
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RECURRENT STATE ENCODERS FOR EFFICIENT NEU-
RAL COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The primary paradigm in Neural Combinatorial Optimization (NCO) are construc-
tion methods, where a neural network is trained to sequentially add one solution
component at a time until a complete solution is constructed. We observe that
the typical changes to the state between two steps are small, since usually only
the node that gets added to the solution is removed from the state. An efficient
model should be able to reuse computation done in prior steps. To that end, we
propose to train a recurrent encoder that computes the state embeddings not only
based on the state but also the embeddings of the prior state. We show that the re-
current encoder can achieve equivalent or better performance than a non-recurrent
encoder even if it consists of 3× fewer layers, thus significantly improving on la-
tency. We demonstrate our findings on three different problems: the Traveling
Salesman Problem (TSP), the Capacitated Vehicle Routing Problem (CVRP), and
the Orienteering Problem (OP) and integrate the models into a large neighborhood
search algorithm, to showcase the practical relevance of our findings.

1 INTRODUCTION

Neural Combinatorial Optimization (NCO) is concerned with learning heuristics parameterized by
deep neural networks for hard combinatorial optimization problems (COPs). The motivation is
twofold: First, tailoring traditional heuristics to the exact problem at hand can be a difficult and
time-consuming task, requiring specialized knowledge. If data-driven methods can be designed that
are able to automatically learn high quality heuristics, development effort could be significantly
reduced. Second, NCO uses the fact that for applications there always exists an implicit distribution
over the instance space. Given the NP-hard nature of most problems, it is unlikely that there exists
a single method that solves all instances efficiently. Thus, being able to specialize to any particular
instance distribution by learning from data is a desirable property.

The primary paradigm currently are construction methods, where a neural network sequentially
adds to a partial solution until some completion criterion is met. In the Traveling Salesman Problem
(TSP), for example, the model would start at some node and iteratively add one of the not yet chosen
nodes to the solution until all nodes are visited. Given that the goal is to solve optimization problems
and with infinite time even naive enumeration of the solution space would yield the optimal solution,
it is clear that finding good solutions quickly is the main goal. In the described construction process
many problems inhibit the property that subsequent states are very similar. In the TSP for instance,
every node that gets added to the solution, can be removed from the state, since it is already decided
on and not relevant for future decision-making. This makes all pairs of subsequent states very
similar, since they only differ in the one node.

Past approaches (Kool et al., 2019; Kwon et al., 2020; Xin et al., 2021a; Berto et al., 2024b) have
therefore mainly relied on an encoder-decoder architecture, where the encoder computes a set of
node embeddings only in the first step and the decoder computes the action probabilities based on
these embeddings for all following steps. While efficient, it was observed that the models can strug-
gle to learn with increasing problem size (Joshi et al., 2022) since the embeddings also contain
information about increasingly less relevant interactions of components not present in the state any-
more and recent work has shown that the more model capacity is added to the decoder instead of the
encoder (Luo et al., 2023) or the more frequently the encoder is recomputed (Peng et al., 2020), the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

better. In particular, Luo et al. (2023) only utilize a single encoder layer and Drakulic et al. (2023)
remove the split between encoder and decoder entirely and apply a singular model at every step.

While this works well, it is significantly more expensive and ignores the similarity between the
states. In order to still make use of this property and build a more efficient model, without losing
the ability to adjust to changes in the state at every step, we instead propose to learn the difference
between subsequent states. In order to do so, we train a recurrent encoder that computes the state
embeddings not only based on the current state but also the embeddings of the step before, allowing
it to reuse computation done in prior steps. We show that such an embedding update does not
compromise on accuracy and decreases latency. Our contributions can be summarized as follows:

• We propose a novel recurrent state encoder for neural combinatorial optimization,
which updates the node embeddings at every step based on the current state and the prior
node embeddings. A hyperparameter k controls the number of steps after which a non-
recurrent base encoder is used to recompute the embeddings, allowing a flexible trade-off
between both encoders.

• We demonstrate that the recurrent encoder can achieve equivalent or better performance
to the non-recurrent encoder with significantly smaller number of parameters and thus im-
proves on the latency accuracy trade-off. Depending on the exact model and problem,
we find latency decreases of 1.8 − 4× at no significant accuracy drop. Crucially, non-
recurrent encoders of the same size and latency are not able to achieve the same perfor-
mance. Additionally, the models are surprisingly robust, often delivering stable perfor-
mance, even if the recurrent encoder is used with much larger k than seen during training.

• Finally, we integrate our recurrent models into a large neighborhood search algorithm,
showcasing how our improvements impact practically relevant search methods in terms of
performance and latency. We demonstrate that our findings hold on three different com-
binatorial optimization problems: the Traveling Salesman Problem (TSP), the Capacitated
Vehicle Routing Problem (CVRP), and the Orienteering Problem (OP).

2 RELATED WORK

Neural Combinatorial Optimization NCO has seen a diverse set of methodologies in recent
years. In our work we focus on the very common constructive paradigm, where solutions are se-
quentially constructed with a neural network. Note however that various approaches exist, such as
parameterizing a local search operator (Ma et al., 2021; 2023), learning a local search meta con-
troller (Falkner et al., 2023; Xin et al., 2021b), parameterizing insertion operators (Hottung et al.,
2025b; Khalil et al., 2017), learning heatmaps (Fu et al., 2021; Joshi et al., 2019; Min et al., 2023;
Sun and Yang, 2023; Xin et al., 2021b; Li et al., 2023; Ye et al., 2024), learning to select subgraphs
or decompositions (Falkner and Schmidt-Thieme, 2023; Hottung and Tierney, 2022; Li et al., 2021;
Luo et al., 2023; Ye et al., 2024) and various hybridizations thereof.

In the domain of constructive methods our main contribution lies in the way the neural network
processes the state. We propose a novel model that computes state embeddings from the current
state and previous embeddings, thus only having to learn the difference between two states. In
contrast, most prior work has focused on an encoder-decoder model (Kool et al., 2019) and variations
of it (Berto et al., 2024b; Falkner and Schmidt-Thieme, 2020; Hottung et al., 2025a; Jin et al.,
2023; Kwon et al.; Peng et al., 2020; Xin et al., 2021a), where the encoder computes a set of static
node embeddings in the first step and the decoder computes the action probabilities based on these
embeddings and some dynamic context information for all subsequent steps. It was shown however
that such approaches struggle with increasing problem size (Joshi et al., 2022) and recent methods
increasingly move capacity from the encoder to the decoder or frequently reembed the state (Peng
et al., 2020; Xin et al., 2021a; Luo et al., 2023). At the extreme, when either moving all model
capacity to the decoder or recomputing the encoder at every step, the split between encoder and
decoder is removed entirely, which was shown by Drakulic et al. (2023) to perform much better.

Other work on constructive models focuses on either the training strategy or the search component.
Various RL based training methods have been proposed (Kool et al., 2019; Kwon et al., 2020; Berto
et al., 2024a), some auxiliary tasks (Kim et al., 2022) or curriculum strategies (Xin et al., 2021a) as
well as recently self-improvement methods (Luo et al., 2023; 2024; Pirnay and Grimm, 2024a;b),

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where the model searches for improved solutions during training, creating its own data. To improve
the search, the literature has proposed tree search methods (Kwon et al., 2020; Choo et al., 2022;
Pirnay and Grimm, 2024a), increasing solution diversity through multiple decoder heads (Xin et al.,
2021a; Hottung et al., 2025a), as well as gradient based test time search, where some model pa-
rameters are adapted iteratively at inference time (Hottung et al., 2022; Choo et al., 2022; Hottung
et al., 2025a). Since these aspects are not our focus, we stick to a simple beam search strategy and
imitation learning for our models, but note that the mentioned literature could be integrated at a later
time. Even without such advanced strategies, we find our models perform well.

Finally, we note that given the recent success of foundation models in language tasks, there is also a
push in the NCO community for models that are trained on multiple combinatorial tasks (Drakulic
et al., 2025; Berto et al., 2024b). In this work however, we stick to single task models.

Recurrent Actors in RL Recurrent policies (or memory-based policies) (Hausknecht and Stone,
2015; Heess et al., 2015; Kapturowski et al., 2018; Morad et al., 2024) by themselves are not novel in
Reinforcement Learning, with recent work also investigating sequence models, processing the entire
state sequence with transformers and other sequence models (Bauer et al., 2023; Chen et al., 2021;
Ni et al., 2023; Morad et al., 2024). However, their main application is in the context of partially
observable environments. When the environment is not markov, the optimal action can depend on
the entire state history and as such RNNs have been used to give the agent access to this history. Our
environments however are markov. We instead make the observation that the step-by-step changes
in the states are very small. A recurrent policy can reuse computation done in prior steps and only
has to learn the differences between states. This enables more efficient models, which is especially
important in combinatorial optimization where the policy is integrated into a larger search procedure
and has to be evaluated many times.

Speculative decoding We can also draw parallels to speculative decoding (Stern et al., 2018; Chen
et al., 2023; Leviathan et al., 2023; Ankner et al., 2024) which aims to speed up inference of large
autoregressive transformers, especially LLMs, by using smaller draft models to generate candidate
continuations, which later get verified by the base model. Recent work uses a small recurrent head
on top of the embeddings of the base model which bears similarity to our recurrent encoder (Ankner
et al., 2024). However, there are some differences. Besides the obvious scale difference to LLMs,
our tasks do not allow for causal attention. We have to recompute all pairwise interactions at every
decoding step which is not the case in generative language modeling since tokens only attend to prior
tokens. Additionally, we do not perform verification, which requires the base model to be computed
for all steps even if some of them can be performed in parallel, enabling the speedup for speculative
decoding methods. Since our decoding is always part of a larger search, we believe verification is
not critical. Small accuracy drops can be compensated by searching more with the saved time.

3 METHOD

3.1 PROBLEM FORMULATION AND CONSTRUCTION PROCESS

We consider combinatorial optimization problems whose solutions can be sequentially constructed
by iteratively adding variables from a discrete set to a partial solution until some completion criterion
is reached. A COP instance G ∈ G consists of a finite set of feasible solutions XG and an objective
function fG ∶XG → R. The goal is to find the optimal solution x∗ ∶=minx∈XG

fG(x).
In order to find solutions, we formulate a markov decision process (MDP) in which a policy, param-
eterized by a neural network, is used to sequentially construct a solution. Specifically, we utilize
the recursive MDP formulations proposed in Drakulic et al. (2023) in which after every construction
step the new state represents a reduced subproblem of the same problem class.

To illustrate, consider the well-known traveling salesman problem (TSP). Informally, the goal is,
given a set of cities, to find the shortest cycle, that visits each city exactly once. Starting from
any city, a solution can be constructed, by iteratively adding one of the not yet chosen cities, until
all points are visited and a return to the starting city is made. To make the problem formulation
recursive, it is redefined to find the shortest path instead of cycle for a set of points, given a starting
and end point. This is referred to as the path-TSP problem. At every step, the newly chosen point

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

becomes the new starting point and the prior starting point is removed from the problem, such that
at every construction step t a valid path-TSP instance Gt ∈ G is presented to the policy. To recover
the original TSP formulation, the starting point is duplicated and also added as the end point.

Besides the TSP, we also consider the Capacitated Vehicle Routing Problem (CVRP) and the Orien-
teering Problem (OP). Extended descriptions of the problems and their recursive formulations can
be found in appendix A.

3.2 MODEL

Let Gt ∈ G be the remaining instance to be considered at time t, and nt the number of nodes in
the instance. Our model consists of three components: a base encoder E, a recurrent encoder U ,
and a decoder D. The encoders need to produce embeddings ht ∈ Rnt×dE for Gt, where dE is
the embedding dimension. The base encoder EθE(Gt) ↦ ht, parameterized by θE , is a function
that maps the instance Gt directly to a set of node embeddings ht, whereas the recurrent encoder
UθU (ht−1,Gt) ↦ ht, parameterized by θU , is a function that updates the node embeddings based
on the previous embeddings and the current state. As such it can reuse computation done in prior
steps in order to be more efficient than the base encoder, especially when the step by step changes
in the state are small. The decoder DθD(ht) ↦ ∆nt , parameterized by θD, is a function that maps
the node embeddings to a probability distribution over the nt nodes.

Base Model In all our problems, the state Gt is represented as a feature matrix st ∈ Rnt×dfeat

of nt nodes each with dfeat features. For the base encoder, we use a LE = 9 layer transformer
with ReZero (Bachlechner et al., 2021) connections and RMSNorm (Zhang and Sennrich, 2019)
applied before the MHA and Feedforward blocks. The feed-forward networks are two-layer MLPs
with ReLU activations, with model embedding dimension dE = 192 and feed-forward dimension
dFF = 512. A node-wise linear layer is used to compute the initial node embeddings. The decoder is
a single linear layer followed by a softmax, where infeasible actions are masked away by setting the
logits to − inf .

Recurrent Model Given the state representation st ∈ Rnt×dfeat at time t and the previous em-
beddings ht−1 ∈ Rnt−1×dE , the recurrent encoder needs to compute the updated embeddings
ht ∈ Rnt×dE , from which the decoder produces the action distribution. Note that for all considered
problems the prior step st−1 contained nt + 1 nodes, since the previously selected node becomes the
new starting node and the prior starting node is removed from the problem, since it is not relevant
for the future decision-making anymore.

In order to align the prior embedding ht−1 with the current state st, we remove the node embedding
of the node that was removed from the problem in st and call the resulting embeddings h̃t. It is
ensured, that the i-th element in st and h̃t correspond to the same node.

An initial embedding for st is then computed via a node-wise linear layer. Additionally, learnable
start and learnable end-embeddings hstart, hend ∈ RdU are added to the embedding of the current
starting and final destination node, respectively. By convention, we order the nodes such that the start
node is always the first node and the end node is always the last node. For notational convenience,
we drop the time index t in the following. The initial embeddings of node i are then computed as

h0
i =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

siW
0 + b0 + hstart if i = 1

siW
0 + b0 + hend if i = n

siW
0 + b0 otherwise

, (1)

where W 0 ∈ Rdfeat×dU and b0 ∈ RdU are the learnable parameters. The prior embeddings h̃ are then
combined with the current state embeddings h0 as follows. First, an RMSNorm layer is applied
to h̃, since these come from a possibly longer recurrent chain of repeatedly updated embeddings:
ĥ = RMSNorm(h̃). Then the current and prior embedding are combined via concatenation and an
MLP-layer with a residual connection, bringing h1

i to the same dimension as h0
i

h1
i = ReLU([ĥ, h0]iW 1 + b1) + h0

i , (2)

where W 1 ∈ RdU+dE×dU and b1 ∈ RdU are the learnable parameters. The resulting embeddings
h1 are then passed through LU blocks of multihead self-attention, normalization, and feedforward

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

networks to compute the updated embeddings. These blocks have the same structure as in the base
model. The resulting embeddings are finally projected back to the original embedding dimension
dE via a linear layer, and the result is used as the updated embeddings ht, from which the decoder
computes the action probabilities.

At inference time, the base encoder is used to compute the embeddings at step t = 0. From step t = 1
onwards, the recurrent encoder can be used to compute the embeddings. We include an optional
hyperparameter k that allows the base encoder to recompute the embeddings without the recurrence
every k steps. The procedure is illustrated in algorithm 2 and contrasted against only using the
base model for inference without the recurrent encoder in algorithm 1. For further delineation from
encoder-decoder models, see appendix B.

Algorithm 1 Greedy inference with
our base model
Require: EθE ,DθD , s0
t← 0
done← False
while not done do

// Compute logits and take the
likeliest action

at ← argmaxaDθD(EθE(st))a
st+1,done← step(st, at)
t← t + 1

return a0, ..., at

Algorithm 2 Greedy inference with our recurrent model
Require: EθE ,DθD , UθU , k, s0

t← 0
done← False
while not done do

if t mod k = 0 then
// Initial or occasional reembedding
ht ← EθE(st)

else
// Recurrent update of embeddings from ht−1
ht ← UθU (ht−1, st)

at ← argmaxaDθD(ht)a // Compute likeliest action
st+1,done← step(st, at)
t← t + 1

return a0, ..., at

3.3 TRAINING

Since our main contribution is demonstrating the efficiency of the recurrent encoder, we train all
models by imitation learning, following recent literature (Drakulic et al., 2023; Luo et al., 2023).
While this is not optimal since the models will encounter distributional shifts through error accumu-
lation at inference time, it eases the computational burden and additional complexity incurred by RL
algorithms. Other training strategies may be used in future work to further improve the performance
and other work have demonstrated that similarly sized models to our base model can be trained with-
out labels by ”self-improvement”, where the models get used to search during the training process to
iteratively create and improve their own data (Luo et al., 2024; Pirnay and Grimm, 2024a;b). More
details can be found in appendix C.

3.4 LARGE NEIGHBORHOOD SEARCH

Since in many applications, it is unlikely that the model can reliably find the best solution by greedy
construction, we integrate our recurrent model into a simple large neighborhood search (LNS) al-
gorithm, to demonstrate the practical relevance of our findings. The LNS algorithm is a common
metaheuristic that iteratively improves a solution by exploring a subset of the solution space. Our
approach is described in algorithm 3. We use a beam search with the recurrent model to construct
an initial solution x. Then at each iteration, we extract a subproblem based on the current solution
and use the model to search for a better solution in the subproblem. If a better solution is found,
we update the current solution by replacing the corresponding segment. The algorithm can be con-
figured by the beam width used for the initial solution binit and the subproblems bsub, how often to
recompute the embeddings with the encoder kinit, ksub for both cases and the subproblem size nsub.

In the TSP, we create multiple subproblems at each step, by extracting random non-overlapping
segments of the current solution, each of size nsub. The first and last nodes of each segment become
the starting and end nodes of the path-TSP instance, and the order of the intermediate nodes can be
reconsidered by the model. In the CVRP, since the model was trained only on instances where the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

designated end node is also the depot, we only extract such segments. The first node however can
be a customer node. Since due to this requirement, it is more cumbersome to extract multiple non
overlapping segments, that fulfill this condition, we only extract a single segment of size nsub. To do
so, the solution x is represented as a sequence. Since the order of the routes is arbitrary, we arrange
their order uniformly at random at every step, increasing the diversity of subproblems.

Algorithm 3 Large Neighborhood Search
Require: G,U,D, kinit, ksub, binit, bsub, tmax, nsub // Instance, Model, LNS hyperparameters
x← beam search(G,U,D, kinit, binit) // Find initial solution via beam search
for t = 1 to tmax do

Gsub, fGsub , xsub ← sample subproblem(G,x,nsub) // subproblem based on current sol
xsub new ← beam search(Gsub, U,D, ksub, bsub) // Find subproblem solution
if fGsub(xsub) > fGsub(xsub new) then

x← update solution(x,xsub, xsub new) // Update solution
return x // Return final solution

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our models on three different combinatorial optimization problems: the Traveling Sales-
man Problem (TSP), the Capacitated Vehicle Routing Problem (CVRP), and the Orienteering Prob-
lem (OP). For each problem, we use a dataset of 1,000,000 trajectories collected by Concorde (David
L. Applegate et al., 2003), PyVRP (Wouda et al., 2024) and EA4OP (Kobeaga et al., 2018) respec-
tively for training. Additionally, datasets for validation and testing are created for each problem
containing each 1000 instances. For each problem we train the models on problems of size 100 and
evaluate them on problems of size 100, 200, 500 and 1000. For generation, we follow the estab-
lished protocols in the literature. Details can be found in appendix D. We compare our methods
on two metrics for each problem: the relative gap and the solution time. The relative gap gives the
percentage difference in solution quality to a reference solution: 100

f(x)(f(x̂) − f(x)), where f is
the objective function, x the reference solution and x̂ the to be tested solution. For the reference
solution, we use the solvers that also generated the training data. The solution time is the average
time it takes to solve a single instance of the problem. All times are measured on a machine with an
Nvidia A4000 16GB GPU and an AMD EPYC 7713P. For the baselines, we mostly focus on other
constructive models. We compare to BQ (Drakulic et al., 2023) and LEHD (Luo et al., 2023) which
are the most similar to us, also being trained with imitation learning. LEHD also includes a similar
LNS scheme. We also compare to a variety of the encoder-decoder models and search procedures
using them, including POMO (Kwon et al., 2020), EAS (Hottung et al., 2022), SGBS (Choo et al.,
2022), and MDAM (Xin et al., 2021a). Finally, we compare to GLOP (Ye et al., 2024), which learns
to hierarchically decompose the problem. All baseline results are obtained from the publically avail-
able implementations and pretrained checkpoints and were rerun on our datasets with our hardware,
to make the results comparable.

4.2 RESULTS

Comparing base and recurrent models Figure 1 shows our main experiment, where we train
recurrent models of different sizes in terms of number of layers, embedding dimension and number
of heads on top of our largest base model and compare them to the base model, as well as additional
non-recurrent models with the same size and structure as the recurrent models. We evaluate on the
TSP, CVRP and OP, always with a beam search and measure the relative gap and solution time.

The recurrent models reduce latency, while maintaining or even improving the solution quality.
Including the overhead of the environment and solution cost calculations, the measured speedup
factor on 100-sized problems is between a factor of 1.8 and 2.8, depending on the model configu-
ration and problem. The speedup factor increases with the problem size, since the overhead of the
environment and computing the solution cost reduce. As such we observe a speedup of up to 3.3×

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2−2

2−6

2−4

2−2

B
e
a
m

S
e
a
r
c
h

1
6

R
e
la

t
iv

e
g
a
p

in
%

TSP100

2−1

2−4

2−2

20

TSP200 (OOD)

1 10 100

0.01

0.02

0.03

TSP100

1 10 100 200

0.05

0.10

0.15

TSP200 (OOD)

2−2 2−1

2−10

2−7

2−4

B
e
a
m

S
e
a
r
c
h

6
4

R
e
la

t
iv

e
g
a
p

in
%

20 21

2−6

2−4

2−2

20

1 10 100

0.000

0.002

0.004

0.006

1 10 100 200

0.02

0.04

0.06

2−1

20

21

B
e
a
m

S
e
a
r
c
h

1
6

R
e
la

t
iv

e
g
a
p

in
%

CVRP100

20

20

21

CVRP200 (OOD)

1 10 100

0.8

1.0

1.2

1.4

CVRP100

1 10 100 200

1.0

1.5

2.0

CVRP200 (OOD)

2−1

2−1

20

B
e
a
m

S
e
a
r
c
h

6
4

R
e
la

t
iv

e
g
a
p

in
%

20 21

20

21

1 10 100

0.5

0.6

0.7

0.8

1 10 100 200

0.75

1.00

1.25

1.50

2−2

−1.2

−1.0

−0.8

B
e
a
m

S
e
a
r
c
h

1
6

R
e
la

t
iv

e
g
a
p

in
%

OP100

2−2 2−1

−1.0

−0.5

0.0

0.5

OP200 (OOD)

1 2 5 10

−1.20

−1.18

−1.16

OP100

1 2 5 10

−1

0

1

2

OP200 (OOD)

2−2 2−1

Solution Time (s)

−1.2

−1.1

−1.0

B
e
a
m

S
e
a
r
c
h

6
4

R
e
la

t
iv

e
g
a
p

in
%

2−1 20

Solution Time (s)

−1.5

−1.0

−0.5

0.0

1 2 5 10

k

−1.280

−1.275

−1.270

−1.265

−1.260

1 2 5 10

k

−1

0

1

Base Encoder

Recurrent Encoder

L = 2, d = 192,#h = 12

L = 3, d = 128,#h = 8

L = 4, d = 128,#h = 8

L = 3, d = 192,#h = 12

L = 5, d = 128,#h = 8

L = 9, d = 192,#h = 12

Figure 1: Main Results for recurrent models of different sizes vs base models of different sizes
on the TSP, CVRP and OP. All models were trained on the same imitation learning dataset of 1
million trajectories with problems of size 100. Note that every point represents a trained model.
Blue represents differently sized configurations of non-recurrent models, while green represents
recurrent encoders having the respective same size and structure where L, is the number of layers,
d is the embedding dimension and #h the number of heads in the MHA mechanism. Recurrent
models always use the largest base encoder (marked by☀) and are trained with k = 10. In the left
two columns we show the relative gap of the models vs the time it takes to decode a single instance
of the problem. The right two columns show the behavior of the models when the recurrent encoder
is used with a larger k than trained for. The possible ☀ configuration is omitted since recurrent
models should be smaller than their base model.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 20 40 60

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
e
la

t
iv

e
G

a
p

(
%

)

20×20×20×20×20×20×

TSP500

0 50 100

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

11×11×11×11×11×11×

TSP1000

0 50 100 150

Time (s)

−2

−1

0

1

2

3

4

5.4×5.4×5.4×5.4×5.4×5.4×

CVRP500

0 50 100 150

Time (s)

0

2

4

6

8

10

6.7×6.7×6.7×6.7×6.7×6.7×

CVRP1000

Base L = 3, d = 192,#h = 12 L = 4, d = 128,#h = 8 nsub = 100 nsub = 200

Figure 2: Results for Large Neighborhood Search with recurrent (green) and base (blue) models. All
curves start when the initial solution has been constructed. The green curves start lower since the
recurrent models found better initial solutions. Recurrent models are always used with kinit, ksub =
1000, meaning we only ever use the base encoder for the first step. For the beam sizes, we use
binit, bsub = 16 for the TSP and binit = 16, bsub = 64 for the CVRP, since in the CVRP, we only consider
one subproblem at a time. We evaluate all models with two subproblem sizes nsub = 100,200. Note
that none of the models are explicitly trained for the LNS setting.

on 200-sized problems and in appendix F we even observe a 4× speedup on the TSP1000 with a
beam size of 64 while still maintaining no accuracy drop relative to the base model.

Despite the significantly fewer active parameters and the reduced latency, the recurrent models
match or even exceed the performance of the base model and especially their non-recurrent
counterparts with the same size. Note that outperforming the base model is only possible since the
recurrent models are also trained to predict the optimal action from the imitation learning dataset.
Another option is to train the recurrent models to match the base models embeddings or action
distribution, but this caps the best obtainable performance to that base model. This result shows that
the recurrent models are effective at reusing computation from prior steps and do not simply ignore
the previous embeddings but use them effectively to solve the task. This still holds true in the out
of distribution (ood) settings with double the nodes. Only in the ood OP instances are the recurrent
models not quite able to match the performance of the base model. However, on the OP all models
report negative gaps to the solver that produced the training data, so while the recurrent models still
might fit the training data better, given the inherent limitations of imitation learning, especially with
suboptimal labels, accuracy might be reduced due too mimicking the solver too well.

Additionally, the recurrent encoders are robust to the number of steps k that the recurrent en-
coder is used, before the base encoder is run again. While all models were trained only with k = 10,
on the TSP and CVRP, the performance of the recurrent models actually increases with larger k
than seen during training, even in the ood settings and using the recurrent model with k = 200, a
20× increase. The performance increase on the TSP and CVRP is due to recurrent models being
better than the base models, thus running them for more steps is beneficial. Still, the stability of the
recurrence even on ood instances is a nontrivial finding. Only on the OP, the results are more mixed,
with stable performance in the in distribution setting but falling behind in the ood case.

Application to LNS In Figure 2 we show results with LNS on larger problems of size 500 and
1000. As a trade-off between solution quality and time, we evaluate two intermediate configurations
of our recurrent encoders with (i) LU = 3, dU = 192, dFF = 512,#h = 12 and (ii) LU = 4, dU =
128, dFF = 256,#h = 8 and compare them to only using the base model. While none of the models
were explicitly trained for the larger problem sizes, or their subgraph distributions, we observe good
performance. Additionally, we observe that the recurrent models clearly outperform the base model
in terms of the trade-off between solution quality and time. In Figure 3 we expand on the results,
adding all problem sizes and compare the results to the baselines. We can clearly see that our
recurrent encoder with LNS outperforms all other methods in terms of the time-quality trade-off. To

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 2.5 5.0 7.5 10.0

Time (s)

0.0

0.1

0.2

0.3

R
e
la

t
iv

e
G

a
p

(
%

)

TSP 100

0 5 10 15 20

Time (s)

0.0

0.5

1.0

1.5

TSP 200

0 25 50 75 100

Time (s)

0.0

0.5

1.0

1.5

2.0

TSP 500

0 200 400

Time (s)

0

1

2

3

TSP 1000

0.0 2.5 5.0 7.5 10.0

Time (s)

−1

0

1

2

3

4

5

R
e
la

t
iv

e
G

a
p

(
%

)

CVRP 100

0 20 40

Time (s)

0

2

4

6

8

10

CVRP 200

0 25 50 75 100

Time (s)

−1

0

1

2

3

4

5

CVRP 500

0 200 400

Time (s)

−1

0

1

2

3

4

5

CVRP 1000

LNS (OURS)

GLOP (s)

BQ bs[1, 16, 64]

MDAM bs30

LEHD RRC

POMO 8× aug

SGBS-EAS-aug

POMO 8× aug greedy

Figure 3: Comparison with baseline models on TSP and CVRP. For more information on the other
methods, refer to section 4.1 and E. We limit the axes ranges for better visibility. Methods that are
not visible in the plot perform outside the range (significantly worse), thus are not shown.

ensure that our recurrent models are the main contributor of the good performance of the LNS, we
compare them directly to other models on typical subgraph sizes in appendix F.

5 CONCLUSION AND LIMITATIONS

We proposed a recurrent encoder for combinatorial optimization, enabling reuse of computation
done in previous steps by updating the node embeddings based on the previous embeddings and
current state. Thus, the model only needs to learn the difference between subsequent states. We
demonstrated on the TSP, CVRP and OP that more efficient decision-making can be modeled, lead-
ing to latency decreases while increasing solution quality, especially in a large neighborhood setting.

As discussed in sections 3.3 and 2, the models were trained by imitation learning for computational
efficiency and simplicity, since our main contribution lies in the recurrent encoder and not training
strategies for NCO. RL or self-improvement training can be adopted in the future. We also note
that while the recurrent encoder was trained in a separate training stage from the base model, it is
possible to train both models jointly, potentially making the base encoder produce more ”updatable”
embeddings at the expense of increased training cost. If the field of NCO moves towards recent
trends of large foundation models, our proposed two-stage training might fit the use case of having a
large-scale pretrained model serve as the base model and then a much smaller recurrent encoder on
top of it. In such a case the recurrent model could also be trained by imitating the base models action
distribution, similar to knowledge distillation, instead of expert trajectories. Given the outlined
options in the design space and their possible trade-offs, we believe our work opens up future work.

Lastly, we have demonstrated that our approach can work on the presented problems. However,
likely there also exist problem types, where subsequent states in high quality solutions are not similar
enough for efficiency gains. In the future, it needs to be further explored what larger problem classes
are suitable for our modeling approach and if there exist further conditions such as a minimum
quality and smoothness in the embeddings that the base model needs to fulfill.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement To ensure reproducibility, we provide the source code, our pretrained
models, our collected training datasets as well as test datasets at an anonymized repository1. Exam-
ple commands for training and testing models are provided. Details about our model structure can
be found in section 3.2 and 4.2. Training Details are found in 3.3 and C.

REFERENCES

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-Dependent Draft Heads for Medusa Decod-
ing. In First Conference on Language Modeling, August 2024.

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, Gary Cottrell, and Ju-
lian J. McAuley. ReZero is all you need: Fast convergence at large depth. In Cassio P. de Campos,
Marloes H. Maathuis, and Erik Quaeghebeur, editors, Proceedings of the Thirty-Seventh Confer-
ence on Uncertainty in Artificial Intelligence, UAI 2021, Virtual Event, 27-30 July 2021, volume
161 of Proceedings of Machine Learning Research, pages 1352–1361. AUAI Press, 2021.

Jakob Bauer, Kate Baumli, Feryal Behbahani, Avishkar Bhoopchand, Nathalie Bradley-Schmieg,
Michael Chang, Natalie Clay, Adrian Collister, Vibhavari Dasagi, Lucy Gonzalez, Karol Gre-
gor, Edward Hughes, Sheleem Kashem, Maria Loks-Thompson, Hannah Openshaw, Jack Parker-
Holder, Shreya Pathak, Nicolas Perez-Nieves, Nemanja Rakicevic, Tim Rocktäschel, Yannick
Schroecker, Satinder Singh, Jakub Sygnowski, Karl Tuyls, Sarah York, Alexander Zacherl, and
Lei M. Zhang. Human-Timescale Adaptation in an Open-Ended Task Space. In Proceedings of
the 40th International Conference on Machine Learning, pages 1887–1935. PMLR, July 2023.

Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan
Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter
Kool, Zhiguang Cao, Qingfu Zhang, Joungho Kim, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo
Ahn, Guojie Song, Changhyun Kwon, Kevin Tierney, Lin Xie, and Jinkyoo Park. RL4CO: An
Extensive Reinforcement Learning for Combinatorial Optimization Benchmark, June 2024a.

Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels A. Wouda, Leon Lan,
Kevin Tierney, and Jinkyoo Park. RouteFinder: Towards Foundation Models for Vehicle Routing
Problems. CoRR, abs/2406.15007, 2024b. doi: 10.48550/ARXIV.2406.15007.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating Large Language Model Decoding with Speculative Sampling. CoRR,
abs/2302.01318, 2023. doi: 10.48550/ARXIV.2302.01318.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision Transformer: Reinforcement Learning
via Sequence Modeling. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy
Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Sys-
tems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, Virtual, pages 15084–15097, 2021.

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided Beam Search for Neural Combinatorial Optimization. In
Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Ad-
vances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022.

David L. Applegate, Robert E. Bixby, Vašek Chvatál, and William J. Cook. Concorde Home.
https://www.math.uwaterloo.ca/tsp/concorde.html, 2003.

Aaron Defazio, Xingyu Yang, Ahmed Khaled, Konstantin Mishchenko, Harsh Mehta, and Ashok
Cutkosky. The Road Less Scheduled. In Amir Globersons, Lester Mackey, Danielle Belgrave,

1https://anonymous.4open.science/r/2CB0

10

https://anonymous.4open.science/r/2CB0


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, Advances in Neu-
ral Information Processing Systems 38: Annual Conference on Neural Information Processing
Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO:
Bisimulation Quotienting for Efficient Neural Combinatorial Optimization. In Thirty-Seventh
Conference on Neural Information Processing Systems, November 2023.

Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. GOAL: A Generalist Combinatorial Op-
timization Agent Learner. In The Thirteenth International Conference on Learning Representa-
tions, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025.

Jonas K. Falkner and Lars Schmidt-Thieme. Learning to Solve Vehicle Routing Problems with Time
Windows through Joint Attention. CoRR, abs/2006.09100, 2020.

Jonas K. Falkner and Lars Schmidt-Thieme. Too Big, so Fail? - Enabling Neural Construction
Methods to Solve Large-Scale Routing Problems. CoRR, abs/2309.17089, 2023. doi: 10.48550/
ARXIV.2309.17089.

Jonas K. Falkner, Daniela Thyssens, Ahmad Bdeir, and Lars Schmidt-Thieme. Learning to Control
Local Search for Combinatorial Optimization. volume 13717, pages 361–376. 2023. doi: 10.
1007/978-3-031-26419-1 22.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a Small Pre-trained Model to Arbi-
trarily Large TSP Instances. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pages 7474–7482. AAAI Press, 2021. doi: 10.1609/AAAI.V35I8.
16916.

Matthew J. Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps.
CoRR, abs/1507.06527, 2015.

Nicolas Heess, Jonathan J. Hunt, Timothy P. Lillicrap, and David Silver. Memory-based control
with recurrent neural networks. CoRR, abs/1512.04455, 2015.

André Hottung and Kevin Tierney. Neural large neighborhood search for routing problems. Artif.
Intell., 313:103786, 2022. doi: 10.1016/J.ARTINT.2022.103786.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient Active Search for Combinatorial
Optimization Problems. In The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

André Hottung, Mridul Mahajan, and Kevin Tierney. PolyNet: Learning Diverse Solution Strategies
for Neural Combinatorial Optimization. In The Thirteenth International Conference on Learning
Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025a.

André Hottung, Paula Wong-Chung, and Kevin Tierney. Neural Deconstruction Search for Vehicle
Routing Problems, January 2025b.

Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian.
Pointerformer: Deep reinforced multi-pointer transformer for the traveling salesman problem. In
Brian Williams, Yiling Chen, and Jennifer Neville, editors, Thirty-Seventh AAAI Conference on
Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2023, Washington, DC, USA, February 7-14, 2023, pages 8132–8140. AAAI Press, 2023.
doi: 10.1609/AAAI.V37I7.25982.

Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An Efficient Graph Convolutional Net-
work Technique for the Travelling Salesman Problem. CoRR, abs/1906.01227, 2019.

Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the
travelling salesperson problem requires rethinking generalization. Constraints An Int. J., 27(1-2):
70–98, 2022. doi: 10.1007/S10601-022-09327-Y.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Steven Kapturowski, Georg Ostrovski, John Quan, R. Munos, and Will Dabney. Recurrent Expe-
rience Replay in Distributed Reinforcement Learning. In International Conference on Learning
Representations, September 2018.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning Combinatorial Opti-
mization Algorithms over Graphs. In Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging Symmetricity for Neural
Combinatorial Optimization. In Advances in Neural Information Processing Systems, October
2022.

Gorka Kobeaga, Marı́a Merino, and Jose A. Lozano. An efficient evolutionary algorithm for the
orienteering problem. Computers & Operations Research, 90:42–59, February 2018. ISSN 0305-
0548. doi: 10.1016/j.cor.2017.09.003.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, Learn to Solve Routing Problems! In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Matrix
Encoding Networks for Neural Combinatorial Optimization.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
POMO: Policy optimization with multiple optima for reinforcement learning. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Virtual, 2020.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast Inference from Transformers via Spec-
ulative Decoding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett, editors, International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 19274–19286. PMLR, 2023.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, Virtual,
pages 26198–26211, 2021.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From Distribution Learning in Training
to Gradient Search in Testing for Combinatorial Optimization. In Thirty-Seventh Conference on
Neural Information Processing Systems, November 2023.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural Combinatorial Optimization
with Heavy Decoder: Toward Large Scale Generalization. In Thirty-Seventh Conference on Neu-
ral Information Processing Systems, November 2023.

Fu Luo, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Self-Improved
Learning for Scalable Neural Combinatorial Optimization, May 2024.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to Iteratively Solve Routing Problems with Dual-Aspect Collaborative Transformer. In
Advances in Neural Information Processing Systems, November 2021.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to Search Feasible and Infeasible Re-
gions of Routing Problems with Flexible Neural k-Opt. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neural Informa-
tion Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yimeng Min, Yiwei Bai, and Carla P. Gomes. Unsupervised Learning for Solving the Travelling
Salesman Problem. In Thirty-Seventh Conference on Neural Information Processing Systems,
November 2023.

Steven Morad, Chris Lu, Ryan Kortvelesy, Stephan Liwicki, Jakob Nicolaus Foerster, and Amanda
Prorok. Recurrent Reinforcement Learning with Memoroids. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems, November 2024.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When Do Transformers Shine
in RL? Decoupling Memory from Credit Assignment. In Thirty-Seventh Conference on Neural
Information Processing Systems, November 2023.

Bo Peng, Jiahai Wang, and Zizhen Zhang. A Deep Reinforcement Learning Algorithm Using Dy-
namic Attention Model for Vehicle Routing Problems. In Kangshun Li, Wei Li, Hui Wang, and
Yong Liu, editors, Artificial Intelligence Algorithms and Applications, pages 636–650, Singapore,
2020. Springer. ISBN 978-981-15-5577-0. doi: 10.1007/978-981-15-5577-0 51.

Jonathan Pirnay and Dominik G. Grimm. Self-Improvement for Neural Combinatorial Optimization:
Sample Without Replacement, but Improvement. Transactions on Machine Learning Research,
March 2024a. ISSN 2835-8856.

Jonathan Pirnay and Dominik G. Grimm. Take a Step and Reconsider: Sequence Decoding for
Self-Improved Neural Combinatorial Optimization, July 2024b.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise Parallel Decoding for Deep Au-
toregressive Models. In Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Op-
timization. In Thirty-Seventh Conference on Neural Information Processing Systems, November
2023.

Thibaut Vidal. Hybrid Genetic Search for the CVRP: Open-Source Implementation and SWAP*
Neighborhood. arXiv:2012.10384 [cs], October 2021.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A Hybrid
Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems. Operations Research,
60(3):611–624, June 2012. ISSN 0030-364X. doi: 10.1287/opre.1120.1048.

Niels A. Wouda, Leon Lan, and Wouter Kool. PyVRP: A high-performance VRP solver package.
INFORMS Journal on Computing, 36(4):943–955, July 2024. ISSN 1091-9856, 1526-5528. doi:
10.1287/ijoc.2023.0055.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-Decoder Attention Model with Em-
bedding Glimpse for Solving Vehicle Routing Problems. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(13):12042–12049, May 2021a. ISSN 2374-3468, 2159-5399. doi:
10.1609/aaai.v35i13.17430.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. NeuroLKH: Combining Deep Learning
Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, Virtual,
pages 7472–7483, 2021b.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. GLOP: Learning
Global Partition and Local Construction for Solving Large-Scale Routing Problems in Real-Time.
In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan, editors, Thirty-Eighth AAAI
Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, pages 20284–
20292. AAAI Press, 2024. doi: 10.1609/AAAI.V38I18.30009.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In Proceedings of the
33rd International Conference on Neural Information Processing Systems, number 1110, pages
12381–12392. Curran Associates Inc., Red Hook, NY, USA, December 2019.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A PROBLEMS DETAILS

A.1 TRAVELING SALESMAN PROBLEM

A TSP instance consists of a set of cities C = {1, . . . , n} and the associated pairwise distances
dij ∈ R, i, j ∈ C. A solution x is a permutation of the cities C, such that xi ∈ C is the i-th city in the
tour. The objective function is given via

f(x) ∶=
n−1
∑
i=1

dxi,xi+1 + dxn,x1

The model input at each step consists of the state st ∈ Rnt×2, where nt are the number of nodes and
each node st,i ∈ R2 has two features, its 2D coordinates. The first node st,0 always represents the
current position, while the last node st,nt always represents the destination node, that completes the
cycle. As such in the first step, the starting node is duplicated and also added as the destination node,
such that the objective of finding the shortest path between starting and destination node corresponds
to the actual objective of finding the shortest cycle. The models output at every step is a probability
distribution over the nt nodes, where infeasible actions are masked away.

A.2 CAPACITATED VEHICLE ROUTING PROBLEM

A CVRP instance consists of a set of nodes C = {0,1, . . . , n}, where node 0 is the depot and the
remaining nodes are called the customers. Each customer i ∈ C ∖ {0} has a demand di ∈ R and
all nodes have associated pairwise distances dij ∈ R, i, j ∈ C. A vehicle with capacity Q must now
serve all customers. As such, a feasible solution x = {r1, . . . r∣x∣} consists of a set of routes. Each
route r = {0, . . . ,0} starts and ends at the depot and must serve some subset of customers, such
that the cumulative demand of these customers does not exceed the vehicle capacity Q and over all
routes each customer is visited exactly once. The goal is to find such a solution x that minimizes the
total distance traveled, given by the objective function

f(x) ∶=
∣x∣
∑
i=1

∣ri∣−1
∑
j=1

d(ri,j),(ri,j+1)

where ∣x∣ is the number of routes in the solution and ∣ri∣ is the number of nodes in route i, including
the depots at the start and end of the route.

The model inputs at each step are similar to the TSP model. In addition to the 2D-coordinates, the
state st ∈ Rnt+1×4 contains the demand of each node, normalized by the vehicle capacity Q, as well
as the remaining normalized capacity of the vehicle at the current step t. The first node st,0 always
represents the current position, while the last node st,nt always represents the depot node, which
also functions as the destination node. At the first step, again starting and end node are the same,
and as such they are duplicated in the state. We follow (Drakulic et al., 2023) and instead of letting
the model predict a distribution over the nt + 1 nodes, including the depot, as the action, the model
predicts a distribution over 2nt actions, where for each customer, the model can select to either visit
it directly or visit it via the depot. Infeasible actions are masked.

A.3 ORIENTEERING PROBLEM

We consider a distance constrained version of the OP. An instance consists of a set of nodes C =
{0,1, . . . , n}, where 0 is the depot node and all other nodes i ∈ C ∖ {0} are assigned a prize pi ∈ R.
As in the other problems, the nodes have associated pairwise distances dij ∈ R, i, j ∈ C. A feasible
solution x consists again of a sequence of customer visits, where each customer cannot be visited
more than once, however in contrast to the other problems not all customers need to be visited, but
there exists a total distance constraint D, which x cannot surpass. The goal is to find a path starting
and ending at the depot, such that the total prize of the visited nodes is maximized. As such, the
objective is given by

f(x) ∶=
∣x∣
∑
i=1

pxi

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The model input is similar to the TSP. The only difference is that in addition to the 2D-coordinates,
the prizes of each node normalized by the maximum prize and the remaining distance limit are
added. The prize of the depot is always set to 0.

B COMPARISON WITH ENCODER-DECODER MODELS

We have already contrasted our approach to policies that process all states separately, thus having
no real encoder-decoder structure in section 3.2. This is the case for our base model or models like
BQ Drakulic et al. (2023). However, the literature has early on already tried to make use of the
fact all nodes of the problem are known at the start of the solution construction. As such, encoder-
decoder models have been proposed Hottung et al. (2025a); Jin et al. (2023); Kool et al. (2019);
Kwon et al.; 2020); Luo et al. (2023); Xin et al. (2021a). They typically only embed all nodes
initially once and then let the decoder predict from these static embeddings, without updating them.
To get information about the current state, and all occurred changes, a context node is provided
with engineered features. While faster, this can be limiting, since the decoder has to operate from
increasingly out of date embeddings. Our recurrent model has the advantage that it can update the
embeddings to reflect the current state, while still reusing computation from prior steps. When step-
by-step changes are small, this is more efficient and computation is divided more equally across
the steps. To illustrate the difference again, we provide pseudocode for greedy inference with a
typical encoder-decoder model and our recurrent model in algorithms 4 and 5. We also compare
our recurrent models experimentally again to both other paradigms: (i) recomputing embeddings
from scratch at every step and (ii) encoder-decoder models with static embeddings in appendix F.

Algorithm 4 Greedy inference with a typical
encoder-decoder model
Require: EθE ,DθD , s0
t← 0
done← False
h0 ← EθE(s0) // Compute embeddings only
once at the start
while not done do

// Compute logits and take likeliest action
with fixed embeddings h0 and context from
current state st

at ← argmaxaDθD(h0, st)a
st+1,done← step(st, at)
t← t + 1

return a0, ..., at

Algorithm 5 Greedy inference with our recurrent
model
Require: EθE ,DθD , UθU , k, s0

t← 0
done← False
while not done do

if t mod k = 0 then
// Initial or occasional reembedding
ht ← EθE(st)

else
// Recurrent update of embeddings

from prior step
ht ← UθU (ht−1, st)

// Compute logits and take likeliest action
at ← argmaxaDθD(ht)a
st+1,done← step(st, at)
t← t + 1

return a0, ..., at

C TRAINING AND HARDWARE DETAILS

For the imitation learning procedure, we first train the base model parameters θE , θD, and in a
second training stage we train the recurrent model parameters θU , while freezing the base model.
Training for the base model is conducted by sampling a batch of expert trajectories from the dataset
D. Subsequently, a random step is chosen from the trajectory and the corresponding pair of state
and ground-truth action is extracted from the trajectory. The model is then updated via the cross-
entropy loss between the ground-truth action and the predicted action. For the recurrent encoder,
we take the trained base model and again sample a batch of expert trajectories from the dataset D.
We again sample a random starting state, but now accumulate the cross-entropy loss over the next
k steps, where the embeddings are updated recurrently and the ground-truth trajectory is followed.
The training procedure is illustrated in algorithm 6.

For all problem types, we train the models with the same set of hyperparameters, except the model
structure, where number of layers, the hidden dimension, and feed forward dimension, and number

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 6 Imitation Learning - Training for base and update model components
Require: D,E,U,D, k,M,α // Dataset, model components and hyperparameters

for m = 1 to M do // Training of the base model
(s0, a0, ..., sT , aT ) ∼ D // Sample expert trajectory from the dataset
j ∼ Uniform(0, T ) // Sample a random step
l ← CE(aj ,DθD(EθE(sj))) // Compute cross-entropy loss
(θE , θD) ← (θE , θD) − α∇(θE ,θD)l // Update base model parameters

for m = 1 to M do // Training of the recurrent encoder
(s0, a0, ..., sT , aT ) ∼ D // Sample expert trajectory from the dataset
j ∼ Uniform(0, T − k) // Sample a random starting step
l ← 0
hj ← EθE(sj)
for i = j + 1 to j + k do

hi ← UθU (hi−1, si) // Update embeddings recurrently
l ← l +CE(ai,DθD(hi))

θU ← θU − α∇θU l // Update only UθU parameters
return θE , θD, θU

of heads are varied, as indicated in the figures. All models use k = 10 for training, as a trade-off
between training time and performance, since the larger the k, the longer the sequence of steps that
Backpropagation through Time (BPTT) needs to be computed for. We used the schedulefree Adam
variant (Defazio et al., 2024) with a learning rate of 1e − 3, training for a maximum of 1000 epochs
except for the base model which was trained for 1500 epochs at maximum. We use early stopping
with a patience of 100 epochs and always save the overall best model by greedy performance on the
validation set.

D DATA GENERATION

For all datasets, we sample 2D coordinates uniformly at random from the unit square, independently
for each node. The distance matrix is then computed via pairwise euclidean distance. We consider
a problem of size n, to be a TSP, CVRP or OP instance with n customer nodes, meaning for CVRP
and OP, there is an additional depot node, making the problem contain a total of n + 1 nodes. In
the CVRP, we sample the demand of each customer uniformly at random from [1,10], which is
widely used, starting with (Kool et al., 2019). The vehicle capacity is dependent on the problem size
and following the literature (Berto et al., 2024a;b) we choose Q100 = 50, Q200 = 70, Q500 = 130,
Q1000 = 230, where Qn is the vehicle capacity for a problem of size n. For the OP, we follow
Drakulic et al. (2023) and fix the distance constraint to 4. The prize pi of customer i is determined
by its distance to the depot relative to maximum distance between the depot and any customer,
making farther away customers more valuable:

pi = 1 + ⌊99
d0i

maxj d0j
⌋

where⌊⋅⌋ is the floor function. The score is thus between [1,100].

E BASELINE DESCRIPTIONS

Concorde Concorde (David L. Applegate et al., 2003) is a widely known exact TSP solver. We
used it as our reference solver for obtaining the training data for the TSP, as well as the reference
solutions for all validation and test datasets. The code is freely available for academic purposes.

EA4OP EA4OP (Kobeaga et al., 2018) is a metaheuristic, combining an evolutionary algorithm
with a local search for the Orienteering Problem. We used it as our reference method for obtaining
the training data for the Orienteering Problem, as well as the reference solutions for all validation

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

and test datasets. The implementation available in OPSolver 2 was used, which also provides an
alternative exact solver. The code is freely available for academic purposes.

PyVRP PyVRP (Wouda et al., 2024) is a meta heuristic framework for various routing problems,
based upon the hybrid genetic search algorithm for the CVRP by Vidal et al. (2012); Vidal (2021).
To generate the CVRP datasets, we used RL4CO (Berto et al., 2024a), which provides a built-
in interface to PyVRP in its MTVRP implementation. The code is freely available for academic
purposes.

MDAM The Multi-Decoder Attention Model (Xin et al., 2021a) is an extension on the encoder-
decoder style of neural combinatorial models (Kool et al., 2019), trained via reinforcement learning.
MDAM changes the split between encoder and decoder and additionally adds multiple decoder
heads. To promote diversity, the heads are regularized with a KL-Divergence loss to promote diver-
sity among the multiple decoders. The code is available under the MIT license.

POMO Policy Optimization with Multiple Optima (Kwon et al., 2020) is based on the encoder-
decoder model by Kool et al. (2019) and proposed an improved training procedure and inference
mechanism which forces the model to start from all possible starting nodes, which is especially
helpful for the TSP, where the starting node is arbitrary. At inference time, the model additionally
creates diverse solutions by creating multiple augmentations of the instance by rotating the coordi-
nates. The code is available under the MIT license.

EAS Efficient Active Search (Hottung et al., 2022) explores multiple variants of an active search
approach, where the constructive model is updated by the Reinforcement Learning method during
the inference procedure for the specific instance to be solved. Multiple variants are proposed: (i)
only the embeddings are updated, (ii) an additional adapter layer is added to the decoder, (iii) a table
is initialized that directly updates the logits. The source code is freely available.

SGBS Simulation Guided Beam Search (Choo et al., 2022) is a tree search procedure inspired by
Monte Carlo Tree search, which instead of only relying on the model probabilities, scores inter-
mediate nodes by greedy rollouts of the policy, to subsequently adjust where to search next. It is
additionally combined with the active search approach of Hottung et al. (2022). The code is available
under the MIT license.

BQ BQ (Drakulic et al., 2023) reframes the MDP, removing all already decided nodes from the
state and action space. Consequently, the model is not split into an encoder and decoder, but instead
a single deep network is computed at each step. The model is trained via imitation learning, where
the training data is generated by a solver. The code is available under the CC BY-NC-SA 4.0 license.

LEHD LEHD (Luo et al., 2023) is similar to BQ, being trained by imitation learning from solver
generated solutions. The model still has a split between encoder and decoder, however all except one
layer is placed in the decoder, in contrast to other encoder-decoder approaches. They additionally
add a large neighborhood search which selects a subproblem by selecting a random subsegment
based on the current solution and then resolving it with the model by greedy construction. The code
is available under the MIT license.

GLOP GLOP (Ye et al., 2024) focuses on large instances by hierarchically decomposing the prob-
lem into TSPs and those into path-TSPs. The decomposition is sampled from a GNN generated
heatmap and the TSPs are solved by iteratively decomposing and solving segments with an encoder-
decoder model. The code is available under the MIT license.

F ADDITIONAL RESULTS

In this section, we show additional results for the TSP and CVRP. First we demonstrate that the good
performance of our Large Neighborhood search is tied to our better recurrent models by comparing

2https://github.com/gkobeaga/op-solver

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 1: Detailed Comparison of our recurrent models without Large Neighborhood Search to BQ
and LEHD models. We can conclude that also without the search our models demonstrate superior
performance both in terms of absolute cost and runtime. Thus, replacing our model with others in
our LNS procedure would not be helpful. All experiments are conducted on the same Nvidia A4000.

Traveling Salesman Problem (TSP)

TSP100 TSP200 (ood)
Method Variant Cost Gap Time (s) Cost Gap Time (s)

Concorde 7.768 0% - 10.697 0% -
BQ Greedy 7.798 0.39% 0.78 10.754 0.53% 1.18

Bs16 7.769 0.01% 0.69 10.708 0.10% 2.36
Bs64 7.768 0.00% 1.55 10.702 0.05% 7.61

LEHD greedy 7.810 0.54% 0.31 10.787 0.84% 0.65
rrc10 7.782 0.18% 1.84 10.735 0.35% 3.89
rrc100 7.769 0.01% 15 10.704 0.06% 32
rrc1000 7.768 0.00% 154 10.699 0.02% 324

Ours l=4 k=200 Greedy 7.791 0.30% 0.24 10.745 0.45% 0.47
Ours l=4 k=200 Bs16 7.769 0.01% 0.26 10.703 0.05% 0.52
Ours l=4 k=200 Bs64 7.768 0.00% 0.29 10.699 0.02% 0.92
Ours l=5 k=200 Greedy 7.793 0.32% 0.26 10.733 0.34% 0.53
Ours l=5 k=200 Bs16 7.769 0.01% 0.29 10.701 0.04% 0.58
Ours l=5 k=200 Bs64 7.768 0.00% 0.33 10.698 0.01% 1.08

Capacitated Vehicle Routing Problem (CVRP)

CVRP100 CVRP200 (ood)
Method Variant Cost Gap Time (s) Cost Gap Time (s)

PyVRP 15.5781 0% - 22.046 0% -
BQ Greedy 16.037 2.95% 0.68 22.711 3.02% 1.40

Bs16 15.764 1.19% 0.80 22.321 1.25% 2.52
Bs64 15.696 0.76% 1.66 22.227 0.82% 7.66

LEHD greedy 16.500 5.92% 0.39 23.521 6.69% 0.81
rrc10 16.089 3.28% 2.46 23.012 4.38% 4.66
rrc100 15.790 1.36% 21.75 22.571 2.38% 40.67
rrc1000 15.709 0.84% 200.21 22.363 1.44% 409.30

Ours l=4 k=200 Greedy 15.964 2.48% 0.35 22.710 3.01% 0.69
Ours l=4 k=200 Bs16 15.722 0.92% 0.36 22.317 1.23% 0.79
Ours l=4 k=200 Bs64 15.664 0.55% 0.38 22.211 0.75% 1.11
Ours l=5 k=200 Greedy 15.905 2.10% 0.38 22.681 2.88% 0.77
Ours l=5 k=200 Bs16 15.692 0.73% 0.39 22.285 1.08% 0.84
Ours l=5 k=200 Bs64 15.645 0.43% 0.41 22.184 0.62% 1.25

them to the BQ (Drakulic et al., 2023) and LEHD (Luo et al., 2023) models with greedy and beam
search decoding on typical subproblem sizes. Both represent state-of-the-art models from the two
alternative approaches of (i) having no split between encoder and decoder and just a single model
(BQ) and (ii) a model from the encoder-decoder family (LEHD). The results are displayed in Table
1. We show that our models perform better in terms of absolute cost and runtime, thus replacing our
models in our LNS procedure with others would not be helpful.

Additionally, we present extended results of the main figure 1 to ood problem sizes of up to 1000.
On the CVRP, not only the problem size is ood, but also the vehicle capacity increases, which
dramatically changes the typical length of the individual routes. As discussed in section D, the
vehicle capacity for the training instances was set to Q100 = 50. For the largest instances here, it
is set to Q1000 = 230. We can see that the recurrent models still perform quite well on most ood
cases. Especially on the TSP, performance is remarkably consistent with the largest recurrent model,
delivering ≈ 0.5% gap to the optimal concorde solutions on the 1000-sized instances with a beam
search, despite those instances being 10× larger than the training instances and the recurrent encoder
being used a 100× more steps in a row without recomputing the embeddings (k = 10 vs k = 1000).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4

0.5

1.0

1.5

2.0

2.5

3.0

G
r
e
e
d
y

R
e
la

ti
v
e

g
a
p

in
%

TSP100

0.00 0.25 0.50 0.75

1

2

3

TSP200 (OOD)

0 1 2

1

2

3

4

5

6

TSP500 (OOD)

0 2 4

2

4

6

8

TSP1000 (OOD)

0.0 0.2 0.4

0.0

0.1

0.2

0.3

0.4

0.5

B
e
a
m

S
e
a
r
c
h

1
6

R
e
la

ti
v
e

g
a
p

in
%

0.00 0.25 0.50 0.75

0.00

0.25

0.50

0.75

1.00

1.25

0 2 4 6

1

2

3

0 10 20 30

1

2

3

4

5

6

0.0 0.2 0.4 0.6

Solution Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

B
e
a
m

S
e
a
r
c
h

6
4

R
e
la

ti
v
e

g
a
p

in
%

0 1 2

Solution Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20

Solution Time (s)

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100

Solution Time (s)

1

2

3

4

5

6

Base Encoder

Recurrent Encoder

L = 2, d = 192,#h = 12

L = 3, d = 128,#h = 8

L = 4, d = 128,#h = 8

L = 3, d = 192,#h = 12

L = 5, d = 128,#h = 8

L = 9, d = 192,#h = 12

Figure 4: Additional results for recurrent models of different sizes vs base models of different sizes
on the TSP. All models are the same as in the main paper (see Fig 1). We show the relative gap of the
models vs the time it takes to decode a single instance of the problem on ood instances of up to size
1000. All models use maximum k = 1000. For results with varying k, see figure 5. All models were
trained on the same imitation learning dataset of 1 million trajectories with problems of size 100.
The models in blue are differently sized configurations of non-recurrent models, while the models in
green are recurrent with the recurrent encoder having the respective same size and structure where
L, is the number of layers, d is the embedding dimension and #h the number of heads in the MHA
mechanism. All recurrent models always use the largest available base encoder and are trained with
k = 10.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

100 101 102 103

0.30

0.35

0.40

0.45

0.50

G
r
e
e
d
y

R
e
la

ti
v
e

g
a
p

in
%

TSP100

100 101 102 103

0.4

0.5

0.6

TSP200 (OOD)

100 101 102 103

0.8

0.9

1.0

1.1

1.2

TSP500 (OOD)

100 101 102 103

1.4

1.6

1.8

2.0

2.2

2.4

TSP1000 (OOD)

100 101 102 103

0.005

0.010

0.015

0.020

0.025

0.030

B
e
a
m

S
e
a
r
c
h

1
6

R
e
la

ti
v
e

g
a
p

in
%

100 101 102 103

0.050

0.075

0.100

0.125

0.150

100 101 102 103

0.3

0.4

0.5

0.6

0.7

100 101 102 103

0.6

0.8

1.0

1.2

100 101 102 103

k

0.000

0.002

0.004

0.006

B
e
a
m

S
e
a
r
c
h

6
4

R
e
la

ti
v
e

g
a
p

in
%

100 101 102 103

k

0.02

0.04

0.06

100 101 102 103

k

0.2

0.3

0.4

0.5

100 101 102 103

k

0.6

0.8

1.0

1.2

L = 2, d = 192,#h = 12

L = 3, d = 128,#h = 8

L = 4, d = 128,#h = 8

L = 3, d = 192,#h = 12

L = 5, d = 128,#h = 8

L = 9, d = 192,#h = 12 (Base)

Figure 5: Additional results for the TSP. Recurrent models of different sizes are compared against
their base encoder on the TSP with various TSP sizes up to 1000. All models are the same as in the
main paper (see Fig 1). We show the relative gap of the models vs the number of steps the recurrent
encoder is used in a row until the base encoder recomputes the embeddings (k). For solution times,
see figure 4. All models were trained on the same imitation learning dataset of 1 million trajectories
with problems of size 100. The structure of the model is given by L, the number of layers, d the
embedding dimension and #h the number of heads in the MHA mechanism.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4
2.0

2.5

3.0

3.5

4.0

4.5

5.0

G
r
e
e
d
y

R
e
la

ti
v
e

g
a
p

in
%

cvrp100

0.0 0.5 1.0

3

4

5

6

cvrp200 (OOD)

0 1 2

6

8

10

12

14

cvrp500 (OOD)

0 2 4 6

10

15

20

25

cvrp1000 (OOD)

0.0 0.2 0.4

1.0

1.5

2.0

B
e
a
m

S
e
a
r
c
h

1
6

R
e
la

ti
v
e

g
a
p

in
%

0.0 0.5 1.0

1.0

1.5

2.0

2.5

3.0

3.5

0 2 4 6

4

6

8

10

12

0 20

10

15

20

25

0.00 0.25 0.50 0.75

Solution Time (s)

0.50

0.75

1.00

1.25

1.50

1.75

B
e
a
m

S
e
a
r
c
h

6
4

R
e
la

ti
v
e

g
a
p

in
%

0 1 2

Solution Time (s)

0.5

1.0

1.5

2.0

2.5

0 10 20

Solution Time (s)

2

4

6

8

10

12

0 50 100

Solution Time (s)

10

15

20

25

Base Encoder

Recurrent Encoder

L = 2, d = 192,#h = 12

L = 3, d = 128,#h = 8

L = 4, d = 128,#h = 8

L = 3, d = 192,#h = 12

L = 5, d = 128,#h = 8

L = 9, d = 192,#h = 12

Figure 6: Additional results for recurrent models of different sizes vs base models of different sizes
on the CVRP. All models are the same as in the main paper (see Fig 1). We show the relative gap
of the models vs the time it takes to decode a single instance of the problem on ood instances of
up to size 1000. All models use maximum k = 1000. For results with varying k, see figure 7. All
models were trained on the same imitation learning dataset of 1 million trajectories with problems
of size 100. The models in blue are differently sized configurations of non-recurrent models, while
the models in green are recurrent with the recurrent encoder having the respective same size and
structure where L, is the number of layers, d is the embedding dimension and #h the number of
heads in the MHA mechanism. All recurrent models always use the largest available base encoder
and are trained with k = 10.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

100 101 102 103

2.25

2.50

2.75

3.00

3.25

3.50

G
r
e
e
d
y

R
e
la

ti
v
e

g
a
p

in
%

cvrp100

100 101 102 103

2.5

3.0

3.5

4.0

4.5

cvrp200 (OOD)

100 101 102 103

6

8

10

12

cvrp500 (OOD)

100 101 102 103

10

15

20

25

cvrp1000 (OOD)

100 101 102 103

0.8

1.0

1.2

1.4

B
e
a
m

S
e
a
r
c
h

1
6

R
e
la

ti
v
e

g
a
p

in
%

100 101 102 103

1.00

1.25

1.50

1.75

2.00

100 101 102 103

3

4

5

6

7

8

100 101 102 103

10

15

20

25

100 101 102 103

k

0.5

0.6

0.7

0.8

B
e
a
m

S
e
a
r
c
h

6
4

R
e
la

ti
v
e

g
a
p

in
%

100 101 102 103

k

0.6

0.8

1.0

1.2

1.4

1.6

100 101 102 103

k

2

3

4

5

6

7

100 101 102 103

k

10

15

20

25

L = 2, d = 192,#h = 12

L = 3, d = 128,#h = 8

L = 4, d = 128,#h = 8

L = 3, d = 192,#h = 12

L = 5, d = 128,#h = 8

L = 9, d = 192,#h = 12 (Base)

Figure 7: Additional results for the CVRP. Recurrent models of different sizes are compared against
their base encoder on the CVRP with various CVRP sizes up to 1000. All models are the same
as in the main paper (see Fig 1). We show the relative gap of the models vs the number of steps
the recurrent encoder is used in a row until the base encoder recomputes the embeddings (k). For
solution times, see figure 6. All models were trained on the same imitation learning dataset of 1
million trajectories with problems of size 100. The structure of the model is given by L, the number
of layers, d the embedding dimension and #h the number of heads in the MHA mechanism.

23


	Introduction
	Related Work
	Method
	Problem Formulation and Construction Process
	Model
	Training
	Large Neighborhood Search

	Experiments
	Experimental Setup
	Results

	Conclusion and Limitations
	Problems Details
	Traveling Salesman Problem
	Capacitated Vehicle Routing Problem
	Orienteering Problem

	Comparison with Encoder-Decoder Models
	Training and Hardware Details
	Data Generation
	Baseline Descriptions
	Additional Results

