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Abstract

In recent years, applications of neural networks
to the modeling of physical phenomena have at-
tracted much attention. This study proposes a
method for learning systems that are described
by the GENERIC formalism, which is a combina-
tion of analytical mechanics and non-equilibrium
thermodynamics. GENERIC systems admit the
energy conservation law and the law of increasing
entropy under certain conditions. However, de-
signing neural network models that satisfy these
conditions is difficult. In this study, we introduce
a relaxation model of the GENERIC form, thereby
introducing an equivalence class into the set of
models. Because the equivalence class of the tar-
get model includes a model that can be learned
by neural networks, the learned model has the
energy conservation law and the law of increasing
entropy in high accuracy with respect to the true
energy and the true entropy.

1. Introduction
Deep learning methods for learning physical equations have
been studied extensively in recent years. Hamiltonian neu-
ral networks (Greydanus et al., 2019) are well known as a
representative example. This method aims to learn the equa-
tions of motion in Hamiltonian dynamics, called the Hamil-
ton equation, from data. Although the method has been
extended in various ways, to the best of the authors’ knowl-
edge, GFINNs (Zhang et al., 2022) based on the GENERIC
(Öttinger, 2018) formulation is the only one that has been
proposed for learning non-equilibrium thermodynamics.
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The GENERIC (general equation for the non-equilibrium
reversible-irreversible coupling) formulation is one of the
theoretical frameworks of non-equilibrium thermodynamics.
Other known theories of non-equilibrium thermodynamics
include Onsager’s theory based on the minimum damping
principle (Onsager, 1931) and Yoshimura’s theory based on
Dirac dynamics (Yoshimura & GayBalmaz, 2018). Among
these, the GENERIC formulation provides a general math-
ematical framework for describing non-equilibrium states
of thermodynamic systems, which can simultaneously de-
scribe the reversible and irreversible partial dynamics of the
system. GENERIC formulation is described by

du

dt
= L

∂E

∂u
+M

∂S

∂u
, (1)

where u is a state variable. The variables E and S are
the total energy and entropy variables represented by the
variable u, and L and M are the operators or matrices that
depend on u. It is known that if the algebraic conditions

L
∂S

∂u
= 0, M

∂E

∂u
= 0 (2)

are satisfied, then we have the conservation law of energy
dE/dt = 0 and the law of increasing entropy dS/dt ≥ 0.
For this condition, L and M must be degenerate, which is
often given in the following form:

L =

(
∗ O
O O

)
, M =

(
O O
O ∗

)
. (3)

To learn a model based on (1) using neural networks from
observed data, we need to learn the energy E, the entropy S,
and the matrices L and M . In particular, when the matrices
L and M are learned from data, the condition (2) must be
satisfied in order for the energy conservation law and the law
of increasing entropy to hold; however, hard-coding these
conditions into the architecture of the model is difficult.

In this study, we propose a method to solve this prob-
lem. The basic idea is to introduce a new system that re-
laxes the GENERIC formulation. This system contains the
GENERIC form, but has a degree of freedom in formula-
tion, and is designed so that multiple energy and entropy
functions give the same dynamics. This degree of freedom
allows us to define an equivalence class for the set of energy
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and entropy functions. The proposed method searches for a
model within this equivalence class. As a result, although
the learned model does not directly satisfy the condition (2),
it can be proved that there exists an equivalent to the learned
model that is a GENERIC system and satisfies (2). Since
this hidden model is a GENERIC model that reproduces
the data, the laws of energy and entropy hold. Therefore,
if the hidden model is learned with sufficient accuracy, the
dynamics of the hidden model, and thus the dynamics of the
proposed model, will have the energy conservation law and
the law of the increasing entropy of the true model.

Main contributions of this paper include:

• The first equivalence class learning method for deep
physical models with physical laws.

• Learning of unknown GENERIC structures by Kernel-
aware positive semi-definite matrix learning.

2. Related Work
Analytical mechanics is classified into Lagrangian mechan-
ics and Hamiltonian mechanics (Abraham & Marsden, 2008;
Arnol’d, 2013; Marsden & Ratiu, 2013), and in recent years,
several neural network models for the equations of motion
were proposed (Cranmer et al., 2020; Lutter et al., 2019).
For learning a differential-equation model for dynamical
systems from data, the neural ordinary differential equation
(NODE, Chen et al. (2018)) is a typical method. NODE
models the time-derivative of the states, thereby defining
an ordinary differential equation (ODE) in a general way.
However, this model cannot admit the energy conservation
law because of the universality of neural networks. For
physical modeling, models that preserve the laws of physics
are preferred. The reversible contribution in the GENERIC
formulation is generally assumed to be of the Hamiltonian
form. For the Hamiltonian systems, some models are known
(Chen et al., 2021; Matsubara et al., 2020; Zhong et al., 2019;
Chen et al., 2019; Jin et al., 2020), for learning the energy
function H using neural networks. GFINNs is a known
method for learning GENERIC systems. In this method,
the conditions (2) are added as regularization terms to the
loss function. However, the regularization terms do not al-
ways vanish completely and these physical laws may not be
satisfied.

3. Proposed Model: Relaxation of GENERIC
Forms and Equivalence Classes of Systems

Equations in GENERIC form are usually rewritten in the
form (3) when transformed to the appropriate coordinate
system. First, let us briefly explain why the form is derived
in this way. The condition (2) means ∇E ∈ Ker M and
∇S ∈ Ker L. In particular, focusing on ∇E ∈ KerM , we

decompose the phase space as ∇M ⊕ (Ker M)⊥. where
(KerM)⊥ is the orthogonal complement of KerM . Since
∇E ∈ KerM , the domain of L is effectively KerM . Sim-
ilarly, the domain of M is effectively (Ker M)⊥. M is a
symmetric matrix and can be diagonalized by an orthog-
onal matrix. Each column of the orthogonal matrix is an
eigenvector of M . In particular, those corresponding to
eigenvalue 0 are the basis of KerM , and other eigenvectors
are the basis of (KerM)⊥. Therefore, when these eigenvec-
tors are rearranged into bases, the GENERIC system takes
the form (3). In other words, in general, the GENERIC
system (1) can be written in the following form:

du

dt
= LΠKerM∇E +MΠ(KerM)⊥∇S, (4)

where, ΠKerM and Π(KerM)⊥ are the projection operators
onto Ker M and (Ker M)⊥, respectively.

We now relax the condition (2). Specifically, we consider
systems that can be written in the form (4) but do not satisfy
(2). We define the following equivalence relation on the set
of such a system, or more precisely, on the set of E and S
when L and M are fixed.

Definition 3.1. Fix L and M in (4). For a set S = {(E,S)}
of pairs of functions E and S, if (E1, S1) and (E2, S2)
determine the same ut by (4), (E1, S1) and (E2, S2) are
defined to be equivalent. The equivalence class defined by
(E,S) is denoted by [(E,S)].

Theorem 3.2. For a GENERIC system (EG, SG), any sys-
tem in its equivalence class [(EG, SG)] has the conservation
law of EG and the increasing law of SG.

Proof. Let u be a state variable of the system (4) with
(E,G) ∈ [(EG, SG)], and uG be that of (4) with (EG, SG).
Since, these two systems are equivalent, du/dt = duG/dt.
Hence, dEG(u(t))

dt = ∇EG · dudt = ∇EG · duG

dt = 0. The law
of increasing entropy can be shown in the same way.

This theorem implies that there exist multiple E, G that give
the same dynamics as the the dynamics of EG, SG, which
is the degree of freedom explained in Section 1. Hence,
if we can learn a system (E,S) in the equivalence class
[EG, SG] of the target GENERIC system (EG, SG), then
this system may not have the conservation and increasing
laws for (E,S), but it does for the true system (EG, SG) and
hence should have good long-term prediction performance.

Now, consider a learning model based on (4). Assume that
L, M , E, and S are all unknown. E and M are modeled by
neural networks ENN and SNN. To construct the projection
operator that appears in (4), we need KerM . Therefore, the
proposed equivalence learning technique can be applied to
the existing models by computing the kernel of the matrices
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L and M ; however, here we consider a method to learn the
matrix M , being aware of the basis of KerM .

To this end, we use the fact that M can be decomposed
into M = P diag(λ1, . . . , λk, 0, . . . , 0) P

⊤, where P is an
orthogonal matrix, k is the rank of M , and λ1, . . . , λk are
non-negative eigenvalues of M , as explained in the above.
These P and λj’s are functions of the state variable u, and
hence we try to learn them using neural networks.

First, basically, λj’s can be learned with typical multilayer
perceptrons; the output is guaranteed to be non-negative
by applying the ReLU function. In addition, to guarantee
Ker M ̸= ∅, some of eigenvalues must be zero. For sim-
plicity, we assume that the first k eigenvalues are non-zero.
If the value of k is not known, we can try various values
of k and employ the one with the best performance. In this
paper, we let λj’s be sparse and determine the value of k by
the neural network λNN.

Next, for learning the orthogonal matrix P , a simple
method is to add ∥P⊤P − I∥ to the loss function; how-
ever, ∥P⊤P − I∥ is not always completely zero, and P
may not be orthogonal. Therefore, we use the fact that
the set of orthogonal matrices has the structure of a Lie
group. Because the corresponding Lie algebra is the set of
skew-symmetric matrices P is learned as the exponential
of a skew-symmetric matrix. Specifically, ANN is a n× n
matrix represented by a neural network, and P is learned
by PNN = exp(ANN − A⊤

NN). Learning in this way, the
columns of PNN corresponding to the eigenvalue 0 become
the basis of KerM , and the other columns become the basis
of (KerM)⊥. The projection matrix can be constructed by
using these: ΠKerMNN

= P diag(0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
n−k

) P⊤,

Π(KerMNN)⊥ = P diag(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

) P⊤.

Regarding the matrix L, because L must correspond to the
Hamilton equation, the inverse of the restriction of L to the
domain of L must be a symplectic form. Hence, we apply
the method for learning symplectic forms proposed in (Chen
et al., 2021).

Altogether, the proposed model is as follows:

du

dt
= L̃∇ENN + M̃∇SNN, L̃ = Π⊤

KerM̃
Ŵ−1

u ΠKerM̃ ,

M̃ = PNNdiag(λ1,NN, . . . , λk,NN, 0, . . . , 0)P
⊤
NN,

PNN = exp(ANN −A⊤
NN),

(Ŵu)i,j =
∂(YNN)i
∂uj

− ∂(YNN)j
∂ui

. (5)

In the model, the subscript NN indicates that the quantity is
modeled by a neural network; tilde is the quantity created
using the quantity modeled by the neural network.

Figure 1. A thermoelastic double pendulum.

Assuming that time series data of state vectors {u(l)} and
time-derivatives {du/dt(l)} are given, the proposed model
is trained by minimizing the squared error between the
left-hand and right-hand sides of (5): ∥du

dt − (L̃∇ENN +

M̃∇SNN)∥22.

4. Numerical Examples
We performed some experiments to check if the proposed
model certainly admits the energy conservation law and
the law of increasing energy. Note that since the equiva-
lence class learning can be applied to existing methods, no
comparison with other models was made.

In the experiments, dense neural networks that had two hid-
den layers of 200 units were used for modeling the unknown
quantities. In these layers, the hyperbolic tangent function
is used as the activation function. In addition, the ReLU
function is used to guarantee that the eigenvalues of MNN

are all non-negative. We used 80 percent of collected data
for training and the remaining of the data for the test. We
trained each model 10 times using Adam optimizer with a
learning rate of 10−3 for 2000 iterations in the other two
experiments. We performed our experiments on NVIDIA
RTX A5000 with single precision. For the predictions after
training, we used SciPy odeint under the default setting.

4.1. Thermoelastic Double Pendulum

We first consider a two-dimensional thermoelastic double
pendulum shown in Figure 1. This system consists of
two point masses m1 and m2 connected by thermoelas-
tic springs of internal energy of E1 and E2. The posi-
tions and the momentums of the masses are denoted by
q1 and q2 and p1 and p2, respectively. The entropy of
two springs are denoted by S1 and S2. The state vari-
ables u is u = (q1, q2, p1, p2, S1, S2), where qi, pi ∈ R2.
The total energy E of the system is E(u) = ∥ p1 ∥2/2 +
∥ p2 ∥2/2 + E1(l1, S1) + E2(l2, S2), where l1 and l2 are
the lengths of the two springs: l1 = ∥q1∥, l2 = ∥q2 − q1∥,
the internal energy E1 and E2 of i-th spring is defined as
Ei = 1

2 (log li)
2 + log li + eSi − log li − 1, and the to-

tal entropy S of the system is given by S(u) = S1 + S2.
This model captures the simplest thermal effects: the in-
ternal energy should account for the stretches caused by
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temperature changes. We generated 100 trajectories from
t0 = 0 to tT = 40 with ∆t = 0.1, whose initial condi-
tions are sampled uniformly from [0.9, 1, 1]× [−0.1, 0.1]×
[2.1, 2.3]×[−0.1, 0.1]×[−0.1, 0.1]×[1.9, 2.1]×[0.9, 1, 1]×
[−0.1, 0.1]× [0.9, 1, 1]× [0.1, 0.3].

(a) Ground Truth (b) Prediction

Figure 2. Trajectories predicted by the proposed model for the
double pendulum. The horizontal axis represents time.

The training and testing losses were 1.2484 × 10−5 and
1.4821× 10−5, respectively. The ground truth of the trajec-
tory of the state variables and the predicted trajectory are
shown in Figure 2. The prediction by the proposed model is
very similar to the true trajectory.

Since the degeneracy conditions of GENERIC are relaxed,
so neither the net energy ENN nor the net entropy SNN fol-
lows the laws of physics, as shown in Figure 3. However,

(a) Net Energy (b) Net Entropy

(c) True Energy (d) True Entropy

Figure 3. Time evolution of the net energy ENN, the net entropy,
the true energy and the true entropy obtained by the proposed
model for the thermoelastic double pendulum system. The hori-
zontal axis represents time.

the true energy changes in a small range. In addition, the
entropy certainly keeps increasing. Therefore the true en-
ergy and true entropy both follow the laws of physics within
a small error range. Note that a rigorous evaluation of the
conservation of the energy and the increase of the entropy
is difficult because these laws of physics hold within the
modeling error, but the modeling error is computed as the
mean squared loss of the time-derivative du/dt, which is
not of the energy or the entropy.

Figure 4. Two gas containers exchanging heat and volume.

4.2. Two Gas Containers Exchanging Heat and Volume

Secondly, we applied the proposed model to the two ideal
gas containers, which are allowed to exchange heat and vol-
ume by a moving wall in the middle, as shown in Figure 4.
This system has u = (q, p, S1, S2), where q and p represent
the position and momentum of the moving wall, while S1

and S2 are the entropies of the gases in the two containers.
The total energy is E = p2/2m+E1+E2, where the energy

of gas in the i-th container is Ei = (e
Si

NkB /ĉVi)
2
3 , V1 =

q, V2 = 2−q, ĉ = (4πm/3h2N)
3
2
e
5
2

N , where m represents
the mass of the wall, N is the quantity of gas particles, h is
the Planck constant and kB is the Boltzmann constant. In
our experiments, m,N, kB and ĉ are fixed to 1. The total en-
tropy S is S(u) = S1 + S2. The training and testing losses

(a) Ground Truth (b) Prediction

Figure 5. Trajectories predicted by the proposed model for the two
gas containers system. The horizontal axis represents time.

of this experiment were 4.8198×10−5 and 5.1721×10−5,
respectively. The predicted trajectory is shown in Figure 5.
The behaviors of the energies and the entropies are shown in
Figure 6. Regarding the real energy, although it seems that
it is decreasing, the amplitude of the vibration is gradually
decreasing and with a high probability in a long time pre-
diction, it will converge. Therefore the model may satisfy
the law of energy conservation after a long period. We will
examine it in future work. The entropy keeps increasing
also.

5. Concluding Remarks
In this paper, we have proposed the equivalence class learn-
ing for GENERIC systems. Since the condition (2) is re-
laxed this model does not satisfy the laws of physics for
the energy and entropy modeled by the neural network, but
does satisfy these laws for the true energy and entropy. This
method can be combined with existing methods; however,
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(a) Net Energy (b) Net Entropy

(c) True Energy (d) True Entropy

Figure 6. Time evolution of the net energy, the net entropy, the true
energy and the true entropy obtained by the proposed model for
the two gas containers system. The horizontal axis represents time.

combining this idea with various models and comparing
their performance is future work. A rigorous evaluation
method for the conservation of E and the increase of S is
also a future issue.
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