 2019b), Watson-DFT (Czolbe et al., 2020),
and PIM (Bhardwaj et al., 2020)).

generated is 1.28 with a standard deviation of 0.11. The metrics SSIM and WaDIQaM-FR are most robust
to the transferable PGD(10) attack, as reported in Table 5.

Combining stAdv and PGD(10). The attacks stAdv and PGD are orthogonal approaches as PGD (ℓ∞-
bounded attack) manipulates the intensity of individual pixels while stAdv (spatial attack) manipulates the
location of the pixels. We now combine the two by attacking the samples generated via stAdv with PGD(10).
The mean RMSE of the generated adversarial images is 2.19 with a standard deviation of 0.41, just 0.61
higher than images generated via stAdv. As reported in Table 5, the increase in severity of the adversarial
perturbations in FlowAdv+PGD(10) leads to increased transferability. This result also is consistent with
previous findings by Engstrom et al. (2019) where they combined PGD on top of their spatial attack and
found that it leads to an additive increment in the misclassification rate.

Summary. In this paper, we successfully demonstrate that a wide variety of perceptual similarity metrics
are susceptible to adversarial attacks. We show that adversarial perturbations crafted for LPIPS(AlexNet)
generated via stAdv, can be transferred to other metrics. Furthermore, combining stAdv (spatial attack)
with PGD (ℓ∞-bounded attack) increases their transferability. We showcase a few examples in Figures 7,
and 8. In addition, the severity of the attack increases with the increasing number of PGD iterations (see
Table 5). Our investigations also show that although more accurate, learned metrics may not be more robust
than traditional ones (see Figure 6). In summary, our findings point towards the need to develop robust
perceptual similarity metrics.

5 Conclusion

In this paper, we studied the robustness of various traditional and learned perceptual similarity metrics to
imperceptible perturbations. We devised a methodology to craft such perturbations via adversarial attacks.
Our findings suggest that, when comparing two images with respect to a reference, the addition of imper-
ceptible distortions can overturn a metric’s similarity judgment. The results of our study indicate that even
learned perceptual metrics that match with human similarity judgments are susceptible to such impercep-
tible adversarial perturbations. We crafted adversarial examples using the spatial attack, stAdv, that were
transferable to other metrics. We show that when combined with the PGD attack, the transferability of
the adversarial examples can be further increased. We will make our code and data publicly available to
encourage further studies on the current topic with more comprehensive benchmarks. Perceptual similarity
metrics are designed to simulate the human visual system, and for this reason, these metrics are increasingly
used in the assessment of image and video quality in real-world scenarios. Since invisible distortions can
negatively impact the performance of similarity metrics, future studies for the design and development of
newer metrics should also focus on validating robustness.

10



Under review as submission to TMLR

L2
SSIM
FSIMc
WaDIQaM-FR
GTI-CNN
DISTS
LPIPS(Squeeze)
LPIPS(VGG)
E-LPIPS
Watson-DFT
PIM-1
PIM-5

Iref

0.0091
0.8754
0.99069
1.2747
135.61
0.0996
0.0736
0.0916
0.0057
908.63
0.6141
6.2894

Iother

0.0127
0.8823
0.99058
1.3567
255.97
0.0729
0.0393
0.0669
0.0041
922.66
0.4485
5.0282

Iprey

0.0128
0.8721
0.99061
1.3730
220.48
0.0952
0.0421
0.0802
0.0069
1112.21
1.1852
11.3717

Iadv PGD(10)

0.0128
0.8770
0.99061
1.3622
217.10
0.0873
0.0490
0.0783
0.0068
1071.77
1.2937
12.0675

Iadv stAdv

0.0128
0.8635
0.99064
1.3572
217.65
0.1152
0.0517
0.1011
0.0075
1136.02
1.2917
12.2006

Iadv stAdv+PGD(10)

L2
SSIM
FSIMc
WaDIQaM-FR
GTI-CNN
DISTS
LPIPS(Squeeze)
LPIPS(VGG)
E-LPIPS
Watson-DFT
PIM-1
PIM-5

Iref

0.0361
0.3163
0.98102
1.3614
133.18
0.2772
0.0986
0.2167
0.0115
2433.66
2.9635
33.8370

Iother

0.0050
0.5807
0.98274
1.2760
59.11
0.2324
0.0761
0.1601
0.0103
1344.98
2.5469
27.0413

Iprey

0.0057
0.5528
0.98079
1.2575
77.51
0.2739
0.1231
0.2451
0.0169
1415.91
3.2072
35.6628

Iadv PGD(10)

0.0056
0.5646
0.98016
1.2983
78.95
0.2678
0.1058
0.2028
0.0170
1392.29
3.2161
37.6837

Iadv stAdv

0.0063
0.5357
0.97770
1.2943
85.07
0.3021
0.1762
0.3269
0.0178
1410.53
3.5531
39.1791

Iadv stAdv+PGD(10)

L2
SSIM
FSIMc
WaDIQaM-FR
GTI-CNN
DISTS
LPIPS(Squeeze)
LPIPS(VGG)
E-LPIPS
Watson-DFT
PIM-1
PIM-5

Iref

0.0010
0.9739
0.99992
1.1214
47.72
0.1180
0.0023
0.0791
0.0139
924.09
0.7539
7.0737

Iother

0.0010
0.9779
0.99985
1.1190
11.53
0.0065
0.0013
0.0027
0.0002
541.48
0.0110
0.1121

Iprey

0.0012
0.9730
0.99983
1.1177
79.21
0.0200
0.0025
0.0069
0.0045
783.71
1.0787
11.2964

Iadv PGD(10)

0.0012
0.9743
0.99983
1.1165
85.79
0.0129
0.0017
0.0038
0.0047
693.21
1.1750
12.0483

Iadv stAdv

0.0015
0.9681
0.99980
1.1184
84.42
0.0283
0.0033
0.0103
0.0052
861.64
1.1291
11.7169

Iadv stAdv+PGD(10)

Figure 7: Transferable attack on perceptual similarity metrics. In example 1 (Top), the RMSE between
Iprey and Iadv images (left to right) is 1.26, 2.89, and 2.47. In example 2 (Mid.), the RMSE between Iprey

and Iadv images (left to right) is 1.29, 1.02, and 1.91. In example 3 (Bot.), RMSE between Iprey and Iadv

images (left to right) is 1.43, 1.2, and 2.15.
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L2
SSIM
FSIMc
WaDIQaM-FR
GTI-CNN
DISTS
LPIPS(Squeeze)
LPIPS(VGG)
E-LPIPS
Watson-DFT
PIM-1
PIM-5

Iref

0.0079
0.7717
0.99940
1.3602
95.99
0.1303
0.1149
0.1893
0.0115
1501.56
2.1654
21.3579

Iother

0.0047
0.8554
0.99937
1.2796
81.11
0.1030
0.0794
0.1188
0.0077
1025.79
1.0225
10.0332

Iprey

0.0048
0.8501
0.99926
1.2949
139.53
0.1111
0.0880
0.1346
0.0124
1278.13
2.8536
26.9732

Iadv PGD(10)

0.0047
0.8526
0.99922
1.2962
133.61
0.1070
0.0855
0.1244
0.0131
1305.37
3.2559
29.6540

Iadv stAdv

0.0048
0.8436
0.99903
1.3113
165.44
0.1139
0.0940
0.1409
0.0140
1422.43
3.1688
29.2036

Iadv stAdv+PGD(10)

L2
SSIM
FSIMc
WaDIQaM-FR
GTI-CNN
DISTS
LPIPS(Squeeze)
LPIPS(VGG)
E-LPIPS
Watson-DFT
PIM-1
PIM-5

Iref

0.0121
0.9068
0.99392
1.1942
53.66
0.1341
0.0264
0.0545
0.0039
1097.13
0.2170
3.4366

Iother

0.0133
0.9112
0.99181
1.2634
28.88
0.1034
0.0371
0.0462
0.0033
901.26
0.2429
2.9138

Iprey

0.0133
0.9006
0.99185
1.2653
62.75
0.1121
0.0395
0.0520
0.0055
1147.84
1.0924
12.0777

Iadv PGD(10)

0.0133
0.9103
0.99187
1.2699
61.31
0.1056
0.0375
0.0472
0.0054
1078.05
1.2546
13.0601

Iadv stAdv

0.0133
0.8958
0.99183
1.2813
69.90
0.1132
0.0411
0.0571
0.0065
1157.19
1.2119
13.2696

Iadv stAdv+PGD(10)

L2
SSIM
FSIMc
WaDIQaM-FR
GTI-CNN
DISTS
LPIPS(Squeeze)
LPIPS(VGG)
E-LPIPS
Watson-DFT
PIM-1
PIM-5

Iref

0.0368
0.6526
0.96532
1.1196
473.92
0.2266
0.0694
0.2057
0.0138
2314.26
1.6024
14.5537

Iother

0.0336
0.6797
0.97225
1.0508
325.45
0.2105
0.0467
0.1614
0.0119
2072.06
0.8015
10.2235

Iprey

0.0339
0.6693
0.97213
1.0513
379.77
0.2278
0.0516
0.1823
0.0131
2137.63
1.4746
14.8395

Iadv PGD(10)

0.0338
0.6778
0.97228
1.0550
382.28
0.2132
0.0483
0.1640
0.0139
2006.34
1.5086
15.0432

Iadv stAdv

0.0342
0.6667
0.97208
1.0580
386.48
0.2297
0.0545
0.1897
0.0132
2305.92
1.5491
15.2823

Iadv stAdv+PGD(10)

Figure 8: Transferable attack on perceptual similarity metrics. In example 1 (Top), the RMSE between
Iprey and Iadv images (left to right) is 1.35, 1.43, and 2.25. In example 2 (Mid.), the RMSE between Iprey

and Iadv images (left to right) is 1.25, 0.95, and 1.77. In example 3 (Bot.), RMSE between Iprey and Iadv

images (left to right) is 1.37, 0.99, and 2.0.
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A FGSM Attack on Similarity Metrics

We explain the FGSM attack on perceptual similarity metrics in Algorithm 3.

Algorithm 3: FGSM attack on Similarity Metrics
Input: I1, I2, Iref , metric f , max_ϵ (0.05)
Output: Least ϵ value which led to rank flip

1 s0 = f(Iref , I0); s1 = f(Iref , I1);
2 rank = int(s0 > s1) // If I0 is more similar to Iref then rank is 0 else 1
3 if rank = 1 then Iprey = I1; sother = s0;
4 else Iprey = I0; sother = s1;
5 sprey = f(Iref , Iprey)
6 J =

(
(sother/(sother + sprey)) − 1

)2
// Loss

7 signed_grad = sign
(

∇Iprey J
)

8 ϵ = 0.0001
9 while ϵ ≤ max_ϵ do

10 Iadv = Iprey + ϵ · signed_grad
11 Iadv = clip(Iadv , min = −1, max = 1) // range [-1,1]
12 sadv = f(Iref , Iadv)
13 if sadv > sother then
14 return True // Attack successful
15 ϵ = ϵ + 0.0001
16 return 1 // Largest value of ϵ
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