
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ARCHON: AN ARCHITECTURE SEARCH FRAMEWORK
FOR INFERENCE-TIME TECHNIQUES

Anonymous authors
Paper under double-blind review

ABSTRACT

Inference-time techniques are emerging as highly effective tools to enhance large language
model (LLM) capabilities. However, best practices for developing systems that combine
these techniques remain underdeveloped due to our limited understanding of the utility
of individual inference-time techniques and the interactions between them. Additionally,
efficiently and automatically searching the space of model choices, inference-time
techniques, and their compositions is challenging due to the large design space. To address
these challenges, we introduce ARCHON, a modular framework for selecting, combining,
and stacking layers of inference-time techniques to construct optimized LLM systems
for target benchmarks. Rather than relying on a single LLM called once, we leverage
a diverse set of LLMs and inference-time techniques, creating LLM systems greater
than the sum of their parts. ARCHON defines an extensible design space, encompassing
techniques such as generation ensembling, repeated sampling, ranking, fusion, critiquing,
verification, and unit testing. It transforms the problem of building LLM systems into
a hyperparameter optimization objective. Given the available LLMs, inference-time
techniques, and compute budget, ARCHON utilizes hyperparameter search techniques
to discover optimized architectures for target benchmark(s). We evaluate ARCHON
architectures across a range of instruction-following, reasoning, and coding benchmarks,
including MT-Bench, Arena-Hard-Auto, AlpacaEval 2.0, MixEval, MixEval Hard,
MATH, and CodeContests. ARCHON architectures outperform frontier models, such
as GPT-4o and Claude 3.5 Sonnet, on these benchmarks, achieving an average accuracy
increase of 15.1 percentage points by using all available LLMs.

1 INTRODUCTION

Inference-time techniques are gaining traction as effective methods for improving model capabilities.
Examples include generation ensembling, ranking, and fusion, where models in the ensemble are queried in
parallel, their responses are ranked, and the best ones are fused into a single, higher quality output, respectively
(Jiang et al., 2023b; Wang et al., 2024). Other types of inference-time techniques are based on querying
a single LLM successively (via repeated sampling) and using a voting strategy or unit tests to select the top
generation (Brown et al., 2024; Chen et al., 2024; Li et al., 2024a). We divide these existing inference-time
techniques into three categories: generative, meaning that new candidate responses are drawn from the
models (e.g. generation ensembling and repeated sampling), reductive, meaning that the existing responses
are aggregated or filtered to keep the top responses (e.g. fusion and ranking), or comparative, meaning they
provide analysis of candidate responses (e.g. critiquing and unit testing), as shown in Table 2.

Recent work has made progress towards building robust inference-time architectures, which are systems
composed of one or more large language models (LLMs) and inference-time techniques. Examples include
Mixture-of-Agents (MoA) (Wang et al., 2024) and LLM-Blender (Jiang et al., 2023b), as well as single-model
systems like LeanStar (Lin et al., 2024) and rStar (Deng et al., 2024). However, our experiments show that
existing architectures, such as MoA, still suffer from lack of generalization and become significantly less
effective beyond the task(s) they were developed on (see Section 4.2). We argue that designing effective
and generalizable inference-time architectures requires:

• Understanding the Utilities of Inference-Time Techniques: Inference-time architectures typically
delegate their additional inference budget towards more model sampling calls (Chen et al., 2024; Brown
et al., 2024), which can be effective for math and coding tasks. Other tasks such as instruction-following
and reasoning are shown to benefit from additional techniques, including ranking and fusion (Wang

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of ARCHON Framework: Inference-Time Architecture Search (ITAS) requires the
following inputs: target benchmarks, inference call budget, available LLMs, and available inference-time
techniques (left). The ITAS algorithm uses Bayesian optimization (Snoek et al., 2012) (Section A.6) to select
and test different ARCHON configurations (middle) before returning the optimized ARCHON architecture
(right) for the target benchmarks (Section 3.3).

et al., 2024; Jiang et al., 2023b). While all of these methods are valuable, it is essential to identify which
inference-time techniques are most effective for different task categories.

• Understanding the Interactions Between Inference-Time Techniques: While previous studies
analyzed these techniques individually (e.g. generation sampling in Chen et al. (2024)), we need a more
comprehensive understanding of the relationships between different inference-time techniques across
different tasks (e.g. is it better to use more models or generate more samples per model?).

• Efficiently and Automatically Searching the Large Design Space of Inference-Time Architectures:
Given a set of available LLMs and target tasks, there is currently no single prevailing inference-time
architecture for maximizing downstream accuracy across all tasks (Table 1). The search space of
inference-time architectures is expansive, requiring practitioners to make several key configuration decisions:
which LLMs to use, how many times to sample them, how to combine the candidate generations, what
inference-time techniques to perform on the candidates, and more. These motivate the need for adaptive
and automated architecture search approaches.

In our work, we address each of these challenges. Firstly, we evaluate the utilities of a comprehensive
set of existing and proposed inference-time techniques across instruction-following, reasoning, and
coding tasks. Using both open-source and closed-source models, we examine a range of techniques such
as ensembling, fusion, ranking, critiquing, and verification and introduce new methods such as model-based
unit test generation and evaluation (Sections 3.1 and 3.2).

Secondly, we analyze the interactions between inference-time techniques, and explore the benefits
of adding new models and new techniques individually. We find that candidate fusion substantially improves
the quality of the final response generation, and when combined with additional techniques like critiquing,
verifying, and ranking, can improve generation quality beyond the oracle best candidate from individual
(non-fused) responses (Figure 3; Figure 7). Additionally, we find that candidate verification, unit test
generation, and unit test evaluation are most effective for reasoning tasks, whereas critiquing and ranking
are effective across instruction-following and reasoning tasks (Section 3.1; Table 12).

Thirdly, drawing upon our analysis of inference-time techniques, we present ARCHON, a framework
for building inference-time architectures. ARCHON utilizes automatic inference-time architecture search
(ITAS) algorithms to maximize generation quality for a wide range of tasks, including instruction-following,
reasoning, and coding. Our ARCHON framework and ITAS algorithms draw inspiration from neural
architectures and neural architecture search (NAS) (Zoph & Le, 2017; Ren et al., 2021; Liu et al., 2018; 2021),
respectively. ARCHON is constructed of layers of LLMs, in which LLMs within the same layer run in parallel,
but each layer runs sequentially. The layers perform different inference-time techniques, either transforming
the number of candidate responses through generation and fusion (analogous to linear transformations) or
reducing the number of candidate responses to improve quality (akin to non-linearities) (Section 3.1). The
number of generators, samples per model, fusion layers, fusion models per layer, and more, are all treated
as hyperparameters for optimization in our ITAS algorithms (Section 3.3).

Overall, our work makes the following contributions: (1) We develop ARCHON, an open-source modular
framework for designing LLM systems that combine inference-time techniques (Section 3.1). We utilize ITAS
as the optimizer engine for ARCHON, which enables automated inference-time architecture search for target

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

benchmarks, leveraging Bayesian optimization (Snoek et al., 2012; Nardi et al., 2019) (Section 3.3). ARCHON
is plug-and-play, allowing users to select from existing inference-time techniques (or add new ones) and specify
their desired objective functions to optimize for accuracy, latency, and cost. (2) We demonstrate increased per-
formance as we scale up the layers of inference-time techniques and combine multiple approaches together, al-
lowing us to discover effective new combinations of inference-time techniques (Sections 3.2, 4.2, A.2). We find
that sequentially applying critique, ranking, top-k selection, and then fusion is a highly effective composition
(Figure 3; Table 1), and we demonstrate the effectiveness of model-based unit test generation and evaluation for
improving coding capability (Figure 5). (3) Our best ARCHON architectures surpass both single-call LLMs (e.g.
GPT-4o and Claude-3.5 Sonnet) and prior top-performing inference-time architectures (e.g. Mixture-of-Agents
(Wang et al., 2024)), boosting state-of-the-art performance by 15.1 percentage points, on average, across a
diverse set of instruction-following, reasoning, and coding benchmarks (Table 1; Figure 5): MT-Bench, Arena-
Hard-Auto, Alpaca-2.0 Eval, MixEval, MixEval Hard, MATH, and CodeContests (Zheng et al., 2023; Li et al.,
2024b; 2023; Ni et al., 2024; Hendrycks et al., 2021; Li et al., 2022). Even when just using open-source LLMs,
ARCHON architectures on average surpass single-call state-of-the-art (SOTA) LLMs by 11.2 percentage points.

2 RELATED WORK

Scaling Laws of Language Models: Language models (Touvron et al., 2023; Jiang et al., 2023a; Team
et al., 2024a; OpenAI et al., 2024) have transformed the field of artificial intelligence across a vast number
of domains and tasks. LLMs are pretrained on substantial amounts of textual data before being further aligned
with human preferences through instruction fine-tuning (Wei et al., 2022; Chung et al., 2022), DPO (Rafailov
et al., 2023), KTO (Ethayarajh et al., 2024), RLAIF (Bai et al., 2022b), and other techniques. As language
models continue to gain improved abilities with further scaling of data, parameters, and compute (Kaplan
et al., 2020; Gadre et al., 2024), the cost of developing new LLMs is ever increasing, requiring the curation
of trillions of new tokens as well as substantial GPU-hours for pretraining. Furthermore, as the current
state-of-the-art in LLMs are primarily closed-source APIs, such as OpenAI’s GPT-4o (OpenAI et al., 2024),
Google’s Gemini (Team et al., 2024b) and Anthropic’s Claude (Anthropic, 2024), it is difficult to effectively
explore and push the frontier of existing LLMs without being able to manipulate the parameters of these
closed-source models and employing techniques such as continual pretraining (Jin et al., 2021), instruction
fine-tuning (Wei et al., 2022), data mixing (Ye et al., 2024), chain-of-thought (Wei et al., 2023), among others.

Inference-Time Techniques: Inference-time architectures combine multiple frozen LLMs and inference-time
techniques (e.g., generation ensembling, sampling, ranking, and fusion), achieving superior performance
compared to individual models. Notable works include Mixture-of-Agents (MoA) (Wang et al., 2024), LLM
Blender (Jiang et al., 2023b), RouteLM (Ong et al., 2024), Smoothie (Guha et al.), and various approaches
around compound AI, which are AI systems that use multiple components (e.g. LLMs, retrievers, tool use,
APIs, etc.) (Chen et al., 2024; Davis et al., 2024; Lewis et al., 2020; Shao et al., 2024; Kapoor et al., 2024).
LM frameworks like DSPy (Khattab et al., 2023) and TextGrad (Yuksekgonul et al., 2024) have emerged
for orchestrating LMs and other components. Even with a single LLM, various techniques can improve
performance by building better reasoning strategies, such as OpenAI’s o1 (OpenAI, 2024b), Chain of Thought
(Wei et al., 2023), and Branch-Solve-Merge (Saha et al., 2024), as well as inference-time frameworks, such
as ADAS (Hu et al., 2024) and AFlow (Zhang et al., 2024).

Despite these advancements, challenges remain in developing inference-time architectures. Many archi-
tectures focus on additional generations (Jiang et al., 2023b; Chen et al., 2024; Davis et al., 2024), which
is effective for reasoning tasks (Brown et al., 2024). However, for tasks like chat and instruction-following,
techniques such as fusion and ranking are useful (Wang et al., 2024; Jiang et al., 2023b). For tasks without
built-in verification, additional compute for reasoning and verification can improve accuracy (Davis et al.,
2024). We still lack understanding of trade-offs between different inference-time techniques. Prior studies have
explored limited aspects of configurations, often focusing on specific benchmarks (Jiang et al., 2023b; Wang
et al., 2024; Chen et al., 2024; Li et al., 2024a). It’s crucial to efficiently develop inference-time architectures,
as optimal configurations vary based on benchmarks, available models, and inference call limits (Section 4.2).
To address these challenges, we analyzed multiple inference-time techniques (Section 3.1) and developed the
ARCHON framework for automating the development of inference-time architectures with ITAS (Section 3.3).

3 INFERENCE-TIME TECHNIQUES FOR ARCHON

With the proliferation of inference-time techniques, ARCHON introduces a simple framework that unifies
different approaches, providing structure for understanding and combining various techniques. Our framework
not only incorporates methods for generating, ranking, and fusing candidates inspired by previous work

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(Wang et al., 2024; Jiang et al., 2023b) but also integrates new approaches for critiquing, verifying, and
unit testing candidate responses.

Below, we elaborate on the structure, inputs, and outputs of each of the inference-time techniques, which
we also include in Table 2. Then, we discuss how to combine the different techniques into an inference-time
architecture (Section 3.2) and the relationships between the different inference-time techniques (Section
A.2) before finally exploring automatic approaches for constructing inference-time architectures (Section 3.3).

3.1 LLM COMPONENTS OF ARCHON

In this section, we discuss the LLM components of ARCHON, which are LLMs that perform a specific
inference-time technique. We test an array of different components inspired by recent work, incorporating
approaches for generating, ranking, and fusing candidates (Wang et al., 2024; Jiang et al., 2023b) as well as
approaches for improving candidate response quality through critiquing, verifying, and unit testing (Bai et al.,
2022a; Zheng et al., 2023). The components and their prompts are summarized in Table 2 and Section A.1.

Generator is an LLM that takes in the instruction prompt and outputs candidate responses. Generators
can be called in parallel to perform generation ensembling (i.e. calling multiple LLMs in parallel) (Wang
et al., 2024), or sampled multiple times (Brown et al., 2024). When calling the Generators in parallel, you
can sample one or more LLMs one or more times. The number of models, samples, and temperature for
generation can be varied based on model configuration.

Fuser is an LLM that, given an instruction prompt and a set of proposed responses as input, combines these
responses to generate one or more higher-quality fused responses that better address the instruction prompt.

Ranker is a LLM that, given an instruction prompt and a set of proposed responses as input, ranks the
candidate generations based on their quality, producing a ranked list of responses as output.

Critic is an LLM that, given an instruction prompt and a set of proposed responses as input, produces a
list of strengths and weaknesses for each response, which is then used to improve the quality of the final
response (Section 3.2; Figure 3).

Verifier is a LLM that verifies whether a provided candidate response has appropriate reasoning for a given
instruction prompt. It proceeds in two stages: Stage #1 takes in the instruction prompt and a candidate
response as input and outputs reasoning for why the candidate response is correct; Stage #2 takes in the
instruction prompt, candidate response, and produced reasoning before outputting reasoning and a verdict
(i.e. binary [Correct] or [Incorrect]) for whether or not the candidate response is correct according to the
provided instruction prompt and reasoning.

Unit Test Generator is a LLM that takes only the instruction prompt as input and outputs a list of unit tests
that assess the accuracy and relevance of candidate responses. These unit tests are verified by the Unit Test
Evaluator to rank different responses. Each test is a concise statement that can be passed or failed. We make the
number of unit tests generated a configurable choice for the unit test generator but we find 5-10 generated unit
tests to be most effective with our set of LM prompts (Section 4.2; Figure 5). For examples, please see Table 10.

Unit Test Evaluator is a LLM that takes in the instruction prompt, candidate response(s), and set of unit tests
before outputting the candidate response(s), ranked in descending order by how many unit tests they pass. We
use model-based unit test evaluation by prompting the LLM to provide reasoning and verdicts for each unit test
across each of the candidate responses. By aggregating the unit test verdicts for each candidate response, the
unit test evaluator ranks the candidate responses. For reasoning tasks, particularly coding tasks, it can be useful
to compare different candidate responses by the number of unit tests they pass to gauge for quality (Figure 5).

3.2 COMBINING THE LLM COMPONENTS

Overview: Inspired by the structure of neural networks (Hinton et al., 1992), ARCHON is constructed of layers
of LLM components (Figure 1; Section 3.1). Each layer is composed of sets of these LLM components that
are called in parallel, performing a text-to-text operation to the instruction prompt and the candidate responses
from the previous layer. Furthermore, like a neural network, some layers perform transformations of the
provided list of strings (e.g. the Generator and Fuser components), converting a list of strings into a different
list of strings (the numbers of candidates can vary from the original number of candidates). Other components
introduce non-linearities into the ARCHON structure, performing filtering of the list of strings (e.g. Ranker
and Verifier). Ultimately, the inputs and outputs for each layer is always a list of strings, whether that is the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

instruction prompt (e.g. a list with a single string) or a list of candidate responses (e.g. a list of many strings).
If a list of strings are outputted at the last layer of the ARCHON structure, the first string in the list is returned.

Unlike a classical neural network, no weights are learned between the LLM components and the layers;
in turn the ARCHON architecture can be deployed off-the-shelf without any tuning. Additionally, a single state
is transformed sequentially from the input layer to the final output; this single state is the initial instruction
prompt and the current candidate responses. In Figure 2, we provide an example ARCHON architecture
composed of six layers.

Figure 2: Example ARCHON Architecture: This architecture starts with ten generator models, followed by
a critic model, a ranker model, one layer of six fuser models, a verifier model, and finishes with a fuser model.

Rules for Construction: The LLM components in Section 3.1 can only be placed in specific orders:

1. Only one type of module can be present in any given layer.
2. Generator components must and can only be placed in the first layer of ARCHON; you can put multiple

Generators or a single Generator in the layer.
3. The Critic component must come before a Ranker or a Fuser, otherwise the generated strengths and

weaknesses cannot be incorporated into generation ranking or fusion, respectively.
4. Ranker, Critic, Verifier, and Unit Test Generator/Evaluator layers can go anywhere in the ARCHON structure

(besides the first layer); for each of these components, it must be the one and only module in its layer.
5. Fuser components can also be placed anywhere in the ARCHON structure (besides the first layer); you

can put multiple Fusers or a single Fuser in the layer.
6. Unit Test Generators and Evaluators are placed in layers next to each other: generator first, then evaluator.

We provide an overview of the available placements and configurations for each LLM module in Table
3. We also analyze the different interactions between each LLM component and find increased ARCHON
performance as we scale the "layers" of inference-time techniques by combining multiple approaches together
sequentially (Section A.2).

Performance Gains from Scaling Inference-Time Techniques: By scaling both the layers of inference-time
techniques and the diversity of inference-time techniques included, we were able to significantly improve AR-
CHON performance across instruction-following, reasoning, and coding tasks (Figure 3). In particular, repeated
model sampling and additional ensemble models led to substantial gains (Figure 4), leading to 9.3 and 18.5 per-
centage point increases, respectively. On coding tasks, additional samples provided the largest marginal benefits,
leading to a 56% boost in Pass@1 for CodeContests when repeated sampling was combined with model-based
unit test generation/evaluation (Figure 1). Multiple layers of Fusers were found to be particularly effective for
instruction-following tasks, delivering notable performance improvements as the number of layers increased
(Figure 3). In reasoning tasks, incorporating the Verifier and Unit Test Generator/Evaluator modules alongside
the Fuser improved performance by filtering out flawed responses, contributing to significant performance
gains in tasks like MixEval and CodeContests. For detailed analysis of interactions between LLM components,
please see Section A.2, where we perform a series of ablation experiments in which we vary ARCHON compo-
nent combinations (Table 12) and the models used in the combinations (Table 13; Table 14; Table 15; Table 16).

3.3 INFERENCE-TIME ARCHITECTURE SEARCH (ITAS)

In this section, we explore different approaches for finding the best inference-time architecture (for a given
task) through inference-time architecture search (ITAS). Due to compute resources, we pre-filtered certain

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Performance Gains from Scaling Layers of Inference-Time Techniques: We generally observe
performance improvements as we scale the critic and fusion layers. Compared to sampling the best open-source
model once, our inference-time architecture with an 8-model ensemble, 3 layers of critic and fusion (8 models
in each layer), and a final fusion performs on average 17.3% higher. For MixEval and CodeContests, we
find that alternative inference-time architectures are more effective than generator ensembles and fusion layers.
We break-down our results for MixEval and MixEval-Hard by subdataset in Section 4.2 (Table 31; Table 32).
For CodeContests, we show the effectiveness of increased generator sampling combined with model-based
unit test generation/evaluation in Figure 5. The results were calculated from 10 independent evaluation runs.

Figure 4: Performance Gains from Repeated Sampling, Ensembling, Ranking, and Fusing on
Arena-Hard-Auto: The ARCHON win-rate continues to grow significantly as we scale model sampling
(left) or add additional models to the generator ensemble (right), increasing by 9.3% and 18.5%, respectively.
These best results are achieved by selecting the top-5 responses and fusing them. The ensemble models
are added based on their individual performance on this task, from best to worse (Table 18). The results
were calculated from 10 independent evaluation runs.

ways of combining LLM components to reduce the search space while still building effective inference-time
architectures. While it is possible to expand the search space of potential ARCHON architectures (e.g. different
temperatures for generative LLM components, alternative prompts for each LLM component, multiple layers
of Generator modules, additional LLM components for ARCHON, etc.), we use our analysis from Section
3.2 to selectively limit our search space to configurations that fit our rules for ARCHON: starts with a layer
of Generator modules, followed by layers performing fusing, ranking, critiquing, verifying, and unit testing.

Search Hyperparameters: We selected five main axes for the hyperparameters in our search:

1. Top-K Generators for Ensemble: The top-K models to be used for the initial Generator ensemble,
ranges from 1 to 10. The top-K models are the best-K LLMs for the given task, based on their individual
performances (Table 18).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2. Top-K Generator Samples: The number of samples gathered from each Generator in the ensemble
(it is the same for all the models), ranges from 1 to 5. For Code-Contests, we explore high sample settings:
[1, 10, 100, 500, 1000].

3. Number of Fusion Layers: Ranges from 1 to 4. The last fusion layer will always have a single Fuser.
4. Top-K Fusers: Number of models used for each fusion layer, ranges from 2 to 10 and increases by

2 each time.
5. Evaluation Layer: Option to add a Verifier, Unit Test Generator/Evaluator, or neither before the last

Fuser layer.

By combining all the hyperparameters, we create a search space of 18,750 configurations by multiplying
each of the configuration option counts together (10 ∗ 5 ∗ 5(4−1) ∗ 3 = 18,750). However, we remove
configurations that are not viable: configurations in which the number of initial generations exceeds the
context window of the fusers (i.e. 24 candidate generations) and configurations with only one fuser layer
but multiple fusers declared. This reduces our search space to 9,576 configurations. For these configurations,
we add critic and ranker layers before each fuser layer since they’ve been shown to have added benefits
across the benchmarks explored (Figure 7; Figure 3). The ranker selects the top-5 candidate generations
to send to the next layer. The unit test generator uses a default setting of 5 unit tests generated.

Search Methodology: Within ITAS, we use Bayesian Optimization to select the most promising hyperparam-
eter configurations (Snoek et al., 2012; Nardi et al., 2019). For generator ensemble, we add the models to the
pool in a greedy manner, starting from the best performing model (on average) on the target benchmarks. For
each fuser ensemble layer, we use the same approach, adding the best fuser models in a greedy manner. To
rank them, we evaluate their fusion performance on the samples from an ensemble of top 10 generator models.
We found that the best generator and fusion models could vary widely across datasets, making it beneficial
to perform these rankings for new datasets (Table 18). For search, we use a 20% sample of each dataset
for guiding architecture search to improve the evaluation speed while getting meaningful development signal.

Overall, Bayesian Optimization was the most effective search algorithm for constructing ARCHON
systems, outperforming other methods like random and greedy search by more efficiently finding optimal
configurations (Section A.6). It found the best architectures in 96.0% of iterations and required 88.5%
fewer evaluations than greedy search and 90.4% fewer than random search (Figure 13). The effectiveness
of Bayesian optimization increases with the number of initial testing points, up to around 230-240 samples,
after which further testing is better focused on configuration search (Table 26). However, for limited inference
call budgets (<20 calls), Bayesian optimization is less effective, and traditional methods like greedy search
may perform comparably (Table 27).

For our implementation, we use a Python package of Bayes global optimization with Gaussian processes.
As inputs, our Bayes implementation takes in the integer lists of configuration choices for the generators
(i.e. number of models and samples), layers of fusers, numbers of fusers per layer, and final verifier / unit
tester. Bayes algorithm then proceeds to select different combinations of integers from these lists in its
search process, iteratively evaluating each generated ARCHON architecture on the development set to find
the optimal ARCHON configuration. For more information, please see Section A.6.

4 EXPERIMENTS

Our experiments focus on four questions: (1) how does ARCHON compare to existing SOTA LLMs and
multi-LLM systems? (2) how does ARCHON performance compare across tasks? (3) how does ARCHON
performance compare when optimized for a set of tasks vs. an individual task? (4) what are ARCHON’s
current limitations and plans for future work?

4.1 BENCHMARKS AND MODELS

Benchmarks: We evaluate our models with several benchmarks for instruction-following, reasoning, and
coding: MT-Bench (Zheng et al., 2023), AlpacaEval 2.0 (Li et al., 2023), Arena Hard Auto (Li et al., 2024b),
MixEval (Ni et al., 2024), MixEval-Hard, MATH (Hendrycks et al., 2021), and CodeContests (Li et al.,
2022). We provide an overview of each dataset in Table 29, where we compare their query counts, scoring
type, evaluation metrics, reference models, and judge models. Since we perform ITAS on a randomly
sampled 20% subset of each benchmark, we evaluate on the remaining held-out 80% subset of the benchmark
(Table 1; Figure 5) (for ARCHON performances on the entire benchmarks, please see Table 28). The delta
between the ARCHON performance on the entire benchmark vs. 80% held-out subset is relatively small:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

MT
Bench

Alpaca
Eval 2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH

Approaches Infer.
Calls

Input
Tokens

Output
Tokens

TFLOPs
per Token W.R. L.C.

W.R. W.R Acc. Acc. Pass
@1

Ba
se

lin
es

LM
GPT-4o 1 95 549 Unk. 44.2% ±0.5 57.8% ±0.6 80.6% ±0.6 63.4% ±0.2 87.5% ±0.3 73.2% ±0.4

Claude 3.5 Sonnet 1 105 602 Unk. N/A 52.7% ±0.4 81.4% ±0.4 68.7% ±0.2 89.1% ±0.2 73.1% ±0.7
Llama 3.1 405B 1 118 631 0.81 44.1% ±0.3 40.7% ±0.5 64.5% ±0.7 66.0% ±0.3 88.2% ±0.2 75.2% ±0.5

LM
Systems

MoA 19 25,109 17,422 1.36 51.6% ±0.6 65.4% ±0.3 84.5% ±0.3 62.3% ±0.4 86.9% ±0.2 73.9% ±0.6
MoA Lite 7 7,943 6,437 0.52 45.6% ±0.4 59.6% ±0.7 88.3% ±0.5 60.9% ±0.3 86.4% ±0.3 71.8% ±0.3

ADAS 52 72,804 44,872 Unk. 66.3% ±0.7 60.1% ±0.5 85.4% ±0.4 64.2% ±0.2 87.0% ±0.2 74.5% ±0.8
AFlow 48 68,596 41,748 Unk. 62.4% ±0.2 57.8% ±0.6 83.2% ±0.6 63.5% ±0.3 87.2% ±0.4 73.2% ±0.2

O1 Mini Unk. 112 Unk. Unk. 57.1% ±0.3 57.8% ±0.4 79.3% ±0.8 70.8% ±0.2 87.0% ±0.3 81.7% ±0.4
O1 Preview Unk. 112 Unk. Unk. 56.3% ±0.5 59.3% ±0.5 81.7% ±0.3 72.0% ±0.4 87.5% ±0.2 73.5% ±0.5

A
rc

ho
n

Open
Src.

General Purpose 35 51,113 31,508 3.14 67.2% ±0.4 63.3% ±0.6 85.6% ±0.5 65.3% ±0.3 86.2% ±0.2 76.6% ±0.6
Task Specific 44 63,157 39,949 3.71 71.1% ±0.6 67.1% ±0.4 89.6% ±0.4 67.5% ±0.2 88.8% ±0.3 81.9% ±0.3

Closed
Src.

General Purpose 32 52,747 27,894 Unk. 72.7% ±0.3 63.9% ±0.7 86.2% ±0.7 67.5% ±0.4 87.2% ±0.2 77.9% ±0.7
Task Specific 40 59,085 37,271 Unk. 77.0% ±0.5 68.9% ±0.5 90.5% ±0.3 72.6% ±0.3 89.5% ±0.3 81.6% ±0.4

All
Src.

General Purpose 35 50,427 30,461 Unk. 76.2% ±0.7 66.4% ±0.3 89.8% ±0.6 69.8% ±0.2 87.3% ±0.4 79.3% ±0.5
Task Specific 39 58,250 36,114 Unk. 79.5% ±0.4 69.0% ±0.6 92.5% ±0.5 72.7% ±0.3 89.7% ±0.2 82.1% ±0.6

Table 1: ARCHON’s Strong Performance with ITAS Optimization on Open Source, Closed Source, and All
Source Models: Consistent outperformance over state-of-the-art LLMs across explored benchmarks. The
standard error numbers were calculated from 10 independent evaluation runs.

only 0.44 percentage points, on average, across these datasets with an S.D. of 0.20 percentage points. For
MixEval and MixEval Hard, we use the 2024-06-01 dataset release. For MT Bench, AlpacaEval 2.0, and
Arena-Hard-Auto, the reference models are Claude 3.5 Sonnet, GPT-4-Turbo, and GPT-4-Turbo, respectively,
while the judge models are GPT-4-0314, GPT-4-Turbo, and GPT-4-Turbo, respectively. For MATH, we
evaluate a random sample of 200 problems from the dataset’s test set. For CodeContests, we evaluate on
the 140 test set questions that do not include image tags in the problem description.

Models: We test the efficacy of the ARCHON framework by creating various different ARCHON architectures
(Section 4.4) across three model categories: 8B or less parameter models, 70B or more parameter models,
and closed-source model APIs. For our 8B and 70B+ models, we selected the top-10 performing chat models
for each parameter range on the Chatbot Arena Leaderboard (Chiang et al., 2024) as of July 2024. For our
ARCHON architectures, we explore multiple model types: open-source, closed-source, and all-source (i.e.
both open-source and closed-source available). For our closed-source model APIs, we include GPT-4o,
GPT-4-Turbo, Claude Opus 3.0, Claude Haiku 3.0, and Claude Sonnet 3.5. We list and compare all of the
models tested in the ARCHON framework in Table 17 and Table 18. For all the LLMs utilized and every
ARCHON component, we set the generation temperature to 0.7. As baselines, we compare ARCHON against
both SOTA LLMs (GPT-4o (OpenAI et al., 2024), Claude 3.5 Sonnet (Anthropic, 2024), and Llama 3.1
405B Instruct (AI@Meta, 2024)) as well as SOTA inference-time architectures (OpenAI’s O1 (OpenAI,
2024a), MoA (Wang et al., 2024), ADAS (Hu et al., 2024), and AFlow (Zhang et al., 2024)).

4.2 ARCHON VS. CLOSED-SOURCE LLMS AND OTHER INFERENCE-TIME ARCHITECTURES

We start by comparing ARCHON architectures to existing SOTA closed-source LLMs and inference-time
architectures across a set of instruction-following, reasoning, and coding tasks. Based on our results in Table 1,
we find that ARCHON architectures consistently match or surpass existing approaches across all the benchmarks
explored. ARCHON architectures with open-source models demonstrate a 11.2% average improvement over
SOTA open-source approaches; for its worst performance, our open-source ARCHON architectures are only
3.6% above SOTA open-source approaches on AlpacaEval 2.0. ARCHON architectures with closed-source
models achieve SOTA performance across MT Bench, Arena-Hard-Auto, MixEval, and MixEval-Hard, leading
to a 15.8% average improvement over closed-source LMs and a 6.8% average improvement over open-source
inference-time frameworks (i.e. MoA, ADAS, and AFlow). Furthermore, compared to these open-source
inference-time frameworks, Archon is 20% more inference call efficient while having higher performances
on all benchmarks tested. We also find that our best Archon architectures use 15.1% less input tokens and
13.5% less output tokens compared to the best alternative open-source inference-time frameworks. Compared
to O1-preview and O1-mini, ARCHON’s best targeted architectures beat them by 8.1% and 9.7%, on average,
on MT Bench, AlpacaEval 2.0, Arena Hard Auto, MixEval, MixEval Hard, and MATH. On CodeContests,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: ARCHON Performance Gains from Combining Multi-Sampling with LLM-based Unit-test Genera-
tion/Evaluation: Strong performance improvements in Pass@1 as we scale the number of samples for GPT-4o
and Claude 3.5 Sonnet. The standard error numbers were calculated from 10 independent evaluation runs.

O1-preview and O1-mini narrowly beats ARCHON by 1.7% and 5.3%, on average, as the O1 system is
specially trained towards handling complex reasoning tasks like math and coding. Lastly, for approaches that
use all models available, both open and closed-source, ARCHON achieves an average 10.9% improvement over
existing SOTA single-call LLMs and an average 8.6% improvement over existing inference-time frameworks.

4.3 ARCHON BY TASK

We analyze ARCHON performance by task style: instruction-following tasks that use pairwise ranking for
scoring, reasoning tasks that use accuracy-based metrics for scoring, and coding tasks that use Pass@1. On
instruction-following tasks like MT Bench, AlpacaEval 2.0, and Arena-Hard-Auto, open-source ARCHON
architectures outperform current open-source baselines by 10.0 percentage points, on average, while
closed-source ARCHON outperforms current closed-source baselines by 20.1 percentage points (Table 1).
On reasoning tasks like MixEval, MixEval-Hard, and MATH, open-source ARCHON architectures outperform
existing open-source baselines by 2.9 percentage points while closed-source ARCHON architectures
outperform current closed-baselines by 4.2 percentage points (Table 1). On coding tasks (i.e. CodeContests),
open-source ARCHON architectures match existing open-source baselines (0.2 percentage points difference)
and all-source ARCHON architectures outperform all-source baselines by 2.5 percentage points (Figure 5).
All-source architectures of ARCHON outperform existing all-source baselines by 16.1 and 3.8 percentage
points, on average, for instruction-following tasks and for reasoning tasks, respectively (Table 1).

Instruction-Following and Reasoning: With ARCHON, multiple models used for Generators and the depth
of fusion layers lead to performance boosts on instruction-following tasks, increasing the richness of responses
and allowing multiple iterations for step-by-step instruction-following (Table 19). For reasoning, while
the performance boost from ARCHON is smaller when we consider the aggregate scores for MixEval and
MixEval-Hard, we do see meaningful increases in performance when we create inference-time architectures
for each individual task under MixEval and MixEval-Hard (Table 31; Table 32). When we create individual
ARCHON architectures for each subtask, we see 3.7 and 8.9 percentage point increases in accuracy, on
average, for MixEval and MixEval-Hard, respectively. This finding suggests that reasoning tasks (e.g. math,
sciences, logic) require more individualized inference-time architectures for their particular queries.

Coding: We have observed that ensembling, fusion, and ranking techniques have limited impact on
CodeContests (Figure 3). For example, when we apply the general all-source architecture from Table 29
to CodeContests problems, we achieve small gains from ARCHON (see Figure 5). One contributing factor
is that, unlike the distribution of instruction-following/reasoning tasks, coding tasks tend to have one or
two LLMs that perform substantially better than the rest of models (Table 18). However, when we add
unit test generation/evaluation, and scale the number of samples, ARCHON’s performance on CodeContests
improves significantly (Figure 5), allowing us to boost GPT-4o Pass@1 performance by 56% for Pass@1
(from 25 to 41 out of 140 questions). For model-based unit test generation/evaluation, we generate 5 unit
tests and use the LM to evaluate each candidate response against the generated unit tests, allowing us to
rank the different candidate responses (details are provided in Section A.1)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.4 TASK-SPECIFIC AND GENERAL-PURPOSE ARCHON ARCHITECTURES

Task-Specific vs. General-Purpose: We also compare custom ARCHON architectures, specifically
configured to a single evaluation dataset ("Task-specific ARCHON Architectures"), and a generalized ARCHON
architecture configured to handle all the evaluation datasets ("General-purpose ARCHON Architectures")
(Table 1). For our three model selection settings for ARCHON (i.e. open-source, closed-source, and all-source),
we utilize ITAS to find targeted ARCHON architectures for each task (7 architectures total) and find a single
generalized ARCHON architecture for maximizing performance over all the tasks (Table 1). The benchmarks
are concatenated together and shuffled for generalized Archon architecture search. For examples of targeted
and generalized ARCHON architectures, please see Figure 2 and Section A.4.

We utilize ITAS to find the generalized ARCHON architectures in Table 1 (Section 3.3), maximizing
performance over all of the benchmarks explored except CodeContests. While we use ITAS to find a targeted
ARCHON architecture for CodeContests, we exclude the dataset from the generalized ARCHON architecture
search since we found that ARCHON architectures for coding tasks are most effective with a different set
of inference-time techniques compared to instruction-following and reasoning tasks (i.e. increased model
sampling combined with model-based unit test generation/evaluation) (Section 3.2; Figure 3). For open-source
models, we find that our generalized ARCHON architecture only lags behind the specialized ARCHON
architectures by 3.4 percentage points, on average, across all the benchmarks, demonstrating the robustness
of the ARCHON architecture found by the ITAS algorithms (Table 1). We see similar gaps between the
generalized and specialized ARCHON architectures for closed-source models (4.0 percentage points) as
well as the all-source models (3.3 percentage points) (Table 1).

Insights from Architecture Construction: We include examples of our learned effective generalized
ARCHON architectures constructed by ITAS in Section A.4. For instruction-following and reasoning tasks,
we found a generalizable ARCHON architecture to be most effective with multiple layers of critic-ranker-fuser,
chained sequentially to improve candidate generation (Figure 9). However, the specific models chosen
for these LLM components could change task by task, with some tasks benefiting from using a single
SOTA closed-source LLM for all the components (e.g. Arena-Hard-Auto and MixEval) (Figure 11) whereas
others benefited from a diversity of LLMs in their ensemble (e.g. MT Bench and MixEval-Hard) (Figure 9;
Figure 10). Regardless of models used, we found that scaling inference layers including critics, rankers,
and fusers improved performance on instruction-following and reasoning tasks (Figure 3; Section A.4).
For instruction-following and reasoning tasks, the verifier module is more effective than the unit test
generation/evaluation module for task-specific ARCHON architectures (Section 3.2; Table 12). For coding
tasks, we found a high-sample setting to be the most effective, with added layers of unit test generation
and evaluation to boost the quality of the final candidate generation (Figure 12; Figure 5).

4.5 LIMITATIONS AND FUTURE WORK OF ARCHON

Parameter Count: The ARCHON framework is most effective with LLM with about 70B parameters
or more. When we utilize the ARCHON architecture with only 7B open-source models, we get a notable
decrease in performance (Table 21). The best 7B ARCHON configurations lag behind single SOTA (and
much larger) models by 15.7% on across all the benchmarks, on average; 7B models work well for ranking
but are less effective for critic and fusion.

Latency and Costs: Since ARCHON architectures make multiple LLM API calls successively for different
operations (e.g. ensembling, critiquing, ranking, etc.), it can often take 5x more time than a single LLM
API call (Section A.4). Furthermore, it can require calling multiple API endpoints for a single query, leading
to increased expenditures (Table 22; Table 23). Note that these increases in compute costs and latency
translate to higher quality responses, and can be justified in many application domains, such as science,
math, programming, and complex customer service issues. For tasks in which speed is most preferred, future
work should explore how distillation strategies (Sreenivas et al., 2024) could be used to pack the aggregate
knowledge of ARCHON architectures into a smaller LM.

ARCHON Components: While ARCHON is a modular framework, allowing the easy incorporation of new
LLMs, new inference-time techniques, and even tool use, we only explore seven LLM inference time tech-
niques in our work (Section 3.1). The addition of new techniques is a promising avenue for future research. Fur-
thermore, while different queries can be best suited by different ARCHON architectures (Table 31; Table 32), the
ITAS algorithm selects the best single architecture for the evaluation set queries combined. Future architecture
search could focus on dynamic selection of ARCHON components, LLMs, and tools on a query-by-query basis.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

5 REPRODUCIBILITY STATEMENT

For the ARCHON model and benchmark configurations, we included the related information in Sections 4.1,
4.2, and A.1. For performing Inference-Time Architecture Search (ITAS), we included the related information
in Sections 3.3 and A.6. We also included our code in the submission supplementary materials.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ARCHON LLM COMPONENTS

Inference-Time
Technique Definition Input Output Inference

Cost Domains

Generator Generates a candidate response
from an instruction prompt Instruction Prompt Candidate Response(s) 1 call

per cand.
All

Domains

Fuser Merges multiple candidate
responses into a single response

Instruction Prompt +
Candidate Response(s)

Fused Candidate
Response(s)

1 call
per cand.

All
Domains

Critic Generates strengths/weaknesses
for each candidate response

Instruction Prompt +
Candidate Response(s)

Candidate Response(s)
Strengths/Weaknesses 1 call All

Domains

Ranker Returns top-K
candidate responses

Instruction Prompt +
Candidate Response(s)

Ranked Candidate
Response(s) 1 call All

Domains

Verifier Returns the candidate responses
with verified reasoning

Instruction Prompt +
Candidate Response(s)

Verified Candidate
Response(s)

2 calls
per cand.

Reasoning
Tasks

Unit Test
Generator

Generates unit tests to evaluate
the candidate responses Instruction Prompt Instruction Prompt

+ Unit Tests 1 call Reasoning
Tasks

Unit Test
Evaluator

Uses generated unit tests to
evaluate candidate response

Instruction Prompt +
Unit Tests +

Candidate Response(s)

Scored Candidate
Response(s)

1 call
per cand.

Reasoning
Tasks

Table 2: Overview of ARCHON’s Inference-time Techniques: Definitions, Inputs, Outputs, Costs, and
Application Domains.

Module Initial Layer
Placement

Placement after
Initial Layer

>1 Module
in Layer

Increase
Candidate
Responses

Decrease
Candidate
Responses

Generator Yes No Yes Yes No

Fuser No Yes Yes Yes Yes

Ranker No Yes No No Yes

Critic No Yes No No No

Verifier No Yes No No Yes

Unit Test
Generator No Yes No No No

Unit Test
Evaluator No Yes No No No

Table 3: Rules of ARCHON Construction: Allowed combinations of each LLM component from Section 3.1.

<instruction here>.

Table 4: Generator Prompt

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

You have been provided with a set of responses with their individual critiques of strengths/weaknesses from various open-source models
to the latest user query. Your task is to synthesize these responses into a single, high-quality response. It is crucial to critically evaluate
the information provided in these responses and their provided critiques of strengths/weaknesses, recognizing that some of it may be biased
or incorrect. Your response should not simply replicate the given answers but should offer a refined, accurate, and comprehensive reply
to the instruction. Ensure your response is well-structured, coherent, and adheres to the highest standards of accuracy and reliability.
Responses from models:
1. <response #1>
Critique: <critique #1>
2. <response #2>
Critique: <critique #2>
...
N. <response #N>
Critique: <critique #N>
<instruction here>

(a) With Critiques

You have been provided with a set of responses from various open-source models to the latest user query. Your task is to synthesize these
responses into a single, high-quality response. It is crucial to critically evaluate the information provided in these responses, recognizing
that some of it may be biased or incorrect. Your response should not simply replicate the given answers but should offer a refined, accurate,
and comprehensive reply to the instruction. Ensure your response is well-structured, coherent, and adheres to the highest standards of
accuracy and reliability.
1. <response #1>
2. <response #2>
...
N. <response #N>
<instruction here>

(b) Without Critiques

Table 5: Fuser Prompt: Without and With Critiques

I will provide you with N responses, each indicated by a numerical identifier []. Rank the responses based on their relevance to the instruction:
<instruction here>.
[1] <response #1>
[2] <response #2>
...
[N] <response #N>
Instruction: <instruction here>.
Rank the N responses above based on their relevance to the instruction. All the responses should be included and listed using identifiers, in descending
order of relevance to the instruction. The output format should be [] > [], e.g., [4] > [2]. Only respond with the ranking results, do not say
any word or explain.

Table 6: Decoder-Based Ranking Prompt

You are a helpful assistant. I will provide you with N responses, each indicated by a numerical identifier (e.g., [1], [2], etc.). Rank the responses based
on their relevance to the instruction: <instruction here>.
[1] <response #1>
[2] <response #2>
...
[N] <response #N>
Instruction: <instruction here>.
Evaluate the N responses above based on their relevance to the instruction. All the responses should be included and listed using identifiers. For each
response, start the critique with the numerical identifier (e.g., [1]) followed by the strengths and weaknesses. You must include both strengths and weaknesses,
even if there are more of one than the other. At the end of each response’s analysis, include two new lines to separate the critiques. Do not include any preface
or text after the critiques. Do not include any references to previous critiques within a critique. Start with the analysis for the first response and end with
the analysis for the last response. All of the N responses should be included and evaluated using identifiers. Structure each response’s analysis as follows:
Strengths:
- <strength #1>
- <strength #2>
- <strength #n>
Weaknesses:
- <weakness #1>
- <weakness #2>
- <weakness #n>

Table 7: Critic Prompt

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

I will provide you with a response indicated by the identifier ’Response’. Provide reasoning for why the response accurately and completely addresses
the instruction: <instruction here>.
Response: <response>
Instruction: <instruction here>.
Provide the reasoning for the response above based on its relevance, completeness, and accuracy when compared to the instruction. Do not include any
preface or text after the reasoning.

Table 8: Verifier Prompt

Instruction Prompt: Given the following query, generate a set of N unit tests that would evaluate the correctness of responses to this query.
- The unit tests should cover various aspects of the query and ensure comprehensive evaluation.
- Each unit test should be clearly stated and should include the expected outcome.
- The unit tests should be in the form of assertions that can be used to validate the correctness of responses to the query.
- The unit test should be formatted like ’The answer mentions...’, ’The answer states...’, ’The answer uses...’, etc. followed by the expected
outcome.
- Solely provide the unit tests for the question below. Do not provide any text before or after the list. Only output the unit tests as a list
of strings (e.g., [’unit test #1’, ’unit test #2’, ’unit test #3’]).
Query: <instruction here>

(a) With Unit Test Cap

Instruction Prompt: Given the following query, generate a set of unit tests that would evaluate the correctness of responses to this query.
- The unit tests should cover various aspects of the query and ensure comprehensive evaluation.
- Each unit test should be clearly stated and should include the expected outcome.
- The unit tests should be in the form of assertions that can be used to validate the correctness of responses to the query.
- The unit test should be formatted like ’The answer mentions...’, ’The answer states...’, ’The answer uses...’, etc. followed by the expected
outcome.
- Solely provide the unit tests for the question below. Do not provide any text before or after the list. Only output the unit tests as a list
of strings (e.g., [’unit test #1’, ’unit test #2’, ’unit test #3’]).
Query: <instruction here>

(b) Without Unit Test Cap

Table 9: Unit Test Generator Prompt: With and Without Unit Test Cap

Instruction Prompt: Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see
attractions.
1. Unit Test #1: The blog post mentions at least two cultural experiences specific to Hawaii.
2. Unit Test #2: The blog post highlights at least three must-see attractions in Hawaii.
3. Unit Test #3: The tone of the blog post is engaging and uses descriptive language that would appeal to readers interested in travel.
4. Unit Test #4: The blog post includes factual information about Hawaii’s culture, such as local customs, festivals, or historical facts.
5. Unit Test #5: The blog post contains a clear narrative structure, including an introduction, main body, and a conclusion.

(a) Instruction-Following Query

Instruction Prompt: Alice and Bob have two dice. They roll the dice together, note the sum of the two values shown, and repeat. For
Alice to win, two consecutive turns (meaning, two consecutive sums) need to result in 7. For Bob to win, he needs to see an eight followed
by a seven. Who do we expect to win this game?
1. Unit Test #1: The response correctly identifies the winning condition for Alice (two consecutive sums of 7).
2. Unit Test #2: The response correctly identifies the winning condition for Bob (a sum of 8 followed by a sum of 7).
3. Unit Test #3: The response explains the probability of achieving two consecutive 7s when rolling two dice.
4. Unit Test #4: The response explains the probability of achieving an 8 followed by a 7 when rolling two dice.
5. Unit Test #5: The response provides a conclusion on who is more likely to win based on the probability analysis.

(b) Reasoning Query

Table 10: Unit Test Examples

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 6: Performance Gains from Applying Inference Time Techniques on a Single Model: We
repeatedly sample more responses for each individual query. For each sample count, we choose the best
response in 5 different ways: (1) using an oracle (to get the upper bound for performance of best sample),
(2) randomly, (3) using a ranker model, (4) by fusion, in which a model synthesizes a response based on
all the samples, and (5) by ranking the top-5 best answers and then fusing them. For both MT Bench and
Arena-Hard-Auto, we find that fusion is an effective technique. In particular, ranking the candidates first,
and then selecting the top-5 and fusing them scores the highest. The best open-source model for these tasks
across all the 70B+ models we are considering is WizardLM-2-8x22B (Xu et al., 2024) (see Table 18 for
details). For both ranking and fusion, we use Qwen2 72B Instruct (Qwen, 2024).

Given the following query, candidate response, and unit tests, evaluate whether or not the response passes each unit
test.
- In your evaluation, you should consider how the response aligns with the unit tests, retrieved documents, and
query.
- Provide reasoning before you return your evaluation.
- At the end of your evaluation, you must finish with a list of verdicts corresponding to each unit
test.
- You must include a verdict with one of these formatted options: ’[Passed]’ or ’[Failed]’.
- Here is an example of the output format:
Unit Test #1: [Passed]
Unit Test #2: [Failed]
Unit Test #3: [Passed]
- Each verdict should be on a new line and correspond to the unit test in the same posi-
tion.
- Here is the query, response, and unit tests for your evaluation:

Query: <instruction here>.

Candidate Response: <response>

Unit Tests:
Unit Test #1: <Unit Test #1>
Unit Test #2: <Unit Test #2>
...
Unit Test #N: <Unit Test #N>

Table 11: Unit Test Evaluator Prompt

A.2 UTILITIES AND INTERACTIONS OF LLM COMPONENTS

In this subsection, we present our analysis of the effectiveness of each LLM component (i.e. the Utility)
and the relationships between each component (i.e. the Component Interactions) by evaluating on
instruction-following tasks (MT Bench, AlpacaEval 2.0, Arena-Hard-Auto), reasoning tasks (MixEval,
MixEval-Hard, MATH) and coding tasks (CodeContests) (Section 4.1). For our ARCHON models, we utilize
a host of 70B+ open-source models (Section 4.1; Table 17).

A.2.1 GENERATOR

Utility: For our Generator module, we find additional model sampling to significantly boost performance
(Figure 6), particularly for coding tasks (Table 1). In settings with a limited inference call budget, additional

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 7: Performance Gains from Applying Inference-Time Techniques on an Ensemble of Models:
We incrementally add more models to the ensemble, which consists of open-source 70B+ models. The models
are added to the pool based on their performance for each task, from best to worse (see Table 18 for details).
For each ensemble size, we choose the best response in 5 different modes: (1) using an oracle (to get the upper
bound for performance of best individual response in the ensemble), (2) randomly, (3) using a ranker model, (4)
by fusion, in which one model synthesizes a response based on all the responses of the ensemble models, and (5)
ranking the top-5 best responses and then fusing them. For MT Bench and Arena-Hard-Auto, we find consistent
performance improvements as we add more models to the ensemble. We find that fusion is beneficial across
various ensemble sizes and in particular a fused candidate based on the top-5 ranked responses scores highest.
The ensemble approach scores higher than applying the same techniques on repeated samples from a single
best-performing model (see Figure 6). For both ranking and fusion, we use Qwen2 72B Instruct (Qwen, 2024).

model samples lead to the largest marginal benefit. We see a similar pattern for model ensembling, where
sampling from additional models leads to continual performance increases (assuming the models are ordered
from best to worst for the given task) (Figure 7).

A.2.2 FUSER

Utility: For every benchmark explored, we found that the Fuser module substantially improved performance
(Figure 6; Figure 7; Figure 3). For the single-generation 10-model ensemble of 70B+ models, the Fuser
module improved downstream accuracy by 5.2 points, on average, compared to the single-generation best
model (Figure 7). When combined with the Ranker module for ranking the top-5 candidate responses, the
Fuser improved downstream accuracy by 7.3 points and 3.6 points, on average, compared to the single-sample
best model and the oracle best candidate response, respectively (Figure 7). Overall, we found that Fuser
efficacy increased as more candidate responses were provided, demonstrating that additional candidate
generations can continue to bolster inference-time architecture performance when combined with a Fuser.

In previous work like Mixture-of-Agents (MoA) (Wang et al., 2024), multiple layers of Fusers was found
to boost performance on some instruction-following tasks (i.e. MT Bench and Alpaca Eval 2.0). Across all the
benchmarks explored, we observed similar benefits in the ARCHON framework when adding multiple layers
of Fusers (Figure 3). However, based on our results in Figure 8, the number of Fuser layers needed to improve
performance varied by task, with some tasks receiving limited benefits from added layers (1-2 point increase
in accuracy for MixEval) while others experienced significant benefits with 3-4 fusion layers and more (2 to
5 point increase in win rate for MT Bench and Alpaca Eval 2.0). We attribute this distinction to the difference
in task requirements, with chat and instruction following tasks benefiting more from multiple iterations
of revisions through the multiple Fuser layers, leading to greater diversity in the final generation (Table 19).

Component Interactions: To better understand how the Fuser module works with the other LLM
components, we took the single-sample 10-model ensemble of Generators with a Fuser and tried adding each
of these components individually: a Critic, a Ranker, a Verifier, and a Unit Test Generator/Evaluator. Across
all of the benchmarks, the added candidate response analyses from the Critic improved the Fuser’s ability
to effectively merge the different candidate responses, increasing performance by an average of 3.1 percentage
points (Figure 3). With the added Ranker, the ARCHON architecture improved the combined Ensemble
+ Critic + Fuser performance across all the benchmarks by 4.8 percentage points, on average (Figure 3).
The Ranker proved most effective for style-oriented tasks (e.g. MT Bench and AlpacaEval 2.0) since

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

the examples mostly focus on improving the instruction-guidance towards the provided prompt. With the
added Verifier module (Figure 3), the performance of the Ensemble + Critic + Fuser configuration improved
marginally for the instruction-following tasks (1.2 percentage points, on average, for MT Bench, AlpacaEval
2.0, and Arena-Hard-Auto). However, this configuration improved performance more on reasoning tasks (3.2
percentage points for MixEval and MixEval-Hard, on average), assisting generation by filtering out irrelevant
or flawed answers before the final fusion step (Figure 3). The added Unit Test Generator and Evaluator was
less effective for the instruction-following and reasoning tasks, only providing a 1.5 percentage points increase,
on average, when added to the Ensemble + Critic + Fuser configuration (Table 12). However, for coding
tasks, we found unit test generation and evaluation significantly improved performance, leading to a 10.7
percentage point increase (56% performance increase comparatively) as we scale model sampling (Table 1).

A.2.3 CRITIC

Utility: The Critic module proved effective for every task we explored in Figure 3 and Table 12. With
our 10-model 70B+ Generator ensemble and Fuser configuration of ARCHON, the added Critic improved
performance on average by 3.1 percentage points across the benchmarks explored.

Component Interactions: While useful for most ARCHON architectures, the added strengths and weaknesses
from the Critic module are particularly useful when combined with the Fuser module, helping guide
generation fusion for a single layer and even useful when placed between multiple fusion layers (on average
3.2 percentage point boost across benchmarks in Figure 3). The Critic module was also effective with the
Ranker module, providing additional information for comparing candidate responses (Figure 6) and leading
to a 5.9 percentage point increase, on average (Table 12).

A.2.4 RANKER

Utility: From our results in Table 12, Figure 6, and Figure 7, we found the Ranker to be most effective
for instruction-following tasks, where pair-wise comparisons of answers focus on style and adherence to
the prompt. To examine the candidate selection improvement provided by candidate ranking, we compare
three approaches to the Ranker: (1) random selection of candidate generation, (2) oracle selection of candidate
generation, and (3) the top-ranked candidate selected by our Ranker. For MT Bench and Arena-Hard-Auto,
we find that the ranker improves generation output quality by 3.8% compared to random candidate selection
and performs within 2.7% of oracle selection (Figure 6).

Component Interactions: Based on our benchmark results in Table 12, the Ranker pairs well with the Critic
module; the provided strengths and weaknesses helps guide ranking, particularly for instruction-following
tasks, improving performance by 5.9 percentage points, on average. Furthermore, the Ranker was also
effective when paired with the Fuser; the filtered list of candidate responses helped improve the final
condensed response produced by the Fuser by 3.8 percentage points, on average (Figure 7). When paired
with the Verifier and Unit Test Generator, the Ranker had neutral effects; performances changed marginally,
either positively or negatively by 1-2 percentage points (Table 12).

Overall, our findings demonstrate the value of added Rankers for instruction-following and reasoning tasks
when paired with Fusers. We find that when Rankers are used alone with an ensemble of Generators, their
performance lags behind the 10-sample best single model configuration by 3.0 percentage points, on average
(Table 12). Additionally, our findings show the importance of building better rankers for more complex
reasoning tasks, such as math and coding, which is a challenge also raised by Brown et al. (2024).

A.2.5 VERIFIER

Utility: The Verifier was most effective for the reasoning benchmarks explored in Table 12. When just using
a 70B+ Generator ensemble with Verifier module after generation, the ARCHON configuration lagged behind
the ARCHON ensemble and fuser configuration by 1.5 percentage points, on average, across all benchmarks
explored. This suggests that the Verifier is most effective when combined with other inference-time techniques.

Component Interactions: As noted in Section A.2.2, the Verifier augmented the performance of the Critic
and Fuser on reasoning tasks (e.g. Arena-Hard-Auto, MixEval, MixEval-Hard), boosting performance by
3.7 percentage points, on average, when combined together with these modules. Overall, the Verifier is
most powerful when augmenting additional components for tasks requiring verification of intermediate
steps and the final response (Table 12). Therefore, the Verifier was less helpful for instruction-following tasks
(e.g. MT Bench and AlpacaEval) but more effective for reasoning tasks (e.g. Arena-Hard-Auto and MixEval).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
of

Infer.
Calls

W.R. L.C.
W.R.

Raw
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Best Open-Source 70B+ Model, Sampled Once 1 55.0% ±0.4 44.7% ±0.5 37.1% ±0.6 45.6% ±0.5 58.7% ±0.2 86.5% ±0.3 73.5% ±0.6 27.1% ±0.4

Ensemble + Fuser 9 58.4% ±0.6 57.5% ±0.4 51.3% ±0.5 54.3% ±0.7 60.5% ±0.3 87.3% ±0.2 75.5% ±0.3 22.0% ±0.7
Ensemble + Critic + Fuser 10 60.9% ±0.3 58.7% ±0.6 65.8% ±0.3 58.8% ±0.4 62.4% ±0.4 87.4% ±0.3 77.0% ±0.5 24.5% ±0.5

A
bl

at
io

ns

Ensemble + Ranker 9 52.5% ±0.7 54.7% ±0.5 47.6% ±0.4 50.5% ±0.6 58.2% ±0.2 86.8% ±0.4 71.5% ±0.4 23.5% ±0.6
Ensemble + Verifier 24 53.2% ±0.5 56.2% ±0.3 50.2% ±0.7 52.4% ±0.3 56.5% ±0.3 85.6% ±0.2 76.0% ±0.7 24.9% ±0.3
Ensemble + Unit Test Gen./Eval. 18 51.5% ±0.4 54.4% ±0.6 49.4% ±0.5 46.1% ±0.8 55.2% ±0.4 86.0% ±0.3 75.0% ±0.5 25.1% ±0.4
Ensemble + Ranker + Fuser 10 62.5% ±0.8 60.3% ±0.4 63.6% ±0.6 57.2% ±0.5 60.1% ±0.2 87.6% ±0.3 76.0% ±0.6 23.6% ±0.5
Ensemble + Verifier + Fuser 25 60.5% ±0.3 59.4% ±0.7 58.7% ±0.3 59.2% ±0.4 65.1% ±0.3 87.5% ±0.2 78.0% ±0.4 24.5% ±0.7
Ensemble + Unit Test Gen./Eval. + Fuser 17 61.4% ±0.6 58.5% ±0.5 55.1% ±0.4 56.4% ±0.7 62.8% ±0.4 86.9% ±0.3 77.0% ±0.8 26.3% ±0.6
Ensemble + Critic + Verifier + Fuser 25 61.3% ±0.5 60.0% ±0.3 61.0% ±0.7 59.5% ±0.3 65.5% ±0.2 87.8% ±0.4 78.0% ±0.3 24.8% ±0.4
Ensemble + Critic + Ranker + Fuser 11 64.7% ±0.4 62.6% ±0.6 72.4% ±0.5 60.9% ±0.6 67.0% ±0.3 88.3% ±0.2 79.5% ±0.5 24.1% ±0.5

Table 12: Impact of Different Compositions of ARCHON’s Inference-Time Techniques: We see increased
task performances from adding new LLM components to ARCHON. For CodeContests, we find that there is
a single model (Llama 3.1 405B Instruct) that performs considerably better than the rest of the LLMs studied,
making it more effective leverage additional model sampling (Table 1). For our ensemble, we use the best 8
open-source 70B+ models for the task (Table 18). For our fuser, critic, ranker, and verifier components, we use
the best fuser model found for the task (Table 18). For each evaluation benchmark, we explain its configuration
in Table 29 and Section 4.1. The standard error numbers were calculated from 10 independent evaluation runs.

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
of

Infer.
Calls

W.R. L.C.
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Single Generation 1 44.2% ±0.6 57.8% ±0.5 48.1% ±0.7 63.4% ±0.3 87.5% ±0.2 73.2% ±0.4 17.9% ±0.3

Ensemble + Fuser 11 53.7% ±0.3 59.5% ±0.6 49.7% ±0.5 65.5% ±0.2 82.0% ±0.3 70.7% ±0.6 16.0% ±0.4
Ensemble + Critic + Fuser 12 56.1% ±0.7 59.7% ±0.4 53.9% ±0.6 67.4% ±0.4 82.0% ±0.2 71.8% ±0.5 18.9% ±0.6

A
bl

at
io

ns

Ensemble + Ranker 11 47.6% ±0.4 49.7% ±0.5 45.5% ±0.4 63.3% ±0.3 81.6% ±0.4 66.5% ±0.7 17.9% ±0.5
Ensemble + Verifier 11 48.4% ±0.5 51.2% ±0.7 47.7% ±0.8 61.4% ±0.2 80.5% ±0.3 71.0% ±0.3 23.0% ±0.4
Ensemble + Unit Test Gen./Eval. 21 46.8% ±0.8 49.3% ±0.3 41.2% ±0.5 60.2% ±0.4 80.7% ±0.2 69.9% ±0.8 24.0% ±0.7
Ensemble + Ranker + Fuser 12 58.0% ±0.2 60.1% ±0.6 52.2% ±0.3 65.0% ±0.3 82.0% ±0.4 71.0% ±0.4 18.0% ±0.3
Ensemble + Verifier + Fuser 12 55.8% ±0.6 54.2% ±0.4 60.3% ±0.7 67.0% ±0.2 82.5% ±0.3 73.1% ±0.6 22.4% ±0.5
Ensemble + Unit Test Gen./Eval. + Fuser 22 56.5% ±0.3 61.4% ±0.5 51.6% ±0.4 67.7% ±0.4 81.7% ±0.2 72.0% ±0.5 25.4% ±0.6
Ensemble + Critic + Verifier + Fuser 13 56.6% ±0.7 62.0% ±0.3 55.0% ±0.6 68.5% ±0.3 82.7% ±0.4 73.5% ±0.3 22.2% ±0.4
Ensemble + Critic + Ranker + Fuser 13 60.0% ±0.4 62.8% ±0.6 56.2% ±0.5 69.4% ±0.2 88.5% ±0.3 75.0% ±0.7 18.5% ±0.5

Table 13: ARCHON Component Compositions with GPT-4o: The ensemble uses generates 10 samples
for the given query. The standard error numbers were calculated from 10 independent evaluation runs.

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
of

Infer.
Calls

W.R. L.C.
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Single Generation 1 32.1% ±0.7 38.5% ±0.5 30.4% ±0.6 45.2% ±0.3 69.5% ±0.2 61.0% ±0.5 10.5% ±0.6

Ensemble + Fuser 11 44.2% ±0.3 43.0% ±0.6 40.2% ±0.4 46.0% ±0.4 73.0% ±0.3 61.2% ±0.7 6.0% ±0.4
Ensemble + Critic + Fuser 12 46.6% ±0.5 44.2% ±0.4 44.4% ±0.7 47.9% ±0.2 73.0% ±0.4 62.3% ±0.3 8.4% ±0.5

A
bl

at
io

ns

Ensemble + Ranker 11 38.1% ±0.6 40.2% ±0.7 36.0% ±0.5 43.8% ±0.3 72.1% ±0.2 57.0% ±0.6 7.5% ±0.4
Ensemble + Verifier 11 38.9% ±0.4 41.7% ±0.3 38.2% ±0.8 41.9% ±0.4 71.0% ±0.3 61.0% ±0.4 19.0% ±0.7
Ensemble + Unit Test Gen./Eval. 21 37.3% ±0.8 39.8% ±0.6 31.7% ±0.3 40.7% ±0.2 71.2% ±0.4 60.4% ±0.8 22.0% ±0.3
Ensemble + Ranker + Fuser 12 48.0% ±0.2 45.6% ±0.5 42.7% ±0.6 45.0% ±0.3 73.0% ±0.2 61.0% ±0.5 8.0% ±0.6
Ensemble + Verifier + Fuser 12 46.3% ±0.5 44.7% ±0.4 45.0% ±0.4 50.5% ±0.4 73.0% ±0.3 63.6% ±0.3 18.6% ±0.5
Ensemble + Unit Test Gen./Eval. + Fuser 22 47.0% ±0.3 43.9% ±0.7 42.1% ±0.7 48.2% ±0.2 72.2% ±0.4 62.0% ±0.6 23.5% ±0.4
Ensemble + Critic + Verifier + Fuser 13 47.1% ±0.7 46.0% ±0.3 45.0% ±0.5 52.4% ±0.3 73.2% ±0.5 63.5% ±0.4 18.4% ±0.7
Ensemble + Critic + Ranker + Fuser 13 50.5% ±0.4 48.3% ±0.6 46.7% ±0.3 55.1% ±0.4 73.7% ±0.3 65.0% ±0.5 8.1% ±0.5

Table 14: ARCHON Component Compositions with GPT-4o-mini: The ensemble uses generates 10
samples for the given query. The standard error numbers were calculated from 10 independent evaluation runs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
of

Infer.
Calls

W.R. L.C.
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Single Generation 1 N/A 52.7% ±0.4 81.4% ±0.6 68.7% ±0.3 89.1% ±0.2 73.1% ±0.5 12.5% ±0.3

Ensemble + Fuser 11 N/A 53.0% ±0.6 83.2% ±0.4 69.5% ±0.2 89.0% ±0.3 71.2% ±0.6 17.0% ±0.4
Ensemble + Critic + Fuser 12 N/A 54.2% ±0.3 85.4% ±0.7 70.9% ±0.4 89.5% ±0.2 72.3% ±0.4 19.4% ±0.6

A
bl

at
io

ns

Ensemble + Ranker 11 N/A 50.2% ±0.5 76.0% ±0.5 63.8% ±0.3 82.1% ±0.4 67.0% ±0.7 18.5% ±0.5
Ensemble + Verifier 11 N/A 51.7% ±0.7 78.2% ±0.3 60.9% ±0.2 81.0% ±0.3 71.0% ±0.3 21.0% ±0.4
Ensemble + Unit Test Gen./Eval. 21 N/A 49.8% ±0.4 71.7% ±0.8 58.7% ±0.4 81.2% ±0.2 70.4% ±0.8 22.0% ±0.7
Ensemble + Ranker + Fuser 12 N/A 55.6% ±0.5 82.7% ±0.4 65.0% ±0.3 89.0% ±0.4 71.0% ±0.4 19.0% ±0.3
Ensemble + Verifier + Fuser 12 N/A 54.7% ±0.3 85.0% ±0.6 70.5% ±0.2 89.3% ±0.3 73.6% ±0.6 21.6% ±0.5
Ensemble + Unit Test Gen./Eval. + Fuser 22 N/A 53.9% ±0.6 82.1% ±0.5 68.2% ±0.4 89.2% ±0.2 72.0% ±0.5 23.5% ±0.6
Ensemble + Critic + Verifier + Fuser 13 N/A 56.0% ±0.4 85.0% ±0.3 71.0% ±0.3 89.4% ±0.4 73.5% ±0.3 21.4% ±0.4
Ensemble + Critic + Ranker + Fuser 13 N/A 58.3% ±0.5 86.7% ±0.7 73.0% ±0.2 89.7% ±0.3 75.0% ±0.7 19.1% ±0.5

Table 15: ARCHON Component Compositions with Claude 3.5 Sonnet: The ensemble uses generates 10
samples for the given query. The standard error numbers were calculated from 10 independent evaluation runs.

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
of

Infer.
Calls

W.R. L.C.
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Single Generation 1 35.0% ±0.5 42.0% ±0.6 36.8% ±0.7 64.6% ±0.2 73.2% ±0.3 64.8% ±0.4 10.0% ±0.5

Ensemble + Fuser 11 48.2% ±0.3 47.0% ±0.4 44.2% ±0.5 66.5% ±0.3 77.0% ±0.2 65.2% ±0.7 10.8% ±0.3
Ensemble + Critic + Fuser 12 50.6% ±0.7 48.2% ±0.5 48.4% ±0.3 68.1% ±0.4 77.0% ±0.4 66.3% ±0.5 11.5% ±0.6

A
bl

at
io

ns

Ensemble + Ranker 11 42.1% ±0.4 44.2% ±0.7 40.0% ±0.6 58.8% ±0.3 76.1% ±0.2 61.0% ±0.6 11.9% ±0.4
Ensemble + Verifier 11 42.9% ±0.6 45.7% ±0.3 42.2% ±0.8 57.9% ±0.2 75.0% ±0.3 65.0% ±0.4 12.0% ±0.7
Ensemble + Unit Test Gen./Eval. 21 41.3% ±0.8 43.8% ±0.6 35.7% ±0.4 55.7% ±0.4 75.2% ±0.2 64.4% ±0.8 13.0% ±0.3
Ensemble + Ranker + Fuser 12 52.0% ±0.2 49.6% ±0.5 46.7% ±0.7 60.0% ±0.3 77.0% ±0.4 65.0% ±0.5 12.0% ±0.6
Ensemble + Verifier + Fuser 12 50.3% ±0.5 48.7% ±0.4 48.7% ±0.5 67.5% ±0.2 77.0% ±0.3 67.6% ±0.3 10.5% ±0.5
Ensemble + Unit Test Gen./Eval. + Fuser 22 51.0% ±0.3 47.9% ±0.7 46.1% ±0.6 64.2% ±0.4 76.2% ±0.2 66.0% ±0.6 14.3% ±0.4
Ensemble + Critic + Verifier + Fuser 13 51.1% ±0.7 50.0% ±0.3 49.0% ±0.4 68.0% ±0.3 77.2% ±0.4 67.5% ±0.3 10.0% ±0.7
Ensemble + Critic + Ranker + Fuser 13 54.5% ±0.4 52.3% ±0.6 50.7% ±0.3 70.4% ±0.2 77.7% ±0.3 69.0% ±0.5 11.5% ±0.5

Table 16: ARCHON Component Compositions with Claude-3-Haiku: The ensemble uses generates 10
samples for the given query. The standard error numbers were calculated from 10 independent evaluation runs.

A.2.6 UNIT TEST GENERATOR AND EVALUATOR

Utility: The Unit Test Generator and Evaluator were most effective on reasoning and coding tasks, improving
performance on benchmarks that required more verification steps, such as Arena-Hard-Auto, MixEval,
MixEval-Hard, MATH, and CodeContests (Table 12). For the reasoning tasks, we found the unit test generator
and evaluator to be most effective when combined with other components. When the 70B+ ensemble of
Generators was only combined with unit tests, it was less effective for reasoning tasks like Arena-Hard-Auto
and MixEval, lagging behind the ensemble and fuser configuration by 3.1 percentage points. This inspired
us to look into other inference-time techniques combinations for unit test generation, such as increased
sampling and fusion. When we increased generation sampling and added unit test generation/evaluation for
CodeContests, we see a 56% boost in Pass@1 performance (Table 1), increasing from 17.9 to 29.3 Pass@1.

Component Interactions: When combined with the Fuser module, the Unit Test Generator and Evaluator
improved performance by 2.1 percentage points across the benchmarks explored (Table 12). The combined
ensemble, Unit Test Generator/Evaluator, and Fuser ARCHON configuration was most effective on the
reasoning benchmarks, leading to a 2.5 percentage point boost, on average. For coding, the unit test generator
and evaluator was most effective when combined with the best performing Generator (using large sample
counts) and a final Fuser (subsection 4.2).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

MT Bench Alpaca Eval 2.0 Arena Hard Auto MixEval MixEval Hard MATH CodeContests

Models Gen Fusion Gen Fusion Gen Fusion Gen Fusion Gen Fusion Gen Fusion Gen Fusion

GPT-4o 44.7% 61.9% 57.5% 64.5% 48.1% 69.2% 88.0% 89.4% 63.6% 65.4% 72.0% 75.5% 17.9% 19.4%

GPT-4-Turbo 42.2% 63.1% 55.0% 65.8% 48.1% 61.9% 88.9% 89.0% 64.1% 64.4% 74.5% 76.5% 9.3% 14.2%

Claude 3
Opus 30.9% 57.2% 40.5% N/A 27.0% 47.9% 88.3% 88.2% 63.6% 64.0% 72.5% 71.0% 10.0% 12.5%

Claude 3.5
Sonnet N/A 71.9% 52.37% 63.6% N/A 73.2% 89.7% 89.3% 68.9% 69.5% 72.0% 74.5% 12.1% 15.5%

Qwen 2
72B Instruct 35.0% 59.7% 37.48% 56.0% 14.5% 49.5% 86.5% 87.5% 58.7% 61.1% 76.0% 78.5% 3.6% 5.2%

DeepSeek LLM
67B Instruct 18.4% 20.0% 17.8% 17.1% N/A N/A 79.2% N/A 42.5% N/A 45.0% N/A 5.7% N/A

Qwen 1.5
72B Chat 24.7% 46.3% 36.6% 55.7% 14.4% 36.4% 84.5% 82.1% 50.3% 52.2% 62.5% 65.5% 15.0% 13.9%

Qwen 1.5
110B Chat 34.4% 50.3% 43.6% 55.9% 21.9% 39.7% 85.3% 86.5% 51.8% 55.6% 67.0% 72.5% 3.6% 7.8%

Wizard 8x22B 53.8% 57.2% 44.7% 50.6% 45.6% 51.2% 83% 78.1% 54.3% 50.4% 69.0% 58.5% 7.1% 10.4%

Llama 3.1
8B Instruct 33.1% 45.9% 25.6% 34.9% 11.9% 28.6% 75.0% 57.5% 41.3% 46.5% 59.0% 60.5% 8.6% 7.8%

Llama 3.1
70B Instruct 45.0% 51.9% 35.6% 40.2% 23.8% 37.2% 85.7% 83.5% 61.1% 65.5% 69.0% 71.5% 20.7% 23.4%

Llama 3.1
405B Instruct 44.7% N/A 40.3% N/A 28.4% N/A 88.9% N/A 66.2% N/A 74.5% N/A 27.1% N/A

Table 18: ARCHON Generation and Fusion Performances for Single Models: For Alpaca Eval 2.0, we
use the length-controlled win rate (LC WR). For fusion, we gather one candidate from each of the top-10
generator models.

A.3 ARCHON LLM ANALYSIS

Model Source Code Parameter
Count

Max Sequence
Length

GPT-4o (OpenAI et al., 2024) Closed-Source — 128K
GPT-4-Turbo (OpenAI et al., 2024) Closed-Source — 128K
Claude-3-Opus (Anthropic, 2024) Closed-Source — 200K

Claude-3.5-Sonnet (Anthropic, 2024) Closed-Source — 200K
Claude-3-Haiku (Anthropic, 2024) Closed-Source — 200K

Llama-3.1-70B-Instruct (Dubey et al., 2024) Open-Source 70B 8k
Llama-3.1-405B-Instruct (Dubey et al., 2024) Open-Source 70B 8k
DeepSeek LLM 67B Chat (Guo et al., 2024) Open-Source 67B 32k

Qwen2 72B Instruct (Qwen, 2024) Open-Source 72B 32k
Qwen1.5 110B Chat (Bai et al., 2023) Open-Source 110B 32k
Qwen1.5 72B Chat (Bai et al., 2023) Open-Source 72B 32k

Mixtral 8x22B v0.1 (Jiang et al., 2024) Open-Source 176B 32k
WizardLM 8x22B (Xu et al., 2024) Open-Source 176B 32k

dbrx-instruct (Databricks, 2024) Open-Source 132B 32k

princeton-nlp/Llama-3-Instruct-8B-SimPO (Meng et al., 2024) Open-Source 8B 8k
princeton-nlp/Llama-3-Instruct-8B-DPO (Meng et al., 2024) Open-Source 8B 8k

princeton-nlp/Llama-3-Instruct-8B-RDPO (Meng et al., 2024) Open-Source 8B 8k
princeton-nlp/Llama-3-Instruct-8B-IPO (Meng et al., 2024) Open-Source 8B 8k

Llama-3.1-8B-Instruct (Dubey et al., 2024) Open-Source 8B 8k
Qwen2-7B-Instruct (Qwen, 2024) Open-Source 7B 32k

Qwen/Qwen1.5-7B-Chat (Bai et al., 2023) Open-Source 7B 32k
mistralai/Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a) Open-Source 7B 32k

cognitivecomputations/dolphin-2.2.1-mistral-7b (Hartford, 2024) Open-Source 7B 32k
microsoft/Phi-3-mini-4k-instruct (Abdin et al., 2024) Open-Source 4B 4k

HuggingFaceH4/zephyr-7b-beta (Tunstall et al., 2023) Open-Source 7B 32k
microsoft/Phi-3-small-8k-instruct (Abdin et al., 2024) Open-Source 7B 8k

snorkelai/Snorkel-Mistral-PairRM-DPO (Tran et al., 2023) Open-Source 7B 32k
mistralai/Mistral-7B-Instruct-v0.3 (Jiang et al., 2023a) Open-Source 7B 32k

Table 17: Models Tested with ARCHON.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Jaccard Similarity (%)

Inference-Time
Architecture MT Bench AlpacaEval 2.0 Arena-Hard

Auto MixEval MixEval
Hard MATH Code

Contests

Best Open-Source 70B+ Model,
Sampled 8 Times + Fuser 45.3% 52.1% 48.4% 55.2% 58.9% 65.2% 63.7%

Ensemble (8 Top Models),
Sampled Once Each + Fuser 31.6% 34.1% 28.9% 38.6% 40.9% 57.1% 53.4%

Table 19: Jaccard Similarities between Candidates Responses and Fused Response by Benchmark:
For the fuser, we use the best-performing 70B+ model for benchmark.

Figure 8: Fusion Layer Efficacy by Benchmark: From solely scaling the fusion layers, we see limited
benefits across the benchmarks explored but when we add other inference-time techniques, such as Critic
and Ranker, we see increased downstream performance as we continue scaling inference-time compute
(Figure 3). We use an 8-model ensemble of the top Generator models for each benchmark (Table 18). For
our Fuser layers, we use the best Fuser model for the final fuser layer (Table 18). For the intermediate layers,
we use the top-8 Fuser models for each benchmark.

A.4 ARCHON ARCHITECTURES

Ranker

Claude 3.5 Sonnet

Critic

Qwen2-72BPrompt Output

Generator

GPT-4o

Generator

Llama 3.1 405B

Generator

Claude 3.5 Sonnet

Generator

Qwen2-72B

Ranker

Claude 3.5 Sonnet

Critic

Qwen2-72B

Fuser

GPT-4o

Fuser

Llama 3.1 405B

Fuser

Claude 3.5 Sonnet

Fuser

Qwen2-72B

Ranker

Claude 3.5 Sonnet

Critic

Qwen2-72B

Fuser

Qwen2-72B

Fuser

GPT-4o

Fuser

Llama 3.1 405B

Fuser

Claude 3.5 Sonnet

Fuser

Qwen2-72B

Ranker

Claude 3.5 Sonnet

Critic

Qwen2-72B

Fuser

GPT-4o

Fuser

Llama 3.1 405B

Fuser

Claude 3.5 Sonnet

Fuser

Qwen2-72B

1

2

10

3

1

2

8

3

1

2

6

3

1

2

4

3

Figure 9: All-Source Generalizable ARCHON Architecture: Using ITAS, we found this all-source
ARCHON configuration to be effective across the benchmarks explored (except for CodeContests). In the
diagram above, we use 10 SOTA all-source LLMs to create multiple successive layers of critic, ranker, and
fusers, with each successive fuser layer having less fusers to produce a "funneling" effect as the candidate
generations are processed. The layers of critic, ranker, and fuser led to better candidate generations through
iterative critique and rewriting. Each of the initial Generator models were sampled once.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Ranker

Llama 3.1 405B

Critic

Llama 3.1 405BPrompt Output

Generator

Llama 3.1 405B

Generator

Qwen1.5-110B

Generator

DRBX Instruct

Generator

WizardLM2

8x22B

Ranker

Llama 3.1 405B

Critic

Llama 3.1 405B

Fuser

Mixtral 8x7B

Fuser

Llama 3.1 405B

Fuser

DRBX-Instruct

Fuser

Qwen2-72B

Ranker

Llama 3.1 405B

Critic

Llama 3.1 405B

Fuser

Qwen2-72B

Fuser

Llama 3.1 405B

Fuser

Mixtral 8x22B

Fuser

Qwen2-72B

Fuser

Qwen1.5-110B

Ranker

Llama 3.1 405B

Critic

Llama 3.1 405B

Fuser

Qwen1.5-110B

Fuser

Mixtral 8x22B

Fuser

Llama 3.1 70B

Fuser

Qwen2-72B

1

2

10

3

1

2

8

3

1

2

6

3

1

2

4

3

Figure 10: Open-Source Generalizable ARCHON Architecture: Using ITAS, we found this open-source
ARCHON configuration to be effective across the benchmarks explored (except for CodeContests). In the
diagram above, we use 10 SOTA open-source LLMs to create multiple successive layers of critic, ranker,
and fusers, with each successive fuser layer having less fusers to produce a "funneling" effect as the candidate
generations are processed. The layers of critic, ranker, and fuser led to better candidate generations through
iterative critique and rewriting. Each of the initial Generator models were sampled once.

Generator

Claude 3.5 Sonnet

Critic

Claude 3.5 Sonnet

Ranker

Claude 3.5 Sonnet

Fuser

Claude 3.5 Sonnet

Prompt Output

n=10 samples

Figure 11: All-Source ARCHON Architecture for Instruction-Following: Using ITAS, we found
Claude-3.5-Sonnet as a generator, critic, ranker, and fuser to be an effective targeted architecture for
instruction-following tasks, such as MT Bench and AlpacaEval 2.0. The ranker picks the top-5 candidate
responses to send to the fuser. Each of the initial Generator models were sampled once.

Generator

Llama 3.1 405B

Unit Test
Generator

GPT-4o

Unit Test
Evaluator

GPT-4o
Prompt Output

n=1000 samples

Figure 12: All-Source ARCHON Architecture for CodeContests: Using ITAS, we were able to get
improved code generation on CodeConetsts by utilizing Llama 3.1 405B for generation and GPT-4o for unit
testing (Figure 5). The unit test generator produces 10 unit tests for evaluation. Each of the initial Generator
models were sampled once.

A.5 ARCHON BY INFERENCE COMPUTE BUDGET, MODEL SIZE, AND COST

Datasets

Number of
Inference Calls

MT
Bench

Alpaca
Eval 2.0

Arena
Hard Auto MixEval MixEval

Hard

70
B+

M
od

el
s

1 55.0% 44.7% 45.6% 86.5% 61.1%
10 52.5% 50.6% 45.6% 86.5% 63.9%
20 65.3% 60.4% 59.4% 89.0% 65.0%
30 69.2% 64.5% 69.0% 89.5% 67.5%
40 69.5% 66.7% 69.0% 89.5% 67.5%
50 71.6% 66.7% 69.0% 89.5% 67.5%

C
lo

se
d

M
od

el
s

1 45.0% 57.5% 48.1% 88.9% 68.9%
10 57.1% 63.2% 68.4% 90.0% 70.1%
20 59.4% 66.5% 75.5% 90.6% 70.5%
30 70.2% 68.8% 77.4% 90.6% 72.9%
40 75.5% 68.8% 77.4% 90.6% 72.9%
50 80.4% 68.8% 77.4% 90.6% 72.9%

Table 20: ARCHON with Different Inference Budgets: For AlpacaEval 2.0, we use the length-controlled
win rate (LC WR).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Datasets

Models / LLM Systems MT
Bench

Alpaca
Eval 2.0

Arena
Hard Auto MixEval MixEval

Hard

SOTA Single-Model 44.7% 57.5% 48.1% 68.9% 89.7%

Best Model, 1-Sample 15.7% 41.0% 18.3% 76.2% 46.1%

Best Model - 10-Sample + Ranking 16.5% 43.2% 18.9% 78.4% 48.5%

10-Model, 1-Sample Ensemble + Ranking 22.4% 48.2% 25.6% 81.5% 52.9%

10-Model, 1-Sample Ensemble + Fusion 14.3% 39.4% 17.5% 73.2% 45.2%

10-Model, 1-Sample Ensemble
+ Top-5 Ranking + Fusion 15.9% 41.2% 18.0% 75.1% 46.9%

10-Model, 1-Sample Ensemble
+ Critic + Fusion 10.5% 38.4% 16.5% 71.4% 42.5%

Table 21: ARCHON with 7B Open-Source Models: For AlpacaEval 2.0, we use the length-controlled
win rate (LC WR). We use open-source 7B models for testing from Table 17.

Models Cost ($) per
Million Input Tokens

Cost ($) per
Million Output Tokens

Claude 3.5 Sonnet $3 $15

Claude 3.0 Opus $15 $75

GPT-4o $5 $15

GPT-4-Turbo $10 $30

TogetherAI - Llama 3.1 405B Instruct $5 $5

TogetherAI - Llama 3.1 70B Instruct $0.88 $0.88

TogetherAI - Other Models $0.90 $0.90

Table 22: Model API Costs as of August 2024

Cost ($) per Query for Benchmark

Model /
LLM System MT Bench AlpacaEval 2.0 Arena-Hard

Auto MixEval MixEval
Hard MATH Code

Contests

Claude 3.5 Sonnet 0.0305 0.0171 0.0212 0.0231 0.0226 0.0325 0.384

GPT-4o 0.0481 0.0236 0.0324 0.0357 0.0361 0.514 0.562

Llama 3.1 405B Instruct 0.0281 0.0174 0.0185 0.0212 0.0205 0.305 0.372

General Purpose
ARCHON Architecture 0.364 0.189 0.195 0.284 0.252 0.375 0.461

Task Specific
ARCHON Architecture 0.401 0.210 0.221 0.295 0.265 0.425 0.448

Table 23: ARCHON Costs per Query by Benchmark

A.6 BAYESIAN OPTIMIZATION

Bayesian Optimization is a sequential design strategy for global optimization of black-box functions that
are expensive to evaluate Snoek et al. (2012). It is particularly useful when dealing with functions that have
unknown forms and are costly to evaluate, such as hyperparameter tuning in machine learning.

A.6.1 OVERVIEW OF BAYESIAN OPTIMIZATION

The core idea behind Bayesian Optimization is to build a probabilistic model of the objective function and
use it to select the most promising points to evaluate next. This process involves two main components:

1. Surrogate Model: A probabilistic model (often a Gaussian Process) that approximates the unknown
objective function.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

2. Acquisition Function: A function that guides the search for the optimum by suggesting the next point
to evaluate, based on the surrogate model.

A.6.2 STEPS IN BAYESIAN OPTIMIZATION

1. Initialization: Begin with a set of initial points D={(x1,y1),(x2,y2),...,(xn,yn)}, where xi is the input,
and yi=f(xi) is the objective function value at xi.

2. Model Building: Fit a surrogate model (e.g., Gaussian Process) to the observed data D.
3. Acquisition: Use the acquisition function to select the next point xn+1 to evaluate:

xn+1=argmax
x

a(x |D)

where a(x |D) is the acquisition function.
4. Evaluation: Evaluate the objective function at xn+1 to get yn+1=f(xn+1).
5. Update: Add the new data point (xn+1,yn+1) to the dataset D.
6. Repeat: Repeat steps 2-5 until convergence or a stopping criterion is met (e.g., budget exhausted, no

significant improvement).

A.6.3 GAUSSIAN PROCESS AS A SURROGATE MODEL

A Gaussian Process (GP) is commonly used as a surrogate model in Bayesian Optimization. It is defined
by a mean function µ(x) and a covariance function (kernel) k(x,x′):

f(x)∼GP(µ(x),k(x,x′))

Given a set of observations D, the GP provides a predictive distribution for the objective function at a
new point x:

• Predictive Mean: The expected value of the function at x:

µ(x |D)=kn(x)
TK−1

n y

where kn(x) is the covariance vector between x and the training points, and Kn is the covariance
matrix of the training points.

• Predictive Variance: The uncertainty in the function value at x:

σ2(x |D)=k(x,x)−kn(x)
TK−1

n kn(x)

A.6.4 ACQUISITION FUNCTIONS

Acquisition functions guide the search for the optimum by balancing exploration (trying out areas with high
uncertainty) and exploitation (focusing on areas with high predicted values). Common acquisition functions
include:

1. Expected Improvement (EI):

EI(x)=E[max(0,f(x)−f(x+))]

where f(x+) is the best observed value so far.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

2. Probability of Improvement (PI):

PI(x)=P(f(x)>f(x+)+ξ)

where ξ is a small positive number.
3. Upper Confidence Bound (UCB):

UCB(x)=µ(x |D)+κσ(x |D)

where κ controls the trade-off between exploration and exploitation.

A.6.5 SUMMARY OF BAYESIAN OPTIMIZATION

Bayesian Optimization iteratively uses a surrogate model to approximate the objective function and an
acquisition function to decide where to sample next. By focusing on promising areas of the search space and
systematically exploring uncertain regions, it efficiently optimizes complex, expensive-to-evaluate functions.

Figure 13: Impact of Different Optimization Algorithms on Inference-Time Architecture Search (ITAS):
On the benchmarks MT Bench and Arena-Hard-Auto, we compare four approaches for finding the optimal
inference-time architecture: random search, greedy search, and Bayes Optimization. Bayes Optimization
finds the optimal architecture in 88.5% less iterations compared to greedy search and 90.4% less iterations
compared to random search.

A.7 BAYES OPTIMIZATION VS. ALTERNATIVE APPROACHES

Search Techniques: Within the hyperparameter space, we explored three search algorithms for automating
the development of inference-time architectures:

1. Random Search: Randomly selects a combination of hyperparameters for our ARCHON architecture.
2. Greedy Search: Starting with a base ARCHON configuration, marginally changes each hyperparameter

and test if it improves performance or not. If it does, incorporate the change. If not, move on to the next
hyperparameter.

3. Bayesian Optimization: Efficiently selects the most promising hyperparameter configurations for
ARCHON by building a probabilistic surrogate model and leveraging an acquisition function for
hyperparameter selection (Snoek et al., 2012; Nardi et al., 2019) (Section A.6).

To get our model ranking for the benchmark, we calculate the model ranking by testing each model
individually on a 20% sample of each dataset benchmark in the first stage of the search. To get our fusion
model ranking for the benchmark, we use the same approach, testing each model’s fusion performance
with an ensemble of 10 randomly selected models from the available set. From our experiments, we found
that the best generator and fusion models could vary widely dataset to dataset, making it beneficial to perform
these rankings for new datasets (Table 18). For search, we use the same 20% sample of each dataset that was

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

used for evaluating generation and fusion, allowing us to guide architecture search with improved evaluation
speed while getting meaningful development signal.

Comparing Search Algorithms: In Figure 13, we compare the effectiveness of each search algorithm
on our explored benchmarks. While random search guarantees the optimal ARCHON configuration, we found
Bayesian optimization to be most effective in terms of tradeoff between finding the optimal configurations
and minimizing the number of configurations tested. For 96.0% percent of the search iterations tested in
Figure 13, we found that Bayesian optimization had the optimal configuration amongst the four explored
search algorithms. We use 230 initial samples for our Bayes Optimization architecture search (Section A.6).
Bayesian optimization also found the best architecture configuration in 88.5% less evaluations than greedy
search and 90.4% less evaluations than random search.

Bayesian Optimization Analysis: In Table 26, we explore how the number of initial testing points, the
number of exploration iterations, and the ARCHON inference call budget impacts the effectiveness of Bayesian
optimization. Additional initial testing points continue improving search efficacy up until 230-240 samples,
where testing would be better delegated towards configuration search. For lower inference call budgets with
ARCHON (e.g. <20 inference calls), Bayesian optimization proved less effective, performing more similarly to
greedy search or random search given the limited search space (Table 27). Therefore, Bayesian optimization
is more effective for more open-ended ITAS with larger inference call budgets (e.g. >20 inference calls)
whereas traditional component engineering might be better for more limited inference call budgets.

A.8 ITAS ALGORITHMS COMPARISONS

of Init.
Points

% of Total
Configs

Iter. till
Max. Config. Comb. Iter.

200 2.18% 353 553
210 2.29% 324 534
220 2.40% 301 521
230 2.51% 284 514
240 2.61% 261 501
250 2.72% 265 515
260 2.83% 256 516
270 2.94% 252 522

Table 24: MT Bench

of Init.
Points

% of Total
Configs

Iter. till
Max. Config.

Comb.
Iter.

200 2.18% 478 678
210 2.29% 431 641
220 2.40% 415 635
230 2.51% 382 612
240 2.61% 389 629
250 2.72% 385 635
260 2.83% 372 632
270 2.94% 368 638

Table 25: Arena-Hard-Auto

Table 26: Bayesian Optimization Hyperparameter Comparisons: On MT Bench and Arena-Hard-Auto, we
compare Bayesian optimization configurations for the number of initial sample points. We find that 230 to 240
initial sample points minimizes the combined number of iterations (both initial sampling and exploring) to find
the optimal configuration. For the configurations explored, the total number of hyperparameter choices is 9,576.

Iterations to Convergence

Inference Budget 10 20 30 40 50

Random Selection 387 1152 2731 4359 5843
Greedy Search 343 984 2153 3045 4895

Bayes Optimization 254 386 452 515 589

Table 27: ITAS Algorithms Comparison by Inference Call Budget: For our comparison, we evaluate
on MT Bench.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

A.9 ARCHON BENCHMARKS AND RESULTS

Datasets

MT
Bench

Alpaca
Eval 2.0

Arena
Hard Auto

Arena
Hard Auto

MixEval
Hard MixEval MATH∗

Judge Model GPT-4
0314

GPT-4
Turbo

GPT-4
Turbo

GPT-4
Turbo N/A N/A N/A

Reference Model Claude 3.5
Sonnet

GPT-4
Turbo

Claude 3.5
Sonnet

GPT-4
Turbo N/A N/A N/A

Model / LLM System Infer.
Calls W.R. L.C.

W.R.
Raw
W.R. W.R. W.R Acc. Acc. Pass

@1

GPT-4o - 2024-05-13 1 44.7% 57.5% 51.3% 48.1% 80.3% 63.6% 88.0% 72.0%
Claude 3.5 Sonnet 1 N/A 52.4% 40.6% N/A 80.9% 68.9% 89.7% 72.0%

Llama 3.1 405B Instruct 1 44.7% 40.3% 37.7% 28.4% 64.1% 66.2% 88.9% 74.0%

MoA 19 51.6% 65.1% 59.8% 52.2% 84.2% 62.5% 87.3% 72.5%
MoA Lite 7 45.6% 59.3% 57.0% 40.6% 87.8% 61.1% 87.1% 70.5%

O
pe

n
So

ur
ce General-purpose

ARCHON Architecture 35 67.5% 63.0% 68.3% 66.2% 85.1% 65.5% 86.9% 75.5%

Task-specific
ARCHON Architectures 44 71.6% 66.7% 70.7% 69.0% 89.5% 67.5% 89.6% 80.5%

C
lo

se
d

So
ur

ce General-purpose
ARCHON Architecture 32 73.1% 63.5% 69.1% 70.5% 85.8% 67.7% 88.2% 77.0%

Task-specific
ARCHON Architectures 40 77.5% 68.4% 72.1% 74.4% 90.2% 72.9% 90.4% 79.0%

A
ll

So
ur

ce General-purpose
ARCHON Architecture 35 76.8% 65.8% 70.2% 72.5% 89.3% 70.1% 88.1% 78.0%

Task-specific
ARCHON Architectures 39 80.4% 67.6% 73.3% 76.1% 92.1% 72.9% 90.6% 80.5%

Table 28: ARCHON’s Strong Performance on the Complete Evaluation Datasets after ITAS
Optimization: We find that ARCHON’s inference-time architectures consistently outperform single-call
state-of-the-art LLMs, both open-source and closed-source baselines, when evaluating on the complete
benchmarks (Table 29). We explore two configurations: ITAS for building custom ARCHON configurations
for each individual benchmark and ITAS for building a single general-purpose ARCHON configuration for
all the benchmarks (Section 4.4). We find that a general ARCHON configuration lags behind the custom
ones by only 3.2 percentage points, on average, across our all-source settings, which suggests the efficacy
of general-purpose inference-time architectures created with our framework. For Arena-Hard-Auto, we
also include a configuration with Claude 3.5 Sonnet as a stronger reference model for comparison against
ARCHON inference-time architectures and to mitigate bias from GPT judges towards GPT generations. For
MT Bench, we use a GPT-4-0314 judge model instead of newer LLM judges to be consistent with previous
results on this benchmark. For our task-specific ARCHON architectures, we also provide the average inference
calls across the given benchmarks. For our full-list of models explored, please see Table 17. For MATH, we
use a randomly sampled subset of size 200 for evaluation (Section 4.1; Table 29). We include our ARCHON
architecture results on the held-out 80% subset of each evaluation benchmark in Table 1.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Benchmark Example
Count

Reference
Model

Judge
Model Scoring Type Metric

AlpacaEval 2.0 805 GPT-4-Turbo GPT-4-Turbo Pairwise
Comparison

L.C. & Raw
Win Rates

Arena-Hard-Auto 500 Claude-3.5-Sonnet
GPT-4-0314 GPT-4-Turbo Pairwise

Comparison Win Rate

MT-Bench 80 Claude-3.5-Sonnet GPT-4-0314 Pairwise
Comparison

Adjusted
Win Rate

MixEval 2000 N/A N/A Ground Truth Accuracy

MixEval-Hard 500 N/A N/A Ground Truth Accuracy

MATH 200
(sampled from 5000) N/A N/A Ground Truth Pass@1

CodeContests 140
(non-visual queries) N/A N/A Ground Truth Pass@1

Table 29: Benchmark Overview: Evaluation configurations for AlpacaEval 2.0 (Li et al., 2023),
Arena-Hard-Auto (Li et al., 2024b), MT-Bench (Zheng et al., 2023), MixEval (Ni et al., 2024), MixEval
Hard, MATH (Hendrycks et al., 2021), and CodeContests (Li et al., 2022)

.

Arena-Hard-Auto

Model / LLM System Score C.I.

Claude 3.5 Sonnet N/A N/A
GPT-4o 48.1% (-2.3, 1.8)

Llama 3.1 405B Instruct 28.4% (-2.7, 2.5)

O
pe

n
So

ur
ce

General-purpose
ARCHON Architecture 66.2% (-2.4, 2.2)

Task-specific
ARCHON Architectures 69.0% (-2.8, 2.5)

C
lo

se
d

So
ur

ce

General-purpose
ARCHON Architecture 70.5% (-2.5, 2.0)

Task-specific
ARCHON Architectures 74.4% (-2.3, 1.6)

A
ll

So
ur

ce

General-purpose
ARCHON Architecture 72.5% (-2.5, 1.8)

Task-specific
ARCHON Architectures 76.1% (-1.8, 2.2)

Table 30: ARCHON Results on Arena-Hard-Auto Results with Claude-3.5-Sonnet as Baseline Model:
The baseline model is Claude-3.5-Sonnet (default baseline model: GPT-4-0314) while the judge model
is GPT-4-Turbo.

MixEval - Sub-Datasets

Model / LLM System Infer.
Calls GSM8K TriviaQA DROP MATH BBH AGIEval Average

GPT-4o - 2024-05-13 1 94.9 89.1 88.2 98.5 98.3 71.5 90.3

Claude 3.5 Sonnet 1 98.0 92.0 92.6 96 95.6 78.0 92.0

Llama 3.1 405B Instruct 1 98.2 87.9 89.6 91.5 95.8 73.2 89.6

General-purpose
ARCHON Architecture 29 98.3 94.8 94.6 98.1 97.3 82.1 94.2

Task-specific
ARCHON Architectures 34 98.2 96.7 95.6 98.5 98.8 84.2 95.7

Table 31: MixEval Results by Sub-Dataset: For the average computed, we do not introduce any weighting
for each dataset.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

MixEval - Sub-Datasets

Model / LLM System Infer.
Calls GSM8K TriviaQA DROP MATH BBH AGIEval Average

GPT-4o - 2024-05-13 1 72.3 70.5 70.2 94.4 80.0 53.5 73.5

Claude 3.5 Sonnet 1 87.3 75.5 79.3 82.5 80.0 74.6 79.9

Llama 3.1 405B Instruct 1 98.7 71.2 70.7 86.9 78.8 62.0 78.1

General-purpose
ARCHON Architecture 33 96.7 82.7 83.2 93.4 82.0 76.7 85.8

Task-specific
ARCHON Architectures 37 98.9 86.2 85.2 96.2 86.0 80.1 88.8

Table 32: MixEval-Hard Results by Sub-Dataset: For the average computed, we do not introduce any
weighting for each dataset.

GSM8K MMLU
Math

HumanEval
Python MBPP

Model Pass@1 Pass@1 Pass@1 Pass@1

GPT-4o 97.1% 84.8% 89.0% 87.5%

Claude 3.5 Sonnet 96.8% 90.9% 90.2% 88.9%

Llama 3.1 405B Instruct 95.9% 85.4% 90.2% 88.6%

Table 33: Additional Math and Code Benchmarks Explored

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report: A highly capable
language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

AI@Meta. Llama 3 model card. ArXiv, 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. ArXiv, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han,
Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan
Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu.
Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen,
Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson, Christopher Olah,
Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared
Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto,
Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam
Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-
Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben
Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional
ai: Harmlessness from ai feedback, 2022a. URL https://arxiv.org/abs/2212.08073.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen,
Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from ai
feedback. arXiv preprint arXiv:2212.08073, 2022b.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and Azalia
Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling, 2024. URL
https://arxiv.org/abs/2407.21787.

29

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2407.21787

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James Zou.
Are more llm calls all you need? towards scaling laws of compound inference systems, 2024. URL
https://arxiv.org/abs/2403.02419.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li,
Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena: An open
platform for evaluating llms by human preference, 2024.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun,
Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha Valter, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov,
Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling
instruction-finetuned language models, 2022. URL https://arxiv.org/abs/2210.11416.

Databricks. Dbrx technical report. 2024.

Jared Quincy Davis, Boris Hanin, Lingjiao Chen, Peter Bailis, Ion Stoica, and Matei Zaharia. Networks
of networks: Complexity class principles applied to compound ai systems design, 2024. URL
https://arxiv.org/abs/2407.16831.

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quanquan Gu. Rephrase and respond: Let large language
models ask better questions for themselves, 2024. URL https://arxiv.org/abs/2311.04205.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien
Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe
Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily
Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis
Anderson, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar,
Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der
Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe,
Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin
Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary,
Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo
Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat
Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur,
Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov,
Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang,
Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh
Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer,
Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre,
Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan
Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky,
Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher,
Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin
Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia,
Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang,
Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya
Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie
Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples,

30

https://arxiv.org/abs/2403.02419
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2407.16831
https://arxiv.org/abs/2311.04205

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan,
Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin
Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood,
Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat
Ozgenel, Francesco Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez,
Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen
Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Igor Molybog,
Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher,
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul,
Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan
Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay
Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun
Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro
Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew
Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas
Usunier, Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart,
Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip
Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang,
Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond
Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh
Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan
Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney
Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez,
Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang,
Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu,
Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao,
Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei
Zhao. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model alignment
as prospect theoretic optimization, 2024. URL https://arxiv.org/abs/2402.01306.

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Wortsman, Rulin
Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, et al. Language models scale reliably with
over-training and on downstream tasks. arXiv preprint arXiv:2403.08540, 2024.

Neel Guha, Mayee F Chen, Trevor Chow, Ishan S Khare, and Christopher Re. Smoothie: Label free language
model routing. In The Thirty-eighth Annual Conference on Neural Information Processing Systems.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When
the large language model meets programming – the rise of code intelligence, 2024. URL
https://arxiv.org/abs/2401.14196.

Eric Hartford. dolphin-2.2.1-mistral-7b. January 2024.

31

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2401.14196

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874, 2021.

Geoffrey E Hinton et al. How neural networks learn from experience. na, 1992.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. Mistral 7b, 2023a.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford,
Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel,
Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre
Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mixtral of experts, 2024.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models with
pairwise comparison and generative fusion. In Proceedings of the 61th Annual Meeting of the Association
for Computational Linguistics (ACL 2023), 2023b.

Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao, Shang-Wen Li, Xiaokai Wei, Andrew Arnold, and Xiang
Ren. Lifelong pretraining: Continually adapting language models to emerging corpora. arXiv preprint
arXiv:2110.08534, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020. URL
https://arxiv.org/abs/2001.08361.

Sayash Kapoor, Benedikt Stroebl, Zachary S Siegel, Nitya Nadgir, and Arvind Narayanan. Ai agents that
matter. arXiv preprint arXiv:2407.01502, 2024.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan,
Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei Zaharia, and
Christopher Potts. Dspy: Compiling declarative language model calls into self-improving pipelines. arXiv
preprint arXiv:2310.03714, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for
knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:9459–9474, 2020.

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need, 2024a. URL
https://arxiv.org/abs/2402.05120.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Joseph E. Gonzalez Banghua Zhu, and Ion
Stoica. From live data to high-quality benchmarks: The arena-hard pipeline, April 2024b. URL
https://lmsys.org/blog/2024-04-19-arena-hard/.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation with alphacode.
Science, 378(6624):1092–1097, 2022.

Haohan Lin, Zhiqing Sun, Yiming Yang, and Sean Welleck. Lean-star: Learning to interleave thinking
and proving, 2024. URL https://arxiv.org/abs/2407.10040.

32

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2402.05120
https://lmsys.org/blog/2024-04-19-arena-hard/
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2407.10040

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings of the
European conference on computer vision (ECCV), pp. 19–34, 2018.

Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Kay Chen Tan. A survey on evolutionary
neural architecture search. IEEE transactions on neural networks and learning systems, 34(2):550–570,
2021.

Yu Meng, Mengzhou Xia, and Danqi Chen. SimPO: Simple preference optimization with a reference-free
reward. ArXiv, 2024.

Luigi Nardi, Artur Souza, David Koeplinger, and Kunle Olukotun. Hypermapper: a practical design
space exploration framework. In 2019 IEEE 27th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 425–426, 2019. doi:
10.1109/MASCOTS.2019.00053.

Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig, and
Yang You. Mixeval: Deriving wisdom of the crowd from llm benchmark mixtures, 2024. URL
https://arxiv.org/abs/2406.06565.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez, M Waleed
Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data, 2024. URL
https://arxiv.org/abs/2406.18665.

OpenAI. Learning to reason with LLMs. https://openai.com/research/
learning-to-reason-with-llms, September 2024a. Accessed November 13, 2024.

OpenAI. Learning to reason with large language models, 2024b. URL https://openai.com/
index/learning-to-reason-with-llms/. Accessed: 2024-09-12.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir
Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello,
Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine
Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai,
Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che
Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester
Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning,
Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman,
Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni,
Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton,
Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny
Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger
Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser,
Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo,
Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim,
Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju,
Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew
Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil,
David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin
Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang,
Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo,
Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila
Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass,
Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford,
Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted,

33

https://arxiv.org/abs/2406.06565
https://arxiv.org/abs/2406.18665
https://openai.com/research/learning-to-reason-with-llms
https://openai.com/research/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather
Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh,
Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama,
Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers,
Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian,
Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone,
Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff
Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan
Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk,
and Barret Zoph. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Qwen. Qwen2 technical report. 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model, 2023.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang. A
comprehensive survey of neural architecture search: Challenges and solutions. ACM Computing Surveys
(CSUR), 54(4):1–34, 2021.

Swarnadeep Saha, Omer Levy, Asli Celikyilmaz, Mohit Bansal, Jason Weston, and Xian Li.
Branch-solve-merge improves large language model evaluation and generation, 2024. URL
https://arxiv.org/abs/2310.15123.

Yijia Shao, Yucheng Jiang, Theodore A Kanell, Peter Xu, Omar Khattab, and Monica S Lam. Assisting in writ-
ing wikipedia-like articles from scratch with large language models. arXiv preprint arXiv:2402.14207, 2024.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine learning
algorithms, 2012. URL https://arxiv.org/abs/1206.2944.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski, Mostofa Patwary,
Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Llm pruning and distillation
in practice: The minitron approach, 2024. URL https://arxiv.org/abs/2408.11796.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalk-
wyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Melvin Johnson, Ioannis Antonoglou,
Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler, Timothy Lillicrap, Angeliki Lazaridou, Orhan
Firat, James Molloy, Michael Isard, Paul R. Barham, Tom Hennigan, Benjamin Lee, Fabio Viola, Malcolm
Reynolds, Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens Meyer, Eliza Rutherford, Erica Moreira,
Kareem Ayoub, Megha Goel, Jack Krawczyk, Cosmo Du, Ed Chi, Heng-Tze Cheng, Eric Ni, Purvi Shah,
Patrick Kane, Betty Chan, Manaal Faruqui, Aliaksei Severyn, Hanzhao Lin, YaGuang Li, Yong Cheng,
Abe Ittycheriah, Mahdis Mahdieh, Mia Chen, Pei Sun, Dustin Tran, Sumit Bagri, Balaji Lakshminarayanan,
Jeremiah Liu, Andras Orban, Fabian Güra, Hao Zhou, Xinying Song, Aurelien Boffy, Harish Ganapathy,
Steven Zheng, HyunJeong Choe, Ágoston Weisz, Tao Zhu, Yifeng Lu, Siddharth Gopal, Jarrod Kahn,
Maciej Kula, Jeff Pitman, Rushin Shah, Emanuel Taropa, Majd Al Merey, Martin Baeuml, Zhifeng Chen,
Laurent El Shafey, Yujing Zhang, Olcan Sercinoglu, George Tucker, Enrique Piqueras, Maxim Krikun,
Iain Barr, Nikolay Savinov, Ivo Danihelka, Becca Roelofs, Anaïs White, Anders Andreassen, Tamara
von Glehn, Lakshman Yagati, Mehran Kazemi, Lucas Gonzalez, Misha Khalman, Jakub Sygnowski,
Alexandre Frechette, Charlotte Smith, Laura Culp, Lev Proleev, Yi Luan, Xi Chen, James Lottes, Nathan
Schucher, Federico Lebron, Alban Rrustemi, Natalie Clay, Phil Crone, Tomas Kocisky, Jeffrey Zhao, Bartek
Perz, Dian Yu, Heidi Howard, Adam Bloniarz, Jack W. Rae, Han Lu, Laurent Sifre, Marcello Maggioni,
Fred Alcober, Dan Garrette, Megan Barnes, Shantanu Thakoor, Jacob Austin, Gabriel Barth-Maron,
William Wong, Rishabh Joshi, Rahma Chaabouni, Deeni Fatiha, Arun Ahuja, Gaurav Singh Tomar, Evan
Senter, Martin Chadwick, Ilya Kornakov, Nithya Attaluri, Iñaki Iturrate, Ruibo Liu, Yunxuan Li, Sarah
Cogan, Jeremy Chen, Chao Jia, Chenjie Gu, Qiao Zhang, Jordan Grimstad, Ale Jakse Hartman, Xavier
Garcia, Thanumalayan Sankaranarayana Pillai, Jacob Devlin, Michael Laskin, Diego de Las Casas, Dasha
Valter, Connie Tao, Lorenzo Blanco, Adrià Puigdomènech Badia, David Reitter, Mianna Chen, Jenny
Brennan, Clara Rivera, Sergey Brin, Shariq Iqbal, Gabriela Surita, Jane Labanowski, Abhi Rao, Stephanie
Winkler, Emilio Parisotto, Yiming Gu, Kate Olszewska, Ravi Addanki, Antoine Miech, Annie Louis,

34

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2310.15123
https://arxiv.org/abs/1206.2944
https://arxiv.org/abs/2408.11796

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Denis Teplyashin, Geoff Brown, Elliot Catt, Jan Balaguer, Jackie Xiang, Pidong Wang, Zoe Ashwood,
Anton Briukhov, Albert Webson, Sanjay Ganapathy, Smit Sanghavi, Ajay Kannan, Ming-Wei Chang,
Axel Stjerngren, Josip Djolonga, Yuting Sun, Ankur Bapna, Matthew Aitchison, Pedram Pejman, Henryk
Michalewski, Tianhe Yu, Cindy Wang, Juliette Love, Junwhan Ahn, Dawn Bloxwich, Kehang Han, Peter
Humphreys, Thibault Sellam, James Bradbury, Varun Godbole, Sina Samangooei, Bogdan Damoc, Alex
Kaskasoli, Sébastien M. R. Arnold, Vijay Vasudevan, Shubham Agrawal, Jason Riesa, Dmitry Lepikhin,
Richard Tanburn, Srivatsan Srinivasan, Hyeontaek Lim, Sarah Hodkinson, Pranav Shyam, Johan Ferret,
Steven Hand, Ankush Garg, Tom Le Paine, Jian Li, Yujia Li, Minh Giang, Alexander Neitz, Zaheer Abbas,
Sarah York, Machel Reid, Elizabeth Cole, Aakanksha Chowdhery, Dipanjan Das, Dominika Rogozińska,
Vitaliy Nikolaev, Pablo Sprechmann, Zachary Nado, Lukas Zilka, Flavien Prost, Luheng He, Marianne
Monteiro, Gaurav Mishra, Chris Welty, Josh Newlan, Dawei Jia, Miltiadis Allamanis, Clara Huiyi Hu,
Raoul de Liedekerke, Justin Gilmer, Carl Saroufim, Shruti Rijhwani, Shaobo Hou, Disha Shrivastava,
Anirudh Baddepudi, Alex Goldin, Adnan Ozturel, Albin Cassirer, Yunhan Xu, Daniel Sohn, Devendra
Sachan, Reinald Kim Amplayo, Craig Swanson, Dessie Petrova, Shashi Narayan, Arthur Guez, Siddhartha
Brahma, Jessica Landon, Miteyan Patel, Ruizhe Zhao, Kevin Villela, Luyu Wang, Wenhao Jia, Matthew
Rahtz, Mai Giménez, Legg Yeung, James Keeling, Petko Georgiev, Diana Mincu, Boxi Wu, Salem Haykal,
Rachel Saputro, Kiran Vodrahalli, James Qin, Zeynep Cankara, Abhanshu Sharma, Nick Fernando, Will
Hawkins, Behnam Neyshabur, Solomon Kim, Adrian Hutter, Priyanka Agrawal, Alex Castro-Ros, George
van den Driessche, Tao Wang, Fan Yang, Shuo yiin Chang, Paul Komarek, Ross McIlroy, Mario Lučić,
Guodong Zhang, Wael Farhan, Michael Sharman, Paul Natsev, Paul Michel, Yamini Bansal, Siyuan Qiao,
Kris Cao, Siamak Shakeri, Christina Butterfield, Justin Chung, Paul Kishan Rubenstein, Shivani Agrawal,
Arthur Mensch, Kedar Soparkar, Karel Lenc, Timothy Chung, Aedan Pope, Loren Maggiore, Jackie Kay,
Priya Jhakra, Shibo Wang, Joshua Maynez, Mary Phuong, Taylor Tobin, Andrea Tacchetti, Maja Trebacz,
Kevin Robinson, Yash Katariya, Sebastian Riedel, Paige Bailey, Kefan Xiao, Nimesh Ghelani, Lora Aroyo,
Ambrose Slone, Neil Houlsby, Xuehan Xiong, Zhen Yang, Elena Gribovskaya, Jonas Adler, Mateo Wirth,
Lisa Lee, Music Li, Thais Kagohara, Jay Pavagadhi, Sophie Bridgers, Anna Bortsova, Sanjay Ghemawat,
Zafarali Ahmed, Tianqi Liu, Richard Powell, Vijay Bolina, Mariko Iinuma, Polina Zablotskaia, James
Besley, Da-Woon Chung, Timothy Dozat, Ramona Comanescu, Xiance Si, Jeremy Greer, Guolong Su,
Martin Polacek, Raphaël Lopez Kaufman, Simon Tokumine, Hexiang Hu, Elena Buchatskaya, Yingjie
Miao, Mohamed Elhawaty, Aditya Siddhant, Nenad Tomasev, Jinwei Xing, Christina Greer, Helen Miller,
Shereen Ashraf, Aurko Roy, Zizhao Zhang, Ada Ma, Angelos Filos, Milos Besta, Rory Blevins, Ted
Klimenko, Chih-Kuan Yeh, Soravit Changpinyo, Jiaqi Mu, Oscar Chang, Mantas Pajarskas, Carrie Muir,
Vered Cohen, Charline Le Lan, Krishna Haridasan, Amit Marathe, Steven Hansen, Sholto Douglas,
Rajkumar Samuel, Mingqiu Wang, Sophia Austin, Chang Lan, Jiepu Jiang, Justin Chiu, Jaime Alonso
Lorenzo, Lars Lowe Sjösund, Sébastien Cevey, Zach Gleicher, Thi Avrahami, Anudhyan Boral, Hansa
Srinivasan, Vittorio Selo, Rhys May, Konstantinos Aisopos, Léonard Hussenot, Livio Baldini Soares, Kate
Baumli, Michael B. Chang, Adrià Recasens, Ben Caine, Alexander Pritzel, Filip Pavetic, Fabio Pardo,
Anita Gergely, Justin Frye, Vinay Ramasesh, Dan Horgan, Kartikeya Badola, Nora Kassner, Subhrajit Roy,
Ethan Dyer, Víctor Campos Campos, Alex Tomala, Yunhao Tang, Dalia El Badawy, Elspeth White, Basil
Mustafa, Oran Lang, Abhishek Jindal, Sharad Vikram, Zhitao Gong, Sergi Caelles, Ross Hemsley, Gregory
Thornton, Fangxiaoyu Feng, Wojciech Stokowiec, Ce Zheng, Phoebe Thacker, Çağlar Ünlü, Zhishuai
Zhang, Mohammad Saleh, James Svensson, Max Bileschi, Piyush Patil, Ankesh Anand, Roman Ring,
Katerina Tsihlas, Arpi Vezer, Marco Selvi, Toby Shevlane, Mikel Rodriguez, Tom Kwiatkowski, Samira
Daruki, Keran Rong, Allan Dafoe, Nicholas FitzGerald, Keren Gu-Lemberg, Mina Khan, Lisa Anne
Hendricks, Marie Pellat, Vladimir Feinberg, James Cobon-Kerr, Tara Sainath, Maribeth Rauh, Sayed Hadi
Hashemi, Richard Ives, Yana Hasson, Eric Noland, Yuan Cao, Nathan Byrd, Le Hou, Qingze Wang,
Thibault Sottiaux, Michela Paganini, Jean-Baptiste Lespiau, Alexandre Moufarek, Samer Hassan, Kaushik
Shivakumar, Joost van Amersfoort, Amol Mandhane, Pratik Joshi, Anirudh Goyal, Matthew Tung, Andrew
Brock, Hannah Sheahan, Vedant Misra, Cheng Li, Nemanja Rakićević, Mostafa Dehghani, Fangyu Liu,
Sid Mittal, Junhyuk Oh, Seb Noury, Eren Sezener, Fantine Huot, Matthew Lamm, Nicola De Cao, Charlie
Chen, Sidharth Mudgal, Romina Stella, Kevin Brooks, Gautam Vasudevan, Chenxi Liu, Mainak Chain,
Nivedita Melinkeri, Aaron Cohen, Venus Wang, Kristie Seymore, Sergey Zubkov, Rahul Goel, Summer
Yue, Sai Krishnakumaran, Brian Albert, Nate Hurley, Motoki Sano, Anhad Mohananey, Jonah Joughin,
Egor Filonov, Tomasz Kępa, Yomna Eldawy, Jiawern Lim, Rahul Rishi, Shirin Badiezadegan, Taylor Bos,
Jerry Chang, Sanil Jain, Sri Gayatri Sundara Padmanabhan, Subha Puttagunta, Kalpesh Krishna, Leslie
Baker, Norbert Kalb, Vamsi Bedapudi, Adam Kurzrok, Shuntong Lei, Anthony Yu, Oren Litvin, Xiang
Zhou, Zhichun Wu, Sam Sobell, Andrea Siciliano, Alan Papir, Robby Neale, Jonas Bragagnolo, Tej Toor,
Tina Chen, Valentin Anklin, Feiran Wang, Richie Feng, Milad Gholami, Kevin Ling, Lijuan Liu, Jules
Walter, Hamid Moghaddam, Arun Kishore, Jakub Adamek, Tyler Mercado, Jonathan Mallinson, Siddhinita

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Wandekar, Stephen Cagle, Eran Ofek, Guillermo Garrido, Clemens Lombriser, Maksim Mukha, Botu Sun,
Hafeezul Rahman Mohammad, Josip Matak, Yadi Qian, Vikas Peswani, Pawel Janus, Quan Yuan, Leif
Schelin, Oana David, Ankur Garg, Yifan He, Oleksii Duzhyi, Anton Älgmyr, Timothée Lottaz, Qi Li, Vikas
Yadav, Luyao Xu, Alex Chinien, Rakesh Shivanna, Aleksandr Chuklin, Josie Li, Carrie Spadine, Travis
Wolfe, Kareem Mohamed, Subhabrata Das, Zihang Dai, Kyle He, Daniel von Dincklage, Shyam Upadhyay,
Akanksha Maurya, Luyan Chi, Sebastian Krause, Khalid Salama, Pam G Rabinovitch, Pavan Kumar Reddy
M, Aarush Selvan, Mikhail Dektiarev, Golnaz Ghiasi, Erdem Guven, Himanshu Gupta, Boyi Liu, Deepak
Sharma, Idan Heimlich Shtacher, Shachi Paul, Oscar Akerlund, François-Xavier Aubet, Terry Huang, Chen
Zhu, Eric Zhu, Elico Teixeira, Matthew Fritze, Francesco Bertolini, Liana-Eleonora Marinescu, Martin
Bölle, Dominik Paulus, Khyatti Gupta, Tejasi Latkar, Max Chang, Jason Sanders, Roopa Wilson, Xuewei
Wu, Yi-Xuan Tan, Lam Nguyen Thiet, Tulsee Doshi, Sid Lall, Swaroop Mishra, Wanming Chen, Thang
Luong, Seth Benjamin, Jasmine Lee, Ewa Andrejczuk, Dominik Rabiej, Vipul Ranjan, Krzysztof Styrc,
Pengcheng Yin, Jon Simon, Malcolm Rose Harriott, Mudit Bansal, Alexei Robsky, Geoff Bacon, David
Greene, Daniil Mirylenka, Chen Zhou, Obaid Sarvana, Abhimanyu Goyal, Samuel Andermatt, Patrick
Siegler, Ben Horn, Assaf Israel, Francesco Pongetti, Chih-Wei "Louis" Chen, Marco Selvatici, Pedro
Silva, Kathie Wang, Jackson Tolins, Kelvin Guu, Roey Yogev, Xiaochen Cai, Alessandro Agostini, Maulik
Shah, Hung Nguyen, Noah Ó Donnaile, Sébastien Pereira, Linda Friso, Adam Stambler, Adam Kurzrok,
Chenkai Kuang, Yan Romanikhin, Mark Geller, ZJ Yan, Kane Jang, Cheng-Chun Lee, Wojciech Fica, Eric
Malmi, Qijun Tan, Dan Banica, Daniel Balle, Ryan Pham, Yanping Huang, Diana Avram, Hongzhi Shi,
Jasjot Singh, Chris Hidey, Niharika Ahuja, Pranab Saxena, Dan Dooley, Srividya Pranavi Potharaju, Eileen
O’Neill, Anand Gokulchandran, Ryan Foley, Kai Zhao, Mike Dusenberry, Yuan Liu, Pulkit Mehta, Ragha
Kotikalapudi, Chalence Safranek-Shrader, Andrew Goodman, Joshua Kessinger, Eran Globen, Prateek
Kolhar, Chris Gorgolewski, Ali Ibrahim, Yang Song, Ali Eichenbaum, Thomas Brovelli, Sahitya Potluri,
Preethi Lahoti, Cip Baetu, Ali Ghorbani, Charles Chen, Andy Crawford, Shalini Pal, Mukund Sridhar,
Petru Gurita, Asier Mujika, Igor Petrovski, Pierre-Louis Cedoz, Chenmei Li, Shiyuan Chen, Niccolò Dal
Santo, Siddharth Goyal, Jitesh Punjabi, Karthik Kappaganthu, Chester Kwak, Pallavi LV, Sarmishta Velury,
Himadri Choudhury, Jamie Hall, Premal Shah, Ricardo Figueira, Matt Thomas, Minjie Lu, Ting Zhou,
Chintu Kumar, Thomas Jurdi, Sharat Chikkerur, Yenai Ma, Adams Yu, Soo Kwak, Victor Ähdel, Sujeevan
Rajayogam, Travis Choma, Fei Liu, Aditya Barua, Colin Ji, Ji Ho Park, Vincent Hellendoorn, Alex Bailey,
Taylan Bilal, Huanjie Zhou, Mehrdad Khatir, Charles Sutton, Wojciech Rzadkowski, Fiona Macintosh,
Konstantin Shagin, Paul Medina, Chen Liang, Jinjing Zhou, Pararth Shah, Yingying Bi, Attila Dankovics,
Shipra Banga, Sabine Lehmann, Marissa Bredesen, Zifan Lin, John Eric Hoffmann, Jonathan Lai, Raynald
Chung, Kai Yang, Nihal Balani, Arthur Bražinskas, Andrei Sozanschi, Matthew Hayes, Héctor Fernández
Alcalde, Peter Makarov, Will Chen, Antonio Stella, Liselotte Snijders, Michael Mandl, Ante Kärrman,
Paweł Nowak, Xinyi Wu, Alex Dyck, Krishnan Vaidyanathan, Raghavender R, Jessica Mallet, Mitch
Rudominer, Eric Johnston, Sushil Mittal, Akhil Udathu, Janara Christensen, Vishal Verma, Zach Irving,
Andreas Santucci, Gamaleldin Elsayed, Elnaz Davoodi, Marin Georgiev, Ian Tenney, Nan Hua, Geoffrey
Cideron, Edouard Leurent, Mahmoud Alnahlawi, Ionut Georgescu, Nan Wei, Ivy Zheng, Dylan Scandinaro,
Heinrich Jiang, Jasper Snoek, Mukund Sundararajan, Xuezhi Wang, Zack Ontiveros, Itay Karo, Jeremy
Cole, Vinu Rajashekhar, Lara Tumeh, Eyal Ben-David, Rishub Jain, Jonathan Uesato, Romina Datta, Oskar
Bunyan, Shimu Wu, John Zhang, Piotr Stanczyk, Ye Zhang, David Steiner, Subhajit Naskar, Michael
Azzam, Matthew Johnson, Adam Paszke, Chung-Cheng Chiu, Jaume Sanchez Elias, Afroz Mohiuddin,
Faizan Muhammad, Jin Miao, Andrew Lee, Nino Vieillard, Jane Park, Jiageng Zhang, Jeff Stanway, Drew
Garmon, Abhijit Karmarkar, Zhe Dong, Jong Lee, Aviral Kumar, Luowei Zhou, Jonathan Evens, William
Isaac, Geoffrey Irving, Edward Loper, Michael Fink, Isha Arkatkar, Nanxin Chen, Izhak Shafran, Ivan
Petrychenko, Zhe Chen, Johnson Jia, Anselm Levskaya, Zhenkai Zhu, Peter Grabowski, Yu Mao, Alberto
Magni, Kaisheng Yao, Javier Snaider, Norman Casagrande, Evan Palmer, Paul Suganthan, Alfonso Castaño,
Irene Giannoumis, Wooyeol Kim, Mikołaj Rybiński, Ashwin Sreevatsa, Jennifer Prendki, David Soergel,
Adrian Goedeckemeyer, Willi Gierke, Mohsen Jafari, Meenu Gaba, Jeremy Wiesner, Diana Gage Wright,
Yawen Wei, Harsha Vashisht, Yana Kulizhskaya, Jay Hoover, Maigo Le, Lu Li, Chimezie Iwuanyanwu,
Lu Liu, Kevin Ramirez, Andrey Khorlin, Albert Cui, Tian LIN, Marcus Wu, Ricardo Aguilar, Keith
Pallo, Abhishek Chakladar, Ginger Perng, Elena Allica Abellan, Mingyang Zhang, Ishita Dasgupta, Nate
Kushman, Ivo Penchev, Alena Repina, Xihui Wu, Tom van der Weide, Priya Ponnapalli, Caroline Kaplan,
Jiri Simsa, Shuangfeng Li, Olivier Dousse, Fan Yang, Jeff Piper, Nathan Ie, Rama Pasumarthi, Nathan
Lintz, Anitha Vijayakumar, Daniel Andor, Pedro Valenzuela, Minnie Lui, Cosmin Paduraru, Daiyi Peng,
Katherine Lee, Shuyuan Zhang, Somer Greene, Duc Dung Nguyen, Paula Kurylowicz, Cassidy Hardin,
Lucas Dixon, Lili Janzer, Kiam Choo, Ziqiang Feng, Biao Zhang, Achintya Singhal, Dayou Du, Dan
McKinnon, Natasha Antropova, Tolga Bolukbasi, Orgad Keller, David Reid, Daniel Finchelstein, Maria Abi
Raad, Remi Crocker, Peter Hawkins, Robert Dadashi, Colin Gaffney, Ken Franko, Anna Bulanova, Rémi

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Leblond, Shirley Chung, Harry Askham, Luis C. Cobo, Kelvin Xu, Felix Fischer, Jun Xu, Christina
Sorokin, Chris Alberti, Chu-Cheng Lin, Colin Evans, Alek Dimitriev, Hannah Forbes, Dylan Banarse, Zora
Tung, Mark Omernick, Colton Bishop, Rachel Sterneck, Rohan Jain, Jiawei Xia, Ehsan Amid, Francesco
Piccinno, Xingyu Wang, Praseem Banzal, Daniel J. Mankowitz, Alex Polozov, Victoria Krakovna, Sasha
Brown, MohammadHossein Bateni, Dennis Duan, Vlad Firoiu, Meghana Thotakuri, Tom Natan, Matthieu
Geist, Ser tan Girgin, Hui Li, Jiayu Ye, Ofir Roval, Reiko Tojo, Michael Kwong, James Lee-Thorp,
Christopher Yew, Danila Sinopalnikov, Sabela Ramos, John Mellor, Abhishek Sharma, Kathy Wu, David
Miller, Nicolas Sonnerat, Denis Vnukov, Rory Greig, Jennifer Beattie, Emily Caveness, Libin Bai, Julian
Eisenschlos, Alex Korchemniy, Tomy Tsai, Mimi Jasarevic, Weize Kong, Phuong Dao, Zeyu Zheng,
Frederick Liu, Fan Yang, Rui Zhu, Tian Huey Teh, Jason Sanmiya, Evgeny Gladchenko, Nejc Trdin,
Daniel Toyama, Evan Rosen, Sasan Tavakkol, Linting Xue, Chen Elkind, Oliver Woodman, John Carpenter,
George Papamakarios, Rupert Kemp, Sushant Kafle, Tanya Grunina, Rishika Sinha, Alice Talbert, Diane
Wu, Denese Owusu-Afriyie, Cosmo Du, Chloe Thornton, Jordi Pont-Tuset, Pradyumna Narayana, Jing
Li, Saaber Fatehi, John Wieting, Omar Ajmeri, Benigno Uria, Yeongil Ko, Laura Knight, Amélie Héliou,
Ning Niu, Shane Gu, Chenxi Pang, Yeqing Li, Nir Levine, Ariel Stolovich, Rebeca Santamaria-Fernandez,
Sonam Goenka, Wenny Yustalim, Robin Strudel, Ali Elqursh, Charlie Deck, Hyo Lee, Zonglin Li, Kyle
Levin, Raphael Hoffmann, Dan Holtmann-Rice, Olivier Bachem, Sho Arora, Christy Koh, Soheil Hassas
Yeganeh, Siim Põder, Mukarram Tariq, Yanhua Sun, Lucian Ionita, Mojtaba Seyedhosseini, Pouya Tafti,
Zhiyu Liu, Anmol Gulati, Jasmine Liu, Xinyu Ye, Bart Chrzaszcz, Lily Wang, Nikhil Sethi, Tianrun
Li, Ben Brown, Shreya Singh, Wei Fan, Aaron Parisi, Joe Stanton, Vinod Koverkathu, Christopher A.
Choquette-Choo, Yunjie Li, TJ Lu, Abe Ittycheriah, Prakash Shroff, Mani Varadarajan, Sanaz Bahargam,
Rob Willoughby, David Gaddy, Guillaume Desjardins, Marco Cornero, Brona Robenek, Bhavishya Mittal,
Ben Albrecht, Ashish Shenoy, Fedor Moiseev, Henrik Jacobsson, Alireza Ghaffarkhah, Morgane Rivière,
Alanna Walton, Clément Crepy, Alicia Parrish, Zongwei Zhou, Clement Farabet, Carey Radebaugh,
Praveen Srinivasan, Claudia van der Salm, Andreas Fidjeland, Salvatore Scellato, Eri Latorre-Chimoto,
Hanna Klimczak-Plucińska, David Bridson, Dario de Cesare, Tom Hudson, Piermaria Mendolicchio, Lexi
Walker, Alex Morris, Matthew Mauger, Alexey Guseynov, Alison Reid, Seth Odoom, Lucia Loher, Victor
Cotruta, Madhavi Yenugula, Dominik Grewe, Anastasia Petrushkina, Tom Duerig, Antonio Sanchez, Steve
Yadlowsky, Amy Shen, Amir Globerson, Lynette Webb, Sahil Dua, Dong Li, Surya Bhupatiraju, Dan Hurt,
Haroon Qureshi, Ananth Agarwal, Tomer Shani, Matan Eyal, Anuj Khare, Shreyas Rammohan Belle, Lei
Wang, Chetan Tekur, Mihir Sanjay Kale, Jinliang Wei, Ruoxin Sang, Brennan Saeta, Tyler Liechty, Yi Sun,
Yao Zhao, Stephan Lee, Pandu Nayak, Doug Fritz, Manish Reddy Vuyyuru, John Aslanides, Nidhi Vyas,
Martin Wicke, Xiao Ma, Evgenii Eltyshev, Nina Martin, Hardie Cate, James Manyika, Keyvan Amiri, Yelin
Kim, Xi Xiong, Kai Kang, Florian Luisier, Nilesh Tripuraneni, David Madras, Mandy Guo, Austin Waters,
Oliver Wang, Joshua Ainslie, Jason Baldridge, Han Zhang, Garima Pruthi, Jakob Bauer, Feng Yang, Riham
Mansour, Jason Gelman, Yang Xu, George Polovets, Ji Liu, Honglong Cai, Warren Chen, XiangHai Sheng,
Emily Xue, Sherjil Ozair, Christof Angermueller, Xiaowei Li, Anoop Sinha, Weiren Wang, Julia Wiesinger,
Emmanouil Koukoumidis, Yuan Tian, Anand Iyer, Madhu Gurumurthy, Mark Goldenson, Parashar Shah,
MK Blake, Hongkun Yu, Anthony Urbanowicz, Jennimaria Palomaki, Chrisantha Fernando, Ken Durden,
Harsh Mehta, Nikola Momchev, Elahe Rahimtoroghi, Maria Georgaki, Amit Raul, Sebastian Ruder, Morgan
Redshaw, Jinhyuk Lee, Denny Zhou, Komal Jalan, Dinghua Li, Blake Hechtman, Parker Schuh, Milad Nasr,
Kieran Milan, Vladimir Mikulik, Juliana Franco, Tim Green, Nam Nguyen, Joe Kelley, Aroma Mahendru,
Andrea Hu, Joshua Howland, Ben Vargas, Jeffrey Hui, Kshitij Bansal, Vikram Rao, Rakesh Ghiya, Emma
Wang, Ke Ye, Jean Michel Sarr, Melanie Moranski Preston, Madeleine Elish, Steve Li, Aakash Kaku,
Jigar Gupta, Ice Pasupat, Da-Cheng Juan, Milan Someswar, Tejvi M., Xinyun Chen, Aida Amini, Alex
Fabrikant, Eric Chu, Xuanyi Dong, Amruta Muthal, Senaka Buthpitiya, Sarthak Jauhari, Nan Hua, Urvashi
Khandelwal, Ayal Hitron, Jie Ren, Larissa Rinaldi, Shahar Drath, Avigail Dabush, Nan-Jiang Jiang, Harshal
Godhia, Uli Sachs, Anthony Chen, Yicheng Fan, Hagai Taitelbaum, Hila Noga, Zhuyun Dai, James Wang,
Chen Liang, Jenny Hamer, Chun-Sung Ferng, Chenel Elkind, Aviel Atias, Paulina Lee, Vít Listík, Mathias
Carlen, Jan van de Kerkhof, Marcin Pikus, Krunoslav Zaher, Paul Müller, Sasha Zykova, Richard Stefanec,
Vitaly Gatsko, Christoph Hirnschall, Ashwin Sethi, Xingyu Federico Xu, Chetan Ahuja, Beth Tsai, Anca
Stefanoiu, Bo Feng, Keshav Dhandhania, Manish Katyal, Akshay Gupta, Atharva Parulekar, Divya Pitta,
Jing Zhao, Vivaan Bhatia, Yashodha Bhavnani, Omar Alhadlaq, Xiaolin Li, Peter Danenberg, Dennis Tu,
Alex Pine, Vera Filippova, Abhipso Ghosh, Ben Limonchik, Bhargava Urala, Chaitanya Krishna Lanka,
Derik Clive, Yi Sun, Edward Li, Hao Wu, Kevin Hongtongsak, Ianna Li, Kalind Thakkar, Kuanysh Omarov,
Kushal Majmundar, Michael Alverson, Michael Kucharski, Mohak Patel, Mudit Jain, Maksim Zabelin,
Paolo Pelagatti, Rohan Kohli, Saurabh Kumar, Joseph Kim, Swetha Sankar, Vineet Shah, Lakshmi Ra-
machandruni, Xiangkai Zeng, Ben Bariach, Laura Weidinger, Tu Vu, Alek Andreev, Antoine He, Kevin Hui,
Sheleem Kashem, Amar Subramanya, Sissie Hsiao, Demis Hassabis, Koray Kavukcuoglu, Adam Sadovsky,

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Quoc Le, Trevor Strohman, Yonghui Wu, Slav Petrov, Jeffrey Dean, and Oriol Vinyals. Gemini: A family
of highly capable multimodal models, 2024a. URL https://arxiv.org/abs/2312.11805.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent
Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, Pier Giuseppe
Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose
Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak Shahriari,
Charline Le Lan, Christopher A. Choquette-Choo, Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid,
Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory
Rozhdestvenskiy, Henryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane
Labanowski, Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu,
Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon,
Machel Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev, Nithum Thain, Olivier
Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Rahma Chaabouni,
Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith, Se-
bastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree Pandya, Siamak Shakeri, Soham De, Ted Klimenko,
Tom Hennigan, Vlad Feinberg, Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris
Warkentin, Ludovic Peran, Minh Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu,
Demis Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand
Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy. Gemma: Open models based
on gemini research and technology, 2024b. URL https://arxiv.org/abs/2403.08295.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023. URL
https://arxiv.org/abs/2302.13971.

Hoang Tran, Chris Glaze, and Braden Hancock. Iterative dpo alignment. Technical report, Snorkel AI, 2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada, Shengyi
Huang, Leandro von Werra, Clementine Fourrier, Nathan Habib, et al. Zephyr: Direct distillation of lm
alignment. arXiv preprint arXiv:2310.16944, 2023.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances large
language model capabilities, 2024. URL https://arxiv.org/abs/2406.04692.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2022. URL
https://arxiv.org/abs/2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023. URL
https://arxiv.org/abs/2201.11903.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. WizardLM: Empowering large pre-trained language models to follow complex
instructions. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=CfXh93NDgH.

Jiasheng Ye, Peiju Liu, Tianxiang Sun, Yunhua Zhou, Jun Zhan, and Xipeng Qiu. Data mixing
laws: Optimizing data mixtures by predicting language modeling performance, 2024. URL
https://arxiv.org/abs/2403.16952.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and James
Zou. Textgrad: Automatic "differentiation" via text. 2024.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen Zhuge,
Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin Wu. Aflow:
Automating agentic workflow generation, 2024. URL https://arxiv.org/abs/2410.10762.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging
llm-as-a-judge with mt-bench and chatbot arena, 2023.

38

https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2201.11903
https://openreview.net/forum?id=CfXh93NDgH
https://arxiv.org/abs/2403.16952
https://arxiv.org/abs/2410.10762

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2017. URL
https://arxiv.org/abs/1611.01578.

39

https://arxiv.org/abs/1611.01578

	Introduction
	Related Work
	Inference-Time Techniques for Archon
	LLM Components of Archon
	Combining the LLM Components
	Inference-Time Architecture Search (ITAS)

	Experiments
	Benchmarks and Models
	Archon vs. Closed-Source LLMs and Other Inference-Time Architectures
	Archon by Task
	Task-Specific and General-Purpose Archon Architectures
	Limitations and Future Work of Archon

	Reproducibility Statement
	Appendix
	Archon LLM Components
	Utilities and Interactions of LLM Components
	Generator
	Fuser
	Critic
	Ranker
	Verifier
	Unit Test Generator and Evaluator

	Archon LLM Analysis
	Archon Architectures
	Archon by Inference Compute Budget, Model Size, and Cost
	Bayesian Optimization
	Overview of Bayesian Optimization
	Steps in Bayesian Optimization
	Gaussian Process as a Surrogate Model
	Acquisition Functions
	Summary of Bayesian Optimization

	Bayes Optimization vs. Alternative Approaches
	ITAS Algorithms Comparisons
	Archon Benchmarks and Results

