SMoP: Towards Efficient and Effective Prompt Tuning
with Sparse Mixture-of-Prompts

Joon-Young Choi', Junho Kim!, Jun-Hyung Park?, Wing-Lam Mok!, SangKeun Lee'?
!Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea
2BK21 FOUR R&E Center for Artificial Intelligence, Korea University, Seoul, Republic of Korea
SDepartment of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
{johnjames, monocrat, irish@7, wlmokac, yalphy}@korea.ac.kr

Abstract

Prompt tuning has emerged as a successful
parameter-efficient alternative to the full fine-
tuning of language models. However, prior
works on prompt tuning often utilize long soft
prompts of up to 100 tokens to improve per-
formance, overlooking the inefficiency associ-
ated with extended inputs. In this paper, we
propose a novel prompt tuning method SMoP
(Sparse Mixture-of-Prompts) that utilizes short
soft prompts for efficient training and inference
while maintaining performance gains typically
induced from longer soft prompts. To achieve
this, SMoP employs a gating mechanism to
train multiple short soft prompts specialized in
handling different subsets of the data, provid-
ing an alternative to relying on a single long
soft prompt to cover the entire data. Experi-
mental results demonstrate that SMoP outper-
forms baseline methods while reducing train-
ing and inference costs. We release our code at
https://github.com/jyjohnchoi/SMoP.

1 Introduction

Prompt tuning (Lester et al., 2021; Liu et al.,
2021) has recently gained attention as a parameter-
efficient alternative to the full fine-tuning of
language models. By freezing the original lan-
guage model parameters and solely tuning the soft
prompts (i.e., learnable token embeddings) added
to the model input, prompt tuning achieves compa-
rable performance to full fine-tuning while largely
reducing the number of trainable parameters. More-
over, prompt tuning stands out for its conceptual
simplicity and flexibility among other parameter-
efficient fine-tuning methods (Houlsby et al., 2019;
Guo et al., 2021; Hu et al., 2022), as it does not
require modifications to the model structure.
Since the proposal of prompt tuning, there has
been active research to enhance its efficiency and
effectiveness. On one hand, several approaches pro-
pose to improve the performance of prompt tuning
by integrating soft prompts into activations in each

—e— Prompt Tuning —@— SMoP (Ours)

Full Fine-tuning
78 15
76 14

Full Fine-tuning

Training Memory (GB)

RTE Accuracy (%)

100 5 100

20 50 20 50
Total Prompt Length Total Prompt Length

Figure 1: Accuracy (left) and training memory usage
(right) with varying total prompt length on RTE dataset.
For prompt tuning (Lester et al., 2021), increasing soft
prompt length improves accuracy, but also results in
a significant increase in memory usage. SMoP outper-
forms prompt tuning while preserving memory usage
by sparsely activating short (length 5) prompts.

layer of the model (Li and Liang, 2021; Qin and
Eisner, 2021; Liu et al., 2022), incorporating input-
specific soft prompts (Jiang et al., 2022; Wu et al.,
2022), or pruning and rewinding soft prompts (Ma
et al., 2022). On the other hand, methods such as
FPT (Huang et al., 2022) demonstrate improved
training efficiency of prompt tuning in terms of
convergence speed via progressive training.

Although these methods have empirically shown
improvements in prompt tuning, they have over-
looked the inefficiency associated with the exten-
sion of input sequences caused by the inclusion of
soft prompts. While increasing soft prompt length
(typically up to 100 tokens) is known to bene-
fit model performance (Lester et al., 2021; Jiang
et al., 2022), it consequently yields longer input
sequences, leading to increased computational re-
quirements during training and inference (see Fig-
ure 1). Therefore, we aim to investigate the uti-
lization of relatively short soft prompts while pre-
serving performance gains typically achieved from
longer soft prompts.

To this end, we propose SMoP (Sparse Mixture-
of-Prompts), a novel prompt tuning method that
utilizes short soft prompts during training and in-

https://github.com/jyjohnchoi/SMoP

Pre-trained Language Model }

{HHHH?\H [T1])

CITT[TTT]

A
Input Instance

(a) Prompt Tuning

[|soft Prompts

Output D Input Embeddings

[Pre-trained Language Model }

A
Input Instance

(b) SMoP (Ours)

Figure 2: (a) [llustration of prompt tuning (Lester et al., 2021). A soft prompt is concatenated with the embedding
representations of an input instance, and the soft prompt is solely fine-tuned. Given a soft prompt of 100 tokens, the
length of the soft prompt is typically longer or similar to the input instance. (b) Illustration of our proposed method
SMoP. A gating mechanism is employed to route each input instance to a short soft prompt.

ference. Given that using a single short soft prompt
leads to inferior performance compared to longer
soft prompts, our key insight is to train multiple
short soft prompts that are specialized in handling
different subsets of the data. To achieve this, we
draw inspiration from the Sparsely-Gated Mixture-
of-Experts (Shazeer et al., 2017; Fedus et al., 2022)
that sparsely activates sub-networks (i.e., experts)
to increase model capacity without a proportional
increase in computation. We integrate this concept
in the context of prompt tuning by employing a
gating mechanism in SMoP, which guides each in-
put instance to one of the short soft prompts based
on its embedding representation. Such sparse ac-
tivation enables effective utilization of short soft
prompts without a significant increase in computa-
tion or degradation in performance.

To verify the efficiency and effectiveness SMoP
introduces to prompt tuning, we conduct evalua-
tions on six natural language understanding tasks
from the SuperGLUE benchmark. Experimental re-
sults demonstrate that SMoP outperforms prompt
tuning with reduced training and inference costs.
In particular, SMoP improves the average perfor-
mance of prompt tuning on six SuperGLUE tasks
by 2.5%p with T5-base, and 3.4%p with T5-large
on average while reducing training time, memory,
and inference computations.

Our contributions are as follows:

1. We propose a novel prompt tuning method
SMoP (Sparse Mixture-of-Prompts) that uti-
lizes short soft prompts for efficient training
and inference while maintaining performance
gains often induced by increased soft prompt
length.

2. SMoP sparsely activates short soft prompts
via a gating mechanism that routes each in-
stance to one of the multiple soft prompts
based on its embedding representation.

3. Experimental results demonstrate that SMoP
outperforms the baselines on T5-base and
T5-large while utilizing shorter soft prompts,
thereby using less training and inference costs.

2 Method

2.1 Preliminaries

Full Fine-tuning Assume that we have a
sequence-to-sequence model py(y | x) param-
eterized by ¢. Given an instance with a length
n sequence of embedding representations X =
{z1,29,...,zn} € R™ € and corresponding label
token embedding sequence Y, the objective func-
tion for full fine-tuning the model py is as follows:

arg maxlog py(Y | X). (1)
¢

Prompt Tuning If we define a length [soft
prompt with embedding dimension e as Py which is
parameterized by § € R!*€, the objective function
of prompt tuning is as follows:

arggnax log pe (Y | [P; X]), (2)

where ; indicates the concatenation of the two ma-
trices. Note that the language model parameters
¢ are no longer updated. Figure 2 (a) depicts the
process of prompt tuning.

Total Utilized

Training Costs () Inference Costs (|)

Model Method Prompt Prompt PZ?ZQ?I(){'Z) Time Memory FLOPs slzng;)
Length Length (s/100 steps) (GB) (GFLOPs/sample)

Full Fine-tuning - - 100 81.4 14.9 70.3 78213

T5- Prompt Tuning 100 100 0.0344 70.7 (-13.1%) 144 (-3.4%) 98.1 (+39.5%) 73319
base P-tuning 20 20 0.1028 64.9 (-20.3%) 123 (-17.4%) 76.6 (+9.0%) 75291
SMoP (Ours) 20 5 0.0083 61.0 (-251%) 119 (-20.1%) 71.5 (+1.7%) 75.81.9

Full Fine-tuning - - 100 176.1 29.2 247.8 83413

T5- Prompt Tuning 100 100 0.0139 151.2 (-14.1%) 293 (+0.3%) 378.1 (+52.6%) 78.61.4
large P-tuning 20 20 0.0407 131.9 (-25.1%) 23.6 (-19.2%) 291.6 (+17.7%) 81.318
SMoP (Ours) 20 5 0.0033 129.1 (-26.7%) 22.6 (-22.6%) 2754 (+11.1%) 82.0, 3

Table 1: Experimental results on six SuperGLUE tasks. Average training costs, inference costs, and performance for
baselines and SMoP are presented. The percentage value next to each cost value indicates relative changes in cost
values compared to full fine-tuning, and the subscript of the average score indicates the corresponding standard
deviation. The highest performance and lowest cost values among prompt tuning methods are bold highlighted.

2.2 SMoP: Sparse Mixture-of-Prompts

The goal of SMoP is to train multiple short soft
prompts, where each prompt is specialized in a
subset of the data. To achieve this, SMoP employs
a gating mechanism to direct the input instance to
one of the soft prompts based on its embedding
representations, as shown in Figure 2 (b).

In the gating mechanism, we introduce a small
linear router model L, parameterized by 1 € Rexk
which makes decisions regarding which of the soft
prompts the input should be routed to. Formally,
given k soft prompt embeddings Py, , Fy,, ..., Py,
which are parameterized by {6; }§:1 where 6; €
R!>€ the router model takes the average of input
embeddings X € R¢ as its input and calculates
the routing probability p1, po, ..., pr for each soft
prompt. Thus, the routing probability of the j-th
prompt is calculated as:

p;(X) = [softmax (L, (X))];. 3)

The input is then routed to the soft prompt with
the highest probability, and the final soft prompt to
be utilized is obtained as the product of the routed
prompt and the probability value. Therefore, the
objective function of SMoP is defined as follows:

argrenaxlogp(Y | [pe(X) - Po.; X]), 4)
Ve

where c is the index of the prompt with the highest
probability value. Note that in SMoP, while the
total prompt length is &k - [, the utilized prompt
length remains as [.

2.3 Router Perturbation

Prior works on Mixture-of-Experts (Chen et al.,
2022b; Fedus et al., 2022) demonstrate that load

balance among experts during training plays an im-
portant role in performance. To ensure load balance
among soft prompts by encouraging exploration of
inputs over diverse prompts, we apply router per-
turbation during the training of SMoP. Specifically,
we add a scaled Gaussian noise § ~ N (0, 1) to the
output value of the router model during training.
Therefore, equation (3) is modified as follows:

pj(X) = [softmax(L,(X) o (I +6)];. (5)

3 Experiments

3.1 Experimental Settings

Tasks To cover diverse NLP tasks in our experi-
ments, we evaluate SMoP and baseline methods on
six tasks' from the SuperGLUE benchmark (Wang
et al., 2019). As the official test sets for Super-
GLUE benchmark are not publicly released, we
follow Chen et al. (2022a) to use the validation set
as the test set and split the original train set into
train and validation sets by 90%/10% proportion.

Models and Baselines Our experiments are built
on the public HuggingFace (Wolf et al., 2019) im-
plementation and pre-trained checkpoints of T5
(Raffel et al., 2020) in two scales: base and large.

To demonstrate the advantages that SMoP in-
troduces to prompt tuning, we compare SMoP to
prompt tuning (Lester et al., 2021), P-tuning (Liu
et al., 2021), and full fine-tuning.

Evaluation Setup For prompt tuning methods,
we experiment on {5, 20, 50, 100} soft prompt
tokens, and for SMoP, we sweep through {2, 4,
10, 20} prompts of length {1, 3, 5, 10}. We report
experimental results on the setting with the best
average performance over two or three runs, as

'BoolQ, CB, COPA, MultiRC, RTE, WiC

Model | | k1 4 10 20
1 | 72.9,, 74015 73513 73912

|3 | 74205 74054 74854 74217
T5base | 5 1 950,0 75810 75318 T4Tir
10 | 7517 748, 75214 Tdlsg

Table 2: Average performance (%) on six tasks from the
SuperGLUE benchmark with diverse utilized prompt
lengths (7) and the number of prompts (k).

well as the corresponding standard deviations. We
report training time” and memory usage as training
costs and inference FLOPs as inference costs.

3.2 Results

3.2.1 Main Results

Table 1 presents the performance of SMoP and
the baseline methods. Notably, SMoP achieves the
highest performance among the baseline prompt
tuning methods on SuperGLUE tasks with the least
training and inference costs. On T5-base, SMoP
demonstrates an average improvement of 2.5%p,
while on T5-large, the improvement reaches 3.4%p.
The detailed results of SuperGLUE tasks are shown
in Appendix D.

The fact that SMoP outperforms the baselines
with less training and inference costs highlights the
significance of utilizing short soft prompts during
training and inference. For example, SMoP saves
14.6% training time, 22.9% training memory, and
27.2% inference FLOPs in T5-large, compared to
prompt tuning with a soft prompt of length 100.
It is worth noting that full fine-tuning requires the
fewest of FLOPs for inference as no additional to-
kens are added to the input, while SMoP introduces
the least additional FLOPs.

3.2.2 Length and Number of Soft Prompts

To investigate the optimal length and number of
soft prompts to employ, we present the experimen-
tal results on SMoP with diverse utilized prompt
lengths and numbers of prompts in Table 2.

It is observed that increasing the total prompt
length over 50 provides marginal performance
gains. This finding is aligned with previous re-
search (Lester et al., 2021; Li and Liang, 2021;
Ma et al., 2022) that report increasing soft prompt
length above a certain threshold brings limited im-
provements to performance.

Furthermore, we notice that using 20 soft
prompts generally lead to a degradation in perfor-

*Measured with a single NVIDIA RTX A6000 GPU.

Model Method BoolQ CB RTE | Average
SMoP (Ours) 79.40_3 94.61,8 77.53_2 83.82_]
w/o perturbation | 79.7p2 93.527 76.015 | 83.118
T5- TOp-2 78.40_2 88.11_0 69‘70_4 78-70.6
base Gumbel-Softmax 79.20.4 92.32‘0 75.24.3 82.22.7
Stochastic 78203 86.921 69.217 78.11¢6
Single 78.500 89.318 69998 | 79.21,

Table 3: Experimental results (%) on diverse routing
methods for SMoP.

mance. We conjecture that this may be due to the
limited labeled data for training in several Super-
GLUE tasks, leading to insufficient training of each
soft prompt (Wang et al., 2022).

Given these findings, we primarily report the re-
sults of SMoP utilizing 4 soft prompts, each with a
length of 5 tokens. Note that while SMoP generally
demonstrates improvements in prompt tuning, the
optimal length and number of soft prompts may
vary by specific tasks or datasets.

3.2.3 Routing Methods

To verify the impact of the routing method in the
gating mechanism of SMoP, we perform experi-
ments on diverse routing methods, including linear
router without router perturbation (w/o perturba-
tion), taking the weighted sum of two prompts with
the highest probability (Top-2), Gumbel-Softmax
routing where the output probability of the router is
calculated as 1 (Gumbel-Softmax), stochastic rout-
ing (Stochastic) which is an application of AdaMix
to prompt tuning (Zuo et al., 2022; Wang et al.,
2022), and no routing (Single) which is identical to
prompt tuning with a length 5 soft prompt.

Table 3 shows experimental results on three Su-
perGLUE tasks with diverse routing methods. The
top-1 linear router with router perturbation, which
is our original setting, generally outperforms all
other routing strategies. One exception is BoolQ
where removing the router perturbation exhibits a
slightly better performance. We speculate that in
high-resource settings like BoolQ, router perturba-
tion may not be mandatory for sufficient training
of each soft prompt.

4 Related Work

4.1 Prompt Tuning

Pre-trained language models (PLMs) have demon-
strated remarkable performance on a wide range
of tasks in Natural Language Processing (NLP)
(Devlin et al., 2019; Liu et al., 2019). However,
with the introduction of larger language models

such as TS5 (Raffel et al., 2020) and GPT-3 (Brown
et al., 2020), fine-tuning the entire parameters of
the PLM for each specific task has become notably
inefficient in terms of training and deployment.

To address such inefficiency, researchers have
proposed parameter-efficient fine-tuning methods
(Houlsby et al., 2019; Lester et al., 2021; Pfeiffer
etal., 2021; Hu et al., 2022), which involves fine-
tuning a relatively small portion of task-specific
parameters of the PLM while keeping the other
parameters frozen. Among these methods, prompt
tuning (Lester et al., 2021) is a simple and effective
approach that entails prepending learnable token
embeddings (i.e., soft prompts) to the model in-
put and solely fine-tuning these embeddings. The
simplicity and adaptability of prompt tuning have
led to several advancements aimed at improving its
efficiency and performance by modifying the struc-
ture of soft prompts (Liu et al., 2021; Li and Liang,
2021), using instance-specific prompts (Jiang et al.,
2022; Wu et al., 2022), or adjusting the training
process (Huang et al., 2022; Ma et al., 2022). More-
over, prompt tuning is known for its capability for
task knowledge transfer from source task prompts
to target task prompts (Vu et al., 2022; Asai et al.,
2022; Wang et al., 2023). These methods have im-
proved the overall performance of prompt tuning,
but they have overlooked the inefficiency of uti-
lizing lengthy soft prompts. SMoP is designed to
alleviate this efficiency concern and is orthogonal
to most of the existing prompt tuning methods.

4.2 Mixture-of-Experts

Mixture-of-Experts is a model structure in which
the output of the model is computed by multi-
ple sub-networks (i.e., experts) conditionally acti-
vated by a gating mechanism (Shazeer et al., 2017).
This enables increasing the number of model pa-
rameters without incurring a proportional increase
in computation. Typically, the gating mechanism
determines which experts process specific tokens
(Shazeer et al., 2017; Fedus et al., 2022), while
it can be extended to route sequences or batches
(Wang et al., 2022; Zuo et al., 2022; Pan et al.,
2023). In particular, Fedus et al. (2022) presents
Switch Transformer that employs the Sparsely-
Gated Mixture-of-Experts layer (Shazeer et al.,
2017), and Zuo et al. (2022) proposes THOR which
utilizes stochastic (i.e., random) routing.
Recently, Wang et al. (2022) has proposed
AdaMix, a parameter-efficient fine-tuning method

that integrates the concept of Mixture-of-Experts
to Adapter (Houlsby et al., 2019). It follows THOR
(Zuo et al., 2022) to employ stochastic routing and
merging of multiple adapter modules. Both SMoP
and AdaMix have taken inspiration from the con-
cept of the Mixture-of-Experts structure to improve
parameter-efficient fine-tuning. However, their pri-
mary motivations are distinct in that the motivation
of SMoP is to use multiple short soft prompts for
efficient prompt tuning, while the motivation of
AdaMix is to provide multiple views of the given
task for better performance. Therefore, SMoP em-
ploys a linear router for instance-wise prompt se-
lection resulting in multiple soft prompts each spe-
cialized in a subset of the task, whereas AdaMix
employs stochastic routing and merging, resulting
in a single adapter module per task.

5 Conclusion

We have presented SMoP (Sparse Mixture-of-
Prompts), a novel prompt tuning method that uti-
lizes short soft prompts for efficient training and
inference while maintaining performance gains as-
sociated with increased prompt length. To achieve
this, we have employed a gating mechanism in
SMoP that routes each instance to one of the mul-
tiple short soft prompts. Experimental results have
demonstrated that SMoP has outperformed prompt
tuning while reducing training and inference costs
through the utilization of short soft prompts.

Limitations

Given the same total prompt length, the gating
mechanism of SMoP introduces additional param-
eters compared to prompt tuning, inducing addi-
tional storage requirements. Comparing prompt
tuning with a soft prompt of length 20 (20,480
trainable parameters) and SMoP with 4 prompts of
length 5 (24,576 trainable parameters) on T5-base,
SMoP adds 20% trainable parameters and such
difference increases as more prompts are utilized.
We further note that SMoP is orthogonal to most
of the existing prompt tuning methods including
prompt transfer learning methods (Vu et al., 2022;
Asai et al., 2022; Wang et al., 2023) as mentioned in
Section 4. While our investigation has highlighted
the significance of incorporating short soft prompts
through sparse activation in conventional single-
task prompt tuning, we believe that SMoP holds
promise as a valuable direction for augmenting the
efficiency of prompt tuning methods in the future.

Acknowledgements

We thank the anonymous reviewers for their helpful
comments. This work was supported by the Basic
Research Program through the National Research
Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (2021R1A2C3010430)
and Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No.2019-
0-00079, Artificial Intelligence Graduate School
Program (Korea University)).

References

Akari Asai, Mohammadreza Salehi, Matthew Pe-
ters, and Hannaneh Hajishirzi. 2022. ATTEMPT:
Parameter-efficient multi-task tuning via attentional
mixtures of soft prompts. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2022, pages 6655—6672.
Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems, NeurIPS 2020, vol-
ume 33, pages 1877-1901. Curran Associates, Inc.

Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and
Shangsong Liang. 2022a. Revisiting parameter-
efficient tuning: Are we really there yet? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2022, pages
2612-2626. Association for Computational Linguis-
tics.

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu,
and Yuanzhi Li. 2022b. Towards understanding the
mixture-of-experts layer in deep learning. In Ad-
vances in Neural Information Processing Systems,
NeurIPS 2022, volume 35, pages 23049-23062. Cur-
ran Associates, Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, pages 4171-4186. As-
sociation for Computational Linguistics.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1-39.

Demi Guo, Alexander Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), ACL-
IJCLNP 2021, pages 4884—4896. Association for
Computational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, volume 97 of
Proceedings of Machine Learning Research, pages
2790-2799. PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022.
OpenReview.net.

Yufei Huang, Yujia Qin, Huadong Wang, Yichun Yin,
Maosong Sun, Zhiyuan Liu, and Qun Liu. 2022. FPT:
Improving prompt tuning efficiency via progressive
training. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 6877-6887.
Association for Computational Linguistics.

Yuezihan Jiang, Hao Yang, Junyang Lin, Hanyu Zhao,
An Yang, Chang Zhou, Hongxia Yang, Zhi Yang,
and Bin Cui. 2022. Instance-wise prompt tuning for
pretrained language models. CoRR, abs/2206.01958.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2021, pages 3045-3059. Association
for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), ACL-IJCLNP
2021, pages 4582-4597. Association for Computa-
tional Linguistics.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), ACL 2022,
pages 61-68. Association for Computational Linguis-
tics.

https://aclanthology.org/2022.emnlp-main.446
https://aclanthology.org/2022.emnlp-main.446
https://aclanthology.org/2022.emnlp-main.446
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2022.emnlp-main.168
https://aclanthology.org/2022.emnlp-main.168
https://proceedings.neurips.cc/paper_files/paper/2022/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
https://aclanthology.org/2021.acl-long.378
https://aclanthology.org/2021.acl-long.378
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2022.findings-emnlp.511
https://aclanthology.org/2022.findings-emnlp.511
https://aclanthology.org/2022.findings-emnlp.511
https://doi.org/10.48550/arXiv.2206.01958
https://doi.org/10.48550/arXiv.2206.01958
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/2022.acl-short.8
https://aclanthology.org/2022.acl-short.8
https://aclanthology.org/2022.acl-short.8

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. GPT
understands, too. CoRR, abs/2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Fang Ma, Chen Zhang, Lei Ren, Jingang Wang, Qi-
fan Wang, Wei Wu, Xiaojun Quan, and Dawei Song.
2022. XPrompt: Exploring the extreme of prompt
tuning. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2022, pages 11033-11047. Association for
Computational Linguistics.

Xiaoman Pan, Wenlin Yao, Hongming Zhang, Dian
Yu, Dong Yu, and Jianshu Chen. 2023. Knowledge-
in-context: Towards knowledgeable semi-parametric
language models. In The Eleventh International Con-
ference on Learning Representations, ICLR 2023.
OpenReview.net.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition for
transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, EACL
2021, pages 487-503. Association for Computational
Linguistics.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2021, pages 5203-5212. Association
for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In The
Fifth International Conference on Learning Repre-
sentations, ICLR 2017. OpenReview.net.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, volume 80 of
Proceedings of Machine Learning Research, pages
4596-4604. PMLR.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’,
and Daniel Cer. 2022. SPoT: Better frozen model

adaptation through soft prompt transfer. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2022, pages 5039-5059. Association for
Computational Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information Pro-
cessing Systems, NeurIPS 2019, volume 32, pages
3261-3275. Curran Associates, Inc.

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee,
Xiaodong Liu, Jing Gao, Ahmed Hassan Awadal-
lah, and Jianfeng Gao. 2022. AdaMix: Mixture-of-
adaptations for parameter-efficient model tuning. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2022, pages 5744-5760. Association for Computa-
tional Linguistics.

Zhen Wang, Rameswar Panda, Leonid Karlinsky,
Rogério Feris, Huan Sun, and Yoon Kim. 2023.
Multitask prompt tuning enables parameter-efficient
transfer learning. In The Eleventh International Con-
ference on Learning Representations, ICLR 2023.
OpenReview.net.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Rui Hou, Yux-
iao Dong, V. G. Vinod Vydiswaran, and Hao Ma.
2022. IDPG: an instance-dependent prompt genera-
tion method. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2022, pages 5507-5521. As-
sociation for Computational Linguistics.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim,
Hany Hassan, Ruofei Zhang, Jianfeng Gao, and Tuo
Zhao. 2022. Taming sparsely activated transformer
with stochastic experts. In The Tenth International
Conference on Learning Representations, ICLR 2022.
OpenReview.net.

http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/2022.emnlp-main.758
https://aclanthology.org/2022.emnlp-main.758
https://openreview.net/forum?id=a2jNdqE2102
https://openreview.net/forum?id=a2jNdqE2102
https://openreview.net/forum?id=a2jNdqE2102
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://aclanthology.org/2021.naacl-main.410
https://aclanthology.org/2021.naacl-main.410
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2022.acl-long.346
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://aclanthology.org/2022.emnlp-main.388
https://aclanthology.org/2022.emnlp-main.388
https://openreview.net/pdf?id=Nk2pDtuhTq
https://openreview.net/pdf?id=Nk2pDtuhTq
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/2022.naacl-main.403
https://doi.org/10.18653/v1/2022.naacl-main.403
https://openreview.net/forum?id=B72HXs80q4
https://openreview.net/forum?id=B72HXs80q4

Appendix
A Comparison to Adapter-based Methods

To further explore the advantages of SMoP in the
realm of parameter-efficient fine-tuning methods,
we compare SMoP and prompt tuning methods
to adapter-based parameter-efficient fine-tuning
methods, namely Adapter (Houlsby et al., 2019),
AdapterFusion (Pfeiffer et al., 2021), and LoRA
(Hu et al., 2022). We provide a brief description of
each method and present the experimental results
on six SuperGLUE tasks with the T5-base model.

Adapter-based methods add additional modules
to the internal structure of the model. Adapter
(Houlsby et al., 2019) adds bottleneck modules af-
ter the multi-head attention and feed-forward layer
of each Transformer layer, while AdapterFusion
(Pfeiffer et al., 2021) adds bottleneck modules only
after the feed-forward layer. LoORA (Hu et al., 2022)
adds a low-rank decomposition of each of the at-
tention matrices, which are directly added during
inference. We implement these methods upon the
adapter-transformers? library.

Table 5 presents the experimental results of full
fine-tuning, adapter-based methods, and prompt
tuning methods on six SuperGLUE tasks with the
T5-base model. While adapter-based methods gen-
erally outperform prompt tuning methods under
their best configuration, SMoP is able to reach
comparable performance while only utilizing up
to 190x a smaller number of trainable parameters.
In particular, when the ratio of trainable parame-
ters narrows to a factor of 33, SMoP outperforms
Adapter on 5 tasks out of 6. Similar results are
observed for AdapterFusion, where SMoP shows
inferior performance when the bottleneck dimen-
sion d is set to 48, but reverses the results when d
is reduced to 8.

Considering LoRA, SMoP shows slightly bet-
ter performance compared to both configurations.
One notable result is that using a lower rank in
LoRA does not yield a significant decrease in per-
formance. However, as shown in Table 4, the level
of parameter efficiency of SMoP is not attainable
with LoRA, as LoRA (r=1) still requires 6 x more
trainable parameters compared to SMoP. These
observations highlight the parameter efficiency of
SMoP compared to adapter-based approaches.

In general, adapter-based lightweight methods
require additional parameters proportional to the

3https://github.com/adapter-hub/adapter-transformers

number of layers in the backbone model, as they
add an adapter module to the internal structure
of the original model. In contrast, prompt tuning
methods including SMoP introduce additional pa-
rameters exclusively to the inputs of the model,
enabling a parameter-efficient module where the
number of trainable parameters doesn’t increase
proportionally to model size (Asai et al., 2022).

Model Method Trainable
Params %
SMoP (=5, k=4) | 0.0083 (1.0x)
LoRA (r=1) | 0.0496 (6.0x)
T5-base | LoRA (r=2) | 0.0991 (12.0%)
LoRA (r=4) | 0.1981 (24.0%)
LoRA (r=8) | 0.3954 (47.8%)

Table 4: Comparison of trainable parameter ratio be-
tween SMoP and LoRA. The value in the parenthesis
for trainable params % denotes the relative difference,
with SMoP as the reference point.

B Text-to-Text Templates

We provide the text-to-text templates and verbaliz-
ers used in our experiments in Table 6.

C Hyperparameters

We train our model for {50, 100} epochs on CB,
COPA, RTE, WiC and for {10, 20} epochs on
BoolQ and MultiRC with batch size 32, learning
rate of {1e-4, 5e-5, 1e-5} for full fine-tuning and
adapter-based methods, and learning rate {0.5, 0.3,
0.1} for prompt tuning methods including SMoP.
We perform early stopping based on validation per-
formance, and terminate training if there is no im-
provement for 10 epochs. We train the model with
Adafactor optimizer (Shazeer and Stern, 2018),
where the weight decay is le-5, and linear learning
rate decay of warmup ratio 0.06 is applied.

D Detailed Experimental Results

We provide task-wise results of experiments pre-
sented in the paper. Since we experiment with our
own train/validation/test split, the results may vary
with previous works such as Lester et al. (2021).

D.1 Performance

Table 7 and 8 present the experimental results on
six SuperGLUE tasks on T5-base and T5-large.
D.2 Training Costs

Table 9 presents the memory used during training
(GB), and Table 10 presents the training time (s/100

Trainable | 5 1y CB COPA MuliRC RTE WiC | Average

Model Method Params Score (%)
% YAcc %Acc %Acc %F1, %Acc %Acc
Full Fine-tuning 100 81991 96415 64315 80.202 79202 67.093 78213
Adapter (d=48) 1.5800 81.10_1 94.61,8 62.70.6 80.20_2 76.61,6 66.21‘6 76.91_2
Adapter (d=8) 0.2806 79.606 89919 59.019 80.1p.2 75215 65308 74.80.9

AdapterFusion (d=48) 0.7963 79204 94.615 63.755 80.20> 79209 66.833 77313
T5- AdapterFusion (d=8) 0.1405 79.605 92.337 58.3()‘6 79.905 78.029 64.9()‘5 75.520

base LoRA (7‘=8) 0.3954 79.00_0 90.51'0 60.00.6 80.00_0 77.92'9 66.90‘3 75.71_3
LoRA (r=2) 0.0991 79.100 91.1pp 59312 80200 77427 66503 75.61 2

Prompt Tuning (I=100) 0.0344 | 79.191 86937 56.721 78302 73217 65612 73319
P-Tuning (l=20) 0.1028 78.70'2 91.72'7 58.338 79.30'2 77-31.8 65.9()‘7 75.22'1

SMoP (I=5, k=4) 0.0083 79403 94613 58329 79.601 77.532 65.205 75819

Table 5: Experimental results of diverse parameter-efficient fine-tuning methods on six SuperGLUE tasks with
T5-base model. The methods include full fine-tuning, adapter-based methods, prompt tuning methods, and our
proposed SMoP. d for Adapter and AdapterFusion indicates the bottleneck dimension and r for LoRA indicates the
rank of the matrices. The best performance among adapter-based methods and prompt tuning methods for each task
are bold highlighted.

Dataset \ Text-to-text Template Verbalizer
BoolQ boolq passage: **passage™* question: **question** False, True
CB cb hypothesis: **hypothesis**. premise: **premise** entailment, contradiction, neutral
COPA | copa choicel: **choicel** choice2: **choice2** premise: **premise** question: **question** choicel, choice2
MultiRC multirc question: **question** answer: **answer**. paragraph: **paragraph** False, True
RTE rte sentencel: **premise™* sentence2: **hypothesis** entailment, not_entailment
WiC wic sentencel: **sentencel** sentence2: **sentence2** word: **word** False, True

Table 6: Text-to-text templates and verbalizers used in our experiments.

vodel | Method Pfg;i‘:) . g;:)':l;‘: BoolQ CB COPA MultiRC RTE WiC | Average
Length Length | %Acc %Acc %Acc %F1, YoAcc %Acc Score (%)

Full Fine-tuning - - 81.90'1 96.41,8 64.31'5 80.202 79.20'2 67.02'3 78.21,3

5 5 78500 89318 54.036 79.101 69.99s 64409 72517

. 20 20 78.600 86.921 55035 79202 70.618 64302 72.41 8

Prompt Tuning | 5 SO | 79301 8751s 36010 78300 70805 65.10s | 7281

100 100 79.101 86937 56.791 183ps 73217 65.619 73.31.9

5 5 79.001 89937 59.010 79201 73814 65413 74.4, g

P-tuning 20 20 78702 91.7727 58338 793p2 77318 65907 75221

50 50 78.802 90.519 59.019 79.20.0 75.116 65205 74.6¢.9

100 100 79.001 899109 59.009 79200 73.835 65.4¢7 74.41 7

2 1 79303 90.797 52740 788p3 T1.595 64711 72991

4 1 79.00.1 91~11.8 57.33.2 79.4041 72~40.8 65.004 74.01.5

Ts. 10 1 78.600 92990 54712 78991 T1.539 64305 73.513
base 20 1 78.601 90510 57721 793p2 T72.615 64905 73.91 9
6 3 78801 92918 54.05¢9 79.1901 75718 64711 74293

12 3 79.002 92918 53355 79201 74.602 6493 74.02.4

30 3 78801 94.045 56.036 79203 75.505 65.602 74.85.4

SMoP 60 3 78.70.0 91.71_0 56.031} 79-2041 74-71.6 64.701 74.217

10 5 78500 92900 58.046 79.4¢0 764135 64995 75.020

20 5 79403 94.618 58329 79.601 77532 65295 75819

50 5 79301 92310 58742 793¢0 77.1p3 65204 75318

100 5 79.003 93490 55331 793p2 76929 64302 74717

20 10 78701 93.5109 59335 79203 76.018 64201 75.11 7

40 10 78.601 92337 56.007 78931 76999 66.408 74.81 7

100 10 78501 95810 57725 79201 75.119 64.817 75214

200 10 79.004 91.118 56.035 79.4¢1 74298 64907 7415

Table 7: Experimental results on baseline methods and SMoP on six SuperGLUE tasks with T5-base. Subscripts of
each score represent the corresponding standard deviation over multiple runs.

Model Method Pfg;?:)t gﬁﬁ:ﬁ:‘: BoolQ CB COPA MultiRC RTE WiC SAverago/e
Length Length | %Acc %Acc %Acc %F1, YoAcc %Acc core (%)

Full Fine-tuning - - 85.80_1 96‘40'0 76.02'6 84.50'1 87.60'4 70~31.6 83.41'3

5 5 83300 89.325 57.535 83.80.0 86.305 68.202 78.118

. 20 20 83.1p1 90213 57.564 83.80.0 86.600 68.50.4 78.35.7

Prompt Tuning | 5, S0 | 83001 O9lloy 58507 83001 85900 68004 | 78203

100 100 83.1p2 90.519 62.039 82.60.2 87.010 66.219 78.61.4

5 5 83.202 92.037 69.098 83.90.1 86.600 67911 80.45

T5—1arge P—Tuning 20 20 83.40_4 91.72,7 71.73,2 84.20,1 87.61,0 69.20.9 81.31,8
50 50 83.501 92.013 71.042 83.70.0 87.019 67208 80.719

100 100 83.1p1 93.837 67.014 82.20.0 87405 65.700 79.91 ¢

10 5 83.001 97313 69.507 83.990 86.609 66.09.4 81.1p¢

SMoP 20 5 83.501 96.4¢0 71.731 83.90.2 87700 68.607 82.01 3

50 5 83.1g1 94.725 69.042 83.90.1 86.605 68.209 80.99 3

100 5 83.603 92.01,3 67-5644 83.90.1 88.80_6 69.7046 80.927

Table 8: Experimental results on baseline methods and SMoP on six SuperGLUE tasks with T5-large. Subscripts of
each score represent the standard deviation over multiple runs.

steps) for each SuperGLUE task. For BoolQ and
MultiRC in T5-large, we report the results for step
batch size of 16 with gradient accumulation, as

using batch size 32 exceeds the memory capacity
of a single NVIDIA RTX A6000 GPU.

D.3 Inference Costs

Table 11 presents the inference FLOPs
(GFLOPs/sample) for each SuperGLUE task.

Total Utilized
Model Method Prompt Prompt | BoolQ CB COPA MultiRC RTE WiC | Average
Length Length
Full - - 27.0 143 3.1 27.0 139 41 14.9
T5-base Prompt Tuning 100 100 21.8 16.0 5.0 21.8 156 62 14.4
P-Tuning 20 20 21.8 12.0 2.7 21.8 11.7 35 12.3
SMoP 5 5 21.8 113 23 21.8 11.0 3.1 11.9
Full - - 39.7 383 8.6 40.1 372 113 29.2
T5-large Prompt Tuning 100 100 305 429 137 30.6 41.8 16.6 29.3
P-Tuning 20 20 30.1 323 7.5 30.5 313 938 23.6
SMoP 5 5 30.0 305 6.4 30.5 29.5 8.6 22.6
Table 9: Peak memory (GB) during training on SuperGLUE tasks.
Total Utilized
Model Method Prompt Prompt | BoolQ CB COPA MultiRC RTE WiC | Average
Length Length
Full - - 105.8 926 458 131.6 76.5 36.0 81.4
T5-base Prompt Tuning 100 100 93.1 90.3 37.2 103.7 714 284 70.7
P-Tuning 20 20 84.8 85.9 30.5 108.2 59.0 21.1 64.9
SMoP 5 5 82.5 74.1 30.8 104.6 542 198 61.0
Full - - 2284 183.1 82.8 338.9 1520 71.3 176.1
T5-large Prompt Tuning 100 100 2043 169.1 749 253.0 137.6 68.3 151.2
P-Tuning 20 20 1712 1349 515 275.9 114.0 437 131.9
SMoP 5 5 164.7 1340 474 281.0 1074 399 129.1
Table 10: Training time (s/100 steps) on SuperGLUE tasks.
Total Utilized
Model Method Prompt Prompt | BoolQ CB COPA MultiRC RTE WiC | Average
Length Length
Full - - 1194 86.7 13.8 105.7 783 17.6 70.3
T5-base Prompt Tuning 100 100 136.9 1202 40.1 130.7 1143 46.7 98.1
P-Tuning 20 20 1243 934 19.0 114.1 855 234 76.6
SMoP 5 5 119.2 88.4 15.1 107.3 80.1 19.0 71.5
Full - - 402.5 3349 484 365.1 2745 614 247.8
T5-large Prompt Tuning 100 100 507.3 6335 141.0 421.7 400.7 1642 | 378.1
P-Tuning 20 20 417.6 499.2 66.8 384.5 299.6 81.8 291.6
SMoP 5 5 406.3 474.1 530 371.7 280.8 66.5 2754

Table 11: Inference FLOPs (GFLOPs/sample) on SuperGLUE tasks.

