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ABSTRACT

The primary paradigm in Neural Combinatorial Optimization (NCO) are construc-
tion methods, where a neural network is trained to sequentially add one solution
component at a time until a complete solution is constructed. We observe that
the typical changes to the state between two steps are small, since usually only
the node that gets added to the solution is removed from the state. An efficient
model should be able to reuse computation done in prior steps. To that end, we
propose to train a recurrent encoder that computes the state embeddings not only
based on the state but also the embeddings of the prior state. We show that the re-
current encoder can achieve equivalent or better performance than a non-recurrent
encoder even if it consists of 3× fewer layers, thus significantly improving on la-
tency. We demonstrate our findings on three different problems: the Traveling
Salesman Problem (TSP), the Capacitated Vehicle Routing Problem (CVRP), and
the Orienteering Problem (OP) and integrate the models into a large neighborhood
search algorithm, to showcase the practical relevance of our findings.

1 INTRODUCTION

Neural Combinatorial Optimization (NCO) is concerned with learning heuristics parameterized by
deep neural networks for hard combinatorial optimization problems (COPs). The motivation is
twofold: First, tailoring traditional heuristics to the exact problem at hand can be a difficult and
time-consuming task, requiring specialized knowledge. If data-driven methods can be designed that
are able to automatically learn high quality heuristics, development effort could be significantly
reduced. Second, NCO uses the fact that for applications there always exists an implicit distribution
over the instance space. Given the NP-hard nature of most problems, it is unlikely that there exists
a single method that solves all instances efficiently. Thus, being able to specialize to any particular
instance distribution by learning from data is a desirable property.

The primary paradigm currently are construction methods, where a neural network sequentially
adds to a partial solution until some completion criterion is met. In the Traveling Salesman Problem
(TSP), for example, the model would start at some node and iteratively add one of the not yet chosen
nodes to the solution until all nodes are visited. Given that the goal is to solve optimization problems
and with infinite time even naive enumeration of the solution space would yield the optimal solution,
it is clear that finding good solutions quickly is the main goal. In the described construction process
many problems inhibit the property that subsequent states are very similar. In the TSP for instance,
every node that gets added to the solution, can be removed from the state, since it is already decided
on and not relevant for future decision-making. This makes all pairs of subsequent states very
similar, since they only differ in the one node.

Past approaches (Kool et al., 2019; Kwon et al., 2020; Xin et al., 2021a; Berto et al., 2024b) have
therefore mainly relied on an encoder-decoder architecture, where the encoder computes a set of
node embeddings only in the first step and the decoder computes the action probabilities based on
these embeddings for all following steps. While efficient, it was observed that the models can strug-
gle to learn with increasing problem size (Joshi et al., 2022) since the embeddings also contain
information about increasingly less relevant interactions of components not present in the state any-
more and recent work has shown that the more model capacity is added to the decoder instead of the
encoder (Luo et al., 2023) or the more frequently the encoder is recomputed (Peng et al., 2020), the
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better. In particular, Luo et al. (2023) only utilize a single encoder layer and Drakulic et al. (2023)
remove the split between encoder and decoder entirely and apply a singular model at every step.

While this works well, it is significantly more expensive and ignores the similarity between the
states. In order to still make use of this property and build a more efficient model, without losing
the ability to adjust to changes in the state at every step, we instead propose to learn the difference
between subsequent states. In order to do so, we train a recurrent encoder that computes the state
embeddings not only based on the current state but also the embeddings of the step before, allowing
it to reuse computation done in prior steps. We show that such an embedding update does not
compromise on accuracy and decreases latency. Our contributions can be summarized as follows:

• We propose a novel recurrent state encoder for neural combinatorial optimization,
which updates the node embeddings at every step based on the current state and the prior
node embeddings. A hyperparameter k controls the number of steps after which a non-
recurrent base encoder is used to recompute the embeddings, allowing a flexible trade-off
between both encoders.

• We demonstrate that the recurrent encoder can achieve equivalent or better performance
to the non-recurrent encoder with significantly smaller number of parameters and thus im-
proves on the latency accuracy trade-off. Depending on the exact model and problem,
we find latency decreases of 1.8 − 4× at no significant accuracy drop. Crucially, non-
recurrent encoders of the same size and latency are not able to achieve the same perfor-
mance. Additionally, the models are surprisingly robust, often delivering stable perfor-
mance, even if the recurrent encoder is used with much larger k than seen during training.

• Finally, we integrate our recurrent models into a large neighborhood search algorithm,
showcasing how our improvements impact practically relevant search methods in terms of
performance and latency. We demonstrate that our findings hold on three different com-
binatorial optimization problems: the Traveling Salesman Problem (TSP), the Capacitated
Vehicle Routing Problem (CVRP), and the Orienteering Problem (OP).

2 RELATED WORK

Neural Combinatorial Optimization NCO has seen a diverse set of methodologies in recent
years. In our work we focus on the very common constructive paradigm, where solutions are se-
quentially constructed with a neural network. Note however that various approaches exist, such as
parameterizing a local search operator (Ma et al., 2021; 2023), learning a local search meta con-
troller (Falkner et al., 2023; Xin et al., 2021b), parameterizing insertion operators (Hottung et al.,
2025b; Khalil et al., 2017), learning heatmaps (Fu et al., 2021; Joshi et al., 2019; Min et al., 2023;
Sun and Yang, 2023; Xin et al., 2021b; Li et al., 2023; Ye et al., 2024), learning to select subgraphs
or decompositions (Falkner and Schmidt-Thieme, 2023; Hottung and Tierney, 2022; Li et al., 2021;
Luo et al., 2023; Ye et al., 2024) and various hybridizations thereof.

In the domain of constructive methods our main contribution lies in the way the neural network
processes the state. We propose a novel model that computes state embeddings from the current
state and previous embeddings, thus only having to learn the difference between two states. In
contrast, most prior work has focused on an encoder-decoder model (Kool et al., 2019) and variations
of it (Berto et al., 2024b; Falkner and Schmidt-Thieme, 2020; Hottung et al., 2025a; Jin et al.,
2023; Kwon et al.; Peng et al., 2020; Xin et al., 2021a), where the encoder computes a set of static
node embeddings in the first step and the decoder computes the action probabilities based on these
embeddings and some dynamic context information for all subsequent steps. It was shown however
that such approaches struggle with increasing problem size (Joshi et al., 2022) and recent methods
increasingly move capacity from the encoder to the decoder or frequently reembed the state (Peng
et al., 2020; Xin et al., 2021a; Luo et al., 2023). At the extreme, when either moving all model
capacity to the decoder or recomputing the encoder at every step, the split between encoder and
decoder is removed entirely, which was shown by Drakulic et al. (2023) to perform much better.

Other work on constructive models focuses on either the training strategy or the search component.
Various RL based training methods have been proposed (Kool et al., 2019; Kwon et al., 2020; Berto
et al., 2024a), some auxiliary tasks (Kim et al., 2022) or curriculum strategies (Xin et al., 2021a) as
well as recently self-improvement methods (Luo et al., 2023; 2024; Pirnay and Grimm, 2024a;b),
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where the model searches for improved solutions during training, creating its own data. To improve
the search, the literature has proposed tree search methods (Kwon et al., 2020; Choo et al., 2022;
Pirnay and Grimm, 2024a), increasing solution diversity through multiple decoder heads (Xin et al.,
2021a; Hottung et al., 2025a), as well as gradient based test time search, where some model pa-
rameters are adapted iteratively at inference time (Hottung et al., 2022; Choo et al., 2022; Hottung
et al., 2025a). Since these aspects are not our focus, we stick to a simple beam search strategy and
imitation learning for our models, but note that the mentioned literature could be integrated at a later
time. Even without such advanced strategies, we find our models perform well.

Finally, we note that given the recent success of foundation models in language tasks, there is also a
push in the NCO community for models that are trained on multiple combinatorial tasks (Drakulic
et al., 2025; Berto et al., 2024b). In this work however, we stick to single task models.

Recurrent Actors in RL Recurrent policies (or memory-based policies) (Hausknecht and Stone,
2015; Heess et al., 2015; Kapturowski et al., 2018; Morad et al., 2024) by themselves are not novel in
Reinforcement Learning, with recent work also investigating sequence models, processing the entire
state sequence with transformers and other sequence models (Bauer et al., 2023; Chen et al., 2021;
Ni et al., 2023; Morad et al., 2024). However, their main application is in the context of partially
observable environments. When the environment is not markov, the optimal action can depend on
the entire state history and as such RNNs have been used to give the agent access to this history. Our
environments however are markov. We instead make the observation that the step-by-step changes
in the states are very small. A recurrent policy can reuse computation done in prior steps and only
has to learn the differences between states. This enables more efficient models, which is especially
important in combinatorial optimization where the policy is integrated into a larger search procedure
and has to be evaluated many times.

Speculative decoding We can also draw parallels to speculative decoding (Stern et al., 2018; Chen
et al., 2023; Leviathan et al., 2023; Ankner et al., 2024) which aims to speed up inference of large
autoregressive transformers, especially LLMs, by using smaller draft models to generate candidate
continuations, which later get verified by the base model. Recent work uses a small recurrent head
on top of the embeddings of the base model which bears similarity to our recurrent encoder (Ankner
et al., 2024). However, there are some differences. Besides the obvious scale difference to LLMs,
our tasks do not allow for causal attention. We have to recompute all pairwise interactions at every
decoding step which is not the case in generative language modeling since tokens only attend to prior
tokens. Additionally, we do not perform verification, which requires the base model to be computed
for all steps even if some of them can be performed in parallel, enabling the speedup for speculative
decoding methods. Since our decoding is always part of a larger search, we believe verification is
not critical. Small accuracy drops can be compensated by searching more with the saved time.

3 METHOD

3.1 PROBLEM FORMULATION AND CONSTRUCTION PROCESS

We consider combinatorial optimization problems whose solutions can be sequentially constructed
by iteratively adding variables from a discrete set to a partial solution until some completion criterion
is reached. A COP instance G ∈ G consists of a finite set of feasible solutions XG and an objective
function fG ∶XG → R. The goal is to find the optimal solution x∗ ∶=minx∈XG

fG(x).
In order to find solutions, we formulate a markov decision process (MDP) in which a policy, param-
eterized by a neural network, is used to sequentially construct a solution. Specifically, we utilize
the recursive MDP formulations proposed in Drakulic et al. (2023) in which after every construction
step the new state represents a reduced subproblem of the same problem class.

To illustrate, consider the well-known traveling salesman problem (TSP). Informally, the goal is,
given a set of cities, to find the shortest cycle, that visits each city exactly once. Starting from
any city, a solution can be constructed, by iteratively adding one of the not yet chosen cities, until
all points are visited and a return to the starting city is made. To make the problem formulation
recursive, it is redefined to find the shortest path instead of cycle for a set of points, given a starting
and end point. This is referred to as the path-TSP problem. At every step, the newly chosen point
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becomes the new starting point and the prior starting point is removed from the problem, such that
at every construction step t a valid path-TSP instance Gt ∈ G is presented to the policy. To recover
the original TSP formulation, the starting point is duplicated and also added as the end point.

Besides the TSP, we also consider the Capacitated Vehicle Routing Problem (CVRP) and the Orien-
teering Problem (OP). Extended descriptions of the problems and their recursive formulations can
be found in appendix A.

3.2 MODEL

Let Gt ∈ G be the remaining instance to be considered at time t, and nt the number of nodes in
the instance. Our model consists of three components: a base encoder E, a recurrent encoder U ,
and a decoder D. The encoders need to produce embeddings ht ∈ Rnt×dE for Gt, where dE is
the embedding dimension. The base encoder EθE(Gt) ↦ ht, parameterized by θE , is a function
that maps the instance Gt directly to a set of node embeddings ht, whereas the recurrent encoder
UθU (ht−1,Gt) ↦ ht, parameterized by θU , is a function that updates the node embeddings based
on the previous embeddings and the current state. As such it can reuse computation done in prior
steps in order to be more efficient than the base encoder, especially when the step by step changes
in the state are small. The decoder DθD(ht) ↦ ∆nt , parameterized by θD, is a function that maps
the node embeddings to a probability distribution over the nt nodes.

Base Model In all our problems, the state Gt is represented as a feature matrix st ∈ Rnt×dfeat

of nt nodes each with dfeat features. For the base encoder, we use a LE = 9 layer transformer
with ReZero (Bachlechner et al., 2021) connections and RMSNorm (Zhang and Sennrich, 2019)
applied before the MHA and Feedforward blocks. The feed-forward networks are two-layer MLPs
with ReLU activations, with model embedding dimension dE = 192 and feed-forward dimension
dFF = 512. A node-wise linear layer is used to compute the initial node embeddings. The decoder is
a single linear layer followed by a softmax, where infeasible actions are masked away by setting the
logits to − inf .

Recurrent Model Given the state representation st ∈ Rnt×dfeat at time t and the previous em-
beddings ht−1 ∈ Rnt−1×dE , the recurrent encoder needs to compute the updated embeddings
ht ∈ Rnt×dE , from which the decoder produces the action distribution. Note that for all considered
problems the prior step st−1 contained nt + 1 nodes, since the previously selected node becomes the
new starting node and the prior starting node is removed from the problem, since it is not relevant
for the future decision-making anymore.

In order to align the prior embedding ht−1 with the current state st, we remove the node embedding
of the node that was removed from the problem in st and call the resulting embeddings h̃t. It is
ensured, that the i-th element in st and h̃t correspond to the same node.

An initial embedding for st is then computed via a node-wise linear layer. Additionally, learnable
start and learnable end-embeddings hstart, hend ∈ RdU are added to the embedding of the current
starting and final destination node, respectively. By convention, we order the nodes such that the start
node is always the first node and the end node is always the last node. For notational convenience,
we drop the time index t in the following. The initial embeddings of node i are then computed as

h0
i =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

siW
0 + b0 + hstart if i = 1

siW
0 + b0 + hend if i = n

siW
0 + b0 otherwise

, (1)

where W 0 ∈ Rdfeat×dU and b0 ∈ RdU are the learnable parameters. The prior embeddings h̃ are then
combined with the current state embeddings h0 as follows. First, an RMSNorm layer is applied
to h̃, since these come from a possibly longer recurrent chain of repeatedly updated embeddings:
ĥ = RMSNorm(h̃). Then the current and prior embedding are combined via concatenation and an
MLP-layer with a residual connection, bringing h1

i to the same dimension as h0
i

h1
i = ReLU([ĥ, h0]iW 1 + b1) + h0

i , (2)

where W 1 ∈ RdU+dE×dU and b1 ∈ RdU are the learnable parameters. The resulting embeddings
h1 are then passed through LU blocks of multihead self-attention, normalization, and feedforward
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networks to compute the updated embeddings. These blocks have the same structure as in the base
model. The resulting embeddings are finally projected back to the original embedding dimension
dE via a linear layer, and the result is used as the updated embeddings ht, from which the decoder
computes the action probabilities.

At inference time, the base encoder is used to compute the embeddings at step t = 0. From step t = 1
onwards, the recurrent encoder can be used to compute the embeddings. We include an optional
hyperparameter k that allows the base encoder to recompute the embeddings without the recurrence
every k steps. The procedure is illustrated in algorithm 2 and contrasted against only using the
base model for inference without the recurrent encoder in algorithm 1. For further delineation from
encoder-decoder models, see appendix B.

Algorithm 1 Greedy inference with
our base model
Require: EθE ,DθD , s0
t← 0
done← False
while not done do

// Compute logits and take the
likeliest action

at ← argmaxaDθD(EθE(st))a
st+1,done← step(st, at)
t← t + 1

return a0, ..., at

Algorithm 2 Greedy inference with our recurrent model
Require: EθE ,DθD , UθU , k, s0

t← 0
done← False
while not done do

if t mod k = 0 then
// Initial or occasional reembedding
ht ← EθE(st)

else
// Recurrent update of embeddings from ht−1
ht ← UθU (ht−1, st)

at ← argmaxaDθD(ht)a // Compute likeliest action
st+1,done← step(st, at)
t← t + 1

return a0, ..., at

3.3 TRAINING

Since our main contribution is demonstrating the efficiency of the recurrent encoder, we train all
models by imitation learning, following recent literature (Drakulic et al., 2023; Luo et al., 2023).
While this is not optimal since the models will encounter distributional shifts through error accumu-
lation at inference time, it eases the computational burden and additional complexity incurred by RL
algorithms. Other training strategies may be used in future work to further improve the performance
and other work have demonstrated that similarly sized models to our base model can be trained with-
out labels by ”self-improvement”, where the models get used to search during the training process to
iteratively create and improve their own data (Luo et al., 2024; Pirnay and Grimm, 2024a;b). More
details can be found in appendix C.

3.4 LARGE NEIGHBORHOOD SEARCH

Since in many applications, it is unlikely that the model can reliably find the best solution by greedy
construction, we integrate our recurrent model into a simple large neighborhood search (LNS) al-
gorithm, to demonstrate the practical relevance of our findings. The LNS algorithm is a common
metaheuristic that iteratively improves a solution by exploring a subset of the solution space. Our
approach is described in algorithm 3. We use a beam search with the recurrent model to construct
an initial solution x. Then at each iteration, we extract a subproblem based on the current solution
and use the model to search for a better solution in the subproblem. If a better solution is found,
we update the current solution by replacing the corresponding segment. The algorithm can be con-
figured by the beam width used for the initial solution binit and the subproblems bsub, how often to
recompute the embeddings with the encoder kinit, ksub for both cases and the subproblem size nsub.

In the TSP, we create multiple subproblems at each step, by extracting random non-overlapping
segments of the current solution, each of size nsub. The first and last nodes of each segment become
the starting and end nodes of the path-TSP instance, and the order of the intermediate nodes can be
reconsidered by the model. In the CVRP, since the model was trained only on instances where the
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designated end node is also the depot, we only extract such segments. The first node however can
be a customer node. Since due to this requirement, it is more cumbersome to extract multiple non
overlapping segments, that fulfill this condition, we only extract a single segment of size nsub. To do
so, the solution x is represented as a sequence. Since the order of the routes is arbitrary, we arrange
their order uniformly at random at every step, increasing the diversity of subproblems.

Algorithm 3 Large Neighborhood Search
Require: G,U,D, kinit, ksub, binit, bsub, tmax, nsub // Instance, Model, LNS hyperparameters
x← beam search(G,U,D, kinit, binit) // Find initial solution via beam search
for t = 1 to tmax do

Gsub, fGsub , xsub ← sample subproblem(G,x,nsub) // subproblem based on current sol
xsub new ← beam search(Gsub, U,D, ksub, bsub) // Find subproblem solution
if fGsub(xsub) > fGsub(xsub new) then

x← update solution(x,xsub, xsub new) // Update solution
return x // Return final solution

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our models on three different combinatorial optimization problems: the Traveling Sales-
man Problem (TSP), the Capacitated Vehicle Routing Problem (CVRP), and the Orienteering Prob-
lem (OP). For each problem, we use a dataset of 1,000,000 trajectories collected by Concorde (David
L. Applegate et al., 2003), PyVRP (Wouda et al., 2024) and EA4OP (Kobeaga et al., 2018) respec-
tively for training. Additionally, datasets for validation and testing are created for each problem
containing each 1000 instances. For each problem we train the models on problems of size 100 and
evaluate them on problems of size 100, 200, 500 and 1000. For generation, we follow the estab-
lished protocols in the literature. Details can be found in appendix D. We compare our methods
on two metrics for each problem: the relative gap and the solution time. The relative gap gives the
percentage difference in solution quality to a reference solution: 100

f(x)(f(x̂) − f(x)), where f is
the objective function, x the reference solution and x̂ the to be tested solution. For the reference
solution, we use the solvers that also generated the training data. The solution time is the average
time it takes to solve a single instance of the problem. All times are measured on a machine with an
Nvidia A4000 16GB GPU and an AMD EPYC 7713P. For the baselines, we mostly focus on other
constructive models. We compare to BQ (Drakulic et al., 2023) and LEHD (Luo et al., 2023) which
are the most similar to us, also being trained with imitation learning. LEHD also includes a similar
LNS scheme. We also compare to a variety of the encoder-decoder models and search procedures
using them, including POMO (Kwon et al., 2020), EAS (Hottung et al., 2022), SGBS (Choo et al.,
2022), and MDAM (Xin et al., 2021a). Finally, we compare to GLOP (Ye et al., 2024), which learns
to hierarchically decompose the problem. All baseline results are obtained from the publically avail-
able implementations and pretrained checkpoints and were rerun on our datasets with our hardware,
to make the results comparable.

4.2 RESULTS

Comparing base and recurrent models Figure 1 shows our main experiment, where we train
recurrent models of different sizes in terms of number of layers, embedding dimension and number
of heads on top of our largest base model and compare them to the base model, as well as additional
non-recurrent models with the same size and structure as the recurrent models. We evaluate on the
TSP, CVRP and OP, always with a beam search and measure the relative gap and solution time.

The recurrent models reduce latency, while maintaining or even improving the solution quality.
Including the overhead of the environment and solution cost calculations, the measured speedup
factor on 100-sized problems is between a factor of 1.8 and 2.8, depending on the model configu-
ration and problem. The speedup factor increases with the problem size, since the overhead of the
environment and computing the solution cost reduce. As such we observe a speedup of up to 3.3×
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Figure 1: Main Results for recurrent models of different sizes vs base models of different sizes
on the TSP, CVRP and OP. All models were trained on the same imitation learning dataset of 1
million trajectories with problems of size 100. Note that every point represents a trained model.
Blue represents differently sized configurations of non-recurrent models, while green represents
recurrent encoders having the respective same size and structure where L, is the number of layers,
d is the embedding dimension and #h the number of heads in the MHA mechanism. Recurrent
models always use the largest base encoder (marked by☀) and are trained with k = 10. In the left
two columns we show the relative gap of the models vs the time it takes to decode a single instance
of the problem. The right two columns show the behavior of the models when the recurrent encoder
is used with a larger k than trained for. The possible ☀ configuration is omitted since recurrent
models should be smaller than their base model.
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Figure 2: Results for Large Neighborhood Search with recurrent (green) and base (blue) models. All
curves start when the initial solution has been constructed. The green curves start lower since the
recurrent models found better initial solutions. Recurrent models are always used with kinit, ksub =
1000, meaning we only ever use the base encoder for the first step. For the beam sizes, we use
binit, bsub = 16 for the TSP and binit = 16, bsub = 64 for the CVRP, since in the CVRP, we only consider
one subproblem at a time. We evaluate all models with two subproblem sizes nsub = 100,200. Note
that none of the models are explicitly trained for the LNS setting.

on 200-sized problems and in appendix F we even observe a 4× speedup on the TSP1000 with a
beam size of 64 while still maintaining no accuracy drop relative to the base model.

Despite the significantly fewer active parameters and the reduced latency, the recurrent models
match or even exceed the performance of the base model and especially their non-recurrent
counterparts with the same size. Note that outperforming the base model is only possible since the
recurrent models are also trained to predict the optimal action from the imitation learning dataset.
Another option is to train the recurrent models to match the base models embeddings or action
distribution, but this caps the best obtainable performance to that base model. This result shows that
the recurrent models are effective at reusing computation from prior steps and do not simply ignore
the previous embeddings but use them effectively to solve the task. This still holds true in the out
of distribution (ood) settings with double the nodes. Only in the ood OP instances are the recurrent
models not quite able to match the performance of the base model. However, on the OP all models
report negative gaps to the solver that produced the training data, so while the recurrent models still
might fit the training data better, given the inherent limitations of imitation learning, especially with
suboptimal labels, accuracy might be reduced due too mimicking the solver too well.

Additionally, the recurrent encoders are robust to the number of steps k that the recurrent en-
coder is used, before the base encoder is run again. While all models were trained only with k = 10,
on the TSP and CVRP, the performance of the recurrent models actually increases with larger k
than seen during training, even in the ood settings and using the recurrent model with k = 200, a
20× increase. The performance increase on the TSP and CVRP is due to recurrent models being
better than the base models, thus running them for more steps is beneficial. Still, the stability of the
recurrence even on ood instances is a nontrivial finding. Only on the OP, the results are more mixed,
with stable performance in the in distribution setting but falling behind in the ood case.

Application to LNS In Figure 2 we show results with LNS on larger problems of size 500 and
1000. As a trade-off between solution quality and time, we evaluate two intermediate configurations
of our recurrent encoders with (i) LU = 3, dU = 192, dFF = 512,#h = 12 and (ii) LU = 4, dU =
128, dFF = 256,#h = 8 and compare them to only using the base model. While none of the models
were explicitly trained for the larger problem sizes, or their subgraph distributions, we observe good
performance. Additionally, we observe that the recurrent models clearly outperform the base model
in terms of the trade-off between solution quality and time. In Figure 3 we expand on the results,
adding all problem sizes and compare the results to the baselines. We can clearly see that our
recurrent encoder with LNS outperforms all other methods in terms of the time-quality trade-off. To
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Figure 3: Comparison with baseline models on TSP and CVRP. For more information on the other
methods, refer to section 4.1 and E. We limit the axes ranges for better visibility. Methods that are
not visible in the plot perform outside the range (significantly worse), thus are not shown.

ensure that our recurrent models are the main contributor of the good performance of the LNS, we
compare them directly to other models on typical subgraph sizes in appendix F.

5 CONCLUSION AND LIMITATIONS

We proposed a recurrent encoder for combinatorial optimization, enabling reuse of computation
done in previous steps by updating the node embeddings based on the previous embeddings and
current state. Thus, the model only needs to learn the difference between subsequent states. We
demonstrated on the TSP, CVRP and OP that more efficient decision-making can be modeled, lead-
ing to latency decreases while increasing solution quality, especially in a large neighborhood setting.

As discussed in sections 3.3 and 2, the models were trained by imitation learning for computational
efficiency and simplicity, since our main contribution lies in the recurrent encoder and not training
strategies for NCO. RL or self-improvement training can be adopted in the future. We also note
that while the recurrent encoder was trained in a separate training stage from the base model, it is
possible to train both models jointly, potentially making the base encoder produce more ”updatable”
embeddings at the expense of increased training cost. If the field of NCO moves towards recent
trends of large foundation models, our proposed two-stage training might fit the use case of having a
large-scale pretrained model serve as the base model and then a much smaller recurrent encoder on
top of it. In such a case the recurrent model could also be trained by imitating the base models action
distribution, similar to knowledge distillation, instead of expert trajectories. Given the outlined
options in the design space and their possible trade-offs, we believe our work opens up future work.

Lastly, we have demonstrated that our approach can work on the presented problems. However,
likely there also exist problem types, where subsequent states in high quality solutions are not similar
enough for efficiency gains. In the future, it needs to be further explored what larger problem classes
are suitable for our modeling approach and if there exist further conditions such as a minimum
quality and smoothness in the embeddings that the base model needs to fulfill.
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Reproducibility Statement To ensure reproducibility, we provide the source code, our pretrained
models, our collected training datasets as well as test datasets at an anonymized repository1. Exam-
ple commands for training and testing models are provided. Details about our model structure can
be found in section 3.2 and 4.2. Training Details are found in 3.3 and C.
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Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter
Kool, Zhiguang Cao, Qingfu Zhang, Joungho Kim, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo
Ahn, Guojie Song, Changhyun Kwon, Kevin Tierney, Lin Xie, and Jinkyoo Park. RL4CO: An
Extensive Reinforcement Learning for Combinatorial Optimization Benchmark, June 2024a.

Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels A. Wouda, Leon Lan,
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A PROBLEMS DETAILS

A.1 TRAVELING SALESMAN PROBLEM

A TSP instance consists of a set of cities C = {1, . . . , n} and the associated pairwise distances
dij ∈ R, i, j ∈ C. A solution x is a permutation of the cities C, such that xi ∈ C is the i-th city in the
tour. The objective function is given via

f(x) ∶=
n−1
∑
i=1

dxi,xi+1 + dxn,x1

The model input at each step consists of the state st ∈ Rnt×2, where nt are the number of nodes and
each node st,i ∈ R2 has two features, its 2D coordinates. The first node st,0 always represents the
current position, while the last node st,nt always represents the destination node, that completes the
cycle. As such in the first step, the starting node is duplicated and also added as the destination node,
such that the objective of finding the shortest path between starting and destination node corresponds
to the actual objective of finding the shortest cycle. The models output at every step is a probability
distribution over the nt nodes, where infeasible actions are masked away.

A.2 CAPACITATED VEHICLE ROUTING PROBLEM

A CVRP instance consists of a set of nodes C = {0,1, . . . , n}, where node 0 is the depot and the
remaining nodes are called the customers. Each customer i ∈ C ∖ {0} has a demand di ∈ R and
all nodes have associated pairwise distances dij ∈ R, i, j ∈ C. A vehicle with capacity Q must now
serve all customers. As such, a feasible solution x = {r1, . . . r∣x∣} consists of a set of routes. Each
route r = {0, . . . ,0} starts and ends at the depot and must serve some subset of customers, such
that the cumulative demand of these customers does not exceed the vehicle capacity Q and over all
routes each customer is visited exactly once. The goal is to find such a solution x that minimizes the
total distance traveled, given by the objective function

f(x) ∶=
∣x∣
∑
i=1

∣ri∣−1
∑
j=1

d(ri,j),(ri,j+1)

where ∣x∣ is the number of routes in the solution and ∣ri∣ is the number of nodes in route i, including
the depots at the start and end of the route.

The model inputs at each step are similar to the TSP model. In addition to the 2D-coordinates, the
state st ∈ Rnt+1×4 contains the demand of each node, normalized by the vehicle capacity Q, as well
as the remaining normalized capacity of the vehicle at the current step t. The first node st,0 always
represents the current position, while the last node st,nt always represents the depot node, which
also functions as the destination node. At the first step, again starting and end node are the same,
and as such they are duplicated in the state. We follow (Drakulic et al., 2023) and instead of letting
the model predict a distribution over the nt + 1 nodes, including the depot, as the action, the model
predicts a distribution over 2nt actions, where for each customer, the model can select to either visit
it directly or visit it via the depot. Infeasible actions are masked.

A.3 ORIENTEERING PROBLEM

We consider a distance constrained version of the OP. An instance consists of a set of nodes C =
{0,1, . . . , n}, where 0 is the depot node and all other nodes i ∈ C ∖ {0} are assigned a prize pi ∈ R.
As in the other problems, the nodes have associated pairwise distances dij ∈ R, i, j ∈ C. A feasible
solution x consists again of a sequence of customer visits, where each customer cannot be visited
more than once, however in contrast to the other problems not all customers need to be visited, but
there exists a total distance constraint D, which x cannot surpass. The goal is to find a path starting
and ending at the depot, such that the total prize of the visited nodes is maximized. As such, the
objective is given by

f(x) ∶=
∣x∣
∑
i=1

pxi
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The model input is similar to the TSP. The only difference is that in addition to the 2D-coordinates,
the prizes of each node normalized by the maximum prize and the remaining distance limit are
added. The prize of the depot is always set to 0.

B COMPARISON WITH ENCODER-DECODER MODELS

We have already contrasted our approach to policies that process all states separately, thus having
no real encoder-decoder structure in section 3.2. This is the case for our base model or models like
BQ Drakulic et al. (2023). However, the literature has early on already tried to make use of the
fact all nodes of the problem are known at the start of the solution construction. As such, encoder-
decoder models have been proposed Hottung et al. (2025a); Jin et al. (2023); Kool et al. (2019);
Kwon et al.; 2020); Luo et al. (2023); Xin et al. (2021a). They typically only embed all nodes
initially once and then let the decoder predict from these static embeddings, without updating them.
To get information about the current state, and all occurred changes, a context node is provided
with engineered features. While faster, this can be limiting, since the decoder has to operate from
increasingly out of date embeddings. Our recurrent model has the advantage that it can update the
embeddings to reflect the current state, while still reusing computation from prior steps. When step-
by-step changes are small, this is more efficient and computation is divided more equally across
the steps. To illustrate the difference again, we provide pseudocode for greedy inference with a
typical encoder-decoder model and our recurrent model in algorithms 4 and 5. We also compare
our recurrent models experimentally again to both other paradigms: (i) recomputing embeddings
from scratch at every step and (ii) encoder-decoder models with static embeddings in appendix F.

Algorithm 4 Greedy inference with a typical
encoder-decoder model
Require: EθE ,DθD , s0
t← 0
done← False
h0 ← EθE(s0) // Compute embeddings only
once at the start
while not done do

// Compute logits and take likeliest action
with fixed embeddings h0 and context from
current state st

at ← argmaxaDθD(h0, st)a
st+1,done← step(st, at)
t← t + 1

return a0, ..., at

Algorithm 5 Greedy inference with our recurrent
model
Require: EθE ,DθD , UθU , k, s0

t← 0
done← False
while not done do

if t mod k = 0 then
// Initial or occasional reembedding
ht ← EθE(st)

else
// Recurrent update of embeddings

from prior step
ht ← UθU (ht−1, st)

// Compute logits and take likeliest action
at ← argmaxaDθD(ht)a
st+1,done← step(st, at)
t← t + 1

return a0, ..., at

C TRAINING AND HARDWARE DETAILS

For the imitation learning procedure, we first train the base model parameters θE , θD, and in a
second training stage we train the recurrent model parameters θU , while freezing the base model.
Training for the base model is conducted by sampling a batch of expert trajectories from the dataset
D. Subsequently, a random step is chosen from the trajectory and the corresponding pair of state
and ground-truth action is extracted from the trajectory. The model is then updated via the cross-
entropy loss between the ground-truth action and the predicted action. For the recurrent encoder,
we take the trained base model and again sample a batch of expert trajectories from the dataset D.
We again sample a random starting state, but now accumulate the cross-entropy loss over the next
k steps, where the embeddings are updated recurrently and the ground-truth trajectory is followed.
The training procedure is illustrated in algorithm 6.

For all problem types, we train the models with the same set of hyperparameters, except the model
structure, where number of layers, the hidden dimension, and feed forward dimension, and number
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Algorithm 6 Imitation Learning - Training for base and update model components
Require: D,E,U,D, k,M,α // Dataset, model components and hyperparameters

for m = 1 to M do // Training of the base model
(s0, a0, ..., sT , aT ) ∼ D // Sample expert trajectory from the dataset
j ∼ Uniform(0, T ) // Sample a random step
l ← CE(aj ,DθD(EθE(sj))) // Compute cross-entropy loss
(θE , θD) ← (θE , θD) − α∇(θE ,θD)l // Update base model parameters

for m = 1 to M do // Training of the recurrent encoder
(s0, a0, ..., sT , aT ) ∼ D // Sample expert trajectory from the dataset
j ∼ Uniform(0, T − k) // Sample a random starting step
l ← 0
hj ← EθE(sj)
for i = j + 1 to j + k do

hi ← UθU (hi−1, si) // Update embeddings recurrently
l ← l +CE(ai,DθD(hi))

θU ← θU − α∇θU l // Update only UθU parameters
return θE , θD, θU

of heads are varied, as indicated in the figures. All models use k = 10 for training, as a trade-off
between training time and performance, since the larger the k, the longer the sequence of steps that
Backpropagation through Time (BPTT) needs to be computed for. We used the schedulefree Adam
variant (Defazio et al., 2024) with a learning rate of 1e − 3, training for a maximum of 1000 epochs
except for the base model which was trained for 1500 epochs at maximum. We use early stopping
with a patience of 100 epochs and always save the overall best model by greedy performance on the
validation set.

D DATA GENERATION

For all datasets, we sample 2D coordinates uniformly at random from the unit square, independently
for each node. The distance matrix is then computed via pairwise euclidean distance. We consider
a problem of size n, to be a TSP, CVRP or OP instance with n customer nodes, meaning for CVRP
and OP, there is an additional depot node, making the problem contain a total of n + 1 nodes. In
the CVRP, we sample the demand of each customer uniformly at random from [1,10], which is
widely used, starting with (Kool et al., 2019). The vehicle capacity is dependent on the problem size
and following the literature (Berto et al., 2024a;b) we choose Q100 = 50, Q200 = 70, Q500 = 130,
Q1000 = 230, where Qn is the vehicle capacity for a problem of size n. For the OP, we follow
Drakulic et al. (2023) and fix the distance constraint to 4. The prize pi of customer i is determined
by its distance to the depot relative to maximum distance between the depot and any customer,
making farther away customers more valuable:

pi = 1 + ⌊99
d0i

maxj d0j
⌋

where⌊⋅⌋ is the floor function. The score is thus between [1,100].

E BASELINE DESCRIPTIONS

Concorde Concorde (David L. Applegate et al., 2003) is a widely known exact TSP solver. We
used it as our reference solver for obtaining the training data for the TSP, as well as the reference
solutions for all validation and test datasets. The code is freely available for academic purposes.

EA4OP EA4OP (Kobeaga et al., 2018) is a metaheuristic, combining an evolutionary algorithm
with a local search for the Orienteering Problem. We used it as our reference method for obtaining
the training data for the Orienteering Problem, as well as the reference solutions for all validation
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and test datasets. The implementation available in OPSolver 2 was used, which also provides an
alternative exact solver. The code is freely available for academic purposes.

PyVRP PyVRP (Wouda et al., 2024) is a meta heuristic framework for various routing problems,
based upon the hybrid genetic search algorithm for the CVRP by Vidal et al. (2012); Vidal (2021).
To generate the CVRP datasets, we used RL4CO (Berto et al., 2024a), which provides a built-
in interface to PyVRP in its MTVRP implementation. The code is freely available for academic
purposes.

MDAM The Multi-Decoder Attention Model (Xin et al., 2021a) is an extension on the encoder-
decoder style of neural combinatorial models (Kool et al., 2019), trained via reinforcement learning.
MDAM changes the split between encoder and decoder and additionally adds multiple decoder
heads. To promote diversity, the heads are regularized with a KL-Divergence loss to promote diver-
sity among the multiple decoders. The code is available under the MIT license.

POMO Policy Optimization with Multiple Optima (Kwon et al., 2020) is based on the encoder-
decoder model by Kool et al. (2019) and proposed an improved training procedure and inference
mechanism which forces the model to start from all possible starting nodes, which is especially
helpful for the TSP, where the starting node is arbitrary. At inference time, the model additionally
creates diverse solutions by creating multiple augmentations of the instance by rotating the coordi-
nates. The code is available under the MIT license.

EAS Efficient Active Search (Hottung et al., 2022) explores multiple variants of an active search
approach, where the constructive model is updated by the Reinforcement Learning method during
the inference procedure for the specific instance to be solved. Multiple variants are proposed: (i)
only the embeddings are updated, (ii) an additional adapter layer is added to the decoder, (iii) a table
is initialized that directly updates the logits. The source code is freely available.

SGBS Simulation Guided Beam Search (Choo et al., 2022) is a tree search procedure inspired by
Monte Carlo Tree search, which instead of only relying on the model probabilities, scores inter-
mediate nodes by greedy rollouts of the policy, to subsequently adjust where to search next. It is
additionally combined with the active search approach of Hottung et al. (2022). The code is available
under the MIT license.

BQ BQ (Drakulic et al., 2023) reframes the MDP, removing all already decided nodes from the
state and action space. Consequently, the model is not split into an encoder and decoder, but instead
a single deep network is computed at each step. The model is trained via imitation learning, where
the training data is generated by a solver. The code is available under the CC BY-NC-SA 4.0 license.

LEHD LEHD (Luo et al., 2023) is similar to BQ, being trained by imitation learning from solver
generated solutions. The model still has a split between encoder and decoder, however all except one
layer is placed in the decoder, in contrast to other encoder-decoder approaches. They additionally
add a large neighborhood search which selects a subproblem by selecting a random subsegment
based on the current solution and then resolving it with the model by greedy construction. The code
is available under the MIT license.

GLOP GLOP (Ye et al., 2024) focuses on large instances by hierarchically decomposing the prob-
lem into TSPs and those into path-TSPs. The decomposition is sampled from a GNN generated
heatmap and the TSPs are solved by iteratively decomposing and solving segments with an encoder-
decoder model. The code is available under the MIT license.

F ADDITIONAL RESULTS

In this section, we show additional results for the TSP and CVRP. First we demonstrate that the good
performance of our Large Neighborhood search is tied to our better recurrent models by comparing

2https://github.com/gkobeaga/op-solver
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Table 1: Detailed Comparison of our recurrent models without Large Neighborhood Search to BQ
and LEHD models. We can conclude that also without the search our models demonstrate superior
performance both in terms of absolute cost and runtime. Thus, replacing our model with others in
our LNS procedure would not be helpful. All experiments are conducted on the same Nvidia A4000.

Traveling Salesman Problem (TSP)

TSP100 TSP200 (ood)
Method Variant Cost Gap Time (s) Cost Gap Time (s)

Concorde 7.768 0% - 10.697 0% -
BQ Greedy 7.798 0.39% 0.78 10.754 0.53% 1.18

Bs16 7.769 0.01% 0.69 10.708 0.10% 2.36
Bs64 7.768 0.00% 1.55 10.702 0.05% 7.61

LEHD greedy 7.810 0.54% 0.31 10.787 0.84% 0.65
rrc10 7.782 0.18% 1.84 10.735 0.35% 3.89
rrc100 7.769 0.01% 15 10.704 0.06% 32
rrc1000 7.768 0.00% 154 10.699 0.02% 324

Ours l=4 k=200 Greedy 7.791 0.30% 0.24 10.745 0.45% 0.47
Ours l=4 k=200 Bs16 7.769 0.01% 0.26 10.703 0.05% 0.52
Ours l=4 k=200 Bs64 7.768 0.00% 0.29 10.699 0.02% 0.92
Ours l=5 k=200 Greedy 7.793 0.32% 0.26 10.733 0.34% 0.53
Ours l=5 k=200 Bs16 7.769 0.01% 0.29 10.701 0.04% 0.58
Ours l=5 k=200 Bs64 7.768 0.00% 0.33 10.698 0.01% 1.08

Capacitated Vehicle Routing Problem (CVRP)

CVRP100 CVRP200 (ood)
Method Variant Cost Gap Time (s) Cost Gap Time (s)

PyVRP 15.5781 0% - 22.046 0% -
BQ Greedy 16.037 2.95% 0.68 22.711 3.02% 1.40

Bs16 15.764 1.19% 0.80 22.321 1.25% 2.52
Bs64 15.696 0.76% 1.66 22.227 0.82% 7.66

LEHD greedy 16.500 5.92% 0.39 23.521 6.69% 0.81
rrc10 16.089 3.28% 2.46 23.012 4.38% 4.66
rrc100 15.790 1.36% 21.75 22.571 2.38% 40.67
rrc1000 15.709 0.84% 200.21 22.363 1.44% 409.30

Ours l=4 k=200 Greedy 15.964 2.48% 0.35 22.710 3.01% 0.69
Ours l=4 k=200 Bs16 15.722 0.92% 0.36 22.317 1.23% 0.79
Ours l=4 k=200 Bs64 15.664 0.55% 0.38 22.211 0.75% 1.11
Ours l=5 k=200 Greedy 15.905 2.10% 0.38 22.681 2.88% 0.77
Ours l=5 k=200 Bs16 15.692 0.73% 0.39 22.285 1.08% 0.84
Ours l=5 k=200 Bs64 15.645 0.43% 0.41 22.184 0.62% 1.25

them to the BQ (Drakulic et al., 2023) and LEHD (Luo et al., 2023) models with greedy and beam
search decoding on typical subproblem sizes. Both represent state-of-the-art models from the two
alternative approaches of (i) having no split between encoder and decoder and just a single model
(BQ) and (ii) a model from the encoder-decoder family (LEHD). The results are displayed in Table
1. We show that our models perform better in terms of absolute cost and runtime, thus replacing our
models in our LNS procedure with others would not be helpful.

Additionally, we present extended results of the main figure 1 to ood problem sizes of up to 1000.
On the CVRP, not only the problem size is ood, but also the vehicle capacity increases, which
dramatically changes the typical length of the individual routes. As discussed in section D, the
vehicle capacity for the training instances was set to Q100 = 50. For the largest instances here, it
is set to Q1000 = 230. We can see that the recurrent models still perform quite well on most ood
cases. Especially on the TSP, performance is remarkably consistent with the largest recurrent model,
delivering ≈ 0.5% gap to the optimal concorde solutions on the 1000-sized instances with a beam
search, despite those instances being 10× larger than the training instances and the recurrent encoder
being used a 100× more steps in a row without recomputing the embeddings (k = 10 vs k = 1000).
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Figure 4: Additional results for recurrent models of different sizes vs base models of different sizes
on the TSP. All models are the same as in the main paper (see Fig 1). We show the relative gap of the
models vs the time it takes to decode a single instance of the problem on ood instances of up to size
1000. All models use maximum k = 1000. For results with varying k, see figure 5. All models were
trained on the same imitation learning dataset of 1 million trajectories with problems of size 100.
The models in blue are differently sized configurations of non-recurrent models, while the models in
green are recurrent with the recurrent encoder having the respective same size and structure where
L, is the number of layers, d is the embedding dimension and #h the number of heads in the MHA
mechanism. All recurrent models always use the largest available base encoder and are trained with
k = 10.
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Figure 5: Additional results for the TSP. Recurrent models of different sizes are compared against
their base encoder on the TSP with various TSP sizes up to 1000. All models are the same as in the
main paper (see Fig 1). We show the relative gap of the models vs the number of steps the recurrent
encoder is used in a row until the base encoder recomputes the embeddings (k). For solution times,
see figure 4. All models were trained on the same imitation learning dataset of 1 million trajectories
with problems of size 100. The structure of the model is given by L, the number of layers, d the
embedding dimension and #h the number of heads in the MHA mechanism.
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Figure 6: Additional results for recurrent models of different sizes vs base models of different sizes
on the CVRP. All models are the same as in the main paper (see Fig 1). We show the relative gap
of the models vs the time it takes to decode a single instance of the problem on ood instances of
up to size 1000. All models use maximum k = 1000. For results with varying k, see figure 7. All
models were trained on the same imitation learning dataset of 1 million trajectories with problems
of size 100. The models in blue are differently sized configurations of non-recurrent models, while
the models in green are recurrent with the recurrent encoder having the respective same size and
structure where L, is the number of layers, d is the embedding dimension and #h the number of
heads in the MHA mechanism. All recurrent models always use the largest available base encoder
and are trained with k = 10.
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Figure 7: Additional results for the CVRP. Recurrent models of different sizes are compared against
their base encoder on the CVRP with various CVRP sizes up to 1000. All models are the same
as in the main paper (see Fig 1). We show the relative gap of the models vs the number of steps
the recurrent encoder is used in a row until the base encoder recomputes the embeddings (k). For
solution times, see figure 6. All models were trained on the same imitation learning dataset of 1
million trajectories with problems of size 100. The structure of the model is given by L, the number
of layers, d the embedding dimension and #h the number of heads in the MHA mechanism.
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