Published as a conference paper at ICLR 2026

RINGLEADER ASGD: THE FIRST ASYNCHRONOUS
SGD WITH OPTIMAL TIME COMPLEXITY UNDER
DATA HETEROGENEITY

Artavazd Maranjyan, Peter Richtarik
King Abdullah University of Science and Technology (KAUST)
{arto.maranjyan, richtarik}@gmail.com

ABSTRACT

Asynchronous stochastic gradient methods are central to scalable distributed op-
timization, particularly when devices differ in computational capabilities. Such
settings arise naturally in federated learning, where training takes place on smart-
phones and other heterogeneous edge devices. In addition to varying computation
speeds, these devices often hold data from different distributions. However, ex-
isting asynchronous SGD methods struggle in such heterogeneous settings and
face two key limitations. First, many rely on unrealistic assumptions of similarity
across workers’ data distributions. Second, methods that relax this assumption
still fail to achieve theoretically optimal performance under heterogeneous com-
putation times. We introduce Ringleader ASGD, the first asynchronous SGD al-
gorithm that attains the theoretical lower bounds for parallel first-order stochastic
methods in the smooth nonconvex regime, thereby achieving optimal time com-
plexity under data heterogeneity and without restrictive similarity assumptions.
Our analysis further establishes that Ringleader ASGD remains optimal under ar-
bitrary and even time-varying worker computation speeds, closing a fundamental
gap in the theory of asynchronous optimization.

1 INTRODUCTION

Modern machine learning increasingly depends on large-scale distributed training across clusters
with hundreds or even thousands of GPUs (Shoeybi et al., 2019; Brown et al., 2020; Narayanan
et al., 2021). However, classical synchronous training methods struggle to scale, as device failures,
network instabilities, and synchronization overheads introduce inefficiencies (Chen et al., 2016;
Grattafiori et al., 2024). These issues become even more pronounced in environments with hetero-
geneous computational power, such as Federated Learning (FL), where devices range from high-end
datacenter GPUs to resource-constrained edge hardware (Konecny et al., 2016; McMahan et al.,
2016; Li et al., 2020; Kairouz et al., 2021). Because synchronous methods are bottlenecked by
the slowest participants, faster devices remain idle, leading to underutilization of resources when
stragglers—nodes slowed by computation or communication—Ilag significantly behind.

One way to reduce synchronization bottlenecks is to equip data centers with homogeneous GPUs.
However, this approach is expensive and difficult to scale: upgrading to faster GPUs requires re-
placing all devices simultaneously, since heterogeneous hardware cannot be combined efficiently.
Even then, homogeneity does not eliminate synchronization issues, as hardware failures and de-
vice dropouts still cause stragglers and idle time. Moreover, this solution applies only to controlled
datacenter environments and is infeasible in FL, where edge devices are outside the server’s control.

A more promising approach is to shift from hardware to algorithmic solutions using asynchronous
optimization methods. These methods remove the need for synchronization, allowing fast workers
to contribute without waiting for slower ones (Tsitsiklis et al., 1986; Recht et al., 2011; Agarwal &
Duchi, 2011; Dean et al., 2012; Li et al., 2014). Despite their appeal, asynchronous methods are
harder to analyze. In particular, a meaningful analysis would require studying time fo convergence,
rather than iteration complexity only. Iteration count alone does not reflect training speed in parallel
settings: a method with more iterations may still finish faster if those steps avoid waiting for slow

Published as a conference paper at ICLR 2026

Table 1: Comparison of time complexities for parallel first-order methods under the fixed computa-
tion time model, where worker ¢ needs 7; seconds to compute a stochastic gradient, with the times
ordered so that 7, is the largest (2). We denote by Tavg 1= % 2?21 7; the average computation time.
Problem parameters include the initial function suboptimality A := f(2°) — f* (Assumption 3), the
target stationarity ¢, the variance bound of the stochastic gradients o2 (Assumption 1), and smooth-
ness constants. Specifically, L¢ is the smoothness constant of f (3); Liyax := MaX;e|n] Ly, with
Ly, the smoothness constant of f;; and L is a constant associated with our new smoothness-type
assumption (Assumption 2). They satisfy Ly < L < Ly, (Lemma E.1). All stated time complexi-
ties hide universal constant factors. Each column indicates whether a method satisfies the following
desirable properties: Optimal: achieves the theoretical lower bound derived by Tyurin & Richtarik
(2024) for parallel first-order stochastic methods in heterogeneous data setting. No sync.: does not
require synchronization and is therefore asynchronous. No idle workers: all workers remain busy
without waiting, so computational resources are fully utilized. No discarded work: no computation
is wasted, and no worker is stopped mid-computation.

Method Time Complexity Optimal Nosync. No idle workers No discarded work
Naive Minibatch SGD rf
(Section 3) ntTn ”E> x X x v
IA2SGD
(Wang et al., 2025) Lopd (r, 4 2) O X v v v
(Appendix H)
Malenia SGD
(Tyurin & Richtdrik, 2024) <T" T Tavg ”5) v X v X
Ringleader ASGD (new) L @)
(Algorithm 1; Theorem 5.3) (T T Tave ns) v v v v

Lower Bound LA (i o2)
(Tyurin & Richtarik, 2024) e \Un T Tavene - - — —

 The analysis of Wang et al. (2025) assumes that all f; share the same smoothness constant, i.e., each f; is L #;,—smooth and the bound Lax
is used for all. This assumption is unnecessary: under our Assumption 2, the constant improves to L while the analysis remains unchanged.
 The time complexities of Ringleader ASGD and Malenia SGD differ in the smoothness constant only. Since Malenia SGD is optimal,
Ringleader ASGD is also optimal whenever L exceeds Ly by at most a universal constant factor, that is, L = O(Ly).

workers. This raises a fundamental question: among all parallel methods, which ones are provably
fastest in theory? To make this precise, we restrict our attention to smooth nonconvex problems and
to stochastic first-order methods, encompassing algorithms with or without synchronization.

Recently, Tyurin & Richtarik (2024) studied this regime, where they derived lower bounds. They
then proposed two algorithms: Rennala SGD, designed for the homogeneous data setting, where all
workers draw samples from the same distribution, and Malenia SGD, for the heterogeneous data set-
ting, where data distributions differ across workers. They showed that both methods are optimal—
achieving the lower bounds—and, perhaps surprisingly, both are synchronous (they periodically
synchronize workers). The key idea in both is to fully utilize the available computational resources
by keeping workers continuously busy: each worker computes independently, and synchronization
occurs only after a sufficient number of gradient computations have been accumulated.

At first, the result of Tyurin & Richtérik (2024) suggested a rather pessimistic outlook for asyn-
chronous methods: despite their practical appeal, they showed that existing asynchronous methods
are not optimal and that the method achieving the lower bound is synchronous. This created the view
that optimality is inherently tied to synchronization. However, this view was overturned by Maran-
jyan et al. (2025d), who, in the homogeneous data setting, introduced Ringmaster ASGD—the first
asynchronous SGD method to achieve optimal time complexity as the synchronous Rennala SGD.
Although both methods share the same theoretical guarantees, Ringmaster ASGD can be faster than
Rennala SGD in practice, since it avoids synchronization and benefits from more frequent updates.

Nevertheless, the work of Maranjyan et al. (2025d) established optimality in the homogeneous data
setting only. The question of whether some variant of a parallel method that does not rely on syn-
chronization (i.e., is asynchronous) can also be optimal in the more general heterogeneous data
setting remained open. In this work, we close this gap and answer the question affirmatively.

The relevance of the heterogeneous data setting is clear in FL, where participants naturally hold
distinct datasets (Zhao et al., 2018; Li et al., 2020; Tan et al., 2022). This setting is more chal-

Published as a conference paper at ICLR 2026

lenging than the homogeneous one, since the usual asynchronous SGD philosophy—updating after
every gradient—can bias training toward fast workers’ local data. Most existing methods address
this by assuming similarity across client distributions (Mishchenko et al., 2022; Koloskova et al.,
2022; Nguyen et al., 2022; Islamov et al., 2024), an assumption that simplifies analysis but is often
unrealistic in practice (e.g., hospitals with distinct demographics, mobile users in different regions).

Recent work by Wang et al. (2025) took a step toward removing these restrictive assumptions by
proposing Incremental Aggregated Asynchronous SGD (IA2SGD), a method that provably converges
without similarity assumptions. However, their method achieves the same time complexity as stan-
dard Naive Minibatch SGD (see the first two rows of Table 1)—the simplest synchronous SGD base-
line, which waits to collect one gradient from each worker before every update—thus failing to
provide the computational advantages that motivate asynchronous approaches in the first place.

To the best of our knowledge, the only method proven to be optimal in the heterogeneous data setting
is the synchronous algorithm Malenia SGD of Tyurin & Richtarik (2024), which, notably, does not
rely on similarity assumptions. However, synchronization is a major bottleneck in practice: although
synchronous and asynchronous methods can share the same theoretical complexity, asynchronous
methods are often faster in practice because they avoid costly synchronization and benefit from more
frequent updates, as demonstrated in the homogeneous case by Maranjyan et al. (2025d).

This raises a fundamental question: Is it possible to design an asynchronous method that requires
no similarity assumptions while still achieving optimal time complexity? In this paper, we answer
this question affirmatively by introducing Ringleader ASGD, the first asynchronous SGD method
that achieves optimal time complexity' in the heterogeneous data setting. Importantly, Ringleader
ASGD attains this without relying on restrictive similarity assumptions.

1.1 CONTRIBUTIONS

Our main contributions are the following:

Optimal asynchronous SGD under data heterogeneity. We prove that Ringleader ASGD (Algo-
rithm 1) is, to the best of our knowledge, the first asynchronous method in the heterogeneous setting
under the fixed computation model (2) matching the lower bounds for parallel methods of Tyurin &
Richtarik (2024), when the smoothness-type constant L in Assumption 2 is within a constant factor
of the smoothness Ly used to obtain the lower bounds (Table 1). Importantly, Ringleader ASGD
attains this without any similarity assumptions across clients’ data.

Additional useful properties. Beyond optimal time complexity, Ringleader ASGD satisfies two
additional properties: (i) all workers remain continuously active (no idle workers), and (ii) every
computed gradient is used in the update (no discarded work). These properties are crucial in practice,
ensuring full resource utilization: all workers contribute at all times, and no computation is wasted.
Table 1 compares Ringleader ASGD with benchmark algorithms on these properties.

Parameter-free design. Unlike the optimal synchronous method Malenia SGD (Tyurin & Richtdrik,
2024), which requires prior knowledge of the gradient variance bound and target accuracy, our
method operates in the fixed computation time model without such parameters (except for the step-
size, needed only to match the optimal rate). This makes it more practical for real-world deploy-
ments, where these quantities are usually unknown or hard to estimate. The same parameter-free
improvement can also be applied to Malenia SGD, as we discuss in Appendix I.

Universal computation model. In Appendix D, we extend our analysis beyond the fixed compu-
tation time model to the setting of arbitrarily varying times, accommodating virtually any computa-
tional behavior, including stochastic or adversarial patterns, while retaining optimal time complexity.

Empirical validation. In Appendix A, we evaluate Ringleader ASGD on toy problems, confirming
the theory and showing clear practical gains over baselines.

"Throughout the paper, we refer to our method as optimal. Formally, this holds whenever the constant L—
associated with our new smoothness-type assumption (Assumption 2)—is at most a constant factor larger than
the smoothness constant L in the derived lower bounds (Tyurin & Richtarik, 2024). See Table 1 for details.

Published as a conference paper at ICLR 2026

2 PROBLEM SETUP

We consider a distributed learning setting with n workers, where each worker ¢ possesses its own
local data distribution D;. Our goal is to solve the following distributed optimization problem:

zER4

minimize {f(:z:) = ;Zfz(x)} , where fi(x) :=E¢,up, [filz;&)] . (D)
i=1

Here f;: R? — R denotes the local objective of worker 4, defined as the expectation of the sample
loss f;(x;&;) over data points &; drawn from its local distribution D;.

We first focus on the case where workers have constant computation speeds, as this setting is more
intuitive and serves as a foundational model for understanding the dynamics of asynchronous dis-
tributed optimization. The extension to arbitrary computation times is presented in Appendix D.

Following the fixed computation model (Mishchenko et al., 2022), we formalize:

Each worker i requires 7; seconds” to compute one stochastic gradient V f;(x, &;) . @)

Without loss of generality, assume 0 < 71 < 7o < -+ <7y .

We assume communication is infinitely fast (taking O seconds), both from workers to the server
and from the server to workers®. This is a modeling choice—arguably the simplest—and has been
standard in prior work (Mishchenko et al., 2022; Koloskova et al., 2022; Tyurin & Richtarik, 2024;
Maranjyan et al., 2025d), even if not always stated explicitly. We further discuss the motivation and
limitations of this abstraction in Appendix C. A related study by Tyurin et al. (2024b) considers the
case where communication is non-negligible and proposes techniques to address it.

Finally, we denote by T,y := % 2?21 T; the average computation time across all workers.

2.1 NOTATIONS

We denote the standard inner product in R? by

d
<xay> = leyl)
i=1

and the corresponding Euclidean norm by ||z|| := /(z, z). We use [n] := {1,2,...,n} to denote
the index set, and E [-] for mathematical expectation. For functions ¢, : Z — R, we write
¢ = O(v) if there exists a constant C' > 0 such that ¢(z) < C(z) forall z € Z.

2.2 ASSUMPTIONS

We consider the following standard assumptions for the nonconvex setting.

Assumption 1. For each i € [n] and every &, the function f;(x;€) is differentiable with respect to

its first argument x. Moreover, the stochastic gradients are unbiased and have bounded variance
2 .

o® >0, that is,

Ee,~p, [V fi(z;6)] = Vfi(z), Vo eR?, Vie[n],
Eep, [IVfi(w56) = VE@I] <% Vo eRY Vie).

Assumption 2. Each function f; is differentiable. There exists a constant L > 0 such that, for all
zeRYandyy,...,y, € RY,

2 L2 n ,
<=3 el
=1

Vi) - 5 S Vhiw)

2One could alternatively assume that each worker requires at most 7; seconds. Under this formulation, all
of our upper bounds would still hold; however, the lower bound would no longer be valid. For this reason, we
adopt the assumption that each worker requires exactly 7; seconds.

3 Alternatively, one could define 7; as the time required for a worker to both compute a gradient and commu-
nicate it to the server, while keeping server-to-worker communication infinitely fast. Our upper bounds would
still hold under this formulation, but the lower bounds would no longer apply, so we use the simpler model.

Published as a conference paper at ICLR 2026

Recall that a differentiable function ¢: R? — R is called Lg4—smooth if
Vo) = VoWl < Lo = —yll, Va,y €R?. 3)
By convention, Ly denotes the smallest such constant.

Note that Assumption 2 is stronger than requiring f itself to be L j—smooth, yet weaker than all f;
being L s,—smooth. The constants satisfy the following relation (Lemma E.1)

To the best of our knowledge, prior work on asynchronous SGD under data heterogeneity has always
assumed smoothness of each f; (Koloskova et al., 2022; Nguyen et al., 2022; Wang et al., 2025).

Assumption 3. There exists f* > —oo such that f(x) > f* for all v € R%. We define A =
f(a®) — f*, where 2V is the starting point of the optimization methods.

We seek an e—stationary point—a (possibly random) vector z satisfying E[||V f(z)||?] < e.

3 BACKGROUND AND MOTIVATION

In this section, we review relevant existing methods in distributed optimization and discuss their
limitations to motivate our algorithmic design.

Naive Minibatch SGD. This algorithm is the most straightforward way to solve (1) in a distributed
setting. At each iteration k, the server waits for one gradient from every worker and updates

k+1 _ k _ l - (k. ek
P =t SV ().

This guarantees an unbiased minibatch gradient but synchrony makes it inefficient: the iteration time
is set by the slowest worker, 7,, = max; 7; (2), so fast workers idle while waiting for stragglers.

Malenia SGD. The algorithm (Tyurin & Richtérik, 2024) addresses straggler problem by keeping
all workers active: each computes gradients at z* while the server accumulates them until

—1
n 2

(1 S 1k> > max{l, J} (4)
n b; ne

where bY is the number of gradients received from worker i. Once this holds, the update

bk
1 < 1< :
k+1 _ k —k ko ko k. k. ¢k,
=k gt =0 gl -—bjzvfi(x,éﬂ)
=1 t j=1
is performed and broadcast synchronously. This achieves the optimal time complexity, but requires
knowledge of ¢ and ¢ and discards ongoing computations during synchronization.

Toward Asynchronous Methods. A naive way to make optimization asynchronous is to update
immediately upon receiving a gradient:

kE+1 _ K k—&" . sk—8"
T =z —’leflk (l’) Sik)

where i* denotes the worker that sent the gradient at iteration k, and ok > 0 s its delay, i.e.,
the number of server updates that occurred while the gradient was being computed. Delays arise
naturally: fast workers return gradients quickly, while slow ones compute on stale iterates.

This scheme is biased under heterogeneous data. Fast workers dominate updates, pulling the model
toward their local minima, while slow workers contribute too rarely, so iterates may oscillate or

Published as a conference paper at ICLR 2026

stagnate. Such bias also blocks classical SGD-style proofs, which rely on one-step progress toward
minimizing the global function, but here each update reflects a different local objective. Without
data similarity assumptions (Mishchenko et al., 2022; Koloskova et al., 2022; Nguyen et al., 2022;
Islamov et al., 2024), it is harder to extend the analysis to the global function—yet such assumptions
are rarely realistic when data can be arbitrarily heterogeneous across machines or organizations.

The root issue is that each update uses only one worker’s gradient. A better approach is to aggregate
information from all workers, even if some gradients are stale, as in Incremental Aggregated Gradi-
ent (IAG) (Blatt et al., 2007; Gurbuzbalaban et al., 2017; Vanli et al., 2018) or Stochastic Averaged
Gradient (SAG) (Roux et al., 2012; Schmidt et al., 2017).

IA2SGD. This method (Wang et al., 2025) constructs updates using information from all workers
by maintaining a gradient table on the server, similar to SAG or IAG but with asynchronous table
updates. The table is initialized with one stochastic gradient from each worker at z°, after which the
server updates

~ - 1 n
a" =2k — g, 9=Ez;gi,
1=

where g; is the most recent stochastic gradient in the table from worker ¢ (possibly evaluated at a

stale iterate #%~%). Each arrival replaces the corresponding entry and triggers an update, so every
step uses the latest information from all workers while avoiding global synchronization.

The iteration complexity of the algorithm was established by Wang et al. (2025); converting it to the
fixed computation time model (see Appendix H) yields the same time complexity as Naive Minibatch
SGD (Table 1). Thus, asynchronous execution alone does not yield speedups.

Motivation. The main limitation of asynchronous algorithms is gradient delay, which can severely
harm convergence by pushing steps along suboptimal trajectories. This issue arises even in homoge-
neous settings (f; = f). The state-of-the-art solution, Ringmaster ASGD (Maranjyan et al., 2025d),
achieves optimal time by discarding overly delayed gradients.

In heterogeneous settings, however, this strategy fails. Slow workers inevitably suffer large delays;
if their gradients are discarded, their table entries remain outdated and may never refresh, creating a
persistent information bottleneck that harms convergence. One option is to drop some updates from
fast workers to balance delays, but this contradicts the core principle of asynchronous methods,
where all workers compute continuously.

Instead, our approach buffers gradients from fast workers rather than applying them immediately.
By updating only once enough gradients are collected, we control delays while keeping all workers
active. Buffering also offers a second benefit: aggregating multiple gradients from the same iterate
reduces variance, further improving convergence.

4 RINGLEADER ASGD

Ringleader ASGD (Algorithm 1) builds on three key insights from prior work. First, inspired by
IA2SGD, we maintain a gradient table to ensure information from all workers is incorporated into
every update, eliminating the need for data similarity assumptions between workers. Second, follow-
ing Ringmaster ASGD, we control gradient delays for efficient asynchronous optimization. Third,
drawing from Malenia SGD, we buffer rather than discard delayed ones to control delays while
preserving valuable computations, enabling continuous utilization of all resources.

An important property of the algorithm is that all workers remain continuously active. Each worker
sends a gradient to the server immediately after computing it, with communication assumed instan-
taneous (Section 2). On receipt, the server either buffers the gradient—in which case the worker
simply continues computing and sending new ones—or applies it to update the model. If an update
occurs, the new model is instantly returned to the worker, which resumes at the new point. Thus,
workers are never idle.

The algorithm proceeds in rounds of exactly n model updates—one per worker. When a worker
sends a stochastic gradient, the server may apply an update and return the updated model to that

Published as a conference paper at ICLR 2026

Algorithm 1 Ringleader ASGD (server algorithm)

1: Input: Stepsize v > 0, initial point 2° € R?

2: Initialization: Broadcast x° to all workers, which then start running Algorithm 2 in parallel
3: Setk = 0,5 = 0; initialize G; = 0, b; = 0 for all ¢ € [n]

4: while True do

5:

6: while S # [n] do

7: Receive stochastic gradient g;? (computed at mk*‘s?) from some worker j € [n]

8: Gi=Gj+gf bj=bj+1; S=SU{j}

9: end while
10:
11 bt =gk — 4150 G, o Update using averaged gradients from all workers
12: Broadcast 2" to worker j o Last worker to complete Phase 1

13 k=k+1, S=5\{j}
14 g =0,bf =0foralli € [n]; St =0 o Initialize temporary buffer for the next round
15: while S # 0 do

16: Receive stochastic gradient gf (computed at 28—) from some worker j € [n]
17: if j € S then
18: Gj:Gj+g§;1bj:bj+1
n
19: gt =gk — LS Gip,
20: Broadcast 251! to worker j
21: k=k+1; S=5S\{j}
22: else
23: Gj+ :G;r—i—g;?; bj+ :b;r—i—l; St =85tuU{j} o Buffer for next round
24: end if

25: end while
26 G; = Gj'; b, = b;" foralli € [n]; S=S + ¢ Transfer buffered gradients to main table
27: end while

Algorithm 2 Worker ¢’s subroutine

1: Input: Model x

2: while True do

3: Compute g; = V f;(x;&;) using a freshly sampled data point &; ~ D;
4: Send g; to the server

5: end while

worker, but it ensures that each worker receives an updated model at most once per round. Repeating
this n times guarantees every worker obtains exactly one new model per round, which keeps delays
bounded. To avoid discarding computations from fast workers, their extra gradients are buffered and
applied later at the appropriate time, ensuring each round still consists of exactly n updates.

Each round has two phases: first, stochastic gradients are buffered until at least one from every
worker is available; then exactly n updates are performed (one per worker), after which the old
gradients are discarded and the next round begins.

4.1 DETAILED DESCRIPTION

Initialization. The server broadcasts 2° € R? to all workers, which then start the worker subrou-
tine (Algorithm 2). Each worker continuously computes stochastic gradients and sends them to the
server; if not updated, it simply continues, so workers are never idle.

The server maintains a gradient table {(G;, b;)}7_;, initialized with G; = 0 and b; = 0. Here G;
stores accumulated gradients and b; counts how many have been received from worker i. We also
initialize S = () to track which entries have at least one gradient.

Published as a conference paper at ICLR 2026

Phase 1 — Gradient Collection. In this phase, the server receives stochastic gradients from work-
ers and stores them in the table {(G,b;)}i-,. Let g¥ be the gradient sent by worker j at iteration

k, computed at 2*=% with & ~ Dj. The delays ¢ f are not needed to run the algorithm—they will
only appear later in the analysis and can be inferred as the gap between the current iterate and the

one used to compute g;‘

Upon receiving g;“ from worker j (Line 7), the server updates the corresponding table entry and the
stochastic gradient counter as follows (Line 8)

Gi=Gj+g', bj=bj+1, S=SuU{j}.

This process continues until S = [n], i.e., the server has collected at least one gradient from every
worker. No model updates are performed during this phase, and workers do not receive new points;
hence, all stochastic gradients from a given worker are computed at the same point.

Phase 2 — Sequential Updates. In this phase, the server performs exactly one model update for
each worker 1, for a total of n updates. Phase 2 starts with the last worker that completed Phase 1,
i.e., the worker whose gradient made the table complete. The server first computes an update by
averaging the accumulated stochastic gradients in the table {(G;, b;)}; and taking a descent step
with this estimate (Line 11). The updated model is then sent to this worker (Line 12), the worker is
removed from the set S, and the iteration counter is incremented (Line 13).

Next, the server must update the remaining n — 1 workers. These updates are performed sequentially
as soon as each worker finishes its current computation. During this waiting period, new gradients
may arrive from workers not in S—e.g. for example, the last updated worker may send another
stochastic gradient before the other workers complete their computation. Since discarding these
gradients would waste information, they are instead buffered for the next round.

Temporary Table Management. To achieve this, the server maintains a temporary table
{(G, b))}, initialized to zero (Line 14), together with a set S* that records which workers
have contributed to the table. Whenever a gradient arrives from a worker not in S, it is stored in the

temporary table (Line 23).

If instead the gradient comes from j € .S, the server updates the main table {(G;, b;)}?_; (Line 18),
performs a model update using its averages (Line 19), broadcasts the new model to worker j
(Line 20), increments the iteration counter, and removes j from .S (Line 21).

Preparing for the Next Round. Once all workers in S have been updated and Phase 2 ends
(S = (), the server copies the temporary table {(G;,b;)}" , into the main table {(G;,b;)}™,
(Line 26) and resets S = ST, since these workers already contributed gradients at their updated
models. Entries for workers not in ST remain zero, as the temporary table was initialized with
zeros at the start of Phase 2 (Line 14). The server then returns to Phase 1 to begin the next gradient

collection round.

The two-phase structure of Ringleader ASGD prevents the unbounded delays of standard asyn-
chronous methods. The precise bound on delays is given in the following lemma

Lemma 4.1 (Bounded Delay; Proof in Appendix E.2). In Ringleader ASGD (Algorithm 1), the
delays §F satisfy 0% < 2n — 2, for any worker i € [n] and any iteration k > 0.

4.2 COMPARISON TO IAZSGD AND MALENIA SGD

IA2SGD. Our method is a delay-controlled version of IA2SGD. We can recover IA2SGD by remov-
ing Phase 1 and Phase 2, and thus perform updates naively—immediately upon gradient arrival. In
contrast, our algorithm operates in structured rounds, performing exactly one update per worker in
each round, which provides the crucial delay control that IA>SGD lacks.

In IA2SGD, delays for slow workers can grow unboundedly because the server continuously updates
the model using gradients from fast workers, causing slow workers to fall increasingly behind. Our
method prevents this issue by buffering gradients from fast workers rather than immediately applying
these gradients, ensuring that all workers receive updated models within n subsequent iterations.

Published as a conference paper at ICLR 2026

Malenia SGD. Malenia SGD also operates in two phases. In Phase 1, it collects gradients much
like our approach, but with a termination condition (4) that requires knowing the noise parameter
o and target stationarity £, making it impractical. In Phase 2, it performs a synchronous update by
averaging all collected gradients and broadcasting the new model to all workers, discarding ongoing
computations in the process. In contrast, our method performs Phase 2 asynchronously, updating
workers sequentially as they finish so that no work is wasted.

Regarding Malenia SGD’s termination condition (4), in Appendix I we demonstrate that this con-
dition can be replaced with our simpler requirement of obtaining at least one gradient from every
worker. With this modification, Malenia SGD remains optimal in the fixed-time regime (2) while
becoming parameter-free, which eliminates the need for prior knowledge of o and . Under this
parameter-free variant, the only difference between Malenia SGD and Ringleader ASGD lies in
Phase 2: we perform updates asynchronously without discarding gradients, while Malenia SGD
operates synchronously.

5 THEORETICAL RESULTS

Before presenting the theoretical results, we first write the algorithm in a compact form. The gradi-

ents for each worker in the table are all computed at the same point; for worker 7 at iteration k, the
point is ¥ %" . The update rule can be written compactly as
S R ng

where the gradient estimator g* is defined by

fln—’ﬁ;zl g
n;gz lezl

Since multiple gradients may be received from the same worker, we denote by gf 7 the 7-th gradient
from worker ¢ at iteration k. Here the index j corresponds to the i.i.d. sampled data point, and more

concretely .
kg . k=g . ok—07 .7
gi7 = Vi (R0

The quantity b¥ denotes the number of gradients from worker i stored in the table at iteration k, i.e.,
the value of b; in Lines 11 and 19. Thus, (b, §%) fully determine the method’s behavior.

177

Note that the sequence {b¥} depends only on the computation times {7;} and the algorithm design
(i.e., the stopping rule for collecting gradients). Once these are fixed, all b} for every i € [n] and it-

eration k are determined. Crucially, the values of b* do not depend on the method’s hyperparameters
~, z°, or on the variance parameter o or the stationarity level .

Iteration Complexity. We begin by establishing notation for the harmonic means of the batch

SiZGS acCross rounds
11\
B = 2%" = d B = inf B*.
(Zb> T T

Note that B > 1, since by the algorithm’s design each b¥ > 1. A sharper bound on B will be
established later in Lemma 5.2. We obtain the iteration complexity from this theorem.

Theorem 5.1 (Iteration Complexity; Proof in Appendix F). Under Assumptions 1, 2, and 3, let the
stepsize in Ringleader ASGD (Algorithm 1) be

. 1 eB
— min —_—, = .
" 8nL’ 10Lo?

Then,
K—
Z [IVs@h)]"] <.
k=0
for
32nLA 40LAc? nLA o2
B2 € + Be? :O(5 (1+Bn5)>'

Published as a conference paper at ICLR 2026

For parallel and asynchronous methods, iteration complexity is less important than time complexity.
What truly matters is how quickly we can finish training. We are willing to perform more iterations
and extra computation if it means completing the process faster. Having established the iteration
complexity, we now turn to the time complexity.

Time Complexity. Since the algorithm operates in rounds with n steps per round, and its iteration
complexity is already known, it remains to determine the duration of each round. We have the
following lemma

Lemma 5.2 (Proof in Appendix G.1). Each block of n consecutive iterations (each round) of Algo-
rithm 1 takes at most 21,, seconds. Moreover, we have

T, 1 — - T,
B> = ; =—.
-2 <n27> 2Tavg

i=1

Based on this lemma, we derive the time complexity guarantee of our algorithm

Theorem 5.3 (Proof in Appendix G). Let the assumptions and parameter choices of Theorem 5.1
hold. Then, under the fixed computation model (2), Ringleader ASGD achieves the optimal time

complexity
LA 2
o < <’Tn + Tavg0>> .
€ ne

The obtained time complexity consists of two key terms that illuminate the algorithm’s behavior.
The first term depends on the slowest device, which is fundamental since all devices must contribute
to solving the problem. The second term, however, involves 7, rather than 7,, as in Naive Minibatch
SGD (see Table 1)—this substitution captures the core benefit of asynchronous execution. Specif-
ically, this advantage becomes pronounced when o is relatively large. Intuitively, in high-noise
regimes, collecting many gradients from workers is essential for convergence, and asynchronous
methods can leverage faster workers more effectively. Conversely, in low-noise settings, fewer gra-
dient evaluations suffice for good performance, making Naive Minibatch SGD already quite effective
and rendering the additional complexity of asynchrony unnecessary.

Remark 5.4. The optimality claim for Theorem 5.3 holds when the smoothness-type constant L
in Assumption 2 is within a constant factor of the smoothness Ly used to derive the lower bound
(Tyurin & Richtdrik, 2024) (Table 1).

Under this condition, the resulting time complexity matches the lower bound of Tyurin & Richtarik
(2024), making Ringleader ASGD the first asynchronous algorithm to achieve optimality under het-
erogeneous data.

6 CONCLUSION

We have introduced Ringleader ASGD, the first asynchronous stochastic gradient method to achieve
optimal time complexity under arbitrary data heterogeneity and arbitrarily heterogeneous com-
putation times in distributed learning, without requiring similarity assumptions between workers’
datasets.

Its core innovation is a two-phase structure within each round: the model is updated once per worker
(for a total of n updates), while a buffering mechanism manages gradient delays and preserves the
efficiency of asynchronous execution. By maintaining a gradient table and alternating between gra-
dient collection and sequential updates, Ringleader ASGD prevents the unbounded delays common
in naive asynchronous methods. Every gradient received by the server is either used in the current
round or stored for future use, ensuring no computation is wasted.

Our analysis shows that Ringleader ASGD matches the optimal time complexity bounds established
by Tyurin & Richtarik (2024). In contrast to the optimal but synchronous Malenia SGD method,
Ringleader ASGD is asynchronous and requires no prior knowledge of problem parameters in the
algorithm design, making it practical for real-world deployments.

Finally, with a minor modification, Ringleader ASGD also achieves optimality in the more general
setting of arbitrarily varying computation times (Appendix D).

10

Published as a conference paper at ICLR 2026

ACKNOWLEDGMENTS

The research reported in this publication was supported by funding from King Abdullah University
of Science and Technology (KAUST): i) KAUST Baseline Research Scheme, ii) CRG Grant ORFS-
CRG12-2024-6460, and iii) Center of Excellence for Generative Al, under award number 5940.

REFERENCES

Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. Advances in Neural
Information Processing Systems, 24, 2011.

Abdelkrim Alahyane, Céline Comte, Matthieu Jonckheere, and Eric Moulines. Optimizing asyn-
chronous federated learning: A delicate trade-off between model-parameter staleness and update
frequency. arXiv preprint arXiv:2502.08206, 2025.

Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic gra-
dient descent with delayed updates. In Algorithmic Learning Theory, pp. 111-132. PMLR, 2020.

Mahmoud Assran, Arda Aytekin, Hamid Reza Feyzmahdavian, Mikael Johansson, and Michael G
Rabbat. Advances in asynchronous parallel and distributed optimization. Proceedings of the
IEEE, 108(11):2013-2031, 2020.

Doron Blatt, Alfred O Hero, and Hillel Gauchman. A convergent incremental gradient method with
a constant step size. SIAM Journal on Optimization, 18(1):29-51, 2007.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877-1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8acl42f64a—-Paper.pdf.

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting dis-
tributed synchronous SGD. arXiv preprint arXiv:1604.00981, 2016.

Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. Asynchronous stochastic
optimization robust to arbitrary delays. Advances in Neural Information Processing Systems, 34:
9024-9035, 2021.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc' au-
relio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and Andrew Ng. Large
scale distributed deep networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger
(eds.), Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/6aca97005c68£1206823815£66102863-Paper.pdf.

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, and Priya Nagpurkar. Slow and
stale gradients can win the race: Error-runtime trade-offs in distributed SGD. In International
Conference on Artificial Intelligence and Statistics, pp. 803—-812. PMLR, 2018.

Hamid Reza Feyzmahdavian and Mikael Johansson. Asynchronous iterations in optimization: New
sequence results and sharper algorithmic guarantees. Journal of Machine Learning Research, 24
(158):1-75, 2023.

Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-batch

algorithm for regularized stochastic optimization. IEEE Transactions on Automatic Control, 61
(12):3740-3754, 2016.

11

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf

Published as a conference paper at ICLR 2026

Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. A general theory for federated
optimization with asynchronous and heterogeneous clients updates. Journal of Machine Learning
Research, 24(110):1-43, 2023.

Margalit R Glasgow and Mary Wootters. Asynchronous distributed optimization with stochastic de-
lays. In International Conference on Artificial Intelligence and Statistics, pp. 9247-9279. PMLR,
2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Mert Gurbuzbalaban, Asuman Ozdaglar, and Pablo A Parrilo. On the convergence rate of incremen-
tal aggregated gradient algorithms. SIAM Journal on Optimization, 27(2):1035-1048, 2017.

Rustem Islamov, Mher Safaryan, and Dan Alistarh. ~AsGrad: A sharp unified analysis of
asynchronous-SGD algorithms. In International Conference on Artificial Intelligence and Statis-
tics, pp. 649-657. PMLR, 2024.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. On vari-
ance reduction in stochastic gradient descent and its asynchronous variants. Advances in Neural
Information Processing Systems, 28, 2015.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1-2):1-210, 2021.

Anastasiia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees for
asynchronous SGD for distributed and federated learning. Advances in Neural Information Pro-
cessing Systems, 35:17202-17215, 2022.

Jakub Kone¢ny, H. Brendan McMahan, Felix X. Yu, Peter Richtdrik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. In NIPS
Workshop on Private Multi-Party Machine Learning, 2016.

Remi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. Improved asynchronous parallel op-
timization analysis for stochastic incremental methods. Journal of Machine Learning Research,
19(81):1-68, 2018. URL http://jmlr.org/papers/v19/17-650.html.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Mu Li, David G Andersen, Alexander Smola, and Kai Yu. Communication efficient distributed
machine learning with the parameter server. Advances in Neural Information Processing Systems,
27,2014,

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Sys-
tems, 2:429-450, 2020.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient for
nonconvex optimization. Advances in Neural Information Processing Systems, 28, 2015.

Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran, and
Michael I Jordan. Perturbed iterate analysis for asynchronous stochastic optimization. SIAM
Journal on Optimization, 27(4):2202-2229, 2017.

Artavazd Maranjyan, Omar Shaikh Omar, and Peter Richtarik. Mindflayer SGD: Efficient parallel
SGD in the presence of heterogeneous and random worker compute times. In The 415t Conference
on Uncertainty in Artificial Intelligence, 2025a. URL https://openreview.net/forum?
1d=RNpvu3MSvm.

12

http://jmlr.org/papers/v19/17-650.html
https://openreview.net/forum?id=RNpvu3MSvm
https://openreview.net/forum?id=RNpvu3MSvm

Published as a conference paper at ICLR 2026

Artavazd Maranjyan, El Mehdi Saad, Peter Richtérik, and Francesco Orabona. ATA: Adaptive task
allocation for efficient resource management in distributed machine learning. In International
Conference on Machine Learning, 2025b.

Artavazd Maranjyan, Mher Safaryan, and Peter Richtarik. GradSkip: Communication-accelerated
local gradient methods with better computational complexity. Transactions on Machine Learn-
ing Research, 2025c. ISSN 2835-8856. URL https://openreview.net/forum?id=
6R3fRgFfhn.

Artavazd Maranjyan, Alexander Tyurin, and Peter Richtarik. Ringmaster ASGD: The first Asyn-
chronous SGD with optimal time complexity. In International Conference on Machine Learning,
2025d.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273-1282. PMLR, 2017.

H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agiiera y Arcas. Federated learning
of deep networks using model averaging. arXiv preprint arXiv:1602.05629, 2:2, 2016.

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake E Woodworth. Asynchronous
SGD beats minibatch SGD under arbitrary delays. Advances in Neural Information Processing
Systems, 35:420—433, 2022.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vi-
jay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
Efficient large-scale language model training on GPU clusters using Megatron-LM. In Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1-15, 2021.

Yurii Nesterov. Lectures on Convex Optimization, volume 137. Springer, 2018.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and
Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In International
Conference on Artificial Intelligence and Statistics, pp. 3581-3607. PMLR, 2022.

Lam Nguyen, Phuong Ha Nguyen, Marten Dijk, Peter Richtarik, Katya Scheinberg, and Martin
Takac. SGD and Hogwild! convergence without the bounded gradients assumption. In Interna-
tional Conference on Machine Learning, pp. 3750-3758. PMLR, 2018.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. HOGWILD!: A lock-free ap-
proach to parallelizing stochastic gradient descent. Advances in Neural Information Processing
Systems, 24, 2011.

Nicolas Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an exponential
convergence rate for finite training sets. Advances in Neural Information Processing Systems, 25,
2012.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162:83—-112, 2017.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-LM: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
IEEE Transactions on Neural Networks and Learning Systems, 34(12):9587-9603, 2022.

John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed asynchronous deterministic and
stochastic gradient optimization algorithms. IEEE Transactions on Automatic Control, 31(9):
803-812, 1986.

Alexander Tyurin. Tight time complexities in parallel stochastic optimization with arbitrary compu-
tation dynamics. arXiv preprint arXiv:2408.04929, 2024.

13

https://openreview.net/forum?id=6R3fRqFfhn
https://openreview.net/forum?id=6R3fRqFfhn

Published as a conference paper at ICLR 2026

Alexander Tyurin and Peter Richtarik. Optimal time complexities of parallel stochastic optimization
methods under a fixed computation model. Advances in Neural Information Processing Systems,
36, 2024.

Alexander Tyurin and Peter Richtarik. On the optimal time complexities in decentralized stochastic
asynchronous optimization. Advances in Neural Information Processing Systems, 37, 2024.

Alexander Tyurin, Kaja Gruntkowska, and Peter Richtdrik. Freya PAGE: First optimal time com-
plexity for large-scale nonconvex finite-sum optimization with heterogeneous asynchronous com-
putations. Advances in Neural Information Processing Systems, 37, 2024a.

Alexander Tyurin, Marta Pozzi, Ivan Ilin, and Peter Richtarik. Shadowheart SGD: Distributed asyn-
chronous SGD with optimal time complexity under arbitrary computation and communication
heterogeneity. Advances in Neural Information Processing Systems, 37, 2024b.

N Denizcan Vanli, Mert Gurbuzbalaban, and Asuman Ozdaglar. Global convergence rate of proxi-
mal incremental aggregated gradient methods. SIAM Journal on Optimization, 28(2):1282-1300,
2018.

Qiyuan Wang, Qiangian Yang, Shibo He, Zhiguo Shi, and Jiming Chen. AsyncFedED: Asyn-
chronous federated learning with euclidean distance based adaptive weight aggregation. arXiv
preprint arXiv:2205.13797, 2022a.

Xiaolu Wang, Zijian Li, Shi Jin, and Jun Zhang. Achieving linear speedup in asynchronous federated
learning with heterogeneous clients. IEEE Transactions on Mobile Computing, 2024.

Xiaolu Wang, Yuchang Sun, Hoi To Wai, and Jun Zhang. Incremental aggregated asynchronous
SGD for arbitrarily heterogeneous data, 2025. URL https://openreview.net/forum?
1d=m3x4kDbYAK.

Zhongyu Wang, Zhaoyang Zhang, Yuqing Tian, Qianqian Yang, Hangguan Shan, Wei Wang, and
Tony QS Quek. Asynchronous federated learning over wireless communication networks. /IEEE
Transactions on Wireless Communications, 21(9):6961-6978, 2022b.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. arXiv preprint
arXiv:1903.03934, 2019.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In Kama-
lika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
7252-7261. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.press/v97/
yurochkinl9a.html.

Feilong Zhang, Xianming Liu, Shiyi Lin, Gang Wu, Xiong Zhou, Junjun Jiang, and Xiangyang Ji.
No one idles: Efficient heterogeneous federated learning with parallel edge and server computa-
tion. In International Conference on Machine Learning, pp. 41399-41413. PMLR, 2023.

Shen-Yi Zhao and Wu-Jun Li. Fast asynchronous parallel stochastic gradient descent: A lock-
free approach with convergence guarantee. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu.
Asynchronous stochastic gradient descent with delay compensation. In International Conference
on Machine Learning, pp. 4120-4129. PMLR, 2017.

Kaiwen Zhou, Fanhua Shang, and James Cheng. A simple stochastic variance reduced algorithm
with fast convergence rates. In International Conference on Machine Learning, pp. 5980-5989.
PMLR, 2018.

14

https://openreview.net/forum?id=m3x4kDbYAK
https://openreview.net/forum?id=m3x4kDbYAK
https://proceedings.mlr.press/v97/yurochkin19a.html
https://proceedings.mlr.press/v97/yurochkin19a.html

Published as a conference paper at ICLR 2026

A EXPERIMENTS

To validate our theoretical results we perform a toy simulation.

We consider image classification on MNIST (LeCun et al., 2010) and on Fashion-MNIST (Xiao
et al., 2017) with standard normalization for both datasets. To enable equal client sizes, we first trim
the dataset so that the total number of examples is divisible by the number of clients n = 100. To
obtain heterogeneous datasets across clients, we then partition the trimmed set using an equal-size
Dirichlet procedure with concentration parameter o = 0.1 (Yurochkin et al., 2019). For each client
j € [n], we draw proportions p; ~ Dirichlet(c, ..., a) over the classes and compute a rounded
class-allocation vector whose entries sum exactly to V/n, where N is the trimmed dataset size. This
creates non-IID data where each client has a skewed distribution over classes (with o = 0.1, clients
typically observe only 1-2 classes frequently).

When assigning samples, we take the requested number from each class pool for client j. If a class
pool does not have enough remaining examples to meet the requested amount, the client receives
whatever is left from that class and the shortfall is topped up using samples from other classes that
still have available examples.

Our model is a two-layer MLP Linear(d, 128) — ReLU — Linear(128, 10) trained with mean cross-
entropy. Stochastic gradients at the clients use a minibatch of size 4, while reported gradient norms
are computed on the full dataset.

We emulate heterogeneous compute by assigning each client ¢ a base delay and a random jitter:
T =1+ |nil, n; ~N(0,7), forallie [n].
For each method we tune the stepsize ~ within a fixed wall-clock budget. We sweep
~ € {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0} ,

and then fix the best v per method for evaluation.

We report the full-batch gradient-norm squared ||V f(z*)||, versus wall-clock time. Each method
is run 30 times over different seeds. We report the median with interquartile range (IQR). To reduce
high-frequency noise, we apply a centered moving-average smoothing to the aggregated curves

(post-aggregation), while keeping the initial point unchanged.

Figure 1 shows the results. We observe that Ringleader ASGD converges faster compared to Malenia
SGD and IA?SGD. Although theory suggests that Ringleader ASGD and Malenia SGD have the same
time complexity, in practice Ringleader ASGD benefits from the n updates performed in Phase 2
instead of one synchronous update. This design enables more optimization steps within the same
wall-clock budget, which is especially advantageous when updates are sparse.

B RELATED WORK

Research on asynchronous stochastic gradient methods dates back to the seminal work of Tsitsiklis
et al. (1986), and gained renewed momentum with the introduction of the HOGWILD! algorithm
(Recht et al., 2011). HOGWILD! is fundamentally an asynchronous coordinate descent method: up-
dates are performed lock-free with inconsistent reads and writes, and its convergence guarantees rely
on sparsity assumptions that are rarely realistic in modern large-scale machine learning. Subsequent
refinements of this paradigm include works by J Reddi et al. (2015); Zhao & Li (2016); Mania et al.
(2017); Leblond et al. (2018); Nguyen et al. (2018); Zhou et al. (2018), but these works remain tied
to the coordinate descent setting with inconsistent memory accesses, and thus differ substantially
from our focus.

Closer to our setting are works where updates are based on gradients that are applied consistently.
Early contributions, typically under the homogeneous-data assumption (all workers sample from
the same distribution), include the work of Agarwal & Duchi (2011), who studied convex objec-
tives, as well as later extensions to the non-convex case such as the work of Lian et al. (2015) and
Dutta et al. (2018), the latter analyzing exponentially distributed computation times. Other rele-
vant results in this line include those of Feyzmahdavian et al. (2016); Zheng et al. (2017); Arjevani
et al. (2020); Feyzmahdavian & Johansson (2023), all of which assume fixed delays. More recently,

15

Published as a conference paper at ICLR 2026

—*— Ringleader ASGD e —*— Ringleader ASGD
—e— Malenia SGD —e— Malenia SGD
—4— IA?SGD —4— IA2SGD

0 10000 125000 150000 175000
Runtime

(a) MNIST (b) Fashion-MNIST

Figure 1: Convergence comparison showing median gradient norm squared ||V f (z*)||2 (solid lines)
with interquartile ranges (shaded regions) versus wall-clock time, averaged over 30 random seeds.
Setup: Two-layer MLP with architecture Linear(d, 128) — ReLU — Linear(128,10) trained
on (a) MNIST and (b) Fashion-MNIST datasets. Client delays: Heterogeneous delays simulated
as 7, = i + |n;| where n; ~ N(0,4) for client i € [n], where we choose n = 100. Results:
With optimally tuned stepsizes, Ringleader ASGD achieves faster convergence than both Malenia
SGD and IA®SGD, despite Ringleader ASGD and Malenia SGD having equivalent time complexity
guarantees.

delay-adaptive methods have been proposed, aiming to improve performance by down-weighting
very stale gradients (Cohen et al., 2021; Koloskova et al., 2022; Mishchenko et al., 2022).

Particularly relevant to our work are asynchronous variants of SAGA. Leblond et al. (2018) devel-
oped a shared-parameter version in the spirit of HOGWILD!, while Glasgow & Wootters (2022)
studied a distributed setting that employs full gradients, in contrast to our stochastic-gradient per-
spective.

A large body of recent work investigates asynchronous methods in federated learning (FL), where
clients hold data from heterogeneous distributions. Notable contributions include works by Xie
et al. (2019); Mishchenko et al. (2022); Koloskova et al. (2022); Wang et al. (2022a;b); Glasgow
& Wootters (2022); Fraboni et al. (2023); Zhang et al. (2023); Wang et al. (2024); Islamov et al.
(2024); Alahyane et al. (2025).

More broadly, Assran et al. (2020) provide a comprehensive survey of asynchronous optimization
methods.

There is another line of work that began with Tyurin & Richtarik (2024), who established lower
bounds for parallel methods and proposed optimal synchronous algorithms together with an asyn-
chronous counterpart. Several follow-up papers extended this semi-asynchronous framework to
other settings (Tyurin et al., 2024a;b; Tyurin & Richtarik, 2024; Maranjyan et al., 2025a).

Finally, beyond asynchronous approaches, several synchronous methods address system heterogene-
ity by adapting local training to worker speeds. The canonical method, FedAvg (McMahan et al.,
2017), performs multiple local steps on each worker. Variants have adapted the number of local
steps to match workers’ computation speeds (Li et al., 2020; Maranjyan et al., 2025c), effectively
balancing task assignments across heterogeneous systems. More recently, Maranjyan et al. (2025b)
proposed adapting the number of local steps dynamically, without requiring prior knowledge of
worker speeds.

C THE COMPUTATION-ONLY MODEL AND THE ROLE OF ASYNCHRONY

This section clarifies the scope of our modeling assumptions and the specific phenomenon our results
target. Asynchrony is designed to eliminate waiting time: the idle time that arises when workers
have heterogeneous computation speeds or experience straggling behavior due to hardware stalls,
load imbalance, or even network delays. A key point is that the goal of asynchrony is not to reduce

16

Published as a conference paper at ICLR 2026

communication cost, but to ensure that slow or delayed workers do not force faster workers to remain
idle.

Critically, even in the simplest setting—homogeneous data and no communication cost—it was
unknown until very recently whether an asynchronous SGD method could match the optimal syn-
chronous rate. In fact, existing asynchronous methods were shown to be worse than the optimal syn-
chronous algorithm in this basic regime (Tyurin & Richtérik, 2024). The recent work of Maranjyan
et al. (2025d) resolved this foundational case for the first time by showing that, under homogeneous
data, an asynchronous method can achieve the same optimal time complexity as the synchronous
method Rennala SGD (Tyurin & Richtdrik, 2024). Our work extends this understanding to the sig-
nificantly more challenging heterogeneous-data setting and shows that asynchrony can solve the
problem it is designed for—and that it can do so optimally.

Asynchrony and stragglers. Stragglers may be caused by slow computation, device variability,
or even communication delays. From the server’s perspective, a worker whose gradient arrives late
because it is still communicating appears identical to one that is slow at computing. Asynchrony
ensures that such delays—regardless of source—do not block progress: fast workers continue con-
tributing updates while slow or delayed workers catch up. This ability to eliminate idle time is
precisely the purpose of asynchronous methods.

Asynchrony does not reduce communication cost. Although asynchrony prevents waiting dur-
ing communication-induced delays, it does not reduce the communication overhead itself. Reducing
communication cost requires orthogonal techniques such as gradient compression, sparsification,
quantization, or local-update schemes (e.g., FedAvg (McMahan et al., 2016)). For example, Tyurin
et al. (2024b) explicitly study communication-aware training and use compression-based methods
to reduce communication time—demonstrating that communication efficiency is a separate algo-
rithmic axis that must be combined with, rather than replaced by, asynchrony. Thus, asynchrony
resolves the waiting problem caused by delays, but not the communication-cost problem; addressing
the latter requires additional mechanisms.

Why communication is not modeled explicitly here. For these reasons, we adopt the stan-
dard computation-only model used in essentially all theoretical works on asynchronous SGD
(Mishchenko et al., 2022; Koloskova et al., 2022; Tyurin & Richtérik, 2024; Tyurin & Richtarik,
2024; Maranjyan et al., 2025d), which is also the model under which the lower bounds of Tyurin &
Richtdrik (2024) are derived. Our claims of optimal time complexity therefore refer to this shared
and well-established model. Studying asynchrony under explicit communication cost—where it
must interact with compression, local updates, or buffering—requires new lower bounds and a dif-
ferent theoretical framework, and is beyond the scope of this work.

D ARBITRARILY CHANGING COMPUTATION TIMES

In practice, the fixed computation model (2) is often not satisfied. The compute power of devices
can vary over time due to temporary disconnections, hardware or network delays, fluctuations in
processing capacity, or other transient effects (Maranjyan et al., 2025a).

In this section we extend our theory to the more general setting of arbitrarily varying computation
times.

D.1 UNIVERSAL COMPUTATION MODEL

To formalize this setting, we adopt the universal computation model introduced by Tyurin (2024).
For each worker i € [n], we define a compute power function
pi: Ry =Ry,

assumed nonnegative and continuous almost everywhere (countably many jumps allowed). For any
T, > T1 > 0, the number of stochastic gradients completed by worker ¢ on [Ty, Ts] is

T

T
#gradients in [T, T5] = {/ pi(t) dtJ .

17

Published as a conference paper at ICLR 2026

Here, p;(t) models the worker’s time-varying computational ability: smaller values over an interval
yield fewer completed gradients, and larger values yield more.

For instance, if worker 7 remains idle for the first 7" seconds and then becomes active, this corre-
sponds to p;(t) = 0 for ¢t < T and p;(t) > 0 for ¢t > T. More generally, p;(t) may follow periodic
or irregular patterns, leading to bursts of activity, pauses, or chaotic changes in compute power. The
process p;(t) may even be random, and all results hold conditional on the realized sample paths of
{pi}.

The universal computation model reduces to the fixed computation model (2) when p;(t) = 1/, for
allt > 0 and ¢ € [n]. In this case,

T —T
#gradients in [T}, T} = { 2 1J7

Ti

meaning that worker ¢ computes one stochastic gradient after 7} + 7; seconds, two gradients after
Ty + 27; seconds, and so on.

D.2 TOWARD AN OPTIMAL METHOD

In the general setting of arbitrarily varying computation times, Algorithm 1 is not optimal. To see
why, consider the following adversarial timing pattern.

Suppose there are two workers. During one gradient computation by the slower worker, the faster
worker computes s gradients. Immediately afterwards, they switch roles: the previously fast worker
slows down by a factor of s, while the previously slow one speeds up by the same factor. This pattern
repeats each time the slower worker finishes a gradient computation.

In this setting, if we run Algorithm 1, the server waits in each Phase 1 for a single gradient from
every worker. Thus, the slower worker always contributes only one gradient, and the harmonic mean
of the batch sizes satisfies

1 < B <2.

From Theorem 5.1, the iteration complexity is

nLA o?
o2 (14 52)):

When @°/ne is much larger than B, this dependence can be highly suboptimal.

Instead, suppose the server waits until one full round of the above process completes, collecting
s + 1 gradients from each worker. Then the harmonic mean satisfies B > s + 1, which can be
arbitrarily larger than 2. Since in practice both s and ¢”/ne can be very large, the naive strategy of
waiting for only one gradient per worker (as in Algorithm 1) cannot be optimal in the arbitrary-time
setting.

D.3 AN OPTIMAL METHOD

The solution is simple and follows directly from the iteration complexity bound. From

nLA o?
o2 (1+52)):

we see that to balance the terms it suffices to ensure

0.2

B > —.
ne

Accordingly, we modify the stopping condition in Phase 1 of Algorithm 1. Instead of requiring the
server to receive at least one gradient from each worker, we require the stronger condition used in

Malenia SGD, namely
-1
11 2
() > max{l,a} , &)
n b; ne

Published as a conference paper at ICLR 2026

where b; is the number of gradients received from worker .

In the low-noise regime, where 02/ns < 1, the condition reduces to requiring b; > 1 for all 4, so the
algorithm coincides with the original Algorithm 1. In the high-noise regime, the algorithm collects
more gradients in Phase 1, ensuring that B is sufficiently large for optimal convergence.

With this change, Phase 1 of our algorithm matches that of Malenia SGD. The difference lies in
Phase 2: our algorithm continues to use the ongoing gradient computations from all workers to
perform n updates, while Malenia SGD discards any unfinished gradients, performs a single update,
and then proceeds to the next round.

The following theorem establishes the time complexity of our algorithm under the universal compu-
tation model.
Theorem D.1. Under Assumptions 1, 2, and 3, let the stepsize in Ringleader ASGD be
1
T 10nL

Then, under the universal computation model, Ringleader ASGD finds an e—stationary point within
at most TX seconds, where

’Y

K =

160LA
e)

and T denotes the K -th element of the recursively defined sequence

1 n
TF = min{T>0: |~
min = HZ\‘

=1

-1
T -1 o2

/ pi(t)dt > max{l,} ,
Th_1 ne

for all k > 1, with initialization 70 = (.

This result matches the lower bound derived by Tyurin (2024), and therefore the proposed method
is optimal.

Proof. Under the condition in (4), each gradient-type step of the algorithm satisfies

—1
e 1 o2
BF =2y = > 1,— 5.
(nEbf) - max{ ’ne}
2
B:max{l,a}.
ne

To derive the time complexity, consider the time required to perform n iterations. Each block of
n updates occurs in Phase 2 following the Phase 1 gradient collection. Starting from time 7' = 0,
Phase 1 ends once the accumulated number of gradients satisfies condition (4), which occurs at time

-1

-1
1 — T o?

T:=min{T>0:[= ;(t) dt > 1, —

', = min > RZ\‘/O pi(t) J > max{ ns}

i=1

After Phase 1, to complete n updates in Phase 2 we must wait for the ongoing computations to finish.
This requires at most

1 n
T!=min{7T>0:[=
min > HZ\‘

i=1

-1

T 1
/ ilt) dtJ > 1
Tl

+

19

Published as a conference paper at ICLR 2026

Thus, the total time to complete all K iterations is bounded by

TrPeM

where the sequence {T%};>¢ is defined recursively as

-1

T -1 o2
/ pi(t)dt > max{L} , T°=0.
Th_1 ne

1 n
TF =min{ T >0: Z{

n
i=1

E AUXILIARY LEMMAS

Here we provide proofs of lemmas omitted from the main text, along with auxiliary results that will
be used later.

E.1 RELATIONS BETWEEN SMOOTHNESS CONSTANTS

We begin with a lemma relating the different smoothness constants.

Lemma E.1 (Smoothness Bounds). Suppose Assumption 2 holds with constant L > 0. Then f is
L y—smooth with Ly < L. Moreover, if each f; is Ly,—smooth, then Assumption 2 is satisfied, and
we have

< max Ly =: Lyay -
i€[n]

D5
n 4 i
=1
Finally, if all f; are identical, i.e., f; = f forall i € [n], then L = Ly.

Recall from Assumption 2 that we assumed the following generalized smoothness condition: for

some constant L > 0 and for all z € R% and y1, ..., y, € RY,
n 2 n
Vi@ -2 vhw)| < B3 e ul? ®
n 2= i\Yi = £ Yill -

Recall that a function ¢ is called Ly—smooth if
IVé(2) = Vo)l < Lo |z —yll, Vo,y €R?.

Here L4 denotes the minimal such constant. We are ready to prove the lemma.

Proof. For the first inequality, take y; = - - - = y,, = y. Then (5) reduces to

IVf(x) = ViI® < L* ||z - y||*,
so f is L-smooth. By definition of L as the minimal smoothness constant, this implies L < L.

For the second inequality, by the triangle inequality, then by the smoothness of each f;, and finally
by Cauchy—Schwarz,

T — yi|

V@) - > Vi)

1 ¢ 1 &
< 52 IVfi(x) = Vfilyi)ll < ﬁZLJ‘}‘,
i=1

i=1

n

SV INES S
" P\ o

i=1

IN

Squaring both sides shows that (5) holds with L = /1 3" | L3 .

20

Published as a conference paper at ICLR 2026

Finally, suppose all f; are identical: f; = f for all i. Then

Vi) - > Vi)
=1

n L n
< S SIVI@) - VIl = LY e -y
i=1

i1
<Ly

1 & 5
=3 el
=1

where the last step uses Cauchy—Schwarz. Squaring both sides yields

2 L? n
2
<3 e —ul?,
=1

i.e., (5) holds with L < L. Combined with L; < L, we conclude L = Ly. O

Vi) - Vi)
i=1

E.2 PROOF OF LEMMA 4.1

The following lemma gives a bound on the delays of Ringleader ASGD.
Lemma 4.1 (Bounded Delay). In Ringleader ASGD (Algorithm 1), the delays 0% satisfy

ok <on—2,

for any worker ¢ € [n] and any iteration k > 0.

Proof. We prove this by analyzing the structure of Ringleader ASGD. The algorithm operates in
rounds, where each round consists of Phase 1 (gradient collection) followed by Phase 2 (sequential
updates). In each Phase 2, the server performs exactly n updates, one for each worker. Phase 2
begins at iterations 0, n, 2n, 3n, .. ., i.e., at multiples of n.

First round (iterations 0 to n» — 1): Initially, all workers compute gradients at point 2, so during
iterations 0, 1,...,n — 1, the server receives gradients computed at z°. For any iteration & in this
range, the server processes gradients V fi(xk_‘si), s0 6 = k < n — 1. Thus, delays simply
increment during Phase 2.

At the end of this round, each worker i has received a new model x7 for some j € {1,2,...,n},
and these update iterations are distinct across workers.

Second round (iterations n to 2n — 1): At the start of the second Phase 2 (at iteration n), the
gradient table contains gradients V f; ("%) where 67 € {0, 1,...,n — 1}. These delay values are
distinct across workers since each worker received its update at a different iteration in the previous
round.

During iterations n to 2n — 1, these delays increase by 1 at each iteration for the same reason as in
the first Phase 2, giving 51-2”*1 € {n—1,n,...,2n — 2} at the end of this round. At the same time,
all workers receive new points to compute gradients from, so during the next Phase 2, the delays
will again be distinct for all workers and in {0,1,...,n — 1}.

General pattern: By induction, at the beginning of each round starting at iteration cn (for integer
¢ > 1), the delays 6;" take distinct values in {0,1,...,n — 1}. During each Phase 2, these delays
increase by at most n — 1, giving the bound:

F<tn—-1)+mn-1)=2n-2.

E.3 VARIANCE TERM

The following lemma bounds the variance of the gradient estimator in Ringleader ASGD.

21

Published as a conference paper at ICLR 2026

Lemma E.2 (Variance Bound). Under Assumption 1, the following variance-type inequality holds
for the gradient estimator used in Algorithm 1:

2

g —fZsz(- 5f)

Proof. Recall that the gradient estimator is defined as

n n by _
AT DEF I DIEES: z zw ity
i=1 =1 ¢ j:l ’L

Let F* denote the sigma-field containing all randomness up to the start of the current round, i.e., up
to iteration k — (k mod n). Conditioning on F*, the evaluation points 2¥ =% are deterministic, and
the stochastic gradients gf *Jare independent across both workers 7 and samples ;.

Using the law of total expectation and the independence of stochastic gradients, we have

2 2

fk:

fH |

ou] -of [y -0 |

1]1

=K

ol 1S ()

F v ()
z{ ot -9 ()
i=1

For each worker i, the conditional variance of the minibatch gradient estimator is

E“g’“

0.2

)
bi

Nl N E

where the last inequality follows from Assumption 1.

Combining these results, we get

2

g —*vaz< k- ‘Sf)

n

F PROOF OF THEOREM 5.1

Our convergence analysis follows the structured approach employed by Maranjyan et al. (2025d),
which decomposes the proof into two key components: a descent lemma that tracks the progress of
the objective function and a residual estimation lemma that controls the accumulated delays in the
system.

The first lemma quantifies how much the objective function decreases at each iteration, account-
ing for both the standard gradient descent progress and the additional complexities introduced by
asynchronous updates.

22

Published as a conference paper at ICLR 2026

Lemma F.1 (Descent Lemma; Proof in Appendix F.1). Under Assumptions 1 and 2, if the stepsize
in Algorithm 1 satisfies v < 1/aL, then the following inequality holds

2

E[f («*)] <E[f (a%)] - 2E [|VF @8[] - JE

2 3v2Lo?
|+*5

1L & H k k—ok
Z NTRr — :
o ; [v 2B

k-1 Lo e
n V()

+792L Z
{=k—(k mod n)

This descent lemma shares a similar structure with its counterpart in the homogeneous setting ana-
lyzed by Maranjyan et al. (2025d), but with a crucial additional term. The final summation term in
the upper bound captures the effect of using stale gradients from the gradient table—a phenomenon
we refer to as “table delay”. This term is absent in the homogeneous case because no gradient table
is maintained. Indeed, when n = 1, our setting reduces to the homogeneous case, the gradient ta-
ble becomes unnecessary, and this additional term vanishes, recovering the original descent lemma
established by Maranjyan et al. (2025d).

2

Next, similar to (Maranjyan et al., 2025d), we derive a lemma to bound the term involving the
difference between current and old points.

Lemma F.2 (Residual Estimation; Proof in Appendix F.2). Under Assumption 1, the iterates of
Ringleader ASGD (Algorithm 1) with stepsize -y < 1/anL satisfy the following bound

2
n K-1 n
1 Lok |2 2yn 1 gk 2y0?
n ' SIK E n (j) '
- nz:: {H o *LK,;J H;ij v T IB

Finally, we get the iteration complexity combining these two lemmas.
Theorem 5.1 (Iteration Complexity). Under Assumptions 1, 2, and 3, let the stepsize in Ringleader

ASGD (Algorithm 1) be
i) L EB
TN RLL 10002 [
K—
Z V7 @)7] <<

32nLA 40LAc? nLA o?
K> = 1 .
- e * Be? © (€ (+ an))

Then,

for

Proof. We start by averaging the inequality from Lemma F.1 over K iterations and dividing both
sides by 7/2
2

= ZE[HVf } ZE lelzib;Vfi (xkfa:?)

2A 3yLo?
= 77 B
214 "

TR ZEMI’“ =
k=0 i=1
K—1 k—1 1 & , 2

+2yL— =S ()
k=0 {=k—(k mod n) " i=1

23

Published as a conference paper at ICLR 2026

We now bound the third term on the right using Lemma F.2

= Z]E“Wf } Z]E iivﬁ (Ikﬂs?)

k=0 k=0

2

2A n 3yLo? 2vyLo?
WK B B

2
K-1

1 1 & -
+27Ln?ZE EZij(m 9)
k=0 j=1
2

1 K-1 k—1
+29L7 > > E

k=0 ¢=k—(k mod n)

o)

2A n 5yLo?
'yK B
_ -
1 K-1 1 n -
+27Ln?];)E E;Wj (m a-)
- =

1 = 18 "
k—sk
+2yLn > E EZ;VL; (x)

k=0

Now, using the bound v < 1/snr, we obtain

KZ (197 (@)]] < 22 + 222

Finally, plugging in the stepsize and the expression for K ensures the right-hand side is bounded by
E. O

F.1 PROOF OF LEMMA F.1

We now prove the descent lemma.

Lemma F.1 (Descent Lemma). Under Assumptions 1 and 2, if the stepsize in Algorithm 1 satisfies
v < 1/41, then the following inequality holds

2

B[f (1)) <E[f ()] - 3B 197)] -]
'YLQ liE [Hx e s
k—1 :Liz:;vfi (xz—af)

3y2Lo?
I
2

+~2L Z

{=k—(k mod n)

Proof. Some proof techniques are adapted from the works of Maranjyan et al. (2025d) and Wang
et al. (2025).

From Assumption 2 and Lemma E.1, we know that f is L-smooth. Therefore, the following stan-
dard inequality holds (Nesterov, 2018)

E[f(z")] <E|f(@") - (Vf@* >+L772H9’“HQ : ©)

24

Published as a conference paper at ICLR 2026

Recall that the gradient estimator is defined as

Let F* denote the sigma-field containing all randomness up to the start of the current Phase 2,
i.e., up to iteration k — (k mod n). A key observation is that all gradients in the current gradient
table were computed and received during the current round. Since these gradients were computed
at points from previous iterations within the current round, we have k — 6¥ < k — (k mod n) for

all i € [n]. Conditioning on F*, the points 2%~ 3} are deterministic. Therefore, we can compute the

conditional expectation of the gradient estimator:

sio| =25 g e 7 -3 en ()

i=1 "t j=1

The last equality follows from the unbiasedness of the stochastic gradient estimator (Assumption 1).

Using this conditional expectation and the law of total expectation, we can now simplify the inner

product torm n (6
(e 1)

el{ere oo)

<v 123w (xk—65>>]

<Vf(z) v (ot ’“m"d“)),gki;ﬂ;vjz(x“f)ﬂ

(9 (s ttm) - 3w ())

<Vf ()1 évﬂ' (xk—&?)ﬂ

T

ot 25
i=1

T

E[(V/ (s*).5")] =E

=K

Next, using Assumption 2, we have

2<Vf (ﬁ),iiwi (;p”f)>]
12w ()

2T =E

2

=E [||[Vf (=

>E[|Vf ()] +E Zsz(")

25

Published as a conference paper at ICLR 2026

Next, we analyze T5

T, =E

<Vf (z*) = vf (ka(k mod n)) g~ — igvfi (Ikak)ﬂ

—(k m —k 1 " — f
> -E ‘Vf(xk) _vf (xk (k odn))H 7" — E;Vﬁ (xk 5) H
i —(k mod n e 1 = _5k
2 LB | [of -t lgk—n;Vfi (+) H
[k-1 Lo)
|| ¢=k—(k modn) " i=1
k—1 n
> S el 23w () |
{=k—(k mod n) i=1
k—1 L , Lo NE
2 —Ly Z B E[ngH } +E gk_gzvfi (:Uk_‘si)
i=1

{=k—(k mod n)

> =" kgl E [H’ZHQ} — (k mod n) Lyo®
=77 g 2BFn
{=k—(k mod n)

L~ = 21 Lryo?
Z Y Z E [ngH } DY
{=k—(k mod n)

The inequalities follow from the Cauchy-Schwarz inequality, L—smoothness of f, the triangle in-
equality, Young’s inequality, Lemma E.2, and finally (k mod n) <n —1 < n.

It remains to bound the term E {H g* ||2} . Using Young’s inequality, we have

i} - 2
IRS : 1 V
e [[1g4°] < 28 (|| -3 vs ()| | 2R | ot - 09 ()
i=1 i=1
: 1 n 2] 2 2
(24 20°
=

where in the last step we used Lemma E.2.

26

Published as a conference paper at ICLR 2026

Now, by combining all terms in (6), we obtain

E[[19°°] + Loz + LEg)]

2

<E[f (")) - 2E [|VS @°)[] - JE
i ZE[H i

2L kf Z v, (:&-55)

{=k—(k mod n)

+~%LE H vaz k— 65)

2

2

2 2 2 2

9 ~v* Lo v Lo

+7°L BfnJr 9Bk BFn
l=k— (k mod n)

This completes the proof under the stepsize condition v < 1/4r and B := infy>o B k, O

F.2 PROOF OF LEMMA F.2

The following lemma provides an upper bound on the residual error due to delays.

Lemma F.2 (Residual Estimation). Under Assumption 1, the iterates of Ringleader ASGD (Algo-
rithm 1) with stepsize v < 1/4nL satisfy the following bound

2
2

2 2yn \- 1 nv k—s¥ 2yo
} T{Z:: DI NS

27

Published as a conference paper at ICLR 2026

Proof. By Young’s inequality, we have

2

|-t] -2 || = o
t=k—g¥
2
k—1 1 n ,
< 92 L (13—5J>
e || ¥ Lyvs (s
(=k—6F J=1
k—1 1 n . 2
2 ¢ 1 (-5
+29°E nZij (w)
=k—gk Jj=1
= 1 & ¢ : o2
<29%0F Y E ﬁzvfj (ffz_%') +272(5f)237n
L=k—5&F Jj=1

Tik

In the last inequality, we used Jensen’s inequality and Lemma E.2.

Next, we estimate the sum of Tj;,

1 — - 1 . 1 — st
ISPV P

n K-1

1 k—1 1 n e
SIS PIRTIC

i=1 k=0 E:k—éf

2

§2Zn: z_: E||XS vy, ()
i=1 k=0 (=k— 6" N4
n K-1 1 n 2
<23 N E (=Y vy (xk*‘s?)
i=1 k=0 nia
K—-1 1 n 2
< 4n? ZIE fZij (xk*‘sf)
k=0 " Jj=1

In the first and last inequality, we used the bound §;"** < 2n from Lemma 4.1. Finally, applying
the stepsize condition v < 1/4nr yields the result. O

G PROOF OF THEOREM 5.3

Before proving the theorem, we first prove the following lemma.

G.1 PROOF OF LEMMA 5.2

This lemma establishes a time bound for one round of iterations and, more importantly, a lower
bound on B.

28

Published as a conference paper at ICLR 2026

Lemma 5.2. Each block of n consecutive iterations (each round) of Algorithm 1 takes at most 27,

seconds. Moreover, we have
T, 1 — - T,
B Z = — Z’Ti = n .
2 \n 2Tavg

i=1

Proof. The upper bound of 27,, follows from the structure of the algorithm, which consists of two
phases. In the first phase, the server waits until all workers complete at least one gradient computa-
tion, which takes at most 7,, seconds. In the second phase, the server applies the received gradients
and waits for all ongoing computations to finish—which again takes at most 7,, seconds. Thus, the
total time for n iterations is bounded by 27,,.

We now prove the second part of the lemma. Recall that
-1
11 I 1
— E_ — — i il
B=juf B —z&%(@dc) <an> >

b; = inf bk
k>0

We are interested in the number of gradients stored in the table at iteration k. This count includes
gradients computed during Phase 1 plus one additional gradient from Phase 2 (except for the worker
that finished Phase 1 last).

where we define

Since every worker needs to compute at least one gradient during Phase 1, the slowest worker will
take 7, seconds to complete single gradient computation. During this 7,-second interval, faster
workers ¢ < n may still be finishing gradients from the previous round’s Phase 2 before starting
their Phase 1 computations for the current round.

After completing any remaining Phase 2 work (which takes at most 7; seconds), worker ¢ has at
least 7,, — 7; seconds remaining to compute additional gradients for the current round’s Phase 1. The
number of gradients that worker ¢ can compute satisfies

b; > max{l, [w—‘} > Inax{l, In _ 1}.
Ti Ti

For workers 7 where 7,, > 27;, we have

Ty T
Ti 27
and hence
b >
LT
Plugging this bound into the expression for B gives the claimed result. O

We are now ready to prove Theorem 5.3.

Theorem 5.3. Let Assumptions 2, 3, and 1 hold. Let the stepsize in Ringleader ASGD (Algorithm 1)
be v = min {1/8nL,¢B/10L0%}. Then, under the fixed computation model (2), Ringleader ASGD
achieves the optimal time complexity

LA 2
@) ((Tn + Tavga>) .
€ ne

Proof. We start with the iteration complexity from Theorem 5.1
32nLA 40LAc? nLA o2
K > =0 1 .
- T Be (5 (i an))
The time to do n steps is at most 27,, form Lemma 5.2. Then the time complexity is

2
21, X K@<7—nLA <1+U>).
n € Bne

It remains to put B > 7»/2r,,, from Lemma 5.2. O

29

Published as a conference paper at ICLR 2026

H TiME COMPLEXITY OF IA2SGD

The iteration complexity of IA>SGD (Wang et al., 2025) is

max 2
K:@<5LA <1+0>).
e ne

We now analyze the corresponding wall-clock time under the fixed computation model (2). Since
the algorithm performs an update whenever a single worker finishes a computation, we seek the
minimal time 7" such that

Observe that
Hence, if we define T’ by

then
n 1 -1
T = — K.
i=1
It follows that the minimal time 7 is necessarily larger than T”.

It remains to bound §™?*. At initialization, all workers start computing their first gradients simulta-
neously. By the time the slowest worker completes its first gradient (at time 7,,), the other workers
may each have completed multiple gradients. In particular,

n
-
5max > n .
- Z T
i=1
Combining this with the iteration complexity bound, we obtain that the total runtime satisfies

LA 2
T>C><Tn <1+G)7

- € ne

for some universal constant ¢ > 0.

Note that the expression above should not be viewed as an exact upper bound on the runtime. It is
better understood as a simplified estimate of 7', which is sufficient for our purposes and provides a
cleaner basis for comparison.

I IMPROVED MALENIA SGD

Malenia SGD has the following iteration complexity (Tyurin & Richtarik, 2024)

2
K Z 12ALf + 12ALf0’ 7
€ e2nsS

where S is a lower bound on the harmonic mean of the batch sizes, i.e.,

11\
N >
((S) =

for all iterations k. In the original Malenia SGD analysis (Tyurin & Richtarik, 2024), this bound
follows from the condition in (4), which fixes the same value of S across all iterations.

30

Published as a conference paper at ICLR 2026

In the fixed-time regime (2), however, this condition is no longer necessary. By adopting the same
strategy as Ringleader ASGD (Algorithm 1)—namely, waiting for at least one gradient from each
worker—we effectively replace S with B in the rate. This yields the following time complexity

127, AL 2
oK = 2Ly (HJ),
€ enB

Substituting the expression for B from Lemma 5.2 and proceeding as in the proof of Theorem 5.3,
we obtain the same overall time complexity as before—this time without requiring condition (4),
which depends on knowing ¢ and fixing ¢ in advance.

Finally, note that this improvement is only valid in the fixed-time regime. In the setting with arbi-
trarily varying computation times, the same optimization cannot be applied, for the same reasons
discussed for Ringleader ASGD in Appendix D.

NOTE ON LLM USAGE

Large Language Models were used to help polish the writing of the manuscript. LLM usage did not
affect the scientific content of the paper.

31

	Introduction
	Contributions

	Problem Setup
	Notations
	Assumptions

	Background and Motivation
	Ringleader ASGD
	Detailed Description
	Comparison to IA2SGD and Malenia SGD

	Theoretical Results
	Conclusion
	Experiments
	Related Work
	The Computation-Only Model and the Role of Asynchrony
	Arbitrarily Changing Computation Times
	Universal Computation Model
	Toward an Optimal Method
	An Optimal Method

	Auxiliary Lemmas
	Relations Between Smoothness Constants
	Proof of lemma:delay
	Variance Term

	Proof of theorem:convergence
	Proof of lemma:descent
	Proof of lemma:residual

	Proof of thm:timecomplexity
	Proof of lemma:timeforniter

	Time Complexity of IA2SGD
	Improved Malenia SGD

