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ABSTRACT

Inference-time techniques are emerging as highly effective tools to enhance large language
model (LLM) capabilities. However, best practices for developing systems that combine
these techniques remain underdeveloped due to our limited understanding of the utility
of individual inference-time techniques and the interactions between them. Additionally,
efficiently and automatically searching the space of model choices, inference-time
techniques, and their compositions is challenging due to the large design space. To address
these challenges, we introduce ARCHON, a modular framework for selecting, combining,
and stacking layers of inference-time techniques to construct optimized LLM systems
for target benchmarks. Rather than relying on a single LLM called once, we leverage
a diverse set of LLMs and inference-time techniques, creating LLM systems greater
than the sum of their parts. ARCHON defines an extensible design space, encompassing
techniques such as generation ensembling, repeated sampling, ranking, fusion, critiquing,
verification, and unit testing. It transforms the problem of building LLM systems into
a hyperparameter optimization objective. Given the available LLMs, inference-time
techniques, and compute budget, ARCHON utilizes hyperparameter search techniques
to discover optimized architectures for target benchmark(s). We evaluate ARCHON
architectures across a range of instruction-following, reasoning, and coding benchmarks,
including MT-Bench, Arena-Hard-Auto, AlpacaEval 2.0, MixEval, MixEval Hard,
MATH, and CodeContests. ARCHON architectures outperform frontier models, such
as GPT-4o and Claude 3.5 Sonnet, on these benchmarks, achieving an average accuracy
increase of 15.1 percentage points by using all available LLMs.

1 INTRODUCTION

Inference-time techniques are gaining traction as effective methods for improving model capabilities.
Examples include generation ensembling, ranking, and fusion, where models in the ensemble are queried in
parallel, their responses are ranked, and the best ones are fused into a single, higher quality output, respectively
(Jiang et al., 2023b; Wang et al., 2024). Other types of inference-time techniques are based on querying
a single LLM successively (via repeated sampling) and using a voting strategy or unit tests to select the top
generation (Brown et al., 2024; Chen et al., 2024; Li et al., 2024a). We divide these existing inference-time
techniques into three categories: generative, meaning that new candidate responses are drawn from the
models (e.g. generation ensembling and repeated sampling), reductive, meaning that the existing responses
are aggregated or filtered to keep the top responses (e.g. fusion and ranking), or comparative, meaning they
provide analysis of candidate responses (e.g. critiquing and unit testing), as shown in Table 2.

Recent work has made progress towards building robust inference-time architectures, which are systems
composed of one or more large language models (LLMs) and inference-time techniques. Examples include
Mixture-of-Agents (MoA) (Wang et al., 2024) and LLM-Blender (Jiang et al., 2023b), as well as single-model
systems like LeanStar (Lin et al., 2024) and rStar (Deng et al., 2024). However, our experiments show that
existing architectures, such as MoA, still suffer from lack of generalization and become significantly less
effective beyond the task(s) they were developed on (see Section 4.2). We argue that designing effective
and generalizable inference-time architectures requires:

• Understanding the Utilities of Inference-Time Techniques: Inference-time architectures typically
delegate their additional inference budget towards more model sampling calls (Chen et al., 2024; Brown
et al., 2024), which can be effective for math and coding tasks. Other tasks such as instruction-following
and reasoning are shown to benefit from additional techniques, including ranking and fusion (Wang
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Figure 1: Overview of ARCHON Framework: Inference-Time Architecture Search (ITAS) requires the
following inputs: target benchmarks, inference call budget, available LLMs, and available inference-time
techniques (left). The ITAS algorithm uses Bayesian optimization (Snoek et al., 2012) (Section A.6) to select
and test different ARCHON configurations (middle) before returning the optimized ARCHON architecture
(right) for the target benchmarks (Section 3.3).

et al., 2024; Jiang et al., 2023b). While all of these methods are valuable, it is essential to identify which
inference-time techniques are most effective for different task categories.

• Understanding the Interactions Between Inference-Time Techniques: While previous studies
analyzed these techniques individually (e.g. generation sampling in Chen et al. (2024)), we need a more
comprehensive understanding of the relationships between different inference-time techniques across
different tasks (e.g. is it better to use more models or generate more samples per model?).

• Efficiently and Automatically Searching the Large Design Space of Inference-Time Architectures:
Given a set of available LLMs and target tasks, there is currently no single prevailing inference-time
architecture for maximizing downstream accuracy across all tasks (Table 1). The search space of
inference-time architectures is expansive, requiring practitioners to make several key configuration decisions:
which LLMs to use, how many times to sample them, how to combine the candidate generations, what
inference-time techniques to perform on the candidates, and more. These motivate the need for adaptive
and automated architecture search approaches.

In our work, we address each of these challenges. Firstly, we evaluate the utilities of a comprehensive
set of existing and proposed inference-time techniques across instruction-following, reasoning, and
coding tasks. Using both open-source and closed-source models, we examine a range of techniques such
as ensembling, fusion, ranking, critiquing, and verification and introduce new methods such as model-based
unit test generation and evaluation (Sections 3.1 and 3.2).

Secondly, we analyze the interactions between inference-time techniques, and explore the benefits
of adding new models and new techniques individually. We find that candidate fusion substantially improves
the quality of the final response generation, and when combined with additional techniques like critiquing,
verifying, and ranking, can improve generation quality beyond the oracle best candidate from individual
(non-fused) responses (Figure 3; Figure 7). Additionally, we find that candidate verification, unit test
generation, and unit test evaluation are most effective for reasoning tasks, whereas critiquing and ranking
are effective across instruction-following and reasoning tasks (Section 3.1; Table 12).

Thirdly, drawing upon our analysis of inference-time techniques, we present ARCHON, a framework
for building inference-time architectures. ARCHON utilizes automatic inference-time architecture search
(ITAS) algorithms to maximize generation quality for a wide range of tasks, including instruction-following,
reasoning, and coding. Our ARCHON framework and ITAS algorithms draw inspiration from neural
architectures and neural architecture search (NAS) (Zoph & Le, 2017; Ren et al., 2021; Liu et al., 2018; 2021),
respectively. ARCHON is constructed of layers of LLMs, in which LLMs within the same layer run in parallel,
but each layer runs sequentially. The layers perform different inference-time techniques, either transforming
the number of candidate responses through generation and fusion (analogous to linear transformations) or
reducing the number of candidate responses to improve quality (akin to non-linearities) (Section 3.1). The
number of generators, samples per model, fusion layers, fusion models per layer, and more, are all treated
as hyperparameters for optimization in our ITAS algorithms (Section 3.3).

Overall, our work makes the following contributions: (1) We develop ARCHON, an open-source modular
framework for designing LLM systems that combine inference-time techniques (Section 3.1). We utilize ITAS
as the optimizer engine for ARCHON, which enables automated inference-time architecture search for target
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benchmarks, leveraging Bayesian optimization (Snoek et al., 2012; Nardi et al., 2019) (Section 3.3). ARCHON
is plug-and-play, allowing users to select from existing inference-time techniques (or add new ones) and specify
their desired objective functions to optimize for accuracy, latency, and cost. (2) We demonstrate increased per-
formance as we scale up the layers of inference-time techniques and combine multiple approaches together, al-
lowing us to discover effective new combinations of inference-time techniques (Sections 3.2, 4.2, A.2). We find
that sequentially applying critique, ranking, top-k selection, and then fusion is a highly effective composition
(Figure 3; Table 1), and we demonstrate the effectiveness of model-based unit test generation and evaluation for
improving coding capability (Figure 5). (3) Our best ARCHON architectures surpass both single-call LLMs (e.g.
GPT-4o and Claude-3.5 Sonnet) and prior top-performing inference-time architectures (e.g. Mixture-of-Agents
(Wang et al., 2024)), boosting state-of-the-art performance by 15.1 percentage points, on average, across a
diverse set of instruction-following, reasoning, and coding benchmarks (Table 1; Figure 5): MT-Bench, Arena-
Hard-Auto, Alpaca-2.0 Eval, MixEval, MixEval Hard, MATH, and CodeContests (Zheng et al., 2023; Li et al.,
2024b; 2023; Ni et al., 2024; Hendrycks et al., 2021; Li et al., 2022). Even when just using open-source LLMs,
ARCHON architectures on average surpass single-call state-of-the-art (SOTA) LLMs by 11.2 percentage points.

2 RELATED WORK

Scaling Laws of Language Models: Language models (Touvron et al., 2023; Jiang et al., 2023a; Team
et al., 2024a; OpenAI et al., 2024) have transformed the field of artificial intelligence across a vast number
of domains and tasks. LLMs are pretrained on substantial amounts of textual data before being further aligned
with human preferences through instruction fine-tuning (Wei et al., 2022; Chung et al., 2022), DPO (Rafailov
et al., 2023), KTO (Ethayarajh et al., 2024), RLAIF (Bai et al., 2022b), and other techniques. As language
models continue to gain improved abilities with further scaling of data, parameters, and compute (Kaplan
et al., 2020; Gadre et al., 2024), the cost of developing new LLMs is ever increasing, requiring the curation
of trillions of new tokens as well as substantial GPU-hours for pretraining. Furthermore, as the current
state-of-the-art in LLMs are primarily closed-source APIs, such as OpenAI’s GPT-4o (OpenAI et al., 2024),
Google’s Gemini (Team et al., 2024b) and Anthropic’s Claude (Anthropic, 2024), it is difficult to effectively
explore and push the frontier of existing LLMs without being able to manipulate the parameters of these
closed-source models and employing techniques such as continual pretraining (Jin et al., 2021), instruction
fine-tuning (Wei et al., 2022), data mixing (Ye et al., 2024), chain-of-thought (Wei et al., 2023), among others.

Inference-Time Techniques: Inference-time architectures combine multiple frozen LLMs and inference-time
techniques (e.g., generation ensembling, sampling, ranking, and fusion), achieving superior performance
compared to individual models. Notable works include Mixture-of-Agents (MoA) (Wang et al., 2024), LLM
Blender (Jiang et al., 2023b), RouteLM (Ong et al., 2024), Smoothie (Guha et al.), and various approaches
around compound AI, which are AI systems that use multiple components (e.g. LLMs, retrievers, tool use,
APIs, etc.) (Chen et al., 2024; Davis et al., 2024; Lewis et al., 2020; Shao et al., 2024; Kapoor et al., 2024).
LM frameworks like DSPy (Khattab et al., 2023) and TextGrad (Yuksekgonul et al., 2024) have emerged
for orchestrating LMs and other components. Even with a single LLM, various techniques can improve
performance by building better reasoning strategies, such as OpenAI’s o1 (OpenAI, 2024b), Chain of Thought
(Wei et al., 2023), and Branch-Solve-Merge (Saha et al., 2024), as well as inference-time frameworks, such
as ADAS (Hu et al., 2024) and AFlow (Zhang et al., 2024).

Despite these advancements, challenges remain in developing inference-time architectures. Many archi-
tectures focus on additional generations (Jiang et al., 2023b; Chen et al., 2024; Davis et al., 2024), which
is effective for reasoning tasks (Brown et al., 2024). However, for tasks like chat and instruction-following,
techniques such as fusion and ranking are useful (Wang et al., 2024; Jiang et al., 2023b). For tasks without
built-in verification, additional compute for reasoning and verification can improve accuracy (Davis et al.,
2024). We still lack understanding of trade-offs between different inference-time techniques. Prior studies have
explored limited aspects of configurations, often focusing on specific benchmarks (Jiang et al., 2023b; Wang
et al., 2024; Chen et al., 2024; Li et al., 2024a). It’s crucial to efficiently develop inference-time architectures,
as optimal configurations vary based on benchmarks, available models, and inference call limits (Section 4.2).
To address these challenges, we analyzed multiple inference-time techniques (Section 3.1) and developed the
ARCHON framework for automating the development of inference-time architectures with ITAS (Section 3.3).

3 INFERENCE-TIME TECHNIQUES FOR ARCHON

With the proliferation of inference-time techniques, ARCHON introduces a simple framework that unifies
different approaches, providing structure for understanding and combining various techniques. Our framework
not only incorporates methods for generating, ranking, and fusing candidates inspired by previous work
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(Wang et al., 2024; Jiang et al., 2023b) but also integrates new approaches for critiquing, verifying, and
unit testing candidate responses.

Below, we elaborate on the structure, inputs, and outputs of each of the inference-time techniques, which
we also include in Table 2. Then, we discuss how to combine the different techniques into an inference-time
architecture (Section 3.2) and the relationships between the different inference-time techniques (Section
A.2) before finally exploring automatic approaches for constructing inference-time architectures (Section 3.3).

3.1 LLM COMPONENTS OF ARCHON

In this section, we discuss the LLM components of ARCHON, which are LLMs that perform a specific
inference-time technique. We test an array of different components inspired by recent work, incorporating
approaches for generating, ranking, and fusing candidates (Wang et al., 2024; Jiang et al., 2023b) as well as
approaches for improving candidate response quality through critiquing, verifying, and unit testing (Bai et al.,
2022a; Zheng et al., 2023). The components and their prompts are summarized in Table 2 and Section A.1.

Generator is an LLM that takes in the instruction prompt and outputs candidate responses. Generators
can be called in parallel to perform generation ensembling (i.e. calling multiple LLMs in parallel) (Wang
et al., 2024), or sampled multiple times (Brown et al., 2024). When calling the Generators in parallel, you
can sample one or more LLMs one or more times. The number of models, samples, and temperature for
generation can be varied based on model configuration.

Fuser is an LLM that, given an instruction prompt and a set of proposed responses as input, combines these
responses to generate one or more higher-quality fused responses that better address the instruction prompt.

Ranker is a LLM that, given an instruction prompt and a set of proposed responses as input, ranks the
candidate generations based on their quality, producing a ranked list of responses as output.

Critic is an LLM that, given an instruction prompt and a set of proposed responses as input, produces a
list of strengths and weaknesses for each response, which is then used to improve the quality of the final
response (Section 3.2; Figure 3).

Verifier is a LLM that verifies whether a provided candidate response has appropriate reasoning for a given
instruction prompt. It proceeds in two stages: Stage #1 takes in the instruction prompt and a candidate
response as input and outputs reasoning for why the candidate response is correct; Stage #2 takes in the
instruction prompt, candidate response, and produced reasoning before outputting reasoning and a verdict
(i.e. binary [Correct] or [Incorrect]) for whether or not the candidate response is correct according to the
provided instruction prompt and reasoning.

Unit Test Generator is a LLM that takes only the instruction prompt as input and outputs a list of unit tests
that assess the accuracy and relevance of candidate responses. These unit tests are verified by the Unit Test
Evaluator to rank different responses. Each test is a concise statement that can be passed or failed. We make the
number of unit tests generated a configurable choice for the unit test generator but we find 5-10 generated unit
tests to be most effective with our set of LM prompts (Section 4.2; Figure 5). For examples, please see Table 10.

Unit Test Evaluator is a LLM that takes in the instruction prompt, candidate response(s), and set of unit tests
before outputting the candidate response(s), ranked in descending order by how many unit tests they pass. We
use model-based unit test evaluation by prompting the LLM to provide reasoning and verdicts for each unit test
across each of the candidate responses. By aggregating the unit test verdicts for each candidate response, the
unit test evaluator ranks the candidate responses. For reasoning tasks, particularly coding tasks, it can be useful
to compare different candidate responses by the number of unit tests they pass to gauge for quality (Figure 5).

3.2 COMBINING THE LLM COMPONENTS

Overview: Inspired by the structure of neural networks (Hinton et al., 1992), ARCHON is constructed of layers
of LLM components (Figure 1; Section 3.1). Each layer is composed of sets of these LLM components that
are called in parallel, performing a text-to-text operation to the instruction prompt and the candidate responses
from the previous layer. Furthermore, like a neural network, some layers perform transformations of the
provided list of strings (e.g. the Generator and Fuser components), converting a list of strings into a different
list of strings (the numbers of candidates can vary from the original number of candidates). Other components
introduce non-linearities into the ARCHON structure, performing filtering of the list of strings (e.g. Ranker
and Verifier). Ultimately, the inputs and outputs for each layer is always a list of strings, whether that is the
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instruction prompt (e.g. a list with a single string) or a list of candidate responses (e.g. a list of many strings).
If a list of strings are outputted at the last layer of the ARCHON structure, the first string in the list is returned.

Unlike a classical neural network, no weights are learned between the LLM components and the layers;
in turn the ARCHON architecture can be deployed off-the-shelf without any tuning. Additionally, a single state
is transformed sequentially from the input layer to the final output; this single state is the initial instruction
prompt and the current candidate responses. In Figure 2, we provide an example ARCHON architecture
composed of six layers.

Figure 2: Example ARCHON Architecture: This architecture starts with ten generator models, followed by
a critic model, a ranker model, one layer of six fuser models, a verifier model, and finishes with a fuser model.

Rules for Construction: The LLM components in Section 3.1 can only be placed in specific orders:

1. Only one type of module can be present in any given layer.
2. Generator components must and can only be placed in the first layer of ARCHON; you can put multiple

Generators or a single Generator in the layer.
3. The Critic component must come before a Ranker or a Fuser, otherwise the generated strengths and

weaknesses cannot be incorporated into generation ranking or fusion, respectively.
4. Ranker, Critic, Verifier, and Unit Test Generator/Evaluator layers can go anywhere in the ARCHON structure

(besides the first layer); for each of these components, it must be the one and only module in its layer.
5. Fuser components can also be placed anywhere in the ARCHON structure (besides the first layer); you

can put multiple Fusers or a single Fuser in the layer.
6. Unit Test Generators and Evaluators are placed in layers next to each other: generator first, then evaluator.

We provide an overview of the available placements and configurations for each LLM module in Table
3. We also analyze the different interactions between each LLM component and find increased ARCHON
performance as we scale the "layers" of inference-time techniques by combining multiple approaches together
sequentially (Section A.2).

Performance Gains from Scaling Inference-Time Techniques: By scaling both the layers of inference-time
techniques and the diversity of inference-time techniques included, we were able to significantly improve AR-
CHON performance across instruction-following, reasoning, and coding tasks (Figure 3). In particular, repeated
model sampling and additional ensemble models led to substantial gains (Figure 4), leading to 9.3 and 18.5 per-
centage point increases, respectively. On coding tasks, additional samples provided the largest marginal benefits,
leading to a 56% boost in Pass@1 for CodeContests when repeated sampling was combined with model-based
unit test generation/evaluation (Figure 1). Multiple layers of Fusers were found to be particularly effective for
instruction-following tasks, delivering notable performance improvements as the number of layers increased
(Figure 3). In reasoning tasks, incorporating the Verifier and Unit Test Generator/Evaluator modules alongside
the Fuser improved performance by filtering out flawed responses, contributing to significant performance
gains in tasks like MixEval and CodeContests. For detailed analysis of interactions between LLM components,
please see Section A.2, where we perform a series of ablation experiments in which we vary ARCHON compo-
nent combinations (Table 12) and the models used in the combinations (Table 13; Table 14; Table 15; Table 16).

3.3 INFERENCE-TIME ARCHITECTURE SEARCH (ITAS)

In this section, we explore different approaches for finding the best inference-time architecture (for a given
task) through inference-time architecture search (ITAS). Due to compute resources, we pre-filtered certain
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Figure 3: Performance Gains from Scaling Layers of Inference-Time Techniques: We generally observe
performance improvements as we scale the critic and fusion layers. Compared to sampling the best open-source
model once, our inference-time architecture with an 8-model ensemble, 3 layers of critic and fusion (8 models
in each layer), and a final fusion performs on average 17.3% higher. For MixEval and CodeContests, we
find that alternative inference-time architectures are more effective than generator ensembles and fusion layers.
We break-down our results for MixEval and MixEval-Hard by subdataset in Section 4.2 (Table 31; Table 32).
For CodeContests, we show the effectiveness of increased generator sampling combined with model-based
unit test generation/evaluation in Figure 5. The results were calculated from 10 independent evaluation runs.

Figure 4: Performance Gains from Repeated Sampling, Ensembling, Ranking, and Fusing on
Arena-Hard-Auto: The ARCHON win-rate continues to grow significantly as we scale model sampling
(left) or add additional models to the generator ensemble (right), increasing by 9.3% and 18.5%, respectively.
These best results are achieved by selecting the top-5 responses and fusing them. The ensemble models
are added based on their individual performance on this task, from best to worse (Table 18). The results
were calculated from 10 independent evaluation runs.

ways of combining LLM components to reduce the search space while still building effective inference-time
architectures. While it is possible to expand the search space of potential ARCHON architectures (e.g. different
temperatures for generative LLM components, alternative prompts for each LLM component, multiple layers
of Generator modules, additional LLM components for ARCHON, etc.), we use our analysis from Section
3.2 to selectively limit our search space to configurations that fit our rules for ARCHON: starts with a layer
of Generator modules, followed by layers performing fusing, ranking, critiquing, verifying, and unit testing.

Search Hyperparameters: We selected five main axes for the hyperparameters in our search:

1. Top-K Generators for Ensemble: The top-K models to be used for the initial Generator ensemble,
ranges from 1 to 10. The top-K models are the best-K LLMs for the given task, based on their individual
performances (Table 18).
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2. Top-K Generator Samples: The number of samples gathered from each Generator in the ensemble
(it is the same for all the models), ranges from 1 to 5. For Code-Contests, we explore high sample settings:
[1, 10, 100, 500, 1000].

3. Number of Fusion Layers: Ranges from 1 to 4. The last fusion layer will always have a single Fuser.
4. Top-K Fusers: Number of models used for each fusion layer, ranges from 2 to 10 and increases by

2 each time.
5. Evaluation Layer: Option to add a Verifier, Unit Test Generator/Evaluator, or neither before the last

Fuser layer.

By combining all the hyperparameters, we create a search space of 18,750 configurations by multiplying
each of the configuration option counts together (10 ∗ 5 ∗ 5(4−1) ∗ 3 = 18,750). However, we remove
configurations that are not viable: configurations in which the number of initial generations exceeds the
context window of the fusers (i.e. 24 candidate generations) and configurations with only one fuser layer
but multiple fusers declared. This reduces our search space to 9,576 configurations. For these configurations,
we add critic and ranker layers before each fuser layer since they’ve been shown to have added benefits
across the benchmarks explored (Figure 7; Figure 3). The ranker selects the top-5 candidate generations
to send to the next layer. The unit test generator uses a default setting of 5 unit tests generated.

Search Methodology: Within ITAS, we use Bayesian Optimization to select the most promising hyperparam-
eter configurations (Snoek et al., 2012; Nardi et al., 2019). For generator ensemble, we add the models to the
pool in a greedy manner, starting from the best performing model (on average) on the target benchmarks. For
each fuser ensemble layer, we use the same approach, adding the best fuser models in a greedy manner. To
rank them, we evaluate their fusion performance on the samples from an ensemble of top 10 generator models.
We found that the best generator and fusion models could vary widely across datasets, making it beneficial
to perform these rankings for new datasets (Table 18). For search, we use a 20% sample of each dataset
for guiding architecture search to improve the evaluation speed while getting meaningful development signal.

Overall, Bayesian Optimization was the most effective search algorithm for constructing ARCHON
systems, outperforming other methods like random and greedy search by more efficiently finding optimal
configurations (Section A.6). It found the best architectures in 96.0% of iterations and required 88.5%
fewer evaluations than greedy search and 90.4% fewer than random search (Figure 13). The effectiveness
of Bayesian optimization increases with the number of initial testing points, up to around 230-240 samples,
after which further testing is better focused on configuration search (Table 26). However, for limited inference
call budgets (<20 calls), Bayesian optimization is less effective, and traditional methods like greedy search
may perform comparably (Table 27).

For our implementation, we use a Python package of Bayes global optimization with Gaussian processes.
As inputs, our Bayes implementation takes in the integer lists of configuration choices for the generators
(i.e. number of models and samples), layers of fusers, numbers of fusers per layer, and final verifier / unit
tester. Bayes algorithm then proceeds to select different combinations of integers from these lists in its
search process, iteratively evaluating each generated ARCHON architecture on the development set to find
the optimal ARCHON configuration. For more information, please see Section A.6.

4 EXPERIMENTS

Our experiments focus on four questions: (1) how does ARCHON compare to existing SOTA LLMs and
multi-LLM systems? (2) how does ARCHON performance compare across tasks? (3) how does ARCHON
performance compare when optimized for a set of tasks vs. an individual task? (4) what are ARCHON’s
current limitations and plans for future work?

4.1 BENCHMARKS AND MODELS

Benchmarks: We evaluate our models with several benchmarks for instruction-following, reasoning, and
coding: MT-Bench (Zheng et al., 2023), AlpacaEval 2.0 (Li et al., 2023), Arena Hard Auto (Li et al., 2024b),
MixEval (Ni et al., 2024), MixEval-Hard, MATH (Hendrycks et al., 2021), and CodeContests (Li et al.,
2022). We provide an overview of each dataset in Table 29, where we compare their query counts, scoring
type, evaluation metrics, reference models, and judge models. Since we perform ITAS on a randomly
sampled 20% subset of each benchmark, we evaluate on the remaining held-out 80% subset of the benchmark
(Table 1; Figure 5) (for ARCHON performances on the entire benchmarks, please see Table 28). The delta
between the ARCHON performance on the entire benchmark vs. 80% held-out subset is relatively small:
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MT
Bench

Alpaca
Eval 2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH

Approaches Infer.
Calls

Input
Tokens

Output
Tokens

TFLOPs
per Token W.R. L.C.

W.R. W.R Acc. Acc. Pass
@1

Ba
se

lin
es

LM
GPT-4o 1 95 549 Unk. 44.2% ±0.5 57.8% ±0.6 80.6% ±0.6 63.4% ±0.2 87.5% ±0.3 73.2% ±0.4

Claude 3.5 Sonnet 1 105 602 Unk. N/A 52.7% ±0.4 81.4% ±0.4 68.7% ±0.2 89.1% ±0.2 73.1% ±0.7
Llama 3.1 405B 1 118 631 0.81 44.1% ±0.3 40.7% ±0.5 64.5% ±0.7 66.0% ±0.3 88.2% ±0.2 75.2% ±0.5

LM
Systems

MoA 19 25,109 17,422 1.36 51.6% ±0.6 65.4% ±0.3 84.5% ±0.3 62.3% ±0.4 86.9% ±0.2 73.9% ±0.6
MoA Lite 7 7,943 6,437 0.52 45.6% ±0.4 59.6% ±0.7 88.3% ±0.5 60.9% ±0.3 86.4% ±0.3 71.8% ±0.3

ADAS 52 72,804 44,872 Unk. 66.3% ±0.7 60.1% ±0.5 85.4% ±0.4 64.2% ±0.2 87.0% ±0.2 74.5% ±0.8
AFlow 48 68,596 41,748 Unk. 62.4% ±0.2 57.8% ±0.6 83.2% ±0.6 63.5% ±0.3 87.2% ±0.4 73.2% ±0.2

O1 Mini Unk. 112 Unk. Unk. 57.1% ±0.3 57.8% ±0.4 79.3% ±0.8 70.8% ±0.2 87.0% ±0.3 81.7% ±0.4
O1 Preview Unk. 112 Unk. Unk. 56.3% ±0.5 59.3% ±0.5 81.7% ±0.3 72.0% ±0.4 87.5% ±0.2 73.5% ±0.5

A
rc

ho
n

Open
Src.

General Purpose 35 51,113 31,508 3.14 67.2% ±0.4 63.3% ±0.6 85.6% ±0.5 65.3% ±0.3 86.2% ±0.2 76.6% ±0.6
Task Specific 44 63,157 39,949 3.71 71.1% ±0.6 67.1% ±0.4 89.6% ±0.4 67.5% ±0.2 88.8% ±0.3 81.9% ±0.3

Closed
Src.

General Purpose 32 52,747 27,894 Unk. 72.7% ±0.3 63.9% ±0.7 86.2% ±0.7 67.5% ±0.4 87.2% ±0.2 77.9% ±0.7
Task Specific 40 59,085 37,271 Unk. 77.0% ±0.5 68.9% ±0.5 90.5% ±0.3 72.6% ±0.3 89.5% ±0.3 81.6% ±0.4

All
Src.

General Purpose 35 50,427 30,461 Unk. 76.2% ±0.7 66.4% ±0.3 89.8% ±0.6 69.8% ±0.2 87.3% ±0.4 79.3% ±0.5
Task Specific 39 58,250 36,114 Unk. 79.5% ±0.4 69.0% ±0.6 92.5% ±0.5 72.7% ±0.3 89.7% ±0.2 82.1% ±0.6

Table 1: ARCHON’s Strong Performance with ITAS Optimization on Open Source, Closed Source, and All
Source Models: Consistent outperformance over state-of-the-art LLMs across explored benchmarks. The
standard error numbers were calculated from 10 independent evaluation runs.

only 0.44 percentage points, on average, across these datasets with an S.D. of 0.20 percentage points. For
MixEval and MixEval Hard, we use the 2024-06-01 dataset release. For MT Bench, AlpacaEval 2.0, and
Arena-Hard-Auto, the reference models are Claude 3.5 Sonnet, GPT-4-Turbo, and GPT-4-Turbo, respectively,
while the judge models are GPT-4-0314, GPT-4-Turbo, and GPT-4-Turbo, respectively. For MATH, we
evaluate a random sample of 200 problems from the dataset’s test set. For CodeContests, we evaluate on
the 140 test set questions that do not include image tags in the problem description.

Models: We test the efficacy of the ARCHON framework by creating various different ARCHON architectures
(Section 4.4) across three model categories: 8B or less parameter models, 70B or more parameter models,
and closed-source model APIs. For our 8B and 70B+ models, we selected the top-10 performing chat models
for each parameter range on the Chatbot Arena Leaderboard (Chiang et al., 2024) as of July 2024. For our
ARCHON architectures, we explore multiple model types: open-source, closed-source, and all-source (i.e.
both open-source and closed-source available). For our closed-source model APIs, we include GPT-4o,
GPT-4-Turbo, Claude Opus 3.0, Claude Haiku 3.0, and Claude Sonnet 3.5. We list and compare all of the
models tested in the ARCHON framework in Table 17 and Table 18. For all the LLMs utilized and every
ARCHON component, we set the generation temperature to 0.7. As baselines, we compare ARCHON against
both SOTA LLMs (GPT-4o (OpenAI et al., 2024), Claude 3.5 Sonnet (Anthropic, 2024), and Llama 3.1
405B Instruct (AI@Meta, 2024)) as well as SOTA inference-time architectures (OpenAI’s O1 (OpenAI,
2024a), MoA (Wang et al., 2024), ADAS (Hu et al., 2024), and AFlow (Zhang et al., 2024)).

4.2 ARCHON VS. CLOSED-SOURCE LLMS AND OTHER INFERENCE-TIME ARCHITECTURES

We start by comparing ARCHON architectures to existing SOTA closed-source LLMs and inference-time
architectures across a set of instruction-following, reasoning, and coding tasks. Based on our results in Table 1,
we find that ARCHON architectures consistently match or surpass existing approaches across all the benchmarks
explored. ARCHON architectures with open-source models demonstrate a 11.2% average improvement over
SOTA open-source approaches; for its worst performance, our open-source ARCHON architectures are only
3.6% above SOTA open-source approaches on AlpacaEval 2.0. ARCHON architectures with closed-source
models achieve SOTA performance across MT Bench, Arena-Hard-Auto, MixEval, and MixEval-Hard, leading
to a 15.8% average improvement over closed-source LMs and a 6.8% average improvement over open-source
inference-time frameworks (i.e. MoA, ADAS, and AFlow). Furthermore, compared to these open-source
inference-time frameworks, Archon is 20% more inference call efficient while having higher performances
on all benchmarks tested. We also find that our best Archon architectures use 15.1% less input tokens and
13.5% less output tokens compared to the best alternative open-source inference-time frameworks. Compared
to O1-preview and O1-mini, ARCHON’s best targeted architectures beat them by 8.1% and 9.7%, on average,
on MT Bench, AlpacaEval 2.0, Arena Hard Auto, MixEval, MixEval Hard, and MATH. On CodeContests,
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Figure 5: ARCHON Performance Gains from Combining Multi-Sampling with LLM-based Unit-test Genera-
tion/Evaluation: Strong performance improvements in Pass@1 as we scale the number of samples for GPT-4o
and Claude 3.5 Sonnet. The standard error numbers were calculated from 10 independent evaluation runs.

O1-preview and O1-mini narrowly beats ARCHON by 1.7% and 5.3%, on average, as the O1 system is
specially trained towards handling complex reasoning tasks like math and coding. Lastly, for approaches that
use all models available, both open and closed-source, ARCHON achieves an average 10.9% improvement over
existing SOTA single-call LLMs and an average 8.6% improvement over existing inference-time frameworks.

4.3 ARCHON BY TASK

We analyze ARCHON performance by task style: instruction-following tasks that use pairwise ranking for
scoring, reasoning tasks that use accuracy-based metrics for scoring, and coding tasks that use Pass@1. On
instruction-following tasks like MT Bench, AlpacaEval 2.0, and Arena-Hard-Auto, open-source ARCHON
architectures outperform current open-source baselines by 10.0 percentage points, on average, while
closed-source ARCHON outperforms current closed-source baselines by 20.1 percentage points (Table 1).
On reasoning tasks like MixEval, MixEval-Hard, and MATH, open-source ARCHON architectures outperform
existing open-source baselines by 2.9 percentage points while closed-source ARCHON architectures
outperform current closed-baselines by 4.2 percentage points (Table 1). On coding tasks (i.e. CodeContests),
open-source ARCHON architectures match existing open-source baselines (0.2 percentage points difference)
and all-source ARCHON architectures outperform all-source baselines by 2.5 percentage points (Figure 5).
All-source architectures of ARCHON outperform existing all-source baselines by 16.1 and 3.8 percentage
points, on average, for instruction-following tasks and for reasoning tasks, respectively (Table 1).

Instruction-Following and Reasoning: With ARCHON, multiple models used for Generators and the depth
of fusion layers lead to performance boosts on instruction-following tasks, increasing the richness of responses
and allowing multiple iterations for step-by-step instruction-following (Table 19). For reasoning, while
the performance boost from ARCHON is smaller when we consider the aggregate scores for MixEval and
MixEval-Hard, we do see meaningful increases in performance when we create inference-time architectures
for each individual task under MixEval and MixEval-Hard (Table 31; Table 32). When we create individual
ARCHON architectures for each subtask, we see 3.7 and 8.9 percentage point increases in accuracy, on
average, for MixEval and MixEval-Hard, respectively. This finding suggests that reasoning tasks (e.g. math,
sciences, logic) require more individualized inference-time architectures for their particular queries.

Coding: We have observed that ensembling, fusion, and ranking techniques have limited impact on
CodeContests (Figure 3). For example, when we apply the general all-source architecture from Table 29
to CodeContests problems, we achieve small gains from ARCHON (see Figure 5). One contributing factor
is that, unlike the distribution of instruction-following/reasoning tasks, coding tasks tend to have one or
two LLMs that perform substantially better than the rest of models (Table 18). However, when we add
unit test generation/evaluation, and scale the number of samples, ARCHON’s performance on CodeContests
improves significantly (Figure 5), allowing us to boost GPT-4o Pass@1 performance by 56% for Pass@1
(from 25 to 41 out of 140 questions). For model-based unit test generation/evaluation, we generate 5 unit
tests and use the LM to evaluate each candidate response against the generated unit tests, allowing us to
rank the different candidate responses (details are provided in Section A.1)
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4.4 TASK-SPECIFIC AND GENERAL-PURPOSE ARCHON ARCHITECTURES

Task-Specific vs. General-Purpose: We also compare custom ARCHON architectures, specifically
configured to a single evaluation dataset ("Task-specific ARCHON Architectures"), and a generalized ARCHON
architecture configured to handle all the evaluation datasets ("General-purpose ARCHON Architectures")
(Table 1). For our three model selection settings for ARCHON (i.e. open-source, closed-source, and all-source),
we utilize ITAS to find targeted ARCHON architectures for each task (7 architectures total) and find a single
generalized ARCHON architecture for maximizing performance over all the tasks (Table 1). The benchmarks
are concatenated together and shuffled for generalized Archon architecture search. For examples of targeted
and generalized ARCHON architectures, please see Figure 2 and Section A.4.

We utilize ITAS to find the generalized ARCHON architectures in Table 1 (Section 3.3), maximizing
performance over all of the benchmarks explored except CodeContests. While we use ITAS to find a targeted
ARCHON architecture for CodeContests, we exclude the dataset from the generalized ARCHON architecture
search since we found that ARCHON architectures for coding tasks are most effective with a different set
of inference-time techniques compared to instruction-following and reasoning tasks (i.e. increased model
sampling combined with model-based unit test generation/evaluation) (Section 3.2; Figure 3). For open-source
models, we find that our generalized ARCHON architecture only lags behind the specialized ARCHON
architectures by 3.4 percentage points, on average, across all the benchmarks, demonstrating the robustness
of the ARCHON architecture found by the ITAS algorithms (Table 1). We see similar gaps between the
generalized and specialized ARCHON architectures for closed-source models (4.0 percentage points) as
well as the all-source models (3.3 percentage points) (Table 1).

Insights from Architecture Construction: We include examples of our learned effective generalized
ARCHON architectures constructed by ITAS in Section A.4. For instruction-following and reasoning tasks,
we found a generalizable ARCHON architecture to be most effective with multiple layers of critic-ranker-fuser,
chained sequentially to improve candidate generation (Figure 9). However, the specific models chosen
for these LLM components could change task by task, with some tasks benefiting from using a single
SOTA closed-source LLM for all the components (e.g. Arena-Hard-Auto and MixEval) (Figure 11) whereas
others benefited from a diversity of LLMs in their ensemble (e.g. MT Bench and MixEval-Hard) (Figure 9;
Figure 10). Regardless of models used, we found that scaling inference layers including critics, rankers,
and fusers improved performance on instruction-following and reasoning tasks (Figure 3; Section A.4).
For instruction-following and reasoning tasks, the verifier module is more effective than the unit test
generation/evaluation module for task-specific ARCHON architectures (Section 3.2; Table 12). For coding
tasks, we found a high-sample setting to be the most effective, with added layers of unit test generation
and evaluation to boost the quality of the final candidate generation (Figure 12; Figure 5).

4.5 LIMITATIONS AND FUTURE WORK OF ARCHON

Parameter Count: The ARCHON framework is most effective with LLM with about 70B parameters
or more. When we utilize the ARCHON architecture with only 7B open-source models, we get a notable
decrease in performance (Table 21). The best 7B ARCHON configurations lag behind single SOTA (and
much larger) models by 15.7% on across all the benchmarks, on average; 7B models work well for ranking
but are less effective for critic and fusion.

Latency and Costs: Since ARCHON architectures make multiple LLM API calls successively for different
operations (e.g. ensembling, critiquing, ranking, etc.), it can often take 5x more time than a single LLM
API call (Section A.4). Furthermore, it can require calling multiple API endpoints for a single query, leading
to increased expenditures (Table 22; Table 23). Note that these increases in compute costs and latency
translate to higher quality responses, and can be justified in many application domains, such as science,
math, programming, and complex customer service issues. For tasks in which speed is most preferred, future
work should explore how distillation strategies (Sreenivas et al., 2024) could be used to pack the aggregate
knowledge of ARCHON architectures into a smaller LM.

ARCHON Components: While ARCHON is a modular framework, allowing the easy incorporation of new
LLMs, new inference-time techniques, and even tool use, we only explore seven LLM inference time tech-
niques in our work (Section 3.1). The addition of new techniques is a promising avenue for future research. Fur-
thermore, while different queries can be best suited by different ARCHON architectures (Table 31; Table 32), the
ITAS algorithm selects the best single architecture for the evaluation set queries combined. Future architecture
search could focus on dynamic selection of ARCHON components, LLMs, and tools on a query-by-query basis.
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5 REPRODUCIBILITY STATEMENT

For the ARCHON model and benchmark configurations, we included the related information in Sections 4.1,
4.2, and A.1. For performing Inference-Time Architecture Search (ITAS), we included the related information
in Sections 3.3 and A.6. We also included our code in the submission supplementary materials.
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A APPENDIX

A.1 ARCHON LLM COMPONENTS

Inference-Time
Technique Definition Input Output Inference

Cost Domains

Generator Generates a candidate response
from an instruction prompt Instruction Prompt Candidate Response(s) 1 call

per cand.
All

Domains

Fuser Merges multiple candidate
responses into a single response

Instruction Prompt +
Candidate Response(s)

Fused Candidate
Response(s)

1 call
per cand.

All
Domains

Critic Generates strengths/weaknesses
for each candidate response

Instruction Prompt +
Candidate Response(s)

Candidate Response(s)
Strengths/Weaknesses 1 call All

Domains

Ranker Returns top-K
candidate responses

Instruction Prompt +
Candidate Response(s)

Ranked Candidate
Response(s) 1 call All

Domains

Verifier Returns the candidate responses
with verified reasoning

Instruction Prompt +
Candidate Response(s)

Verified Candidate
Response(s)

2 calls
per cand.

Reasoning
Tasks

Unit Test
Generator

Generates unit tests to evaluate
the candidate responses Instruction Prompt Instruction Prompt

+ Unit Tests 1 call Reasoning
Tasks

Unit Test
Evaluator

Uses generated unit tests to
evaluate candidate response

Instruction Prompt +
Unit Tests +

Candidate Response(s)

Scored Candidate
Response(s)

1 call
per cand.

Reasoning
Tasks

Table 2: Overview of ARCHON’s Inference-time Techniques: Definitions, Inputs, Outputs, Costs, and
Application Domains.

Module Initial Layer
Placement

Placement after
Initial Layer

>1 Module
in Layer

Increase
Candidate
Responses

Decrease
Candidate
Responses

Generator Yes No Yes Yes No

Fuser No Yes Yes Yes Yes

Ranker No Yes No No Yes

Critic No Yes No No No

Verifier No Yes No No Yes

Unit Test
Generator No Yes No No No

Unit Test
Evaluator No Yes No No No

Table 3: Rules of ARCHON Construction: Allowed combinations of each LLM component from Section 3.1.

<instruction here>.

Table 4: Generator Prompt

12
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You have been provided with a set of responses with their individual critiques of strengths/weaknesses from various open-source models
to the latest user query. Your task is to synthesize these responses into a single, high-quality response. It is crucial to critically evaluate
the information provided in these responses and their provided critiques of strengths/weaknesses, recognizing that some of it may be biased
or incorrect. Your response should not simply replicate the given answers but should offer a refined, accurate, and comprehensive reply
to the instruction. Ensure your response is well-structured, coherent, and adheres to the highest standards of accuracy and reliability.
Responses from models:
1. <response #1>
Critique: <critique #1>
2. <response #2>
Critique: <critique #2>
...
N. <response #N>
Critique: <critique #N>
<instruction here>

(a) With Critiques

You have been provided with a set of responses from various open-source models to the latest user query. Your task is to synthesize these
responses into a single, high-quality response. It is crucial to critically evaluate the information provided in these responses, recognizing
that some of it may be biased or incorrect. Your response should not simply replicate the given answers but should offer a refined, accurate,
and comprehensive reply to the instruction. Ensure your response is well-structured, coherent, and adheres to the highest standards of
accuracy and reliability.
1. <response #1>
2. <response #2>
...
N. <response #N>
<instruction here>

(b) Without Critiques

Table 5: Fuser Prompt: Without and With Critiques

I will provide you with N responses, each indicated by a numerical identifier []. Rank the responses based on their relevance to the instruction:
<instruction here>.
[1] <response #1>
[2] <response #2>
...
[N] <response #N>
Instruction: <instruction here>.
Rank the N responses above based on their relevance to the instruction. All the responses should be included and listed using identifiers, in descending
order of relevance to the instruction. The output format should be [] > [], e.g., [4] > [2]. Only respond with the ranking results, do not say
any word or explain.

Table 6: Decoder-Based Ranking Prompt

You are a helpful assistant. I will provide you with N responses, each indicated by a numerical identifier (e.g., [1], [2], etc.). Rank the responses based
on their relevance to the instruction: <instruction here>.
[1] <response #1>
[2] <response #2>
...
[N] <response #N>
Instruction: <instruction here>.
Evaluate the N responses above based on their relevance to the instruction. All the responses should be included and listed using identifiers. For each
response, start the critique with the numerical identifier (e.g., [1]) followed by the strengths and weaknesses. You must include both strengths and weaknesses,
even if there are more of one than the other. At the end of each response’s analysis, include two new lines to separate the critiques. Do not include any preface
or text after the critiques. Do not include any references to previous critiques within a critique. Start with the analysis for the first response and end with
the analysis for the last response. All of the N responses should be included and evaluated using identifiers. Structure each response’s analysis as follows:
Strengths:
- <strength #1>
- <strength #2>
- <strength #n>
Weaknesses:
- <weakness #1>
- <weakness #2>
- <weakness #n>

Table 7: Critic Prompt

13
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I will provide you with a response indicated by the identifier ’Response’. Provide reasoning for why the response accurately and completely addresses
the instruction: <instruction here>.
Response: <response>
Instruction: <instruction here>.
Provide the reasoning for the response above based on its relevance, completeness, and accuracy when compared to the instruction. Do not include any
preface or text after the reasoning.

Table 8: Verifier Prompt

Instruction Prompt: Given the following query, generate a set of N unit tests that would evaluate the correctness of responses to this query.
- The unit tests should cover various aspects of the query and ensure comprehensive evaluation.
- Each unit test should be clearly stated and should include the expected outcome.
- The unit tests should be in the form of assertions that can be used to validate the correctness of responses to the query.
- The unit test should be formatted like ’The answer mentions...’, ’The answer states...’, ’The answer uses...’, etc. followed by the expected
outcome.
- Solely provide the unit tests for the question below. Do not provide any text before or after the list. Only output the unit tests as a list
of strings (e.g., [’unit test #1’, ’unit test #2’, ’unit test #3’]).
Query: <instruction here>

(a) With Unit Test Cap

Instruction Prompt: Given the following query, generate a set of unit tests that would evaluate the correctness of responses to this query.
- The unit tests should cover various aspects of the query and ensure comprehensive evaluation.
- Each unit test should be clearly stated and should include the expected outcome.
- The unit tests should be in the form of assertions that can be used to validate the correctness of responses to the query.
- The unit test should be formatted like ’The answer mentions...’, ’The answer states...’, ’The answer uses...’, etc. followed by the expected
outcome.
- Solely provide the unit tests for the question below. Do not provide any text before or after the list. Only output the unit tests as a list
of strings (e.g., [’unit test #1’, ’unit test #2’, ’unit test #3’]).
Query: <instruction here>

(b) Without Unit Test Cap

Table 9: Unit Test Generator Prompt: With and Without Unit Test Cap

Instruction Prompt: Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see
attractions.
1. Unit Test #1: The blog post mentions at least two cultural experiences specific to Hawaii.
2. Unit Test #2: The blog post highlights at least three must-see attractions in Hawaii.
3. Unit Test #3: The tone of the blog post is engaging and uses descriptive language that would appeal to readers interested in travel.
4. Unit Test #4: The blog post includes factual information about Hawaii’s culture, such as local customs, festivals, or historical facts.
5. Unit Test #5: The blog post contains a clear narrative structure, including an introduction, main body, and a conclusion.

(a) Instruction-Following Query

Instruction Prompt: Alice and Bob have two dice. They roll the dice together, note the sum of the two values shown, and repeat. For
Alice to win, two consecutive turns (meaning, two consecutive sums) need to result in 7. For Bob to win, he needs to see an eight followed
by a seven. Who do we expect to win this game?
1. Unit Test #1: The response correctly identifies the winning condition for Alice (two consecutive sums of 7).
2. Unit Test #2: The response correctly identifies the winning condition for Bob (a sum of 8 followed by a sum of 7).
3. Unit Test #3: The response explains the probability of achieving two consecutive 7s when rolling two dice.
4. Unit Test #4: The response explains the probability of achieving an 8 followed by a 7 when rolling two dice.
5. Unit Test #5: The response provides a conclusion on who is more likely to win based on the probability analysis.

(b) Reasoning Query

Table 10: Unit Test Examples

14
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Figure 6: Performance Gains from Applying Inference Time Techniques on a Single Model: We
repeatedly sample more responses for each individual query. For each sample count, we choose the best
response in 5 different ways: (1) using an oracle (to get the upper bound for performance of best sample),
(2) randomly, (3) using a ranker model, (4) by fusion, in which a model synthesizes a response based on
all the samples, and (5) by ranking the top-5 best answers and then fusing them. For both MT Bench and
Arena-Hard-Auto, we find that fusion is an effective technique. In particular, ranking the candidates first,
and then selecting the top-5 and fusing them scores the highest. The best open-source model for these tasks
across all the 70B+ models we are considering is WizardLM-2-8x22B (Xu et al., 2024) (see Table 18 for
details). For both ranking and fusion, we use Qwen2 72B Instruct (Qwen, 2024).

Given the following query, candidate response, and unit tests, evaluate whether or not the response passes each unit
test.
- In your evaluation, you should consider how the response aligns with the unit tests, retrieved documents, and
query.
- Provide reasoning before you return your evaluation.
- At the end of your evaluation, you must finish with a list of verdicts corresponding to each unit
test.
- You must include a verdict with one of these formatted options: ’[Passed]’ or ’[Failed]’.
- Here is an example of the output format:
Unit Test #1: [Passed]
Unit Test #2: [Failed]
Unit Test #3: [Passed]
- Each verdict should be on a new line and correspond to the unit test in the same posi-
tion.
- Here is the query, response, and unit tests for your evaluation:

Query: <instruction here>.

Candidate Response: <response>

Unit Tests:
Unit Test #1: <Unit Test #1>
Unit Test #2: <Unit Test #2>
...
Unit Test #N: <Unit Test #N>

Table 11: Unit Test Evaluator Prompt

A.2 UTILITIES AND INTERACTIONS OF LLM COMPONENTS

In this subsection, we present our analysis of the effectiveness of each LLM component (i.e. the Utility)
and the relationships between each component (i.e. the Component Interactions) by evaluating on
instruction-following tasks (MT Bench, AlpacaEval 2.0, Arena-Hard-Auto), reasoning tasks (MixEval,
MixEval-Hard, MATH) and coding tasks (CodeContests) (Section 4.1). For our ARCHON models, we utilize
a host of 70B+ open-source models (Section 4.1; Table 17).

A.2.1 GENERATOR

Utility: For our Generator module, we find additional model sampling to significantly boost performance
(Figure 6), particularly for coding tasks (Table 1). In settings with a limited inference call budget, additional
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Figure 7: Performance Gains from Applying Inference-Time Techniques on an Ensemble of Models:
We incrementally add more models to the ensemble, which consists of open-source 70B+ models. The models
are added to the pool based on their performance for each task, from best to worse (see Table 18 for details).
For each ensemble size, we choose the best response in 5 different modes: (1) using an oracle (to get the upper
bound for performance of best individual response in the ensemble), (2) randomly, (3) using a ranker model, (4)
by fusion, in which one model synthesizes a response based on all the responses of the ensemble models, and (5)
ranking the top-5 best responses and then fusing them. For MT Bench and Arena-Hard-Auto, we find consistent
performance improvements as we add more models to the ensemble. We find that fusion is beneficial across
various ensemble sizes and in particular a fused candidate based on the top-5 ranked responses scores highest.
The ensemble approach scores higher than applying the same techniques on repeated samples from a single
best-performing model (see Figure 6). For both ranking and fusion, we use Qwen2 72B Instruct (Qwen, 2024).

model samples lead to the largest marginal benefit. We see a similar pattern for model ensembling, where
sampling from additional models leads to continual performance increases (assuming the models are ordered
from best to worst for the given task) (Figure 7).

A.2.2 FUSER

Utility: For every benchmark explored, we found that the Fuser module substantially improved performance
(Figure 6; Figure 7; Figure 3). For the single-generation 10-model ensemble of 70B+ models, the Fuser
module improved downstream accuracy by 5.2 points, on average, compared to the single-generation best
model (Figure 7). When combined with the Ranker module for ranking the top-5 candidate responses, the
Fuser improved downstream accuracy by 7.3 points and 3.6 points, on average, compared to the single-sample
best model and the oracle best candidate response, respectively (Figure 7). Overall, we found that Fuser
efficacy increased as more candidate responses were provided, demonstrating that additional candidate
generations can continue to bolster inference-time architecture performance when combined with a Fuser.

In previous work like Mixture-of-Agents (MoA) (Wang et al., 2024), multiple layers of Fusers was found
to boost performance on some instruction-following tasks (i.e. MT Bench and Alpaca Eval 2.0). Across all the
benchmarks explored, we observed similar benefits in the ARCHON framework when adding multiple layers
of Fusers (Figure 3). However, based on our results in Figure 8, the number of Fuser layers needed to improve
performance varied by task, with some tasks receiving limited benefits from added layers (1-2 point increase
in accuracy for MixEval) while others experienced significant benefits with 3-4 fusion layers and more (2 to
5 point increase in win rate for MT Bench and Alpaca Eval 2.0). We attribute this distinction to the difference
in task requirements, with chat and instruction following tasks benefiting more from multiple iterations
of revisions through the multiple Fuser layers, leading to greater diversity in the final generation (Table 19).

Component Interactions: To better understand how the Fuser module works with the other LLM
components, we took the single-sample 10-model ensemble of Generators with a Fuser and tried adding each
of these components individually: a Critic, a Ranker, a Verifier, and a Unit Test Generator/Evaluator. Across
all of the benchmarks, the added candidate response analyses from the Critic improved the Fuser’s ability
to effectively merge the different candidate responses, increasing performance by an average of 3.1 percentage
points (Figure 3). With the added Ranker, the ARCHON architecture improved the combined Ensemble
+ Critic + Fuser performance across all the benchmarks by 4.8 percentage points, on average (Figure 3).
The Ranker proved most effective for style-oriented tasks (e.g. MT Bench and AlpacaEval 2.0) since
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the examples mostly focus on improving the instruction-guidance towards the provided prompt. With the
added Verifier module (Figure 3), the performance of the Ensemble + Critic + Fuser configuration improved
marginally for the instruction-following tasks (1.2 percentage points, on average, for MT Bench, AlpacaEval
2.0, and Arena-Hard-Auto). However, this configuration improved performance more on reasoning tasks (3.2
percentage points for MixEval and MixEval-Hard, on average), assisting generation by filtering out irrelevant
or flawed answers before the final fusion step (Figure 3). The added Unit Test Generator and Evaluator was
less effective for the instruction-following and reasoning tasks, only providing a 1.5 percentage points increase,
on average, when added to the Ensemble + Critic + Fuser configuration (Table 12). However, for coding
tasks, we found unit test generation and evaluation significantly improved performance, leading to a 10.7
percentage point increase (56% performance increase comparatively) as we scale model sampling (Table 1).

A.2.3 CRITIC

Utility: The Critic module proved effective for every task we explored in Figure 3 and Table 12. With
our 10-model 70B+ Generator ensemble and Fuser configuration of ARCHON, the added Critic improved
performance on average by 3.1 percentage points across the benchmarks explored.

Component Interactions: While useful for most ARCHON architectures, the added strengths and weaknesses
from the Critic module are particularly useful when combined with the Fuser module, helping guide
generation fusion for a single layer and even useful when placed between multiple fusion layers (on average
3.2 percentage point boost across benchmarks in Figure 3). The Critic module was also effective with the
Ranker module, providing additional information for comparing candidate responses (Figure 6) and leading
to a 5.9 percentage point increase, on average (Table 12).

A.2.4 RANKER

Utility: From our results in Table 12, Figure 6, and Figure 7, we found the Ranker to be most effective
for instruction-following tasks, where pair-wise comparisons of answers focus on style and adherence to
the prompt. To examine the candidate selection improvement provided by candidate ranking, we compare
three approaches to the Ranker: (1) random selection of candidate generation, (2) oracle selection of candidate
generation, and (3) the top-ranked candidate selected by our Ranker. For MT Bench and Arena-Hard-Auto,
we find that the ranker improves generation output quality by 3.8% compared to random candidate selection
and performs within 2.7% of oracle selection (Figure 6).

Component Interactions: Based on our benchmark results in Table 12, the Ranker pairs well with the Critic
module; the provided strengths and weaknesses helps guide ranking, particularly for instruction-following
tasks, improving performance by 5.9 percentage points, on average. Furthermore, the Ranker was also
effective when paired with the Fuser; the filtered list of candidate responses helped improve the final
condensed response produced by the Fuser by 3.8 percentage points, on average (Figure 7). When paired
with the Verifier and Unit Test Generator, the Ranker had neutral effects; performances changed marginally,
either positively or negatively by 1-2 percentage points (Table 12).

Overall, our findings demonstrate the value of added Rankers for instruction-following and reasoning tasks
when paired with Fusers. We find that when Rankers are used alone with an ensemble of Generators, their
performance lags behind the 10-sample best single model configuration by 3.0 percentage points, on average
(Table 12). Additionally, our findings show the importance of building better rankers for more complex
reasoning tasks, such as math and coding, which is a challenge also raised by Brown et al. (2024).

A.2.5 VERIFIER

Utility: The Verifier was most effective for the reasoning benchmarks explored in Table 12. When just using
a 70B+ Generator ensemble with Verifier module after generation, the ARCHON configuration lagged behind
the ARCHON ensemble and fuser configuration by 1.5 percentage points, on average, across all benchmarks
explored. This suggests that the Verifier is most effective when combined with other inference-time techniques.

Component Interactions: As noted in Section A.2.2, the Verifier augmented the performance of the Critic
and Fuser on reasoning tasks (e.g. Arena-Hard-Auto, MixEval, MixEval-Hard), boosting performance by
3.7 percentage points, on average, when combined together with these modules. Overall, the Verifier is
most powerful when augmenting additional components for tasks requiring verification of intermediate
steps and the final response (Table 12). Therefore, the Verifier was less helpful for instruction-following tasks
(e.g. MT Bench and AlpacaEval) but more effective for reasoning tasks (e.g. Arena-Hard-Auto and MixEval).
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MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
# of

Infer.
Calls

W.R. L.C.
W.R.

Raw
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Best Open-Source 70B+ Model, Sampled Once 1 55.0% ±0.4 44.7% ±0.5 37.1% ±0.6 45.6% ±0.5 58.7% ±0.2 86.5% ±0.3 73.5% ±0.6 27.1% ±0.4

Ensemble + Fuser 9 58.4% ±0.6 57.5% ±0.4 51.3% ±0.5 54.3% ±0.7 60.5% ±0.3 87.3% ±0.2 75.5% ±0.3 22.0% ±0.7
Ensemble + Critic + Fuser 10 60.9% ±0.3 58.7% ±0.6 65.8% ±0.3 58.8% ±0.4 62.4% ±0.4 87.4% ±0.3 77.0% ±0.5 24.5% ±0.5

A
bl

at
io

ns

Ensemble + Ranker 9 52.5% ±0.7 54.7% ±0.5 47.6% ±0.4 50.5% ±0.6 58.2% ±0.2 86.8% ±0.4 71.5% ±0.4 23.5% ±0.6
Ensemble + Verifier 24 53.2% ±0.5 56.2% ±0.3 50.2% ±0.7 52.4% ±0.3 56.5% ±0.3 85.6% ±0.2 76.0% ±0.7 24.9% ±0.3
Ensemble + Unit Test Gen./Eval. 18 51.5% ±0.4 54.4% ±0.6 49.4% ±0.5 46.1% ±0.8 55.2% ±0.4 86.0% ±0.3 75.0% ±0.5 25.1% ±0.4
Ensemble + Ranker + Fuser 10 62.5% ±0.8 60.3% ±0.4 63.6% ±0.6 57.2% ±0.5 60.1% ±0.2 87.6% ±0.3 76.0% ±0.6 23.6% ±0.5
Ensemble + Verifier + Fuser 25 60.5% ±0.3 59.4% ±0.7 58.7% ±0.3 59.2% ±0.4 65.1% ±0.3 87.5% ±0.2 78.0% ±0.4 24.5% ±0.7
Ensemble + Unit Test Gen./Eval. + Fuser 17 61.4% ±0.6 58.5% ±0.5 55.1% ±0.4 56.4% ±0.7 62.8% ±0.4 86.9% ±0.3 77.0% ±0.8 26.3% ±0.6
Ensemble + Critic + Verifier + Fuser 25 61.3% ±0.5 60.0% ±0.3 61.0% ±0.7 59.5% ±0.3 65.5% ±0.2 87.8% ±0.4 78.0% ±0.3 24.8% ±0.4
Ensemble + Critic + Ranker + Fuser 11 64.7% ±0.4 62.6% ±0.6 72.4% ±0.5 60.9% ±0.6 67.0% ±0.3 88.3% ±0.2 79.5% ±0.5 24.1% ±0.5

Table 12: Impact of Different Compositions of ARCHON’s Inference-Time Techniques: We see increased
task performances from adding new LLM components to ARCHON. For CodeContests, we find that there is
a single model (Llama 3.1 405B Instruct) that performs considerably better than the rest of the LLMs studied,
making it more effective leverage additional model sampling (Table 1). For our ensemble, we use the best 8
open-source 70B+ models for the task (Table 18). For our fuser, critic, ranker, and verifier components, we use
the best fuser model found for the task (Table 18). For each evaluation benchmark, we explain its configuration
in Table 29 and Section 4.1. The standard error numbers were calculated from 10 independent evaluation runs.

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
# of

Infer.
Calls

W.R. L.C.
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Single Generation 1 44.2% ±0.6 57.8% ±0.5 48.1% ±0.7 63.4% ±0.3 87.5% ±0.2 73.2% ±0.4 17.9% ±0.3

Ensemble + Fuser 11 53.7% ±0.3 59.5% ±0.6 49.7% ±0.5 65.5% ±0.2 82.0% ±0.3 70.7% ±0.6 16.0% ±0.4
Ensemble + Critic + Fuser 12 56.1% ±0.7 59.7% ±0.4 53.9% ±0.6 67.4% ±0.4 82.0% ±0.2 71.8% ±0.5 18.9% ±0.6
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bl
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ns

Ensemble + Ranker 11 47.6% ±0.4 49.7% ±0.5 45.5% ±0.4 63.3% ±0.3 81.6% ±0.4 66.5% ±0.7 17.9% ±0.5
Ensemble + Verifier 11 48.4% ±0.5 51.2% ±0.7 47.7% ±0.8 61.4% ±0.2 80.5% ±0.3 71.0% ±0.3 23.0% ±0.4
Ensemble + Unit Test Gen./Eval. 21 46.8% ±0.8 49.3% ±0.3 41.2% ±0.5 60.2% ±0.4 80.7% ±0.2 69.9% ±0.8 24.0% ±0.7
Ensemble + Ranker + Fuser 12 58.0% ±0.2 60.1% ±0.6 52.2% ±0.3 65.0% ±0.3 82.0% ±0.4 71.0% ±0.4 18.0% ±0.3
Ensemble + Verifier + Fuser 12 55.8% ±0.6 54.2% ±0.4 60.3% ±0.7 67.0% ±0.2 82.5% ±0.3 73.1% ±0.6 22.4% ±0.5
Ensemble + Unit Test Gen./Eval. + Fuser 22 56.5% ±0.3 61.4% ±0.5 51.6% ±0.4 67.7% ±0.4 81.7% ±0.2 72.0% ±0.5 25.4% ±0.6
Ensemble + Critic + Verifier + Fuser 13 56.6% ±0.7 62.0% ±0.3 55.0% ±0.6 68.5% ±0.3 82.7% ±0.4 73.5% ±0.3 22.2% ±0.4
Ensemble + Critic + Ranker + Fuser 13 60.0% ±0.4 62.8% ±0.6 56.2% ±0.5 69.4% ±0.2 88.5% ±0.3 75.0% ±0.7 18.5% ±0.5

Table 13: ARCHON Component Compositions with GPT-4o: The ensemble uses generates 10 samples
for the given query. The standard error numbers were calculated from 10 independent evaluation runs.

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
# of

Infer.
Calls

W.R. L.C.
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Single Generation 1 32.1% ±0.7 38.5% ±0.5 30.4% ±0.6 45.2% ±0.3 69.5% ±0.2 61.0% ±0.5 10.5% ±0.6

Ensemble + Fuser 11 44.2% ±0.3 43.0% ±0.6 40.2% ±0.4 46.0% ±0.4 73.0% ±0.3 61.2% ±0.7 6.0% ±0.4
Ensemble + Critic + Fuser 12 46.6% ±0.5 44.2% ±0.4 44.4% ±0.7 47.9% ±0.2 73.0% ±0.4 62.3% ±0.3 8.4% ±0.5
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Ensemble + Ranker 11 38.1% ±0.6 40.2% ±0.7 36.0% ±0.5 43.8% ±0.3 72.1% ±0.2 57.0% ±0.6 7.5% ±0.4
Ensemble + Verifier 11 38.9% ±0.4 41.7% ±0.3 38.2% ±0.8 41.9% ±0.4 71.0% ±0.3 61.0% ±0.4 19.0% ±0.7
Ensemble + Unit Test Gen./Eval. 21 37.3% ±0.8 39.8% ±0.6 31.7% ±0.3 40.7% ±0.2 71.2% ±0.4 60.4% ±0.8 22.0% ±0.3
Ensemble + Ranker + Fuser 12 48.0% ±0.2 45.6% ±0.5 42.7% ±0.6 45.0% ±0.3 73.0% ±0.2 61.0% ±0.5 8.0% ±0.6
Ensemble + Verifier + Fuser 12 46.3% ±0.5 44.7% ±0.4 45.0% ±0.4 50.5% ±0.4 73.0% ±0.3 63.6% ±0.3 18.6% ±0.5
Ensemble + Unit Test Gen./Eval. + Fuser 22 47.0% ±0.3 43.9% ±0.7 42.1% ±0.7 48.2% ±0.2 72.2% ±0.4 62.0% ±0.6 23.5% ±0.4
Ensemble + Critic + Verifier + Fuser 13 47.1% ±0.7 46.0% ±0.3 45.0% ±0.5 52.4% ±0.3 73.2% ±0.5 63.5% ±0.4 18.4% ±0.7
Ensemble + Critic + Ranker + Fuser 13 50.5% ±0.4 48.3% ±0.6 46.7% ±0.3 55.1% ±0.4 73.7% ±0.3 65.0% ±0.5 8.1% ±0.5

Table 14: ARCHON Component Compositions with GPT-4o-mini: The ensemble uses generates 10
samples for the given query. The standard error numbers were calculated from 10 independent evaluation runs.
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MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
# of

Infer.
Calls

W.R. L.C.
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Single Generation 1 N/A 52.7% ±0.4 81.4% ±0.6 68.7% ±0.3 89.1% ±0.2 73.1% ±0.5 12.5% ±0.3

Ensemble + Fuser 11 N/A 53.0% ±0.6 83.2% ±0.4 69.5% ±0.2 89.0% ±0.3 71.2% ±0.6 17.0% ±0.4
Ensemble + Critic + Fuser 12 N/A 54.2% ±0.3 85.4% ±0.7 70.9% ±0.4 89.5% ±0.2 72.3% ±0.4 19.4% ±0.6
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ns

Ensemble + Ranker 11 N/A 50.2% ±0.5 76.0% ±0.5 63.8% ±0.3 82.1% ±0.4 67.0% ±0.7 18.5% ±0.5
Ensemble + Verifier 11 N/A 51.7% ±0.7 78.2% ±0.3 60.9% ±0.2 81.0% ±0.3 71.0% ±0.3 21.0% ±0.4
Ensemble + Unit Test Gen./Eval. 21 N/A 49.8% ±0.4 71.7% ±0.8 58.7% ±0.4 81.2% ±0.2 70.4% ±0.8 22.0% ±0.7
Ensemble + Ranker + Fuser 12 N/A 55.6% ±0.5 82.7% ±0.4 65.0% ±0.3 89.0% ±0.4 71.0% ±0.4 19.0% ±0.3
Ensemble + Verifier + Fuser 12 N/A 54.7% ±0.3 85.0% ±0.6 70.5% ±0.2 89.3% ±0.3 73.6% ±0.6 21.6% ±0.5
Ensemble + Unit Test Gen./Eval. + Fuser 22 N/A 53.9% ±0.6 82.1% ±0.5 68.2% ±0.4 89.2% ±0.2 72.0% ±0.5 23.5% ±0.6
Ensemble + Critic + Verifier + Fuser 13 N/A 56.0% ±0.4 85.0% ±0.3 71.0% ±0.3 89.4% ±0.4 73.5% ±0.3 21.4% ±0.4
Ensemble + Critic + Ranker + Fuser 13 N/A 58.3% ±0.5 86.7% ±0.7 73.0% ±0.2 89.7% ±0.3 75.0% ±0.7 19.1% ±0.5

Table 15: ARCHON Component Compositions with Claude 3.5 Sonnet: The ensemble uses generates 10
samples for the given query. The standard error numbers were calculated from 10 independent evaluation runs.

MT
Bench

AlpacaEval
2.0

Arena
Hard Auto

MixEval
Hard MixEval MATH Code

Contests

Model / LLM System
# of

Infer.
Calls

W.R. L.C.
W.R. W.R. Acc. Acc. Acc. Acc.

C
on

tr
ol Single Generation 1 35.0% ±0.5 42.0% ±0.6 36.8% ±0.7 64.6% ±0.2 73.2% ±0.3 64.8% ±0.4 10.0% ±0.5

Ensemble + Fuser 11 48.2% ±0.3 47.0% ±0.4 44.2% ±0.5 66.5% ±0.3 77.0% ±0.2 65.2% ±0.7 10.8% ±0.3
Ensemble + Critic + Fuser 12 50.6% ±0.7 48.2% ±0.5 48.4% ±0.3 68.1% ±0.4 77.0% ±0.4 66.3% ±0.5 11.5% ±0.6
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Ensemble + Ranker 11 42.1% ±0.4 44.2% ±0.7 40.0% ±0.6 58.8% ±0.3 76.1% ±0.2 61.0% ±0.6 11.9% ±0.4
Ensemble + Verifier 11 42.9% ±0.6 45.7% ±0.3 42.2% ±0.8 57.9% ±0.2 75.0% ±0.3 65.0% ±0.4 12.0% ±0.7
Ensemble + Unit Test Gen./Eval. 21 41.3% ±0.8 43.8% ±0.6 35.7% ±0.4 55.7% ±0.4 75.2% ±0.2 64.4% ±0.8 13.0% ±0.3
Ensemble + Ranker + Fuser 12 52.0% ±0.2 49.6% ±0.5 46.7% ±0.7 60.0% ±0.3 77.0% ±0.4 65.0% ±0.5 12.0% ±0.6
Ensemble + Verifier + Fuser 12 50.3% ±0.5 48.7% ±0.4 48.7% ±0.5 67.5% ±0.2 77.0% ±0.3 67.6% ±0.3 10.5% ±0.5
Ensemble + Unit Test Gen./Eval. + Fuser 22 51.0% ±0.3 47.9% ±0.7 46.1% ±0.6 64.2% ±0.4 76.2% ±0.2 66.0% ±0.6 14.3% ±0.4
Ensemble + Critic + Verifier + Fuser 13 51.1% ±0.7 50.0% ±0.3 49.0% ±0.4 68.0% ±0.3 77.2% ±0.4 67.5% ±0.3 10.0% ±0.7
Ensemble + Critic + Ranker + Fuser 13 54.5% ±0.4 52.3% ±0.6 50.7% ±0.3 70.4% ±0.2 77.7% ±0.3 69.0% ±0.5 11.5% ±0.5

Table 16: ARCHON Component Compositions with Claude-3-Haiku: The ensemble uses generates 10
samples for the given query. The standard error numbers were calculated from 10 independent evaluation runs.

A.2.6 UNIT TEST GENERATOR AND EVALUATOR

Utility: The Unit Test Generator and Evaluator were most effective on reasoning and coding tasks, improving
performance on benchmarks that required more verification steps, such as Arena-Hard-Auto, MixEval,
MixEval-Hard, MATH, and CodeContests (Table 12). For the reasoning tasks, we found the unit test generator
and evaluator to be most effective when combined with other components. When the 70B+ ensemble of
Generators was only combined with unit tests, it was less effective for reasoning tasks like Arena-Hard-Auto
and MixEval, lagging behind the ensemble and fuser configuration by 3.1 percentage points. This inspired
us to look into other inference-time techniques combinations for unit test generation, such as increased
sampling and fusion. When we increased generation sampling and added unit test generation/evaluation for
CodeContests, we see a 56% boost in Pass@1 performance (Table 1), increasing from 17.9 to 29.3 Pass@1.

Component Interactions: When combined with the Fuser module, the Unit Test Generator and Evaluator
improved performance by 2.1 percentage points across the benchmarks explored (Table 12). The combined
ensemble, Unit Test Generator/Evaluator, and Fuser ARCHON configuration was most effective on the
reasoning benchmarks, leading to a 2.5 percentage point boost, on average. For coding, the unit test generator
and evaluator was most effective when combined with the best performing Generator (using large sample
counts) and a final Fuser (subsection 4.2).
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MT Bench Alpaca Eval 2.0 Arena Hard Auto MixEval MixEval Hard MATH CodeContests

Models Gen Fusion Gen Fusion Gen Fusion Gen Fusion Gen Fusion Gen Fusion Gen Fusion

GPT-4o 44.7% 61.9% 57.5% 64.5% 48.1% 69.2% 88.0% 89.4% 63.6% 65.4% 72.0% 75.5% 17.9% 19.4%

GPT-4-Turbo 42.2% 63.1% 55.0% 65.8% 48.1% 61.9% 88.9% 89.0% 64.1% 64.4% 74.5% 76.5% 9.3% 14.2%

Claude 3
Opus 30.9% 57.2% 40.5% N/A 27.0% 47.9% 88.3% 88.2% 63.6% 64.0% 72.5% 71.0% 10.0% 12.5%

Claude 3.5
Sonnet N/A 71.9% 52.37% 63.6% N/A 73.2% 89.7% 89.3% 68.9% 69.5% 72.0% 74.5% 12.1% 15.5%

Qwen 2
72B Instruct 35.0% 59.7% 37.48% 56.0% 14.5% 49.5% 86.5% 87.5% 58.7% 61.1% 76.0% 78.5% 3.6% 5.2%

DeepSeek LLM
67B Instruct 18.4% 20.0% 17.8% 17.1% N/A N/A 79.2% N/A 42.5% N/A 45.0% N/A 5.7% N/A

Qwen 1.5
72B Chat 24.7% 46.3% 36.6% 55.7% 14.4% 36.4% 84.5% 82.1% 50.3% 52.2% 62.5% 65.5% 15.0% 13.9%

Qwen 1.5
110B Chat 34.4% 50.3% 43.6% 55.9% 21.9% 39.7% 85.3% 86.5% 51.8% 55.6% 67.0% 72.5% 3.6% 7.8%

Wizard 8x22B 53.8% 57.2% 44.7% 50.6% 45.6% 51.2% 83% 78.1% 54.3% 50.4% 69.0% 58.5% 7.1% 10.4%

Llama 3.1
8B Instruct 33.1% 45.9% 25.6% 34.9% 11.9% 28.6% 75.0% 57.5% 41.3% 46.5% 59.0% 60.5% 8.6% 7.8%

Llama 3.1
70B Instruct 45.0% 51.9% 35.6% 40.2% 23.8% 37.2% 85.7% 83.5% 61.1% 65.5% 69.0% 71.5% 20.7% 23.4%

Llama 3.1
405B Instruct 44.7% N/A 40.3% N/A 28.4% N/A 88.9% N/A 66.2% N/A 74.5% N/A 27.1% N/A

Table 18: ARCHON Generation and Fusion Performances for Single Models: For Alpaca Eval 2.0, we
use the length-controlled win rate (LC WR). For fusion, we gather one candidate from each of the top-10
generator models.

A.3 ARCHON LLM ANALYSIS

Model Source Code Parameter
Count

Max Sequence
Length

GPT-4o (OpenAI et al., 2024) Closed-Source — 128K
GPT-4-Turbo (OpenAI et al., 2024) Closed-Source — 128K
Claude-3-Opus (Anthropic, 2024) Closed-Source — 200K

Claude-3.5-Sonnet (Anthropic, 2024) Closed-Source — 200K
Claude-3-Haiku (Anthropic, 2024) Closed-Source — 200K

Llama-3.1-70B-Instruct (Dubey et al., 2024) Open-Source 70B 8k
Llama-3.1-405B-Instruct (Dubey et al., 2024) Open-Source 70B 8k
DeepSeek LLM 67B Chat (Guo et al., 2024) Open-Source 67B 32k

Qwen2 72B Instruct (Qwen, 2024) Open-Source 72B 32k
Qwen1.5 110B Chat (Bai et al., 2023) Open-Source 110B 32k
Qwen1.5 72B Chat (Bai et al., 2023) Open-Source 72B 32k

Mixtral 8x22B v0.1 (Jiang et al., 2024) Open-Source 176B 32k
WizardLM 8x22B (Xu et al., 2024) Open-Source 176B 32k

dbrx-instruct (Databricks, 2024) Open-Source 132B 32k

princeton-nlp/Llama-3-Instruct-8B-SimPO (Meng et al., 2024) Open-Source 8B 8k
princeton-nlp/Llama-3-Instruct-8B-DPO (Meng et al., 2024) Open-Source 8B 8k

princeton-nlp/Llama-3-Instruct-8B-RDPO (Meng et al., 2024) Open-Source 8B 8k
princeton-nlp/Llama-3-Instruct-8B-IPO (Meng et al., 2024) Open-Source 8B 8k

Llama-3.1-8B-Instruct (Dubey et al., 2024) Open-Source 8B 8k
Qwen2-7B-Instruct (Qwen, 2024) Open-Source 7B 32k

Qwen/Qwen1.5-7B-Chat (Bai et al., 2023) Open-Source 7B 32k
mistralai/Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a) Open-Source 7B 32k

cognitivecomputations/dolphin-2.2.1-mistral-7b (Hartford, 2024) Open-Source 7B 32k
microsoft/Phi-3-mini-4k-instruct (Abdin et al., 2024) Open-Source 4B 4k

HuggingFaceH4/zephyr-7b-beta (Tunstall et al., 2023) Open-Source 7B 32k
microsoft/Phi-3-small-8k-instruct (Abdin et al., 2024) Open-Source 7B 8k

snorkelai/Snorkel-Mistral-PairRM-DPO (Tran et al., 2023) Open-Source 7B 32k
mistralai/Mistral-7B-Instruct-v0.3 (Jiang et al., 2023a) Open-Source 7B 32k

Table 17: Models Tested with ARCHON.
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Jaccard Similarity (%)

Inference-Time
Architecture MT Bench AlpacaEval 2.0 Arena-Hard

Auto MixEval MixEval
Hard MATH Code

Contests

Best Open-Source 70B+ Model,
Sampled 8 Times + Fuser 45.3% 52.1% 48.4% 55.2% 58.9% 65.2% 63.7%

Ensemble (8 Top Models),
Sampled Once Each + Fuser 31.6% 34.1% 28.9% 38.6% 40.9% 57.1% 53.4%

Table 19: Jaccard Similarities between Candidates Responses and Fused Response by Benchmark:
For the fuser, we use the best-performing 70B+ model for benchmark.

Figure 8: Fusion Layer Efficacy by Benchmark: From solely scaling the fusion layers, we see limited
benefits across the benchmarks explored but when we add other inference-time techniques, such as Critic
and Ranker, we see increased downstream performance as we continue scaling inference-time compute
(Figure 3). We use an 8-model ensemble of the top Generator models for each benchmark (Table 18). For
our Fuser layers, we use the best Fuser model for the final fuser layer (Table 18). For the intermediate layers,
we use the top-8 Fuser models for each benchmark.

A.4 ARCHON ARCHITECTURES
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Figure 9: All-Source Generalizable ARCHON Architecture: Using ITAS, we found this all-source
ARCHON configuration to be effective across the benchmarks explored (except for CodeContests). In the
diagram above, we use 10 SOTA all-source LLMs to create multiple successive layers of critic, ranker, and
fusers, with each successive fuser layer having less fusers to produce a "funneling" effect as the candidate
generations are processed. The layers of critic, ranker, and fuser led to better candidate generations through
iterative critique and rewriting. Each of the initial Generator models were sampled once.
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Figure 10: Open-Source Generalizable ARCHON Architecture: Using ITAS, we found this open-source
ARCHON configuration to be effective across the benchmarks explored (except for CodeContests). In the
diagram above, we use 10 SOTA open-source LLMs to create multiple successive layers of critic, ranker,
and fusers, with each successive fuser layer having less fusers to produce a "funneling" effect as the candidate
generations are processed. The layers of critic, ranker, and fuser led to better candidate generations through
iterative critique and rewriting. Each of the initial Generator models were sampled once.
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Figure 11: All-Source ARCHON Architecture for Instruction-Following: Using ITAS, we found
Claude-3.5-Sonnet as a generator, critic, ranker, and fuser to be an effective targeted architecture for
instruction-following tasks, such as MT Bench and AlpacaEval 2.0. The ranker picks the top-5 candidate
responses to send to the fuser. Each of the initial Generator models were sampled once.
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Figure 12: All-Source ARCHON Architecture for CodeContests: Using ITAS, we were able to get
improved code generation on CodeConetsts by utilizing Llama 3.1 405B for generation and GPT-4o for unit
testing (Figure 5). The unit test generator produces 10 unit tests for evaluation. Each of the initial Generator
models were sampled once.

A.5 ARCHON BY INFERENCE COMPUTE BUDGET, MODEL SIZE, AND COST

Datasets

Number of
Inference Calls

MT
Bench

Alpaca
Eval 2.0

Arena
Hard Auto MixEval MixEval

Hard

70
B+

M
od

el
s

1 55.0% 44.7% 45.6% 86.5% 61.1%
10 52.5% 50.6% 45.6% 86.5% 63.9%
20 65.3% 60.4% 59.4% 89.0% 65.0%
30 69.2% 64.5% 69.0% 89.5% 67.5%
40 69.5% 66.7% 69.0% 89.5% 67.5%
50 71.6% 66.7% 69.0% 89.5% 67.5%

C
lo

se
d

M
od

el
s

1 45.0% 57.5% 48.1% 88.9% 68.9%
10 57.1% 63.2% 68.4% 90.0% 70.1%
20 59.4% 66.5% 75.5% 90.6% 70.5%
30 70.2% 68.8% 77.4% 90.6% 72.9%
40 75.5% 68.8% 77.4% 90.6% 72.9%
50 80.4% 68.8% 77.4% 90.6% 72.9%

Table 20: ARCHON with Different Inference Budgets: For AlpacaEval 2.0, we use the length-controlled
win rate (LC WR).
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Datasets

Models / LLM Systems MT
Bench

Alpaca
Eval 2.0

Arena
Hard Auto MixEval MixEval

Hard

SOTA Single-Model 44.7% 57.5% 48.1% 68.9% 89.7%

Best Model, 1-Sample 15.7% 41.0% 18.3% 76.2% 46.1%

Best Model - 10-Sample + Ranking 16.5% 43.2% 18.9% 78.4% 48.5%

10-Model, 1-Sample Ensemble + Ranking 22.4% 48.2% 25.6% 81.5% 52.9%

10-Model, 1-Sample Ensemble + Fusion 14.3% 39.4% 17.5% 73.2% 45.2%

10-Model, 1-Sample Ensemble
+ Top-5 Ranking + Fusion 15.9% 41.2% 18.0% 75.1% 46.9%

10-Model, 1-Sample Ensemble
+ Critic + Fusion 10.5% 38.4% 16.5% 71.4% 42.5%

Table 21: ARCHON with 7B Open-Source Models: For AlpacaEval 2.0, we use the length-controlled
win rate (LC WR). We use open-source 7B models for testing from Table 17.

Models Cost ($) per
Million Input Tokens

Cost ($) per
Million Output Tokens

Claude 3.5 Sonnet $3 $15

Claude 3.0 Opus $15 $75

GPT-4o $5 $15

GPT-4-Turbo $10 $30

TogetherAI - Llama 3.1 405B Instruct $5 $5

TogetherAI - Llama 3.1 70B Instruct $0.88 $0.88

TogetherAI - Other Models $0.90 $0.90

Table 22: Model API Costs as of August 2024

Cost ($) per Query for Benchmark

Model /
LLM System MT Bench AlpacaEval 2.0 Arena-Hard

Auto MixEval MixEval
Hard MATH Code

Contests

Claude 3.5 Sonnet 0.0305 0.0171 0.0212 0.0231 0.0226 0.0325 0.384

GPT-4o 0.0481 0.0236 0.0324 0.0357 0.0361 0.514 0.562

Llama 3.1 405B Instruct 0.0281 0.0174 0.0185 0.0212 0.0205 0.305 0.372

General Purpose
ARCHON Architecture 0.364 0.189 0.195 0.284 0.252 0.375 0.461

Task Specific
ARCHON Architecture 0.401 0.210 0.221 0.295 0.265 0.425 0.448

Table 23: ARCHON Costs per Query by Benchmark

A.6 BAYESIAN OPTIMIZATION

Bayesian Optimization is a sequential design strategy for global optimization of black-box functions that
are expensive to evaluate Snoek et al. (2012). It is particularly useful when dealing with functions that have
unknown forms and are costly to evaluate, such as hyperparameter tuning in machine learning.

A.6.1 OVERVIEW OF BAYESIAN OPTIMIZATION

The core idea behind Bayesian Optimization is to build a probabilistic model of the objective function and
use it to select the most promising points to evaluate next. This process involves two main components:

1. Surrogate Model: A probabilistic model (often a Gaussian Process) that approximates the unknown
objective function.
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2. Acquisition Function: A function that guides the search for the optimum by suggesting the next point
to evaluate, based on the surrogate model.

A.6.2 STEPS IN BAYESIAN OPTIMIZATION

1. Initialization: Begin with a set of initial points D={(x1,y1),(x2,y2),...,(xn,yn)}, where xi is the input,
and yi=f(xi) is the objective function value at xi.

2. Model Building: Fit a surrogate model (e.g., Gaussian Process) to the observed data D.
3. Acquisition: Use the acquisition function to select the next point xn+1 to evaluate:

xn+1=argmax
x

a(x |D)

where a(x |D) is the acquisition function.
4. Evaluation: Evaluate the objective function at xn+1 to get yn+1=f(xn+1).
5. Update: Add the new data point (xn+1,yn+1) to the dataset D.
6. Repeat: Repeat steps 2-5 until convergence or a stopping criterion is met (e.g., budget exhausted, no

significant improvement).

A.6.3 GAUSSIAN PROCESS AS A SURROGATE MODEL

A Gaussian Process (GP) is commonly used as a surrogate model in Bayesian Optimization. It is defined
by a mean function µ(x) and a covariance function (kernel) k(x,x′):

f(x)∼GP(µ(x),k(x,x′))

Given a set of observations D, the GP provides a predictive distribution for the objective function at a
new point x:

• Predictive Mean: The expected value of the function at x:

µ(x |D)=kn(x)
TK−1

n y

where kn(x) is the covariance vector between x and the training points, and Kn is the covariance
matrix of the training points.

• Predictive Variance: The uncertainty in the function value at x:

σ2(x |D)=k(x,x)−kn(x)
TK−1

n kn(x)

A.6.4 ACQUISITION FUNCTIONS

Acquisition functions guide the search for the optimum by balancing exploration (trying out areas with high
uncertainty) and exploitation (focusing on areas with high predicted values). Common acquisition functions
include:

1. Expected Improvement (EI):

EI(x)=E[max(0,f(x)−f(x+))]

where f(x+) is the best observed value so far.
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2. Probability of Improvement (PI):

PI(x)=P(f(x)>f(x+)+ξ)

where ξ is a small positive number.
3. Upper Confidence Bound (UCB):

UCB(x)=µ(x |D)+κσ(x |D)

where κ controls the trade-off between exploration and exploitation.

A.6.5 SUMMARY OF BAYESIAN OPTIMIZATION

Bayesian Optimization iteratively uses a surrogate model to approximate the objective function and an
acquisition function to decide where to sample next. By focusing on promising areas of the search space and
systematically exploring uncertain regions, it efficiently optimizes complex, expensive-to-evaluate functions.

Figure 13: Impact of Different Optimization Algorithms on Inference-Time Architecture Search (ITAS):
On the benchmarks MT Bench and Arena-Hard-Auto, we compare four approaches for finding the optimal
inference-time architecture: random search, greedy search, and Bayes Optimization. Bayes Optimization
finds the optimal architecture in 88.5% less iterations compared to greedy search and 90.4% less iterations
compared to random search.

A.7 BAYES OPTIMIZATION VS. ALTERNATIVE APPROACHES

Search Techniques: Within the hyperparameter space, we explored three search algorithms for automating
the development of inference-time architectures:

1. Random Search: Randomly selects a combination of hyperparameters for our ARCHON architecture.
2. Greedy Search: Starting with a base ARCHON configuration, marginally changes each hyperparameter

and test if it improves performance or not. If it does, incorporate the change. If not, move on to the next
hyperparameter.

3. Bayesian Optimization: Efficiently selects the most promising hyperparameter configurations for
ARCHON by building a probabilistic surrogate model and leveraging an acquisition function for
hyperparameter selection (Snoek et al., 2012; Nardi et al., 2019) (Section A.6).

To get our model ranking for the benchmark, we calculate the model ranking by testing each model
individually on a 20% sample of each dataset benchmark in the first stage of the search. To get our fusion
model ranking for the benchmark, we use the same approach, testing each model’s fusion performance
with an ensemble of 10 randomly selected models from the available set. From our experiments, we found
that the best generator and fusion models could vary widely dataset to dataset, making it beneficial to perform
these rankings for new datasets (Table 18). For search, we use the same 20% sample of each dataset that was
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used for evaluating generation and fusion, allowing us to guide architecture search with improved evaluation
speed while getting meaningful development signal.

Comparing Search Algorithms: In Figure 13, we compare the effectiveness of each search algorithm
on our explored benchmarks. While random search guarantees the optimal ARCHON configuration, we found
Bayesian optimization to be most effective in terms of tradeoff between finding the optimal configurations
and minimizing the number of configurations tested. For 96.0% percent of the search iterations tested in
Figure 13, we found that Bayesian optimization had the optimal configuration amongst the four explored
search algorithms. We use 230 initial samples for our Bayes Optimization architecture search (Section A.6).
Bayesian optimization also found the best architecture configuration in 88.5% less evaluations than greedy
search and 90.4% less evaluations than random search.

Bayesian Optimization Analysis: In Table 26, we explore how the number of initial testing points, the
number of exploration iterations, and the ARCHON inference call budget impacts the effectiveness of Bayesian
optimization. Additional initial testing points continue improving search efficacy up until 230-240 samples,
where testing would be better delegated towards configuration search. For lower inference call budgets with
ARCHON (e.g. <20 inference calls), Bayesian optimization proved less effective, performing more similarly to
greedy search or random search given the limited search space (Table 27). Therefore, Bayesian optimization
is more effective for more open-ended ITAS with larger inference call budgets (e.g. >20 inference calls)
whereas traditional component engineering might be better for more limited inference call budgets.

A.8 ITAS ALGORITHMS COMPARISONS

# of Init.
Points

% of Total
Configs

Iter. till
Max. Config. Comb. Iter.

200 2.18% 353 553
210 2.29% 324 534
220 2.40% 301 521
230 2.51% 284 514
240 2.61% 261 501
250 2.72% 265 515
260 2.83% 256 516
270 2.94% 252 522

Table 24: MT Bench

# of Init.
Points

% of Total
Configs

Iter. till
Max. Config.

Comb.
Iter.

200 2.18% 478 678
210 2.29% 431 641
220 2.40% 415 635
230 2.51% 382 612
240 2.61% 389 629
250 2.72% 385 635
260 2.83% 372 632
270 2.94% 368 638

Table 25: Arena-Hard-Auto

Table 26: Bayesian Optimization Hyperparameter Comparisons: On MT Bench and Arena-Hard-Auto, we
compare Bayesian optimization configurations for the number of initial sample points. We find that 230 to 240
initial sample points minimizes the combined number of iterations (both initial sampling and exploring) to find
the optimal configuration. For the configurations explored, the total number of hyperparameter choices is 9,576.

Iterations to Convergence

Inference Budget 10 20 30 40 50

Random Selection 387 1152 2731 4359 5843
Greedy Search 343 984 2153 3045 4895

Bayes Optimization 254 386 452 515 589

Table 27: ITAS Algorithms Comparison by Inference Call Budget: For our comparison, we evaluate
on MT Bench.
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A.9 ARCHON BENCHMARKS AND RESULTS

Datasets

MT
Bench

Alpaca
Eval 2.0

Arena
Hard Auto

Arena
Hard Auto

MixEval
Hard MixEval MATH∗

Judge Model GPT-4
0314

GPT-4
Turbo

GPT-4
Turbo

GPT-4
Turbo N/A N/A N/A

Reference Model Claude 3.5
Sonnet

GPT-4
Turbo

Claude 3.5
Sonnet

GPT-4
Turbo N/A N/A N/A

Model / LLM System Infer.
Calls W.R. L.C.

W.R.
Raw
W.R. W.R. W.R Acc. Acc. Pass

@1

GPT-4o - 2024-05-13 1 44.7% 57.5% 51.3% 48.1% 80.3% 63.6% 88.0% 72.0%
Claude 3.5 Sonnet 1 N/A 52.4% 40.6% N/A 80.9% 68.9% 89.7% 72.0%

Llama 3.1 405B Instruct 1 44.7% 40.3% 37.7% 28.4% 64.1% 66.2% 88.9% 74.0%

MoA 19 51.6% 65.1% 59.8% 52.2% 84.2% 62.5% 87.3% 72.5%
MoA Lite 7 45.6% 59.3% 57.0% 40.6% 87.8% 61.1% 87.1% 70.5%

O
pe

n
So

ur
ce General-purpose

ARCHON Architecture 35 67.5% 63.0% 68.3% 66.2% 85.1% 65.5% 86.9% 75.5%

Task-specific
ARCHON Architectures 44 71.6% 66.7% 70.7% 69.0% 89.5% 67.5% 89.6% 80.5%

C
lo

se
d

So
ur

ce General-purpose
ARCHON Architecture 32 73.1% 63.5% 69.1% 70.5% 85.8% 67.7% 88.2% 77.0%

Task-specific
ARCHON Architectures 40 77.5% 68.4% 72.1% 74.4% 90.2% 72.9% 90.4% 79.0%

A
ll

So
ur

ce General-purpose
ARCHON Architecture 35 76.8% 65.8% 70.2% 72.5% 89.3% 70.1% 88.1% 78.0%

Task-specific
ARCHON Architectures 39 80.4% 67.6% 73.3% 76.1% 92.1% 72.9% 90.6% 80.5%

Table 28: ARCHON’s Strong Performance on the Complete Evaluation Datasets after ITAS
Optimization: We find that ARCHON’s inference-time architectures consistently outperform single-call
state-of-the-art LLMs, both open-source and closed-source baselines, when evaluating on the complete
benchmarks (Table 29). We explore two configurations: ITAS for building custom ARCHON configurations
for each individual benchmark and ITAS for building a single general-purpose ARCHON configuration for
all the benchmarks (Section 4.4). We find that a general ARCHON configuration lags behind the custom
ones by only 3.2 percentage points, on average, across our all-source settings, which suggests the efficacy
of general-purpose inference-time architectures created with our framework. For Arena-Hard-Auto, we
also include a configuration with Claude 3.5 Sonnet as a stronger reference model for comparison against
ARCHON inference-time architectures and to mitigate bias from GPT judges towards GPT generations. For
MT Bench, we use a GPT-4-0314 judge model instead of newer LLM judges to be consistent with previous
results on this benchmark. For our task-specific ARCHON architectures, we also provide the average inference
calls across the given benchmarks. For our full-list of models explored, please see Table 17. For MATH, we
use a randomly sampled subset of size 200 for evaluation (Section 4.1; Table 29). We include our ARCHON
architecture results on the held-out 80% subset of each evaluation benchmark in Table 1.
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Benchmark Example
Count

Reference
Model

Judge
Model Scoring Type Metric

AlpacaEval 2.0 805 GPT-4-Turbo GPT-4-Turbo Pairwise
Comparison

L.C. & Raw
Win Rates

Arena-Hard-Auto 500 Claude-3.5-Sonnet
GPT-4-0314 GPT-4-Turbo Pairwise

Comparison Win Rate

MT-Bench 80 Claude-3.5-Sonnet GPT-4-0314 Pairwise
Comparison

Adjusted
Win Rate

MixEval 2000 N/A N/A Ground Truth Accuracy

MixEval-Hard 500 N/A N/A Ground Truth Accuracy

MATH 200
(sampled from 5000) N/A N/A Ground Truth Pass@1

CodeContests 140
(non-visual queries) N/A N/A Ground Truth Pass@1

Table 29: Benchmark Overview: Evaluation configurations for AlpacaEval 2.0 (Li et al., 2023),
Arena-Hard-Auto (Li et al., 2024b), MT-Bench (Zheng et al., 2023), MixEval (Ni et al., 2024), MixEval
Hard, MATH (Hendrycks et al., 2021), and CodeContests (Li et al., 2022)

.

Arena-Hard-Auto

Model / LLM System Score C.I.

Claude 3.5 Sonnet N/A N/A
GPT-4o 48.1% (-2.3, 1.8)

Llama 3.1 405B Instruct 28.4% (-2.7, 2.5)

O
pe

n
So

ur
ce

General-purpose
ARCHON Architecture 66.2% (-2.4, 2.2)

Task-specific
ARCHON Architectures 69.0% (-2.8, 2.5)

C
lo

se
d

So
ur

ce

General-purpose
ARCHON Architecture 70.5% (-2.5, 2.0)

Task-specific
ARCHON Architectures 74.4% (-2.3, 1.6)

A
ll

So
ur

ce

General-purpose
ARCHON Architecture 72.5% (-2.5, 1.8)

Task-specific
ARCHON Architectures 76.1% (-1.8, 2.2)

Table 30: ARCHON Results on Arena-Hard-Auto Results with Claude-3.5-Sonnet as Baseline Model:
The baseline model is Claude-3.5-Sonnet (default baseline model: GPT-4-0314) while the judge model
is GPT-4-Turbo.

MixEval - Sub-Datasets

Model / LLM System Infer.
Calls GSM8K TriviaQA DROP MATH BBH AGIEval Average

GPT-4o - 2024-05-13 1 94.9 89.1 88.2 98.5 98.3 71.5 90.3

Claude 3.5 Sonnet 1 98.0 92.0 92.6 96 95.6 78.0 92.0

Llama 3.1 405B Instruct 1 98.2 87.9 89.6 91.5 95.8 73.2 89.6

General-purpose
ARCHON Architecture 29 98.3 94.8 94.6 98.1 97.3 82.1 94.2

Task-specific
ARCHON Architectures 34 98.2 96.7 95.6 98.5 98.8 84.2 95.7

Table 31: MixEval Results by Sub-Dataset: For the average computed, we do not introduce any weighting
for each dataset.
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MixEval - Sub-Datasets

Model / LLM System Infer.
Calls GSM8K TriviaQA DROP MATH BBH AGIEval Average

GPT-4o - 2024-05-13 1 72.3 70.5 70.2 94.4 80.0 53.5 73.5

Claude 3.5 Sonnet 1 87.3 75.5 79.3 82.5 80.0 74.6 79.9

Llama 3.1 405B Instruct 1 98.7 71.2 70.7 86.9 78.8 62.0 78.1

General-purpose
ARCHON Architecture 33 96.7 82.7 83.2 93.4 82.0 76.7 85.8

Task-specific
ARCHON Architectures 37 98.9 86.2 85.2 96.2 86.0 80.1 88.8

Table 32: MixEval-Hard Results by Sub-Dataset: For the average computed, we do not introduce any
weighting for each dataset.

GSM8K MMLU
Math

HumanEval
Python MBPP

Model Pass@1 Pass@1 Pass@1 Pass@1

GPT-4o 97.1% 84.8% 89.0% 87.5%

Claude 3.5 Sonnet 96.8% 90.9% 90.2% 88.9%

Llama 3.1 405B Instruct 95.9% 85.4% 90.2% 88.6%

Table 33: Additional Math and Code Benchmarks Explored
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