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Abstract

Large language models (LLMs) have shown
remarkable success across a wide range of nat-
ural language generation tasks, where proper
prompt designs make great impacts. While
existing prompting methods are normally re-
stricted to providing correct information, in this
paper, we encourage the model to deliberate
by proposing a novel Deliberate then Gener-
ate (DTG) prompting framework, which con-
sists of error detection instructions and candi-
dates that may contain errors. DTG is a sim-
ple yet effective technique that can be applied
to various text generation tasks with minimal
modifications. We conduct extensive experi-
ments on 20+ datasets across 7 text generation
tasks, including summarization, translation, di-
alogue, and more. We show that DTG consis-
tently outperforms existing prompting methods
and achieves state-of-the-art performance on
multiple text generation tasks. We also pro-
vide in-depth analyses to reveal the underlying
mechanisms of DTG, which may inspire future
research on prompting for LLMs.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; OpenAl, 2023; Touvron et al., 2023) are
revolutionizing the area of natural language genera-
tion, which have demonstrated exceptional abilities
in generating coherent and fluent text as well as
exhibited a remarkable aptitude in performing a
diverse range of text generation tasks with high
accuracy (Hendy et al., 2023; Nori et al., 2023).
When adapting to downstream tasks, traditional
fine-tuning methods require access to the param-
eters of LLMs, which hinder their application on
powerful black-box LLMs (e.g., ChatGPT) that
only provide APIs to interact with. Therefore,
prompting methods that guide the generation re-
sults by providing several task-specific instructions
and demonstrations have attracted lots of attention
in recent works (Schick and Schiitze, 2020; Sanh

et al., 2021), which show that the prompt can sig-
nificantly influence the resulting outcomes and thus
require careful design.

While prompting is itself a general approach,
the current use of this approach is a bit rigid, say,
an LLLM only operates on the basis of what is cor-
rect (Brown et al., 2020; Hendy et al., 2023; Wei
et al., 2022b). This is not the case for language
acquisition where a human can learn from both
positive and negative feedback and improve the
ability of language use through corrections. In this
work, we examine whether and how the delibera-
tion ability emerges by asking the LLMs to rethink
and learn to detect potential errors in their output.
To do this, we develop a new prompting template
termed Deliberate then Generate (DTG) that con-
tains instructions and candidate outputs to enable
an error detection process before generation, i.e.,
adding “Please detect the error type firstly, and
provide the refined results then” in the prompt.

A key design aspect of DTG is how to determine
the candidate. One straightforward choice is uti-
lizing the results from an extra baseline system,
which typically exhibits high quality and requires
only minor adjustments. Accordingly, it cannot
well facilitate the deliberation ability. In this work,
we propose to utilize the text that is irrelevant from
the reference (e.g., such as a randomly sampled
text or even an empty string) as the candidate. In
this way, the method successfully triggers the delib-
eration ability of LLMs, without having to resort to
other text generation systems to create correction
examples, which enables DTG to be easily applied
to a wide range of text generation tasks only with
minimal modifications in prompts. This work is
in part motivated from a psychological perspective
by considering negative evidence in developing
language abilities, which is a canonical case for
language learning (Marcus, 1993).

We conduct extensive experiments on 7 text
generation tasks and more than 20 datasets on
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Figure 1: Comparison of standard GPT prompting and our DTG prompt desgin for summarization task. Note that
prompt in blue denotes the demonstration, and that in red denotes the test input. [SRC] and [Input] means the source
input, TGT means the target reference and [INCORRECT SYS] means the irrelevant system output (e.g., such as a

randomly sampled text or even an empty string).

GPT3.5 (text-davinci-003) and GPT4, where
the proposed DTG prompting consistently im-
proves model performance compared to conven-
tional prompts. GPT with DTG prompting achieves
state-of-the-art performance on multiple datasets
across different text generation tasks, including ma-
chine translation, simplification and commonsense
generation. Extensive ablation studies and error
statistical analysis illustrate that the proposed DTG
prompting does enable deliberation ability and er-
ror avoidance before generation.

The main contributions of this work are summa-
rized as follows:

* We propose a novel prompting framework named
DTG for LLMs, which eliminates the need for
extra resources or costs and can be efforlessly ap-
plied to various text generation tasks. DTG can
also be combined with other advanced prompt-
ing strategy (e.g., CoT) to further improve the
performance.

* We conduct experiments on 20+ datasets across
7 text generation tasks, where DTG prompting
brings consistent improvements and achieves
SoTA performance on several benchmarks.

* To the best of our knowledge, we are the first to
evaluate the performance of GPT3.5 and GPT4
on multiple benchmark text generation tasks. We
hope the experimental results help deepen our
understanding of SOTA LLMs.

2 Related Work

Large Language Models. With the scaling of
model and corpus sizes, Large Language Mod-
els (LLMs) (Devlin et al., 2018; Radford et al.,

2019; Lewis et al., 2019) have achieved remark-
able success in various areas of natural language
processing. To tailor a model for particular tasks,
one approach is to fine-tune it with task-specific
datasets (Jiao et al., 2023; Li and Liang, 2021; Hu
et al., 2021). Jiao et al. (2023) introduce data with
error annotations in fine-tuning to improve the ma-
chine translation abilities of open-source LLMs.
The fine-tuning approach poses a challenge when
applied to powerful black-box LLMs that only of-
fer APIs for interaction, as it requires access to the
underlying parameters. With the help of instruction
tuning (Wei et al., 2021) and reinforcement learn-
ing from human feedback (Ouyang et al., 2022),
recent LLMs can achieve gradient-free adaptation
to various downstream tasks by prompting with
natural language instructions, and some powerful
capacities such as in-context learning (Brown et al.,
2020) have also emerged.

Prompting Methods. Prompting is a general
method for humans to interact with LLMs, which
is usually designed as an instruction for a task
that guides LLMs toward intended outputs (Schick
and Schiitze, 2020; Sanh et al., 2021). To
make the most of LLMs on downstream tasks,
the prompts need to be carefully designed, ei-
ther manually (Hendy et al., 2023) or automat-
ically (Gao et al., 2020; Zhou et al., 2022).
Prompting also provides a way to interact with
LLMs in natural language, such as letting them
utilize external tools (Schick et al., 2023), re-
sources (Ghazvininejad et al., 2023) and mod-
els (Wu et al., 2023; Shen et al., 2023), or con-
ducting Chain-of-Thought (CoT) reasoning in gen-
eration (Wei et al., 2022a; Kojima et al., 2022).
A concurrent work incorporates answers in pre-
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Figure 2: Illustration of DTG demonstration design for machine translation, style transfer and text simplification
tasks. Due to the limited page, please refer to the Appendix for the remained 3 generation tasks, including dialogue

summarization, paraphrase and commonsense generation.

vious rounds into prompts in an iterative process
to improve the accuracy of LLMs on reasoning
tasks (Zheng et al., 2023). Besides multi-step
reasoning, basic prompts are still widely utilized
in general text generation tasks such as machine
translation and summarization, where previous ad-
vanced methods such as CoT have been shown
ineffective (Peng et al., 2023). Our work finds its
closest parallels in the domain of self-refinement
or self-correction techniques (Madaan et al., 2023;
Yao et al., 2023; Shinn et al., 2023). However, a
distinguishing feature of our approach is its inde-
pendence from the need for additional feedback
or resources, setting it apart from these previously
proposed methods.

3 Deliberate then Generate

Language acquisition by a human is normally based
on both positive and negative feedback and im-
proves the ability of language use through correc-
tions. Inspired by this, unlike the conventional
prompts only with correct information, we intro-
duce a more deliberate approach termed Deliber-
ate then Generate (DTG) prompting by facilitating
LLMs to detect errors on a synthesized text that
may contain errors.

3.1 The Overall Prompt Design

Specifically, the proposed DTG method unfolds
in three stages: 1) It begins with a concise and
explicit instruction of the desired task, providing
guidance on generating an intended text based on
a given input text; 2) A synthesized text is then
provided as a candidate output; 3) Finally, DTG
encourages the model to detect potential errors, and
subsequently generate an improved output after
thorough deliberation.

Figure 1 illustrates a comparison between stan-
dard prompting and our proposed DTG prompting
for the summarization task in the one-shot scenario.
A distinctive feature of DTG is its emphasis on
error detection other than immediate response. In-
stead of generating the outcome directly from the
given input text, DTG steers the model to make de-
liberate decisions by detecting the error type firstly
based on both the input text, denoted as “[SRC]”,
and a pre-defined candidate, denoted as “[SYS]”,
before the final decisions. This deliberative process
forms the bedrock of the DTG approach and will be
further elaborated upon in the analysis section (i.e.,
Section 6). Besides, a few demonstrations can be
provided, imbuing LL.Ms with an awareness of the
expected output (highlighted in blue), and the test
input (marked in red). DTG is a general prompt-
ing method that could be easily applied to any text
generation task with minimal modifications to the
prompt. Figure 2 illustrates the particular prompts
used for 3 generation tasks we considered, indicat-
ing that minimal customization is required across
different tasks as highlighted in yellow.

3.2 Choice of Synthesized Text ([SYS])

The choice of the synthesized text is another key
part of DTG. Straightforwardly, using the output
of LLMs themselves is a natural choice. However,
these outputs typically necessitate only minor mod-
ifications, insufficient to adequately stimulate the
LLMs’ deliberative capabilities. Also, our prelimi-
nary experiments show that using LLM’s output as
[SYS] cannot gain any benefits, leading to a simi-
lar observation in Huang et al. (2023)’s work, that
LLMs cannot self-correct reasoning yet without ad-
ditional feedback. This limitation underscores the
need for an alternative strategy that challenges the
model to engage in more profound error detection
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Figure 3: COMET scores against the edit distance (left)
and the word drop rate (right) on the ZH-EN task.

and correction processes.

Our strategy explores the impact of synthesized
text’s similarity to the reference on the quality of
the generated output. Empirical evidence, as de-
picted in Figure 3 (left), demonstrates a clear trend:
the performance of DTG inversely correlates with
the similarity between the candidate and the refer-
ence text. This relationship is quantified using edit
distance measures, where a lower similarity signif-
icantly enhances the generated text’s quality. Fur-
ther experimentation involved modifying outputs
from MS-Translator by selectively omitting words
to create varied candidate sentences. The compara-
tive analysis, illustrated in Figure 3 (right), reveals
that DTG not only improves upon MS-Translator’s
baseline COMET scores but also exhibits superior
performance in refining candidates from external
systems, highlighting its adaptability and efficacy
in processing diverse input qualities.

In response to these findings, we advocate for the
use of synthesized texts that diverge markedly from
accurate information, including the use of an empry
string (" ") as [SYS]. This particular type of null
candidate significantly engages the model’s deliber-
ative processes, leading to consistent improvements
across a spectrum of generation tasks.

3.3 Definition of Error Types

Using an empty string as [SYS] in the DTG frame-
work simplifies error categorization as “incorrect”
by default. Yet, our findings suggest that delineat-
ing more specific error types markedly improves
model correction effectiveness. Such precision
in error identification sharpens the model’s focus,
elevating accuracy and textual coherence. Take
machine translation as an instance, one can tell
LLMs potential error types, such as incorrect word
translation, grammar error, under translation, incor-
rect entity translation, word-order error, or word
repetition. Extending specific error typologies

to various text generation tasks further optimizes
DTG’s utility. Adjusting error categories to task
specifics, such as “factual inaccuracies” and “miss-
ing keywords” in summarization, underscores this
method’s versatility and its potential to refine text
generation across diverse applications.

4 Datasets and Evaluation

In experiments, we are devoted to evaluating the
generation ability of LLMs and the proposed DTG
prompting. We select 7 representative generation
tasks, including machine translation, abstractive
summarization, dialogue summarization, text sim-
plification, style transfer, paraphrase and common-
sense generation. Also, we expand the exploration
to a mathematical reasoning task, namely GSM8K.
We summarize the details of each dataset for each
task, including the test sets, the selection of demon-
strations (mostly from validation sets) and the cor-
responding prompts we have used. For more de-
tails please refer to the attached Appendix. Without
meticulous parameter tuning, we set the rempera-
ture to 0 and top_p to 1 when calling the APL

5 Experiments

In this section, we assess the efficacy of the
text-davinci-003 (denoted as GPT) across 7 se-
quence generation tasks. The chosen baseline com-
parisons consist of 1-shot, and few-shot (mostly
5-shot) scenarios. We also conduct further experi-
ments with GPT4 for more convincing conclusions.
Due to the considerable computational cost and
API request constraints associated with the GPT4,
it is challenging to perform extensive experiments.
In the current manuscript, we only report the results
on machine translation and text simplification.

5.1 Results on Machine Translation

We compare the performance of the standard
prompting and our DTG with Microsoft Trans-
lator in addition to WMT SoTA systems. Table
1 presents the results in both 1-shot and 5-shot
scenarios. The findings here indicate that our re-
implementation aligns with the trends observed
in Hendy et al. (2023), that 5-shot beats 1-shot in
most language pairs. Benefiting from the deliber-
ation, DTG effectively pushes the boundaries and
leads to enhanced results across all to-English lan-
guage pairs in both 1-shot and 5-shot settings based
on GPT3.5 model. For instance, DTG method ex-
hibits substantial BLEU score increases in DE-EN,



System COMET-227 BLEUT | COMET-227 BLEUT | COMET-227 BLEU{ | COMET-227 BLEUT
DE-EN ZH-EN CS-EN RU-EN
WMT-Bestt 85.0 33.4 81.0 33.5 89.0 64.2 86.0 45.1
MS-Translatort 84.7 335 80.4 27.9 87.4 54.9 85.2 43.9
GPT I-shot 84.7 30.4 81.0 23.7 86.2 44.8 84.8 39.7
+ DTG 85.0 323 81.4 25.3 86.7 45.6 85.0 40.0
GPT 5-shot | 85.3 323 81.1 23.6 86.9 472 84.9 39.9
+ DTG 85.4 332 81.7 252 87.0 474 85.1 40.3
GPT4 l-shot | 85.6 335 82.4 26.0 87.3 48.1 86.1 43.1
+ DTG 85.8 33.8 83.0 26.4 87.7 49.4 86.3 43.7
JA-EN UK-EN IS-EN HA-EN
WMT-Bestt 81.6 24.8 86.0 44.6 87.0 41.7 80.0 21.0
MS-Translatort 81.5 245 83.5 424 85.9 40.5 733 16.2
GPT I-shot 81.3 215 83.5 36.8 83.5 33.6 78.0 18.6
+ DTG 81.7 214 84.0 37.1 84.0 352 78.3 18.6
GPT 5-shot | 81.2 20.5 84.0 38.0 84.1 35.0 78.3 18.8
+ DTG 82.2 224 84.2 39.0 84.6 36.0 78.6 19.2
GPT4 l-shot | 83.4 24.7 85.7 39.9 86.9 39.9 77.5 18.3
+ DTG 83.6 252 85.9 40.6 87.0 40.9 77.9 18.9

Table 1: Evaluation results of GPT and GPT4 on six high-resource and two-low resource machine translation tasks
from WMT Testsets. The best scores across different systems are marked in bold.

CNN/DailyMail

System RI R2 RL

GigaWord SamSum DialogSum
R2 RL | Rl R2 RL | Rl R2 RL

Transformer (Vaswani et al., 2017) | 40.47 17.73 37.29|37.57
44.16 21.28 40.90 |39.29 20.09 35.65|53.12 27.95 49.15|47.28 21.18 44.83

BART (Lewis et al., 2020)

UniLMv2 (Bao et al., 2020) 43.16 20.42 40.14

18.90 34.69|37.20 10.86 34.69|3591 8.74 33.50

50.53 26.62 48.81|47.04 21.13 45.04

GPT 1-shot 38.87 15.36 35.11|31.24 11.61 27.99|44.52 19.92 39.60|36.84 14.23 32.20
+ DTG 40.17 15.60 36.04 31.50 12.00 28.50|45.50 20.58 40.1339.01 15.50 34.13
GPT 5-shot - - - ‘33.04 12.78 29.86 |46.44 20.69 41.10|40.86 17.10 35.78
+ DTG - - - 33.54 13.63 30.36 48.72 23.16 43.23 42.64 18.12 37.57
GPT 10-shot - - - ‘33.24 13.26 30.46 |47.37 22.08 42.20|41.28 17.48 36.69
+ DTG - - - 3402 14.21 31.04|50.48 24.88 45.31|45.11 19.50 39.71

Table 2: Experimental results on four summarization tasks.

ZH-EN, and UK-EN language pairs in 5-shot sce-
narios. More concretely, DTG even beats WMT-
Best system in terms of COMET-22, which is a
more recognized metric recently in the machine
translation literature. Moreover, the consistent im-
provements on IS-EN and HA-EN demonstrate the
effectiveness of DTG in low-resource settings. Ben-
efiting the strong comprehension ability of GPT4,
we find no significant difference between 1-shot
and 5-shot scenarios. Meanwhile, DTG is still ef-
fective on GPT4, showing consistent and indeed im-
provements in terms of COMET and BLEU. This
finding demonstrates much stronger LLMs can still
benefit from deliberation.

5.2 Results on Summarization

For abstractive summarization, we assess GPT
models on CNN/DailyMail' and GigaWord, two

'"Due to the limit of max length for GPT models (4097)
and the long input length of CNN/DailyMail, we only evaluate

benchmark datasets in the field. Additionally, we
explore their efficacy in dialogue summarization,
including SamSum and DialogSum?, two hybrid
tasks combining aspects of both dialogue and sum-
marization. As shown in Table 2, GPT models
show comparative performance with Transformer
which is specially tuned on the downstream training
set, e.g., Transformer. Our DTG delivers further
improvements in terms of three ROUGE metrics,
which demonstrate the effectiveness of DTG on
long-term modeling task. Beyond this, DTG sub-
stantially incites GPT models to generate more
precise summaries derived from extensive multi-
turn dialogues. An upward trend in performance is
observed with the introduction of additional demon-
strations, further underscoring the effectiveness
of the DTG method. However, DTG still lags

the performance in 1-shot scenario.

21t is important to note that the results for DialogSum are
averaged over three individual scores, each calculated using
unique references spanning a range of topics.



System GYAFC & EM
BLEU BLEURT
Transformer}(Vaswani et al., 2017)| 40.3 -
BART{(Lewis et al., 2020) 769 7538
GPT 1-shot 52.9 73.42
+ DTG 66.8 75.20
GPT 5-shot 61.3 75.40
+ DTG 69.9 76.36

GYAFC & FR Amazon Yelp
BLEU BLEURT |[BLEU BLEURT |BLEU BLEURT
47.7 - - - - -
793  75.11 - - - -
446  70.73 36.1 64.56 309  64.03
65.9  74.60 354  63.60 | 31.3  64.19
639 7435 393  64.76 314  64.16
74.1 7543 | 409 6542 | 322 64.87

Table 3: Comparisons of 1-shot and 5-shot on four style transfer tasks, including Entertainment Music, Family
Relationships, Amazon and Yelp. fdenotes results borrowed from (Lai et al., 2021).

System Asset | Wiki-auto
MUSS (Martin et al., 2022) 44.15 42.59
Control Prefix (Clive et al., 2022) 43.58 -
TST-Final (Omelianchuk et al., 2021) | 41.46 -
GPT 1-shot 46.12 44.97

+ DTG 47.23 47.15
GPT 5-shot 45.95 45.12

+ DTG 47.05 47.54
GPT4 5-shot 47.10 45.96

+ DTG 47.67 47.89

Table 4: Comparisons of 1-shot, 5-shot with and without
our DTG method on two text simplification tasks.

System BLEU-3/4 ROUGE-2/L
BART (Lewis et al., 2020) 36.3/26.4  22.23/41.98
T5-Large (Raffel et al., 2020)  39.0/28.6 22.01/42.97
GPT 5-shot 39.7/30.0  25.28/46.55
+ DTG 43.2/33.5  27.02/48.47

Table 5: Results on the CommonGen benchmark.

behind of large-scale pretrained models, such as
BART (Lewis et al., 2020) and UniLMv2 (Bao
et al., 2020) in automatic evaluations. We will add
more human-alignment judgment in Section 6.

5.3 Results on Style Transfer

Table 3 displays performance across style trans-
fer tasks from the GYAFC dataset: Entertainment
Music (EM) and Family Relationships (FR), both
involving informal to formal transformations. Evi-
dently, the Deliberate then Generate (DTG) method
prompts the GPT model to correct inaccuracies and
generate more precise informal sentences. Specifi-
cally, DTG achieves an 8-point and 10.04-point in-
crease in BLEU score for EM and FR tasks, respec-
tively, compared to standard prompting. Although
DTG trails BART (Lewis et al., 2020) in BLEU
scores, it surpasses BART in BLEURT scores, ob-
taining gains of 0.98 and 0.32 for EM and FR tasks,
respectively. These results highlight the potential
of LLMs and DTG method in style transfer tasks.

System Accuracy
GPT 8-shot 55.1

+ DTG 60.0
CoT 8-shot (Wei et al., 2022b) 59.8

+ DTG 64.5

Table 6: Results of GSM8K on DTG prompting.
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Figure 4: BLEU and ROUGE-L scores against the num-
ber of demonstrations on the paraphrase task.

5.4 Results on Text Simplification

Experiments were conducted on two text simplifi-
cation benchmarks, Asset and Wiki-Auto, where
the primary goal is to create a simplified rendi-
tion of the given text input. The main evalua-
tion metric is the SARI score. Our findings il-
lustrate that GPT models demonstrate robust per-
formance across both simplification benchmarks,
even surpassing the existing state-of-the-art models
(MUSS) built based on BART. Furthermore, the in-
corporation of DTG method significantly enhances
GPT model performance, leading to improvements
in both BLEU and SARI scores. Specifically, DTG
establishes a new benchmark for state-of-the-art
results on these two simplification tasks.

5.5 Results on Commonsense Generation

Table 5 summarizes the comparison between GPT
models with and without DTG method on an open
Commonsense generation benchmark. This task
is more flexible than the aforementioned, mean-
while raising the evaluation difficulty. We see



# System BLEU COMET
1 GPT 5-shot 23.6 81.12
2 +DTG 252 81.70
3+ w/o error detection 233 81.05
4+ wrong error type 25.3 81.74
5+ fixed error type 24.1 81.35
6  + task-specific error type 25.5 81.98
7  + fixed incorrect candidate  25.0 81.72
8  +irrelevant languages 25.1 81.81
9  + correct candidate 23.0 81.17

Table 7: Ablations on error types and candidate types.

that GPT models with standard prompting even
surpass large-scale pretrained generation models,
such as BART (Lewis et al., 2019) and TS5 (Raf-
fel et al., 2020). DTG achieves further improve-
ments in terms of BLEU-3/BLEU-4 and ROUGE-
2/ROUGE-L, resulting in an average of 3.50 BLEU
and almost 2.00 ROUGE improvements. This also
establishes a new SoTA on this benchmark.

5.6 Results on Paraphrase

Figure 4 plots the BLEU and ROUGE-L scores for
GPT and DTG in relation to various few-shot sce-
narios. We find that DTG outperforms GPT mod-
els in terms of both BLEU and ROUGE-L metrics
across all scenarios. However, only 5-shot demon-
strations cannot enable LLMs to clearly capture the
underlying mapping rule between the source and
the target. Interestingly, a significant enhancement
in DTG performance is observed with the increase
in the number of demonstrations. This improve-
ment can be attributed to the model’s enhanced abil-
ity to comprehend the underlying mapping rules
with the expanded demonstration set.

5.7 Results on Mathematical Reasoning

While our primary focus is on evaluating LLMs
for text generation, we extend our analysis to rea-
soning tasks, such as GSM8K (Cobbe et al., 2021).
Table 6 compares the accuracy of standard prompt-
ing, CoT, and DTG. Our results show that DTG,
when combined with CoT, achieves an accuracy
of 64.5 in 8-shot scenarios, indicating its utility
beyond text generation.

6 Analysis

In this section, we delve into a series of intriguing
questions to answer why DTG works. Unless spec-
ified otherwise, the base engine utilized throughout
this investigation is text-davinci-003.

Ablations on Error Types Prior research under-
scores the significant impact of both the quality
and quantity of demonstrations (Zhang et al., 2023;
Vilar et al., 2022; Agrawal et al., 2022). Thus, we
would like to discern whether the improvements
are attributable to template modifications or the
deliberate capability inherent to the LLMs. Table
7 summarizes the comparisons on WMT ZH-EN.
Firstly, DTG experiences a significant degradation
in BLEU score when removing the explicitly er-
ror detection prompt?, suggesting that the excised
segment may contain crucial triggers stimulating
the deliberate capability of the LLM. Along this
line, by comparing #4*, #5° and # 6 with #2, we
can conclude 1) LLMs can rethink by themselves
and make “correct” decisions though the demon-
stration is incorrect. 2) Restricting the thought of
LLMs would hinder their performance. 3) Adding
task-specific error types (See Section 3.3 ) results
in better generation.

Ablations on Candidates Here, we aim to ex-
plore if other candidates rather than empty string
may also prove effective in DTG. The last three
lines in Table 7 show the comparison. Specifically,
the term “fixed incorrect candidate” (#7) refers to
the use of a fixed yet incorrect (irrelevant) English
translation as the [SYS].® Likewise, system #8 in-
dicates that the candidates neither belong to the
target language nor conform to the correct struc-
ture or grammar.” Interestingly, both 2 systems
deliver comparable performance with our default
setting, with system #8 even achieving a higher
COMET score. However, when shifting to a cor-
rect candidate generated by itself, LLMs seem to
underperform. This observation is aligned with that
in (Huang et al., 2023)’s work that LLMs cannot
refine itself yet. Our results also suggest that LLMs
can effectively deliberate when the candidate is
incorrect - whether it is an empty string or other
incorrect translations - and subsequently generate
a substantially improved translation.

3eliminating the phrase “Please detect the error type firstly,
and refine the translation then”

*replacing “incorrect translation” with “good/correct trans-
lation” in the demonstration only

Sreplacing “incorrect translation” with “good/correct trans-
lation” in the demonstration only

®We random sample an English sentence: [SYS]: EBA
Education Team together with Accace Ukraine invite you to
Jjoin the EBA Education Update: Performance Audit.

7Similarly, we random sample an Ukraine sentence: [SYS]:
3 BIIEBHEHICTIO MOXKETe JOBIpATH HaM i OyIb JIacka,
3BepraiiTecs J0 HAC, € fAKi-HeOyIb T KOMEHTapI.
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Figure 5: GPT3.5 and GPT4 evaluation on 4 generation tasks. Note that we random select 500 samples due to the

limitation of GPT4 access.

System ZH-EN Asset
BLEU Human | SARI Human

GPT 5-shot | 22.8 4.16 4595 11.6%

DTG 5-shot | 24.9 4.39 47.05 67.4%

Table 8: Human evaluation on DTG prompting.

Evaluation by GPT Models As previously dis-
cussed, despite DTG’s impressive performance,
it falls short of BART in some scenarios—most
notably, it exhibits a significant gap in terms of
ROUGE scores in summarization tasks. However,
Liu et al. (2023) suggested that ROUGE may not ac-
curately represent the true performance of summa-
rization tasks, given its poor alignment with human
evaluations. In contrast, GPT models achieve op-
timal alignment with human justification and sub-
stantially outperform all previous SoTA evaluators
on the SummEval benchmark. This observation
prompts an investigation into whether the gener-
ation output by DTG can surpass that of BART.
Following their suggestion, we conduct reference-
based evaluation and design a prompt as shown in
Figure 9. We extract 500 test sets and compared
DTG with the best result using GPT3.5 and GPT4
to select a better candidate. Results in Figure 5
reveal that DTG significantly beats the best system
within GPT evaluation.

Human Evaluation We further conducted
human-evaluation with human assessments on
translation (randomly selected 500 cases) and sim-
plification tasks to mitigate potential bias in GPT
models favoring their own outputs. Annotators
scored ZH-EN translations on a 1-5 scale and in-
dicated preferences for the Asset task. It’s worth
noting that for the Asset task, some cases showed
no significant difference in performance between
the two methods (neutral). Detailed scoring guide-
lines are provided in the Appendix. As shown in
Table 8, DTG outperforms the standard prompt in
human evaluations across both tasks.
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Figure 6: Statistics of error rate for under translation
(above) and entity translation (below).

Error Statistical Analysis To evaluate whether
the proposed DTG prompting can facilitate error
avoidance in GPT, we conduct error statistics on
machine translation, where two frequently occur-
ring error types are considered (i.e., under transla-
tion and incorrect entity translation) (Hassan et al.,
2018). Figure 6 provides a comparison of the error
rates between GPT models with and without the
application of the DTG method. It is obvious to see
that DTG reduces both error rates compared with
the direct generation manner.

7 Conclusions

In this paper, we propose DTG prompting, which
encourages LLMs to deliberate before generating
the final results by letting the model detect the er-
ror type on a synthetic text that may contain errors.
Using an empty string as the synthetic text success-
fully gets rid of an extra baseline system and im-
proves the quality of the generated text. The DTG
prompting can be easily applied to various text
generation tasks with minimal adjustments in the
prompt. Extensive experiments conducted on over
20 datasets across 7 text generation tasks demon-
strate the effectiveness and broad applicability of
the DTG prompting.



Limitation

Due to restricted access to GPT4, we have evalu-
ated our Deliberate then Generate (DTG) method
on just two generation tasks: machine translation
(across 8 language pairs) and simplification. There
exists a necessity for more expansive experimen-
tation across other tasks. Additionally, the effec-
tiveness of DTG is contingent on model capacity.
Models such as LLaMa-7B might not fully compre-
hend the instructions provided, resulting in weaker
performance on downstream tasks. In our future
work, we aim to ascertain the required scale of a
language model to successfully facilitate delibera-
tive generation.

Our work inherits the biases from pre-trained lan-
guage models. For example, we only conduct ex-
periments on English generation that GPT models
are most powerful at. We provide results and analy-
sis on English-to-Others translation in Appendix D.
Future works could investigate the performance of
DTG on multilingual pre-trained models.

We have experimented with multiple decoding
iterations using the DTG framework. The observed
performance gains were subtle, suggesting that
DTG’s primary benefits are rooted in harnessing
and augmenting the diverse capabilities acquired
during pre-training, e.g., detection and refinement
abilities. We would like to address this issue in our
future work.

Ethical Statement

All experiments in our work were conducted on
existing datasets commonly employed in prior pub-
licly available research publications. We keep fair
and honest in our analysis of experimental results,
and our work does not harm anyone. Addition-
ally, we will make our code accessible for future
investigations.
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A Datasets and Evaluation

In experiments, we are devoted to evaluating the
generation ability of LLMs and the proposed DTG
prompting. We select 7 representative generation
tasks, including machine translation, abstractive
summarization, dialogue summarization, text sim-
plification, style transfer, paraphrase and common-
sense generation.

Machine Translation For the machine transla-
tion task, we aligned with Hendy et al. (2023)’s
work and experimented on both high-resource and
low-resource scenarios. For the high-resource
setting, we include German, Czech, Chinese,
Japanese, Russian, and Ukrainian paired with En-
glish. In the low-resource context, we examine
Icelandic and Hausa. The performance is evaluated
in terms of SacreBLEU® (Post, 2018), ChrF, TER
(translation error rate) and COMET-22 (Rei et al.,
2022).

Abstractive Summarization We also evaluate
LLM’s ability to process long sequence on CNN-
DailyMail and Gigaword, two widely used abstrac-
tive summarization datasets. The evaluation metric
is F1-ROUGE (Lin, 2004), consisting of ROUGE-
1, ROUGE-2 and ROUGE-L.

Dialog Summarization Dialogue summarization
presents greater challenges than traditional text
summarization due to the intricate conversation
contexts that models need to comprehend, though
their contexts are relatively shorter. This attribute
enables us to test few-shot abilities due to the re-
stricted input length. To investigate this, we select
SamSum’ (Gliwa et al., 2019) and DialogSum'®
(Chen et al., 2021), two benchmark datasets for
dialogue summarization. The evaluation metric is
the same as abstractive summarization.

Text Simplification The purpose of text simpli-
fication is to revise complex text into sequences
with simplified grammar and word choice. In this
work, we mainly report the performance on two
benchmarks, namely Asset (Alva-Manchego et al.,
2020) and Wiki-auto (Jiang et al., 2020). Asset is
a multi-reference dataset for the evaluation of sen-
tence simplification in English. The dataset uses
the same 2,359 sentences from TurkCorpus (Xu

$BLEU+case.mixed+numrefs. 1 +smooth.exp+tok.13a
+version.2.3.1

*https://huggingface.co/datasets/samsum

https://github.com/cylnlp/DialogSum



et al., 2016) and each sentence is associated with
10 crowdsourced simplifications. Similarly, each
test set in Wiki-auto owns 8 references. We use
SacreBLEU and BLEURT as the metric.

Style Transfer We used three widely-used
English transfer learning datasets, namely
Grammarly’s Yahoo Answers Formality Corpus
(GYAFC), Amazon and Yelp reviews. The GYAFC
dataset (Rao and Tetreault, 2018) was originally a
question-and-answer dataset on an online forum,
consisting of informal and formal sentences
from the two categories: Entertainment & Music
(EM) and Family & Relationships (FR). Both
FR and EM provide 4 references to evaluate
the fidelity. The Amazon dataset is a product
review dataset, labeled as either a positive or
negative sentiment. Similarly, the Yelp dataset
is a restaurant and business review dataset with
positive and negative sentiments. Both Amazon
and Yelp are single-reference. The evaluation
metrics contain BLEU and BLEURT (Sellam et al.,
2020).

Paraphrase We endeavor to evaluate the para-
phrase ability of LLMs upon the well-known Quora
Question Pairs (QQP) dataset, which requires gen-
erating an alternative surface form in the same lan-
guage expressing the same semantic content. We
utilize the preprocessed data from (Gong et al.,
2022). The evaluation metrics covers BLEU and
ROUGE-L for a comprehensive comparison.

Common Sense Generation We choose Com-
monGen (Lin et al., 2020), a novel constrained
generation task that requires models to generate a
coherent sentence with the providing key concepts.
We report both BLEU-3/4 and ROUGE-2/L to keep
a fair comparison with results in prior work (Lin
et al., 2020).

Reasoning For the reasoning task, we evalu-
ate our method on a widely used benchmark,
GSMSK (Cobbe et al., 2021), a challenging dataset
consisting of high-quality linguistically diverse
grade school math word problems. We report the
accuracy of the 8-shot demonstration on the test set
including 1,319 mathematical questions.

B Details of Datasets

In this section, we offer more detailed statistics con-
cerning the test sets utilized in this study, encom-
passing 8 machine translation, 4 summarization,
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4 style transfer, 2 simplification, 1 commonsense
generation, and 1 paraphrase benchmarks. Table 9
provides a summary of the number of test sets, total
words, and the average length. We will release the
test sets and the corresponding demonstrations in
the future. Note that the statistic is conducted based
on tokenization sequences, which would be further
segmented by BPE before feeding into LLMs. Con-
sequently, the average length of summarization in-
puts would appear significantly larger, leading to
an elevated risk in the context of few-shot requests.

C Design of Prompts

Figure 7 presents the DTG demonstration design
across the other three text generation tasks. It can
be observed that DTG does not necessitate task-
specific designs; instead, a clear instruction outlin-
ing the main task for each work suffices. For the
ease of replication of our results, we also furnish all
baseline prompts, as depicted in Figure 8. Also, we
provide the prompting design for GPT evaluation
in Figure 9, which follows a zero-shot fashion.

To facilitate a more comprehensive understand-
ing of the prompt ablations conducted in Section
6, we provide the corresponding design of prompts
in Figure 10. Please note that prompts in blue
represent the pre-designed demonstration, while
those in red represent the test input. As observed,
firstly, removing the error detection leads to the
prompting in 10 (a). Additionally, the term “wrong
error type” implies that we fed an empty string into
LLMs, presenting it as a good translation. How-
ever, LLMs can autonomously detect the correct
error type as an “incorrect translation” and subse-
quently generate an accurate response following
careful deliberation (Figure 10 (b)). Conversely, if
we constrain the error type detection process and
solely allow LLMs to generate the translation, a
considerable performance gap emerges (See Figure
10 (¢)).

D More Analyses

Results on Machine Translation from English
Table 11 summarizes the results of standard prompt-
ing and our DTG method in 5-shot scenarios, along-
side results from WMT-Best and MS-Translator.
When compared to results from to-English direc-
tional language pairs, such as DE-EN, the improve-
ments provided by DTG over the standard prompt-
ing strategy appear somewhat marginal. Further-
more, DTG may yield results inferior to standard



(-(Dialogue Summarization)\

Given the English dialogue: [SRC]

the already generated dialogue
summarization is: [SYS]

Please detect the error type
firstly, and provide the refined
summarization then.

Error type: incorrect
summarization, the refined
summarization is: [TGT]

\_ J

Given the English sentence: [SRC]
the already generated paraphrase
is: [SYS]

Please detect the error type
firstly, and provide the refined
paraphrase then.

Error type: incorrect paraphrase,
the refined paraphrase is: [TGT]

. J

Commonsense Generation)\
Given several key words: [SRC]

the already generated sentence
using background commonsense
knowledge is: [SYS]

Please detect the error type
firstly, and provide the refined
sentence then.

Error type: incorrect generation,
the refined sentence is: [TGT]

&

J

Given the [src] sentence: [SRC]

the [tgt] translation of the
sentence is: [TGT]

Given the [src] sentence: [Input]

the [tgt] translation of the
sentence is:

\_ v

(-(Dialogue Summarizatio%

Given the English dialogue: [SRC]

please summarize the main context:
[TGT]

Given the English dialogue:
[Input]

please summarize the main context:

\_ v

Figure 7: lustration of DTG demonstration design for dialogue summarization, paraphrase and commonsense
generation tasks within minimal modifications.

Simplification

Given the English sentence: [SRC]

the simplification of the sentence
is: [TGT]

Given the English sentence:
[Input]

the simplification of the sentence
is:

\_ v

Style Transfer

Paraphrase

~

Given the English sentence: [SRC]

please transfer the style of the
sentence into formal: [TGT]

Given the English sentence:
[Input]

please transfer the style of the
sentence into formal:

\_ v

-

Given the English sentence: [SRC]

the paraphrase of the sentence is:
[TGT]

Given the English sentence:
[Input]

the paraphrase of the sentence is:

\_ v

Commonsense Generation)\

Given several key words: [SRC]

Please generate a coherent
sentence using background
commonsense knowledge with the
providing key words: [TGT]

Given several key words: [Input]

Please generate a coherent
sentence using background
commonsense knowledge with the
providing key words:

J

Figure 8: Illustration of the standard GPT prompting involving both demonstration and test input on six generation
tasks, including machine translation, dialogue summarization, text simplification, style transfer, paraphrase and
commonsense generation.

(Prompt template of GPT evaluation)
[SRC]

~

Given the [src] sentence: Test

Your task is to score the following two candidates translated by two systems,
Candidatel: [sys1] Candidate2: [sys2].

Please select the better one in terms of both coherence and fidelity. Note that
C1 for Candidatel, C2 for Candidate2.

Output:

\_ J

Figure 9: Illustration of the prompting design of GPT evaluation for Figure 5. We adhere to the recommendation
proposed in (Liu et al., 2023)’s work, implementing a zero-shot GPT evaluation approach to identifying superior
candidate translations through the adjudication of LLMs.
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ood/correct translation

. J

Figure 10: Illustration of the prompting design of the ablation study in Table 7. Note that all [SYS] here is empty
string. The purpose here is to evaluate the deliberation ability of LLMs.
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Dataset Num. Total Words Ave. Words\Dataset Num. Total Words Ave. Words

WMT DE-EN 1984 33540 16.9 CNN/DailyMail 11490 9017116 784.8
WMT CS-EN 1448 26050 17.9 GigaWord 1951 72171 37.0
WMT JA-EN 2008 36731 18.3 SamSum 819 104492 127.6
WMT ZH-EN 1875 14353 7.7 DialogSum 500 96385 192.7
WMT RU-EN 2016 32992 16.3 EM 1416 17279 12.2
WMT UK-EN 2018 29273 14.5 FR 1332 16799 12.6
WMT IS-EN 1000 19930 19.9 Amazon 500 6055 12.1

WMT HA-EN 997 30955 31.0 Yelp 500 5432 10.9
CommonGen 1497 6465 6.5 Asset 359 8115 22.6
QQP 2500 27543 11.0 Wiki-auto 2000 43860 21.9

Table 9: Statistics of the dataset we used on over 20 benchmarks. Note that “Num.” represents the number of
test sets for each benchmark. “Total Words” and “Ave. Words” denote the total word count and average lengths,
respectively. These statistics are based on tokenization sequences.

System Score2 Score3 Score4 ScoreS ] /% ., BAITIEIE %A 4E /757‘ R %”]n )
GPT 5shot 16 88 196 200 ) ) L ) ,
DTG 5-shot 5 45 200 250 Despite extensive experimentation with various

prompts, we observed no consistent advantages.
Table 10: Detailed score distribution of human evalua-  Thig may be attributed to the inherent uncertainty
tion on ZH-EN. in ensuring accurate word and phrase mapping.
Consequently, we have shifted our focus towards
prompting in EN-ZH and EN-UK scenarios. This employing negative-evidence prompting. This ap-
can likely be ascribed to the disparities in the bal- ~ Proach aims to activate the latent capabilities of

ance of training sets across different languages. LLM:s that were embedded during the pretraining
phase.
Simple Chain-of-Thought cannot Help Text

Generation We have witnessed the success of  Details for Human Evaluation We have further
Chain-of-Thought when solving complex reason-  conducted human evaluations to obtain more con-
ing problems. It is a natural idea to simulate CoT  vincing results. Given the constraints of human
process to improve the quality of text generation  effort, we have focused our evaluation solely on
tasks. We have tired CoT-like prompting like this: =~ ZH-EN translation and Asset simplification. It’s
“demonstration = "[requirement]=[Translate this  important to note that, specifically for the ZH-EN
English sentence into Chinese: Prior to this, Hefei  translation, we have devised the following rules for
has been the first to issue restrictions on lending  human evaluators:

policy. For people who have two suites in Hefei

and have one housing loan not paid, they will be de- * 1 point - No translation or only isolated words
nied with the mortgage services from bank.] [chain translated.

of thought]=[*Prior to this” means “# 3t X A",

“Hefei” means “4& A2”, “has been the first to issue” * 2 points - 50% errors in translation; meaning
means “ & % F L& A, “restrictions on lending distorted.

policy” means “[& %] 4 2 BL & ”, “people who have

two suites in Hefei and have one housing loan not * 3 points - Mostly accurate; minor errors and
paid” means “IAAH S FERmE L= LA —£5 B inconsistencies.

R 3K ARATF 69 A7, “they will be denied with the

mortgage services from bank” means “J§ #% 4R 17 * 4 points - Generally correct; some language
1B %8 FR A 337 It 2 Ik %, then the translation re- and spacing issues.

sult after simple semantic splicing is “7 L2 A »

SR CET R RATRERGT . A * 5 points - Smooth, accurate, and fully conveys
KA E 5= LA —E5BRRRMTFHOA the original meaning.

P A ARAT FE 4 3 B IKAT B KRR %, Finally, we

optimize the translation result in an idiomatic way- Note that the 500 sentences were randomly se-

“BLET, SR ERERAARAER, T A lected from the test set. We also provide the de-
et THRMER LA —REERTHRARLEHFE  tailed score distribution:
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Table 11: Evaluation results of GPT on six high-resource and two-low resource machine translation tasks from
WMT Testsets in from English directions. The best scores are marked in bold.

System COMET-22t TER| ChrF{ BLEU?T | COMET-22t TER| ChrF{ BLEU?
EN-DE EN-ZH
WMT-Best} 87.2 49.9 64.6 384 86.7 102.3 41.1 44.8
MS-Translator 86.8 50.5 64.2 37.3 86.1 94.2 43.1 48.1
GPT 5-shot 86.3 54.6 61.3 333 86.7 97.4 40.0 43.7
+ DTG 86.3 54.1 61.6 33.4 86.6 98.6 39.4 43.5
EN-CS EN-RU
WMT-Bestf 91.9 43.7 68.2 45.8 89.5 56.8 58.3 324
MS-Translator 90.6 45.7 65.6 42.1 87.4 56.7 58.1 331
GPT 5-shot 88.9 54.6 58.9 32.7 87.0 61.3 54.4 28.2
+ DTG 88.8 54.5 59.0 32.9 85.7 63.0 52.1 28.1
EN-JA EN-UK
WMT-Best} 89.3 105.9 36.8 27.6 88.8 57.5 59.3 32.5
MS-Translator 88.0 106.0 349 25.1 86.1 63.2 56.1 28.2
GPT 5-shot 88.1 111.8 31.0 214 85.4 70.2 50.6 21.8
+ DTG 88.0 111.8 31.0 21.7 83.8 71.6 47.8 20.8
EN-IS EN-HA
WMT-Bestf 86.8 55.0 59.6 333 79.8 65.6 51.1 20.1
MS-Translatorf 84.3 57.2 56.8 28.7 72.5 75.6 38.4 10.3
GPT 5-shot 76.1 70.8 441 16.2 72.8 87.4 38.5 9.9
+ DTG 76.7 70.9 44.2 16.3 73.2 77.7 39.3 10.1
Source kA, AR, RHBEF
Reference Nice taste, great meat, enthusiastic service.
GPT 1-shot  The taste is great, the meat is good, and the service is enthusiastic.
+ Refine The flavors are amazing, the meat is excellent, and the service is warm and welcoming.
+ DTG Great taste, good meat, enthusiastic service.
Source BACAHETENRIIRME!
Reference I have bought three laptops of this series!
GPT 1-shot  So far, 3 machines from this series have been purchased!
+ Refine Up until now, 3 machines from this series have been purchased!
+ DTG I have already purchased 3 models from this series!

Table 12: Case study on refining from the previous candidate (Refine) and the proposed DTG method.

Case Study We provide a case study based on
GPT4 model in Table 12, where “Refine” indicates
utilizing the 5-shot baseline results as the synthe-
sized sentences, i.e., “[INCORRECT SYS]” in Fig-
ure 1, and DTG is our method that uses an empty
string instead. The conclusions are two-fold. 1)
Using the baseline results will cause the model to
avoid generating the same segmentations in it al-
though they may be correct already, e.g., “taste” to
“flavors”, “so far” to “up until now”, as well as oth-
ers in red. As a result, the fluency and accuracy of
the final results may be affected. 2) Equipped with
DTG, fluency, coherence and grammatical correct-
ness of generated results are all promoted. In the
first case, the DTG result is more faithful not only
in semantics but also in structure than the baseline.
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In the second case, DTG is able to complete the
subject “I” which does not appear in the source
sentence.

E Details of Error Statistical

In Figure 6, two types of error are considered (i.e.,
under translation and entity translation error). In
this section, we provide the details of the method
to conduct the error statistics.

Under Translation We first use awesome-
align'! to get the alignment between the source
and target sentences. Then, a word in the source
sentence is regarded as under translation, when it
is aligned to a word in the reference target sentence

"https://github.com/neulab/awesome-align



but failed to be aligned in the generated target sen-
tence.

Entity Translation We first use spaCy'? to rec-
ognize the named entities in the reference target
sentence, where person names, organizations and
locations are considered. Then, an entity in the ref-
erence is considered an error if it cannot be found
in the generated target sentence.

Phttps://github.com/explosion/spaCy
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