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Abstract

Probabilistic circuits (PCs) are a family of genera-
tive models which allows for the computation of
exact likelihoods and marginals of its probability
distributions. PCs are both expressive and tractable,
and serve as popular choices for discrete density
estimation tasks. However, large PCs are suscep-
tible to overfitting, and only a few regularization
strategies (e.g., dropout, weight-decay) have been
explored. We propose HyperSPNs: a new paradigm
of generating the mixture weights of large PCs us-
ing a small-scale neural network. Our framework
can be viewed as a soft weight-sharing strategy,
which combines the greater expressiveness of large
models with the better generalization and memory-
footprint properties of small models. We show the
merits of our regularization strategy on two state-
of-the-art PC families introduced in recent litera-
ture — RAT-SPNs and EiNETs — and demonstrate
generalization improvements in both models on
a suite of density estimation benchmarks in both
discrete and continuous domains.

1 INTRODUCTION

One of the core motivations for building models of prob-
ability distributions from data is to reason about the data
distribution. For example, given a model of the distribution
over driving routes, we may like to reason about the proba-
bility that a driver will take a certain route given that there is
congestion on a certain street. Or, given a distribution over
weather conditions, we may like to reason about the proba-
bility of it raining & times in the next year. Traditional prob-
abilistic models such as Categorical/Gaussian Mixture Mod-
els or Hidden Markov Models (HMMs) are well-equipped
to answer these types of queries with exact probabilities
that are consistent with the model distribution [1]]. But, their

learned model distribution may not accurately approximate
the data distribution due to their simplicity.

On the other end of the spectrum, the modern wave of deep
generative models has largely focused on learning accurate
approximations of the true data distribution, at the cost of
tractability. High capacity models such as autoregressive
or flow models can mimic the true data distribution with
great fidelity [30, 12} 20]]. However, they are not designed
for reasoning about the probability distribution beyond com-
putation of likelihoods. More illustrative of this trend are
GANs and EBMs, which are expressive enough to sample
high-quality images, but give up even the ability to compute
exact likelihoods [18} 13]].

To maintain the ability to reason about the distribution in-
duced by our model, we need to explore within tractable
probabilistic models. Of these model families, probabilis-
tic circuits (e.g. Sum Product Networks) are one of the
most expressive and general, subsuming shallow mixture
models, and HMMs while maintaining their tractable prop-
erties [} 24, |31]]. Their expressive power comes from their
hierarchical / deep architecture, allowing them to express a
large number of modes in their distribution. Their tractabil-
ity comes from global constraints imposed in their network
structure, enabling efficient and exact computation of like-
lihoods, marginals, and more. Probabilistic circuits (PC)
are a popular choice for density estimation [32} [16] and
approximate inference in discrete settings [27].

Given the status of probabilistic circuits as one of the most
expressive models among tractable probabilistic model fam-
ilies, recent works have looked into pushing the limits of
expressivity of probabilistic circuits [14} 23| 22]]. Naturally,
the bigger and deeper the probabilistic circuit, the greater
the expressiveness of the model. This has led to a trend
of building large probabilistic circuits via design choices
such as tensorizing model parameters, forgoing structure
learning, and more. For example, [22] report the training of
probabilistic circuits with 9.4M parameters.

However, larger probabilistic circuits are more susceptible
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to overfitting. In addition, the so-called double-descent phe-
nomenon [17]] (wherein highly overparameterized models
exhibit low generalization gap) has yet to be observed in
probabilistic circuits. This puts even more importance on
effective regularization strategies for training large proba-
bilistic circuits. Recent works have used dropout [23]] and
weight decay [33]], but there has not been much exploration
of other regularization strategies.

In this work, we propose HyperSPNs, which regularize by
aggressively limiting the degrees of freedom of the model.
Drawing inspiration from HyperNetworks [10]], we generate
the weights of the probabilistic circuit via a small-scale
external neural network. More precisely, we partition the
parameters (mixture weights) of the PC into several sectors.
For each sector, we learn a low-dimensional embedding,
then map that to the parameters of the sector using the
neural network. The generated parameters still structurally
form a PC, so we retain the same ability to reason about the
probability distribution induced by the HyperSPN.

HyperSPNs combine the greater expressiveness of large
probabilistic circuits with the better generalization of mod-
els with fewer degrees of freedom. The external neural net-
work has much fewer parameters than the original PC, ef-
fectively regularizing the PC through a soft weight-sharing
strategy. As a bonus, the memory requirement for storing
the model is much smaller, and the memory requirement
for evaluating the model can also be drastically reduced by
materializing sectors of the PC “on the fly”. We verify the
empirical performance of HyperSPNs on density estimation
tasks for the Twenty Datasets benchmark [[11], the Amazon
Baby Registries benchmark [7], and the Street View House
Numbers (SVHN) [18] dataset, showing generalization im-
provements over competing regularization strategies in all
three settings. Our results suggest that HyperSPNs are a
promising framework for training probabilistic circuits.

2 BACKGROUND

Probabilistic circuits (PCs) are a family of generative mod-
els known for their tractability properties [5, 24} 31]. They
support efficient and exact inference routines for computing
likelihoods and marginals/conditionals of their probabil-
ity distribution. The internals of a PC consist of a network
(edge-weighted Directed Acyclic Graph) of sum and product
nodes, stacked in a deep/hierarchical manner and evaluated
from leaves to root. PCs gain their tractability by enforcing
various structural constraints on their network, such as de-
composability, which restricts children of the same product
node to have disjoint scopes [4}|5]. Different combination of
constraints leading to different types of PCs, including Arith-
metic Circuits [3]], and most notably Sum Product Networks
(SPNs) [24].

The probability of an input « on the PC is defined to be the

value g0t () obtained at the root of the PC after evaluating
the network topologically bottom-up. Internally, edges lead-
ing into a sum node are weighted with mixture probabilities
« (that sum to 1), and edges leading into a product node are
unweighted. Leaf nodes at the base of the network contain
leaf distributions /. The nodes of the PC are evaluated as
follows, with ch(z) denoting the children of node i:

l;(x) i is leaf node

Zj@h(i) a;;9;(x) 118 sum node

Hjech(i) g;(x) 1 is product node

gi(z) =

As long as the leaf distributions are tractable and the net-
work structure satisfies the constraints of decomposability
and smoothness, the output at g, iS guaranteed to be nor-
malized, and corresponding marginals/conditionals can be
evaluated with linear-time exact inference algorithms [4, 5]].

The network structure of a PC refers to the set of nodes and
edge connections in the DAG, excluding the edge weights.
There are various ways of constructing the network struc-
ture of PCs, e.g., through the use of domain knowledge
or through search-based methods [} [15} 16l [26]]. Recently,
there has been a trend of abstracting away individual sum
and product nodes, and instead dealing directly with layers
that satisfy the structural constraints necessary for tractabil-
ity [23| 22| 27]. Prescribing a network structure through
a stacking of these layers leads to memory and hardware
efficiencies that allow us to scale up the training of PCs to
millions of edges.

Given a PC with a fixed network structure, we can learn
its edge weights to best fit the probability distribution of
data. We will refer to the full set of mixture probabili-
ties leading into sum nodes in the PC as its parameters.
These parameters can be learned using methods such as
Expectation-Maximization (EM) [21]], signomial program
formulations [34]], or simply via (projected) gradient de-
scent. EM has been a well-studied choice for optimizing
PCs [21} 22]], although it requires hand-derived updates that
can be tedious and sometimes even incorrect [24]. In this
work, we rely on gradient descent, which is straightforward
and works out-of-the-box on new families of models [33]].

Learning a PC with a large number of parameters can be
prone to overfitting. One regularization strategy that has
been proposed is “probabilistic dropout” [23]], which takes
inspiration from the standard dropout technique in neural
networks [28]] and randomly ignores a subset of edges lead-
ing into sum nodes. Weight decay has also been commonly
used as another form of regularization [33]]. Unfortunately,
there has been little exploration done around regularization
strategies, and some current approaches only work in lim-
ited settings (e.g., dropout has been limited to settings that
use PCs as a discriminative classifier [23]).
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(a) We show the structure of a RAT-SPN over n = 4 variables using layer size k = 3. Solid edges are
weighted with trainable parameters, and dashed edges are unweighted. Each fully connected layer of

solid edges can be treated as a sector.
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(b) Counting the # of parame-
ters, given the number of vari-
ables n and layer size k.

Figure 1: Given a RAT-SPN, we can partition its set of parameters into sectors. The trainable parameters (solid edges) in
Figure[Iacan be grouped into fully-connected layers of size 1 x k, k x k, and k x 2, oriented in a binary-tree structure. In
Figure[Tb] we visualize the sectors as blocks, counting the number of blocks in each binary tree layer to arrive at the total
parameter count. The sector abstraction is a key ingredient in implementing the HyperSPN’s soft weight-sharing strategy.

2.1 RAT-SPNS

Two particular PC structures have been recently proposed,
namely RAT-SPNs [23]] and EiNETs [22], both of which
scale to millions of parameters. They are conceptually simi-
lar, the main difference being that EINETSs are designed for
better GPU performance. To ground our discussion around
regularizing large PCs, we will describe our methods just on
RAT-SPNs, although we also apply our methods on EiNETs
in later experiments too. In RAT-SPNs, the input variables
are organized into a binary tree, with one leaf in the binary
tree corresponding to each variable. We start from the base
of the SPN and construct its full structure by stacking sum
layers and product layers. For each leaf node in the binary
tree, we create one fully connected sum layer on top of the
SPN leaves. For each internal node in the binary tree, we
create one product layer that merges its two children layers
in the SPN, and then stack one fully connected sum layer
on top. We illustrate this construction in Figure[T] Finally,
RAT-SPNs create so-called replicas of this structure, by
repeating the construction but with permuted orderings of
input variables in the binary tree leaves. The replicas are
then combined under one top-level mixture distribution (for
readability, Figure[I]does not show any replicas).

The size of each sum layer in the RAT-SPN is determined by
a single constant k. For convenience, we also let the size of
each product layer be k. This fully specifies the structure of
our SPN. For the rest of the paper, it is helpful to abstractly
group the parameters of the RAT-SPN into disjoint sectors.

Corresponding to the root of the binary tree, we have a sector
with 1 x k parameters. Corresponding to each internal node
in the binary tree, we have a sector with k x k parameters.
Finally, corresponding to each leaf in the binary tree, we
have a sector with k& x [ parameters, where [ is the number
of SPN leaf distributions per variable (we use [ = 2 unless
otherwise stated).

As shown in Figure[I] for n variables (where n is a power
of 2) and r replicas, this corresponds to 2n — 1 sectors
totaling O(rnk?) parameters. In particular, for each replica
there are (n — 2)k? + (2n + 1)k parameters. For example,
in a problem domain with 1000 variable, using layer size
k = 10 and replica » = 10 leads to a RAT-SPN of around
1M parameters.

3 HYPERSPNS

We propose HyperSPNs, an approach of regularizing proba-
bilistic circuits with a large number of parameters by limit-
ing the degrees of freedom of the model using an external
neural network. We describe our method concretely on RAT-
SPNs, which we will refer to as simply SPNs.

To regularize the SPN, we introduce a smaller-scale external
neural network to generate the parameters of the SPN (see
Figure[2). We associate each of the sectors of the SPN with
a sector embedding. For each sector, we map the embedding
to the parameters of the sector via the neural network. Then,
we use these mapped parameters directly as the parameters
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Figure 2: HyperSPN: we introduce a small-scale external neural network that generates the parameters of the underlying
SPN. Using the sector abstraction from Figure[I] we learn an embedding of dimension h for each of the 2n — 1 sectors. The
neural network maps each embedding to the parameters of its corresponding sector, which materializes the underlying SPN.
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Figure 3: We depict the computation graph when training
a HyperSPN. The red modules have trainable parameters,
whereas the gray module does not. Red arrows show the
flow of gradients during backpropagation.

of the SPN, re-normalize the parameters leading into a sum
node to add up to 1, and evaluate the SPN as usual. The com-
putation graph is shown in Figure[3] We materialize the SPN
in the forward pass, and propagate the gradients through the
SPN in the backward pass. We optimize the neural network
and embeddings jointly using gradient descent.

HyperSPNs can aggressively reduce the degrees of freedom
of the original SPN. Using embeddings of size h, the number
of learnable parameters is reduced to O((rn + k?)h). For
the same above example with n = 1000,k = 10,r =
10, choosing embeddings of dimension i = 5 reduces the
number of learnable parameters 20 fold, from around 1M
down to around 50k parameters.

The lower degrees of freedom mitigates overfitting of the
model. At the same time, the materialized SPN has a large
number of mixture weights, and thus can express distribu-
tion families with a greater number of clusters compared to
a small SPN with the same degrees of freedom. We visualize
this with a motivating example in Figure @] where we repre-
sent a dataset using a grid that is split recursively for each

variable (we only draw the splits for the first 2 variables; the
rest is implied). Intuitively, the number of parameters of the
SPN is tied closely to the number of clusters in the distri-
bution. As a result, training a large SPN can produce many
clusters that overfit to the training points in blue (Figure 4a)),
and training a small SPN can lead to coarse factorizations
and inflexible clusters (Figure @b). Both cases can lead to
poor generalization on the testing points in orange.

On the other hand, the HyperSPN uses a soft weight-sharing
strategy by storing its parameters as low-dimensional em-
beddings and decoding them through a small-scale shared
neural network. This allows the model to learn a high num-
ber of clusters without suffering from too high of a degree of
freedom. In Figure [Ac] we visualize the soft weight-sharing
as fixing the shape of the cluster-triples within each quad-
rant, while still giving the model control over the center
position of each cluster-triple. In this way, HyperSPNs can
improve generalization compared to a large SPN with the
same number of mixture weights and a small SPN with the
same degrees of freedom. We verify this phenomenon on a
hand-crafted dataset in the Appendix, and also observe simi-
lar improvements on real world datasets in our experiments.

3.1 MEMORY-EFFICIENT EVALUATION

Another merit of HyperSPNs is the ability for low-memory
storage of the model, since we only need to store the em-
beddings and the neural network, which together have much
fewer parameters than the SPN. Importantly, our abstraction
of the SPN structure into sectors allows us to forgo storage
of the nodes and edges in the SPN network. Moreover, not
only can we be memory-efficient during storage , but we
can also be memory-efficient during evaluation. To do so,
we materialize sectors of the SPN on the fly, and erase them
from memory when they become unnecessary.

The sectors of the SPN are structured as a binary tree, so
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(a) Large SPN has too much flexibility in
fitting its clusters.

(b) Small SPN is limited in the flexibility
and number of clusters.

(c) HyperSPN has many clusters, with
shared degree of freedom.

Figure 4: We visualize the soft weight-sharing effect in HyperSPNs, with training data in blue and testing data in orange.
HyperSPNs use a large underlying SPN structure, allowing for a large number of clusters (3 in each quadrant) to fit the data
well. Since the SPN parameters correspond to mixture weights, the weight-sharing strategy in HyperSPNs prevent overfitting
by limiting the degrees of freedom across mixtures. We depict this as fixing the shape of the cluster-triples across quadrants.

to evaluate each sector we need all the input values leading
into the sector. These input values correspond to the output
values (each a vector of size k) of its children sectors. Eval-
uating the binary tree bottom-up depth-wise is possible, but
is also costly since the leaf layer has n sectors leading to
O(nk) cost for storing the output values of children sectors.
Rather, we can proceed greedily, evaluating leaf sectors left-
to-right and propagating values up a sector as soon as all of
its children sectors have been evaluated. A simple recursive
argument shows that this procedure stores only O(k logn)
intermediate values at a time, and is provably optimal.

Proposition 1. Evaluating a complete binary-tree compu-
tation graph requires ©(log n) memory, where n is the num-
ber of leaves in the complete binary-tree, and the memory
cost of storing each intermediate value and performing each
computation is assumed to be a constant.

Proof. Perform the sequence of computations based on a
post-order traversal of the binary tree, erasing children val-
ues from memory when their parent value has been com-
puted. This process requires storing at most logn + 1 in-
termediate values at any time. To show optimality, let C'(7)
denote the optimal memory cost needed to compute the
value for a node 7. For non-leaf nodes 7, Let j; be the first
child of ¢ that we begin to process, and j, be the second.
Since we processed j; first (which requires at least 1 unit
of memory throughout), we have C(i) > 1+ C(jz2). As the
base case, for leaf nodes i, we have C'(i) = 1. Thus, the
optimal memory cost for the whole computation is at least
C(root) =logn + 1. O

Corollary 1. Evaluating a HyperSPN with an underlying
RAT-SPN structure takes O(klogn + h(k? 4+ rn)) memory.

The cost in Corollary [I] can be broken down into two
parts, where O(k log n) memory is needed for storing inter-
mediate values in the binary-tree computation graph, and

O(h(rn+k?)) memory is needed for storing the HyperSPN
parameters and materializing the SPN one sector at a time.

The takeaway is that both storing and evaluating a Hyper-
SPN require less memory than storing and evaluating the un-
derlying SPN, which require O(rnk?) memory. This mem-
ory efficiency arises from our key insight of using sector
abstractions to enable 1) encoding the SPN parameters as
embeddings, 2) forgoing storage of the nodes and edges of
the SPN structure, and 3) mapping the SPN to a binary-tree
computation graph that allows for low-memory evaluation.

4 EXPERIMENTS

We experiment with HyperSPN on three sets of density
estimation tasks: the Twenty Datasets benchmark, the Ama-
zon Baby Registries benchmark, and the Street View House
Numbers (SVHN) dataset. All runs were done using a single
GPU. We primarily compare with weight decay as the com-
peting regularization method. We also include comparisons
with smaller SPNs that have the same degrees of freedom as
our HyperSPN, and with results reported from other works
in literature. We omit results on dropout because in our
experimentation (and as suggested by [23]]), dropout on
SPNs worked poorly for these generative density estimation
tasks. In all three sets of tasks, we find that HyperSPNs
give better generalization performance than weight decay,
when comparing using the same underlying SPN structure
and optimizer. Furthermore, HyperSPNs outperforms results
reported in literature on EiNETs trained using the same opti-
mization method (Adam), and is competitive against results
reported on stochastic EM (sEM).

4.1 TWENTY DATASETS

The Twenty Datasets benchmark [[11]] is a standard bench-
mark used in comparing PC models. Our experiment aims to



Table 1: Twenty Datasets. We plot the test log-likelihood and the number of trainable parameters. Bold values indicate
the best results between the two regularization strategies of Weight Decay and HyperSPN, using the same SPN structure
and optimizer. Underlined values indicate the best results when compared also to reported values in literature using
EiNETs/Adam* and RAT-SPN/sEM.

Adam Adam Adam sEM

Name Variables Weight Decay HyperSPN * ]

Log-LH # Params | Log-LH # Params || Log-LH | Log-LH
NLTCS 16 -6.02 40050 -6.01 9115 -6.04 -6.01
MSNBC 17 -6.05 42550 -6.05 9615 -6.03 -6.04
KDDCup2k 64 -2.14 160050 -2.13 33115 -2.15 -2.13
Plants 69 -13.36 172550 -13.26 35615 -13.74 -13.44
Audio 100 -40.18 250050 -39.83 51115 -40.22 -39.96
Jester 100 -52.98 250050 -52.75 51115 -53.10 -52.97
Netflix 100 -57.15 250050 -56.74 51115 -57.10 -56.85
Accidents 111 -36.09 277550 -35.36 56615 -37.45 -35.49
Retail 135 -10.91 337550 -10.89 68615 -10.97 -10.91
Pumsb-star 163 -31.76 407550 -30.79 82615 -39.23 -32.53
DNA 180 -98.41 450050 -98.49 91115 -97.68 -97.23
Kosarek 190 -10.93 475050 -10.89 96115 -10.92 -10.89
MSWeb 294 -10.40 735050 -9.90 148115 -10.26 -10.12
Book 500 -35.01 1250050 | -34.90 251115 -35.15 -34.68
EachMovie 500 -52.99 1250050 | -51.32 251115 -55.49 -53.63
WebKB 839 -159.91 2097550 | -158.60 420615 -160.51 | -157.53
Reuters-52 889 -90.14 2222550 | -85.65 445615 -92.76 -87.37
20Newsgrp 910 -154.37 2275050 | -152.49 456115 -154.41 | -152.06
BBC 1058 -262.01 2645050 | -254.44 530115 -267.86 | -252.14
Ad 1556 -52.23 3890050 | -28.25 779115 -63.82 -48.47

compare the use of HyperSPN against the baseline of regu-
larization via weight decay, using the same underlying SPN
structure for both. We use the RAT-SPN structure described
in Section choosing layer size parameter £k = 5 and
replicas 7 = 50, randomizing the variable orders for each
replica. The number of learnable parameters in this SPN
structure is shown in the # Params column under Weight
Decay in Table[I] The HyperSPN uses the exact same under-
lying SPN structure, along with an external neural network
(a 2 layer MLP of width 20) and embeddings of dimension
h = 5. The number of learnable parameters in the Hyper-
SPN is around 5 times smaller, as shown in the # Params
column under HyperSPN.

In Table[T] we show in bold the better of the results between
Weight Decay and HyperSPN. We see that HyperSPN out-
performs Weight Decay on all but two of the datasets. On
top of that, storing and evaluating the HyperSPN is much
more memory-efficient, as shown by the reduced number of
parameters and as described by the techniques in Sec[3.1]

On the 2 right-most columns, we directly copy over results
reported in literature. We compare with training EiNETs
on Adam (the same optimizer as our setup) [22], and train-
ing RAT-SPNs on sEM (a similar network structure as our
setup) [23]. We see that HyperSPN also compares favorably

to these reported results (the best values underlined).

To illustrate the regularization effects of HyperSPN, we
plot training curves on the training and validation data for
the Plants and for Pumsb-star datasets. We use the same
HyperSPN model described above. For clarity, let M denote
the size of its underlying SPN and m denote its true number
of learnable parameters (those in its external neural network
and embeddings). We then construct two SPNs — one with
size M (SPN-Large) and one with size m (SPN-Small) —
and overlay their training curves in Figure 5] For both plots
in Figure [5aland [5b] SPN-Large suffers from overfitting on
the training data (presumably due to the large degrees of
freedom), and SPN-Small fits the data poorly (presumably
limited by the size of the SPN). Instead, HyperSPN strikes
the balance between the expressiveness of a large underlying
SPN, and regularization properties from the compact neural
network with low degrees of freedom. This translates to
better generalization on the validation data shown in the
plots of Figure[5] and on the testing data shown in Table[T]

4.2 AMAZON BABY REGISTRIES

We conduct similar experiments on the Amazon Baby Reg-
istries dataset [7]]. We repeat the same experimental setup
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Figure 5: We plot the training curves on Plants and Pumsb-star from the Twenty Datasets benchmark. The HyperSPN has
the same underlying SPN as SPN-Large, but limits its degrees of freedom to the same as those of SPN-Small. In both plots,
HyperSPN fits the data better than SPN-Small, and is better regularized than SPN-Large, leading to the best results on the

validation set.

of maximizing the log-likelihood of data, and use the same
model structure for HyperSPN and Weight Decay as their
respective structures described in the previous section.

In Table 2] we see that HyperSPN clearly outperforms
Weight Decay as a regularization technique, giving better
test log-likelihoods (in bold) while using around 5 times
fewer trainable parameters. On the right-most column we
include results as reported in literature [33] on training
EiNETs using sEM. Although the comparison with this
right-most column is hard to interpret due to the differences
in model architecture, optimization procedure, and regular-
ization, we still note that HyperSPNs compare favorably on
the majority of the datasets (best values underlined).

The experimental results on the Amazon Baby Registries
benchmark confirm our findings in the previous subsection.
On both tasks, HyperSPNs generalizes much better than
Weight Decay when compared on the same underlying SPN
structure, while enabling more memory-efficient storage
and evaluation of the model.

4.3 STREET VIEW HOUSE NUMBERS (SVHN)

Lastly, we experiment on the SVHN dataset [18]. We
use the infrastructure provided by [22]], which groups the
train/valid/test data into 100 clusters, then learns a separate
PC for each cluster. The final density estimator is a combina-
tion of all the individual PCs under one mixture distribution.
Here, we study the performance of each individual PC on
each cluster separately, comparing between weight decay
and HyperSPN when trained using Adam.

The underlying PC structure is an EiNET with leaves that
hold continuous distributions [22]. To introduce soft weight-
sharing of the HyperSPN on the EiNET, we partition the
parameters into sectors of size 40, which is the number of
sum nodes used in each layer in the setup of [22]. We use
an embedding size of h = 8, which reduces the number of
learnable edge-parameters in the EiNET by about 5 fold.

In Figure [6] we plot the difference between HyperSPN and
weight decay in log-likelihood on the test set, sorted in
increasing order for readability. The higher the value, the
more improvement we observe when using HyperSPN as
the regularization method. In around 70% of the clusters,
we see an improvement in generalization, and on average
the HyperSPN achieves an improvement in log-likelihood
of 13 £5.

Our experiments suggest that HyperSPNs give a superior
regularization strategy for PCs compared to the primary
alternative of weight decay. HyperSPNs also lead to better
performance than other reported approaches in literature that
use the same optimizer (Adam), as well as other reported
methods that use SEM. Our experimental results are gen-
eral, showing that HyperSPNs are applicable across three
standard benchmarks, across PCs with discrete and continu-
ous leaf distributions, and across different state-of-the-art
structures such as RAT-SPNs and EiNETs.

S RELATED WORK

Many existing works focus on structure learning for proba-
bilistic circuits, covering a wide range of PC types [6} 26} 25,
14]). These approaches often regularize by limiting the com-
plexity of the structure [6, 32]. However, structure learning
in general can be tedious and difficult to tune [23]].

Recent works have embraced a more deep-learning-like
framework by prescribing the structure of the PC and learn-
ing only the model parameters [23, 22]]. This framework
leads to the training of large PCs with millions of parame-
ters. However, little exploration has been done around regu-
larization in this new parameter-centric framework. For gen-
erative settings, dropout was suggested as unsuitable [23],
leaving only weight decay as the primary parameter regular-
ization method. In our work, we propose a new regulariza-
tion strategy via HyperSPNs, showing large improvements
in generalization.



Table 2: Amazon Baby Registries. We plot test log-likelihood and number of trainable parameters. Bold values indicate the
best result between the regularization strategies of Weight Decay and HyperSPN, using the same SPN structure and optimizer.
Underlined values indicate the best result when compared also to reported values in literature using EINETs/sEM*.

Adam Adam sEM
Name Variables Weight Decay HyperSPN *
Log-LH # Params | Log-LH # Params || Log-LH

Apparel 100 -9.32 250050 -9.24 50655 -9.24
Bath 100 -8.58 250050 -8.47 50655 -8.49
Bedding 100 -8.60 250050 -8.54 50655 -8.55
Carseats 34 -4.80 85050 -4.66 17655 -4.72
Diaper 100 -9.94 250050 -9.88 50655 -9.86
Feeding 100 -11.39 250050 -11.30 50655 -11.27
Furniture 32 -4.60 80050 -4.34 16655 -4.38
Gear 100 -9.23 250050 -9.21 50655 -9.18
Gifts 16 -3.46 40050 -3.43 8655 -3.42
Health 62 -7.51 155050 -7.38 31655 -1.47
Media 58 -7.93 145050 -7.84 29655 -7.82
Moms 16 -3.47 40050 -3.54 8655 -3.48
Safety 36 -4.62 90050 -4.34 18655 -4.39
Strollers 40 -5.28 100050 -4.99 20655 -5.07
Toys 62 -7.82 155050 -7.78 31655 -7.84
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Figure 6: We plot the improvement in test log-likelihood on the Street View House Numbers (SVHN) dataset when using
HyperSPN instead of weight decay. Following the setup from [22], the dataset is split into 100 clusters and a separate
HyperSPN is learned for each cluster. We sort the cluster index by improvement for readability. The dashed blue line

corresponds to the average log-likelihood improvement of 13.

Finally, the idea of generating parameters with an external
neural network comes from HyperNetworks [10], which
were introduced as an effective architecture for recurrent
models. Soft weight-sharing strategies in general [[19] have
also shown good empirical results [2] and proven useful for
neural network compression [29].

6 CONCLUSION

We propose HyperSPNs, a new paradigm of training large
probabilistic circuits using a small-scale external neural net-
work to generate the parameters of the probabilistic circuit.
HyperSPNs provide regularization by aggressively reducing
the degrees of freedom through a soft weight-sharing strat-

egy. We show empirical improvements in the generalization
performance of PCs compared to competing regularization
methods, across both discrete and continuous density estima-
tion tasks, and across different state-of-the-art PC structures.
As a bonus, HyperSPNs enable memory-efficient storage
and evaluation, combining the expressiveness of large PCs
with the compactness of small models.

Limitations and Future Work Our analysis of the mem-
ory efficiency of HyperSPNs is limited their storage and
evaluation, since training HyperSPNs involves manipulat-
ing of the gradients through the underlying SPN. Future
work can look into combining HyperSPNs with techniques
from memory-efficient back propagation [3 9] to train very
large SPNs that do not fit in memory.
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The code for the hand-designed example and the main
experiments is available at https://github.com/
AndyShihl2/HyperSPN.

A HAND-DESIGNED EXAMPLE

To examine the merits of HyperSPNs as discussed in Sec-
tion [3] we construct a hand-designed dataset to test the
three types of models described in Figure f} SPN-Large,
SPN-Small, and HyperSPN. The hand-designed dataset is
procedurally generated with 256 binary variables and 10000
instances, broken into train/valid/test splits at 70/10/20%.
The generation procedure is designed such that the correla-
tion between variable ¢ and j is dependent on the path length
between leaves ¢ and j of a complete binary tree over the
256 variables. The exact details can be found in our code.

SPN-Large has the same number of SPN edges as the Hy-
perSPN, while SPN-Small has roughly the same number of
trainable parameters as HyperSPN. Both SPN-Large and
SPN-Small are regularized via weight-decay. As we can see
in Table|3] HyperSPN gives the best generalization perfor-
mance on the test split of our hand-designed dataset, when
compared to standard SPNs with either similar number of
SPN edges (SPN-Large) and similar number of trainable
parameters (SPN-Small).

Table 3: Testing HyperSPNs on our hand-designed dataset

Log-Likelihood # Params
SPN-Large | -166.90 +0.03 640050
SPN-Small | -167.00 &+ 0.01 102450
HyperSPN | -166.32 £0.04 129115

B EXPERIMENTAL DETAILS

Here, we provide more details on our experimental setup. In
Table[d] we give the hyperparameters used for training our
models on the Twenty Datasets and Amazon Baby Registries
benchmarks. For both methods we do early stopping by
training until the validation performance plateaus/declines
(we train some up to 80k steps). Then we take the version
of the model that performed best on the validation set, and
use it for evaluation on the test set.

Recall that for the normal SPN, we take gradient descent
steps on the mixture weights of the SPN. For the HyperSPN,
we take gradient descent steps on the parameters of the
external neural network. Empirically, we found that higher
learning rates are more suitable for the SPN (e.g. 2e-2), and
lower learning rates are more suitable for the HyperSPN
(e.g. 5e-3).

For the SVHN experiment, we build on the code pro-
vided at https://github.com/cambridge—-mlg/


https://github.com/AndyShih12/HyperSPN
https://github.com/AndyShih12/HyperSPN
https://github.com/cambridge-mlg/EinsumNetworks

Table 4: Training hyperparameters for Twenty Datasets and
Amazon Baby Registries

| SPN (Weight Decay) ~HyperSPN

Learning Rate 2e-2 Se-3
Weight Decay le-3 -
Batch Size 500 500

EinsumNetworks. We train each method for 80 epochs
using Adam, and also use early stopping based on the vali-
dation set. The weight decay hyperparameter used for the
weights of the models are the same as that shown in Table ]
and we scale down the learning rate for both models to 2e-3
and 5e-4, respectively. We found the slower learning rate to
be more suitable for both models on this benchmark, with
HyperSPNss still giving the better performance.

For the Twenty Datasets and Amazon Baby Registries, the
leaf nodes are binary indicator random variables, hence there
are no trainable parameters. For SVHN, the leaf nodes are
factorized Gaussians. The training of the leaf distributions
was kept the same for Weight Decay and HyperSPNs (i.e.
for HyperSPNs, we do not generate the parameters of the
leaf distributions using the external neural network).


https://github.com/cambridge-mlg/EinsumNetworks
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