CarbonPDF: Question-Answering Reasoning Framework for Assessing
Product Carbon Footprint in PDF Documents

Anonymous ACL submission

Abstract

Product sustainability reports provide valuable
insights into the environmental impacts of a
product and are often distributed in PDF for-
mat. These reports often include a combina-
tion of tables and text, which complicates their
analysis. The lack of standardization and the
variability in reporting formats further exacer-
bate the difficulty of extracting and interpreting
relevant information from large volumes of doc-
uments. In this paper, we tackle the challenge
of answering questions related to carbon foot-
prints within sustainability reports available in
PDF format. Unlike previous approaches, our
focus is on addressing the difficulties posed
by the unstructured and inconsistent nature of
text extracted from PDF parsing. To facilitate
this analysis, we introduce CarbonPDF-QA,
an open-source dataset containing question-
answering pairs for each document, along with
human-annotated answers. Our evaluation of
GPT-4 on this dataset reveals its inadequacy in
answering questions based on inconsistent data.
To address this limitation, we propose Carbon-
PDF, an LLM-based technique specifically de-
signed to answer carbon footprint questions on
such datasets. We develop CarbonPDF by fine-
tuning Llama 3 with our training data. Our
results show that our technique outperforms
current state-of-the-art techniques, including
question-answering (QA) systems finetuned on
table and text data.

1 Introduction

As the climate crisis becomes more urgent, sus-
tainability reporting has become increasingly im-
portant, compelling companies and organizations
to disclose their environmental impacts and sus-
tainability efforts (Olivier M. Schwab, 2022; Ro-
driguez, Isabel and Caglio, Ariela, 2023). This
reporting is essential not only for regulatory compli-
ance but also for demonstrating corporate responsi-
bility and transparency to stakeholders. To conduct
thorough analyses, stakeholders like regulators and

consumers rely on these reports to engage in car-
bon footprint assessments and compliance checks.
These analyses help evaluate the environmental
impact of products and ensure that companies ad-
here to sustainability commitments and standards.
However, the lack of standardization and the com-
plex format of these reports containing hybrid data
— a mix of tables and text — presents significant
challenges for effective analysis. Disparities in how
data is presented make it difficult to perform numer-
ical reasoning and make it challenging to compare
and assess sustainability metrics across different
companies or even within the same organization
over time in an automated manner.

Recent studies have investigated the use of
question-answering (QA) techniques for analyzing
numerical information in hybrid data by framing
data-related analysis as questions (Zhu et al., 2021;
Chen et al., 2022). These approaches use language
models to interpret the hybrid data and perform
numerical reasoning to streamline the analysis pro-
cess. A common approach involves feeding the
hybrid data and specific questions into language
models to generate answers (Zhu et al., 2024).

However, analyzing hybrid data in carbon sus-
tainability reports presents significant challenges.
These difficulties arise because reports are often
available as Portable Document Format (PDF) doc-
uments, and extracting hybrid data from PDFs is of-
ten error-prone. For instance, although tables may
appear structured, PDF does not encode this infor-
mation as tables, unlike HTML or spreadsheets.
Instead, PDFs represent tables as a collection of
text and lines placed at specific coordinates with-
out any explicit information about rows or columns.
This lack of inherent structure makes it difficult to
extract and reconstruct tables accurately, as extrac-
tion algorithms must infer relationships between
text elements based on their positions, which can
be complex and unreliable. As shown in Figure 1,
the data extracted from a PDF may appear in a

ProdUC— rmating ISSUES | o1 60004000
Mini VVN4720GT, VVi 0GT Estimated carbon
footprint 275 +/- 58tkg¥02e Product carbon

footprint by percentag e % 35.2% 21.3% 19.1%
7.5% 4.8% 4.0% 4.0% 2.7%0.8% 0.7% 0.0%

0.0% General Informatiop-Z2 kg Tiny/Mini 29.6
kWh 4 years About tf ata Disclaimer 2f Oct
0.00 0.00 ... Thei i i
subject to cl i I
iinc not be ligbté for technical or editorial efrors or
Content across omissi6ns contained herein. Product breakout
multiple pages inboard (and other boards) Use Power
~ Supply Unit(s) Chassis Optical Drive(s) Solid
- State Drive(s) Hard Drive(s) Transport

'ackaging End of Life Manufacturing 75.3% End
of Life 0.7% Use 21.3% Transport 2.7%

275 +/- 58'kgC0,e

Report A (2 pages)

Table content spread across
different paragraphs

280/2
ENERGY =~
Breakout

~o CIMISSIONS Manuracturing

Packaging 1% ... HP shall not be liable for
technical or editorial errors or omissions contained
herein.705 705kg CO 2 eq. eq.

Inconsistent data

Report B

Reasoning

Question Answer Derivation

Word percentages of the power
Matching

What are the carbon footprint

1%,0.89
supply unit and packaging in [19.1%.0.8%] NIA

the VVN4720GT laptop?

Max/Min

What is the component with
the lowest carbon footprint
percentage in the
manufacturing breakdown of
the VVN4720GT desktop?

Collect all
percentages;
Call min();

{"Packaging":0.7%}

Top 3/5

What are the top 3
components with the highest [{“Mainboard”:35.2 Collect all
carbon footprint percentages %}, percentages;
in the manufacturing {"Power":19.1%}, Sort;
breakdown of the {"Chassis":7.5%]}] Show top 3;
VVN4720GT laptop?

Calculation

What is the carbon footprint
of chassis in the VVN4720GT
laptop?

20.625 275%7.5%

Figure 1: CarbonPDF-QA dataset is collected from product carbon reports. Examples highlight the challenges of
extracting table content from PDF documents. The table provides an overview of the different question types over

the unstructured tabular and text data in the dataset.

different order than expected, even if it looks se-
quential in the document. This happens because
the visual layout of the table does not always match
a clear, structured format within the PDF file.

The problem is further complicated by variations
in how different documents represent tables inter-
nally. Content may be spread across different pages
or sections, making connections between related
data loose or unclear. Additionally, hidden text
and numbers encoded within the PDF may not be
visible but can be read using programs, resulting in
spurious or inconsistent data. Existing state-of-the-
art QA systems that handle hybrid data generally
assume a structured table format, where the con-
tent is free from such anomalies (Zhu et al., 2024).
Thus, these systems may struggle when presented
with inconsistent content extracted from PDF doc-
uments, where table and text data are represented
for visual presentation rather than data analysis.
Moreover, most QA systems are typically designed
to handle reasoning questions over a single table.
This limits their effectiveness when dealing with
content that spans multiple tables.

In this paper, we address the challenges associ-
ated with the problem of hybrid data extracted from
sustainability report PDF documents. Our goal is
to answer carbon footprint-related questions based
on this extracted data from PDF, tackling the chal-
lenges posed by inconsistent and loosely connected
table and text content. We refer to this data as in-
consistent because we do not modify it to remove
spurious information. Additionally, numbers and
text often misalign and can be scattered across mul-

tiple paragraphs, complicating direct question an-
swering. To facilitate analysis, we present the Car-
bonPDF dataset — an open-domain carbon product
report in PDF format. This dataset includes a va-
riety of carbon assessment numerical reasoning
questions that require extracting information from
text, tables, and graphical charts. We developed
this dataset through a combination of automated
processes and human verification to ensure its accu-
racy and reliability. To the best of our knowledge,
CarbonPDF-QA is the first dataset specifically de-
signed to include inconsistent data, addressing the
unique challenges of analyzing unstructured tabular
and text content.

We also explore how LLMs can effectively man-
age complex and inconsistent data from sources
such as PDFs. We propose CarbonPDF, built on
Llama 3, which not only extracts evidence from
retrieved documents but also generates executable
workflows to address a variety of questions. This
approach improves the system’s reasoning capabil-
ities, allowing it to focus on relevant evidence and
deliver more accurate answers. In summary, we
make the following contributions.

¢ We introduce CarbonPDF-QA dataset, an
open-domain question-answering benchmark
for carbon product PDF documents that con-
tain unstructured table and text data. The
dataset was created using reports from dif-
ferent companies, with ground truth answers
that were manually verified by humans.

* We develop the CarbonPDF model, a QA sys-

Table 1: Statistics of the CarbonPDF-QA dataset

PDF Statistic QA Dataset Summary
Type { Ques. Type | Train | Test
Company 4 Word Match | 8681 1959
File 1737 | Max/Min 1934 487
Avg.char./file 3772 | Top 3/5 1245 369
Avg.words/file | 563 Calculation 7648 2062
Avg.pages/file | 1.74 | Total Ques. 19508 | 4877

tem designed to handle the complexities of
inconsistent or spurious data extracted from
PDF documents.

* We conduct extensive experiments and demon-
strate that our model outperforms existing
state-of-the-art techniques, including RAG
and QA systems. Additionally, we perform
detailed analyses to showcase the model’s ca-
pabilities in handling complex numerical rea-
soning on unstructured table and text data.

2 CarbonPDF-QA Dataset

2.1 Data Collection

Our datasets are derived from computing products’
carbon footprint reports, as shown in the left part
of Table 1. We collected 1,737 PDF reports from
the websites of HP (HP Inc., 2024), Dell (Dell Inc.,
2024), Acer (Acer Inc., 2024), and Lenovo (Lenovo
Inc., 2024). Each file contains, on average, around
4,000 characters and 2 pages. To process these re-
ports, we utilized the PyMuPDF library (PyMuPDF
Developers, 2024) to open, parse, and convert the
PDF files into text. We developed custom parsers
to extract both product specifications, such as prod-
uct name, display size, and product weight, as well
as carbon-related information, including the total
product carbon footprint (PCF) and the carbon foot-
print percentage of each component in the manu-
facturing carbon footprint breakdown. The extract
text and values are stored in CSV files.

2.2 Dataset Preparation

Question Generation The dataset includes various
question types, shown in the right part of Table 1.
These range from word-matching questions, where
answers can be directly extracted from the PDF file,
such as the total product carbon footprint or the car-
bon footprint percentage of a specific component,
to more complex questions. The latter requires not
only evidence extraction from the PDF document
that spans different sections but also arithmetic cal-

culations to derive the final answers. The evidence
extraction annotations help to determine whether
the model correctly identifies and uses the neces-
sary information to answer the question accurately.
The questions in the dataset focus on various as-
pects of product carbon footprints, including those
related to individual components or multiple com-
ponents of a product. For each product document,
we generate, on average, at least 14 questions that
can be answered using information from the PDFs.
As a result, each question is paired with at least
one reference document that provides the neces-
sary context to answer the question.

Reference Relevance The CarbonPDF-QA dataset
samples also include reference text that may not
be relevant to answering the questions. These sce-
narios are included to reflect real-world challenges
where not all documents are pertinent, requiring
the model to focus on the relevant data to answer
the questions accurately. To do so, the dataset in-
cludes a relevance token that indicates whether the
reference text is pertinent to the given question.
When generating the dataset, we set the relevance
token to True for reference texts that can be used
to answer the questions. To create irrelevant refer-
ences, we developed a program that selectively re-
moves key information necessary for answering the
questions. For example, some product component
breakdowns might be removed. These modified
texts are then annotated as irrelevant. The irrele-
vant samples make up approximately 30% of the
entire dataset.

Evidence Annotation For each question, the
dataset also includes the location of the information
within the reference text needed to answer the ques-
tions. To achieve this, we treat the entire reference
text as a character array and use the array index
to pinpoint the relevant evidence. This approach
helps mitigate spurious or inconsistent text issues
when extracting content from PDFs. For example,
the PDF parser may extract inconsistent data, such
as "705 705kg CO2 eq. eq." instead of "705kg CO2
eq." (see Figure 1). Thus, evidence location can
be used to extract the relevant information and ig-
nore any spurious text. We represent the evidence
information as follows. For each question-text pair,
we create a JSON object to store the evidence. The
keys in this object correspond to the start and end
indices of the evidence within the character array,
and the value is the evidence text.

Program Generation For all the questions, the
dataset includes a program script to generate the

output. To achieve this, we manually write a
Python script for each question-text pair, using
simple arithmetic expressions to compute the final
answer. These scripts are designed to be straight-
forward and do not require any external library
imports. Our dataset also includes questions that
may yield multiple answers, such as queries about
the carbon footprint of both an HDD and a chassis.
In such cases, the final answer is structured as a
list, with the order of components corresponding to
the sequence specified in the question. Finally, the
entire dataset is split into a training set and a test
set with an 80/20 ratio.

Data Validation To validate the data quality, we
enlisted five students to verify the ground truth data.
These students conducted the data validation as part
of their class projects, which also involved develop-
ing tools for analyzing carbon reports. We divided
the students into two teams, distributing the PDFs
equally, and extracted content among them for vali-
dation. The verification process was a combination
of automated checks and manual review. First, we
used programs to ensure that extracted values fell
within reasonable ranges — such as percentages
not exceeding 100% or carbon footprint values not
being excessively high. Each team, consisting of
at least two students, was tasked with verifying
each extracted value. To further ensure accuracy,
we plotted the data to visually identify potential
errors, such as outliers. If outliers were detected,
we revisited the original PDF files and manually
verified the data. We also checked that the evidence
aligned with the questions being asked. To verify
the accuracy of the ground truth indices, we printed
out the extracted text alongside their corresponding
indices from the document and conducted a visual
inspection for any errors. Finally, we executed all
the generated programs and compared their results
with the ground truth to verify the accuracy of the
programs. If the results matched, the program is
deemed correct.

3 CarbonPDF Design

3.1 Overview

A key design goal of CarbonPDF is to provide
accurate, fact-based answers to user queries. How-
ever, previous research shows that state-of-the-art
LLMs often struggle with maintaining factual ac-
curacy (Mallen et al., 2022). To mitigate this issue,
we incorporate Retrieval Augmented Generation
(RAG) techniques into our design strategy, lever-

aging their success in reducing factual errors in
knowledge-intensive tasks. Note that unlike prior
reasoning methods, such as TAT-LLM (Zhu et al.,
2024), which assume that the correct context is
always provided, our approach recognizes that real-
world scenarios often involve ambiguous or even
misleading context — a challenge we address in
this work.

Figure 2 illustrates our approach’s key compo-
nents and overall workflow. For a given question,
CarbonPDF first retrieves relevant context from the
PDF database. The retriever finds the most relevant
PDF document that might contain the answer. The
retrieved reference text, which includes unstruc-
tured PDF data, is then combined with the question
and a set of instructions to guide CarbonPDF in its
reasoning process to derive the final answer. For ad-
ditional details on the instruction prompt template,
please refer to the Appendix A.1.

The reasoning process involves several key steps
to derive the final answer. Initially, CarbonPDF
assesses the relevance of the retrieved reference to
the question by generating a relevance token, which
helps determine whether the content provided can
effectively answer the question. The relevance to-
ken is binary, with a True or False value. If the ref-
erence text is irrelevant, CarbonPDF returns with
no answer. Although the system can be configured
to retry by retrieving a different reference, we do
not exhaustively search through all possible refer-
ences. This provides a lower bound on our system’s
performance.

Conversely, if the reference text is found to be
relevant, CarbonPDF proceeds with evidence ex-
traction. In this step, CarbonPDF identifies the
specific portions of the reference text necessary to
answer the question. The evidence includes text
and array indices that pinpoint the locations of rel-
evant text within the reference’s character array.
With this extracted evidence, CarbonPDF generates
a program to produce the final answer. A program
interpreter then executes the necessary calculations
and generates the final response.

3.2 Retriever

Document retrieval has traditionally identified rel-
evant documents through keyword matching. Re-
cently, neural network-based approaches, such as
Contriever (Izacard et al., 2021), which utilize neu-
ral embeddings for retrieval, have been introduced
and employed in models like Self-RAG (Asai et al.,
2023). However, in our work, we chose to use Term

S—
CarbonPDF POF Dataset \
Question: What is the carbon Retri
footprint of SSD in product A? etriever
Reference: Product A SSD 10%
200 kgCO2eq. ...
N\ J

~

Instructions:

I. Check Relevant or Not; II. Extract Evidence; Ill.Program-Based Reasoning.
Question: ...

Reference: ...

LLM

Is Reference Text Relevant?: True

Evidence: {"[10, 16]": "SSD 10%", "[18, 29]": "200 kgCO2eq."}
Program:

total_carbon = 200

ssd_percent = 0.1

ssd_carbon = total_carbon * ssd_percent

Execute
Answer: 20 kgCO2eq.

Figure 2: Our main design

/

Frequency-Inverse Document Frequency (TF-IDF)
embedding because we found them to be both effi-
cient and effective for our use case. Although we
currently use TF-IDF, our approach is flexible and
can integrate other retrieval techniques, including
models like Contriever.

To retrieve the relevant documents, we first con-
vert the entire document corpus into TF-IDF em-
beddings using the sklearn.TfidfVectorizer func-
tion. This function transforms each document into
a vector of numerical values, where each dimen-
sion represents a term in the corpus, and the value
in each dimension corresponds to the term’s TF-
IDF score. When CarbonPDF receives a question,
it also converts this question into a TF-IDF vec-
tor. We then compute the cosine similarity between
the question vector and the TF-IDF vectors of the
documents in our corpus. This similarity metric
produces a ranking of documents based on their
relevance to the question. The system then selects
the document with the highest similarity score as
the closest match to the query.

3.3 Program-based Reasoning

LLMs often struggle with reasoning questions that
involve complex calculations (Lewkowycz et al.,
2022). Recently, program-aided language mod-
els have demonstrated effectiveness in overcoming
these challenges by leveraging programmatic rea-
soning (Gao et al., 2023). This approach improves

the model’s ability to perform complex calculations
and produce accurate answers. Building on this in-
sight, we finetune CarbonPDF LLM to generate a
Python program to compute the results based on
the extracted evidence.

The final program generated by CarbonPDF
varies based on the type of question and the docu-
ment’s content. Some carbon documents provide
the total carbon footprint along with lifecycle break-
downs (e.g., manufacturing, end-of-life, and trans-
port) and detailed breakdowns for individual com-
ponents (e.g., HDDs, chassis). Other documents
may report the carbon footprint of individual com-
ponents directly without offering a comprehensive
lifecycle breakdown.

Similarly, the complexity of the questions may
also affect the program generated. For instance,
questions requiring detailed calculations for indi-
vidual components, which depend on factors like
the manufacturing process, involve more complex
reasoning. To handle such complexity, CarbonPDF
employs a multistep approach in its generated pro-
grams. Unlike single-step calculations, we store
intermediate values in variables and then perform
necessary multiplications to derive the answer. In
situations with multiple answers, CarbonPDF pro-
duces the final answers as a list, maintaining the
specified question order.

3.4 Training

We train our CarbonPDF model by fine-tuning
Llama 3gp (Meta Al, 2023) using two NVIDIA
RTX 6000 Ada GPUs for 2.5 days. The learning
rate is set to 2.5e-5, with a per-device training batch
size of 8 and gradient accumulation steps of 4. The
total number of training epochs is 4. We employ
Low-Rank Adaptation (LoRA) (Hu et al., 2021)
during training, with 4-bit quantization. The paged
Adam optimizer (Kingma, 2014), adapted for quan-
tization, is used to further optimize the training
process. To prepare the inputs for training, we
compute the largest token length in our dataset and
create custom tokenization with left padding. We
set the End-of-Sequence token as the pad token to
ensure compatibility with causal language models.

4 Evaluation Methodology

4.1 Baseline Techniques

Baselines without LLM. ACT (Gupta et al., 2022)
and CaML (Balaji et al., 2023) are model-based car-
bon estimation techniques that do not rely on large

language models (LLMs). ACT calculates the car-
bon footprint of each component within computer
systems using detailed product manufacturing in-
formation. On the other hand, CaML associates
product names with North American Industry Clas-
sification System (NAICS) codes to estimate a car-
bon footprint per dollar at the industry sector level.
Given that CaML consistently provides the same
estimate for ‘Electronic Computer Manufacturing,’
we assume a default price for computing products
to calculate the overall carbon footprint. These
models are evaluated by estimating and compar-
ing the total carbon footprint of products against
ground truth values.

Baselines without RAG We use Gemini-
1.5-flash (Google DeepMind, 2023) and
Llama 3gp (Meta Al, 2023) as our base-
lines without RAG. These powerful open-source
LLMs are included to analyze the carbon reasoning
capabilities of LLMs without data augmentation.
Baselines with RAG We evaluate Self-RAG (Asai
et al., 2023), TAT-LLM (Zhu et al., 2024), Gemini-
1.5-flash and GPT-4 (OpenAl, 2023) as baselines
with RAG. Self-RAG retrieves relevant documents
and guides the LLM to generate the best possi-
ble answer. TAT-LLM emphasizes using LLMs
to answer questions based on well-formatted ta-
bles and texts. Additionally, we provide the exact
reference text along with the question to Gemini-
1.5-flash and GPT-4 to assess their performance on
CarbonPDF-QA dataset without fine-tuning.

4.2 Metrics

We adopt the Mean Squared Error (MSE) and Mean
Absolute Error (MAE) to measure the numerical
accuracy of the predicted answers from the gold
answers. We also use Exact Match (EM) to mea-
sure how often the predicted values match the gold
exactly (Rajpurkar et al., 2016). For questions with
multiple answers, the model is required to match
all gold answers exactly, including their order, to
be considered correct.

5 Results

5.1 Baseline Performance

Table 2 compares CarbonPDF with other baseline
techniques. Our technique consistently outper-
forms all baselines. Model-based approaches such
as ACT and CaML show high MSE and MAE due
to their reliance on general carbon estimates and de-
fault values, which lack customization for specific

Table 2: Baseline performance comparison.

Techniques | MSE | MAE | EM
Baselines without LL.M

ACT

(Gupta et al., 2022) 2.37e5 323.80 0.00

CaML

(Balaji et al., 2023) 1.90e5 230.70 0.28
Baselines without RAG

Gemini-1.5-flash 7.40e6 163.49 9.56

Llama 3gp 1.45¢33 | 1.18el14 | 5.23

Baselines with RAG

Self-RAG

(Asai et al., 2023) 7.22e6 173.03 16.79

TAT-LLM

(Zhu et al., 2024) 9.96e9 2584.14 | 0.152

Gemini-1.5-flash 4.35¢6 111.03 28.50

GPT4 1.25e4 33.01 51.47

CarbonPDF 81.02 0.35 98.48

Table 3: CarbonPDF performance on different question
types

Type | #Question | MSE | MAE | EM
Word Match 1959 2.35 0.08 98.11
Max/Min 487 0 0 100.00
Top 3/5 369 0.03 0.01 99.46
Calculation 2062 189.39 | 0.74 98.30

questions. Consequently, their Exact Match (EM)
scores are close to zero. LLM baselines without
RAG — Gemini-1.5-flash and Llama 3gp — also
exhibit significant errors, with EM values below
10%. This underscores the need for data augmenta-
tion to improve the accuracy of model predictions.

While RAG-based approaches show improved
performance, they still have lower performance
compared to our model. GPT-4 outperforms
Gemini-1.5-flash with higher EM and lower MAE
values, though it still makes significant errors on
some questions. We also compared our technique
to Self-RAG, which uses text to answer ques-
tions. However, the technique struggles with com-
plex reasoning questions. Additionally, our model
surpasses reasoning-based models like TAT-LLM,
which rely on well-formatted tables and text input.
This highlights the challenges current QA models
face in handling complex and inconsistent data in
CarbonPDF-QA dataset.

5.2 Performance on Different Question Types

Table 3 summarizes our CarbonPDF performance
across different question types shown in Figure 1.
The model performs well across all these question
types. Max/min and top-3/5 questions yield slightly
better results, likely due to their simpler reasoning

Table 4: Performance on multi-answer questions

#Answer | #Question | MSE | MAE | EM

0 1088 0.00 0.00 100.00
1 1165 71.31 0.38 98.97
2 878 81.49 0.50 98.41
3 849 54.97 0.32 97.88
4 712 272.26 0.75 95.93
5 185 1.08e-5 | 1.08e-4 | 99.46
Table 5: Ablation analysis of CarbonPDF.

Task \ MSE \ MAE \ EM

Few-shot 7.47¢6 | 193.54 | 10.29
Program-based Reasoning | 3.19e3 | 3.65 75.35
CarbonPDF 81.02 0.35 98.48

and fewer question variants, which reduce the po-
tential for errors. Word matching questions exhibit
similar EM compared to calculation questions but
have much lower MSE values in comparison. This
is because word-matching questions require Car-
bonPDF to extract relevant evidence and provide
an answer, whereas calculation questions involve
more complex reasoning, increasing the potential
for errors.

5.3 Performance on Multi-answer Questions

We now analyze the impact of questions requiring
multiple answers. Table 4 shows the results as we
vary the number of answers per question. For ques-
tions with irrelevant references, where no answer
is expected, our model accurately identifies these
references and provides no answers. As the num-
ber of required answers increases, the Exact Match
(EM) score gradually decreases due to the added
complexity in evidence extraction and carbon mod-
eling. Most multi-answer questions involve a mix
of calculation and word-matching types, which can
reduce accuracy. However, questions requiring five
answers still perform well because they primarily
consist of top-5 question types that CarbonPDF
handles effectively. In summary, CarbonPDF per-
forms well across questions with varying numbers
of answers. Nonetheless, complex questions with
fewer answers tend to show better performance.

5.4 Ablation Study

We conduct an ablation study to evaluate the impact
of various components. First, we analyze the effec-
tiveness of few-shot learning in our pipeline. Few-
shot learning involves providing a small number
of examples at inference time to guide the desired

Table 6: Errors sources in CarbonPDF.

Error Type Number | Percentage %
Evidence 74 100.00
Program Reasoning | 53 71.62
Relevant Token 23 31.08

PDF File Parsing 9 12.16

completion, which has been shown to perform well
in some tasks (Brown, 2020; Gautier et al., 2022).
Thus, we replace the fine-tuning step in Carbon-
PDF with a few-shot approach, where we provide
two examples to derive the final result. Table 5
shows the results of this approach. We observe that
the few-shot technique does not perform well on
our dataset. This is consistent with prior work that
indicates few-shot methods struggle with complex
reasoning tasks (Brown, 2020; Asai et al., 2023).

In addition to evaluating the few-shot approach,
we also evaluated CarbonPDF without the program-
based reasoning step. In this variation, we trained
CarbonPDF to generate the final answer directly
without using the program. This approach showed
improved performance compared to the few-shot
technique. However, even with this modification,
the performance did not surpass the CarbonPDF
model.

5.5 Error Analysis

We now analyze the sources of error in Carbon-
PDF’s outputs. To identify these errors, we analyze
the questions that were answered incorrectly and
determine the underlying causes. We classify errors
into four categories: (i) Evidence Errors, where the
evidence index or text retrieved by the system dif-
fers from the ground truth, indicating that incorrect
evidence was identified; (ii) Program Reasoning
Errors, which occur when the program’s execution
results in incorrect outputs due to flaws in logic
or reasoning; (iii) Relevant Token Errors, where
the predicted relevant tokens do not align with the
ground truth, often leading to irrelevant text be-
ing incorrectly selected as relevant; and (iv) PDF
Parsing Errors, which arise from inconsistencies or
spurious data during the PDF extraction process,
resulting in inaccuracies. Note that an output may
belong to multiple error categories.

Table 6 provides a summary of the errors in Car-
bonPDF, including their respective counts and per-
centages. We observe that all the incorrect answers
have issues with extracting the evidence. These
errors often occur due to the large size of the PDF

document and the separation of name-value pairs
across different locations, making it more challeng-
ing to accurately locate the relevant evidence. The
second largest source of errors is program genera-
tion, which is impacted by all other errors since it
is the final step in the process. Additionally, 31%
of the incorrect answers result from wrongly pre-
dicted relevant tokens. This error often occurs due
to the complexity and size of unstructured PDF
documents, making it difficult for the model to
understand and identify the relevant keywords. Ap-
proximately one-tenth of the errors are related to
PDF file parsing, which can lead to misinterpreta-
tions during evidence location or carbon modeling.
Detailed examples for each error type are discussed
in Appendix A.3.

6 Related Work

QA Datasets There are numerous existing QA
datasets. For structured data, such as Knowl-
edge Base (KB) and tables, notable examples in-
clude Complex Web Questions (Talmor and Berant,
2018) and TabFact (Chen et al., 2019). Text-based
QA datasets include SQuAD (Rajpurkar et al.,
2016), SearchQA (Dunn et al., 2017), and DROP
(Dua et al., 2019). For multi-hop QA, there are
HOTPOTQA (Yang et al., 2018) and HybridQA
(Chen et al., 2020). Hybrid datasets also include
TAT-QA (Zhu et al., 2021), which integrates tabu-
lar and textual content in the financial domain, and
TAT-LLM (Zhu et al., 2024), which utilizes well-
formatted tabular and textual data to train LLMs
on discrete reasoning. Our CarbonPDF-QA dataset
stands apart by including inconsistent or spurious
data extracted from PDFs, reflecting the challenges
of real-world document processing. Furthermore,
the tables in our dataset are not well-structured,
with column values that may span different para-
graphs, complicating data analysis.

QA Reasoning Numerous studies have explored
question-answering (QA) systems, including those
that use Retrieval-Augmented Generation (RAG)
approaches to guide large language models (LLMs)
in answering questions (Wei et al., 2022; Gao et al.,
2023; Guu et al., 2020; Lewis et al., 2020; Asai
et al., 2023). Despite these advancements, LLMs
often struggle with complex reasoning tasks, par-
ticularly numerical reasoning. Recent research has
focused on numerical reasoning over tabular and
textual data (Zhu et al., 2021; Li et al., 2022; Zhu
et al., 2022; Zhou et al., 2022; Li et al., 2023; Wei

et al., 2023), including financial reports (Chen et al.,
2021; Yuan et al., 2024). However, the application
of these techniques to real-world hybrid data, such
as that extracted from PDFs, remains relatively un-
explored. Our work addresses this gap by focusing
on the challenges posed by inconsistent data in the
context of sustainability reports.

Carbon Footprint Analysis Companies frequently
employ Lifecycle Assessment (LCA) methodolo-
gies to evaluate the environmental impact of their
products across the entire lifecycle, from raw mate-
rial extraction to disposal (Hauschild et al., 2018).
Tools like GaBi and SimaPro are widely used for
conducting these assessments, producing detailed
analyses that are often integrated into sustainability
reports (Silva et al., 2017). However, LCA meth-
ods require significant manual effort and depend
heavily on detailed input data, which companies of-
ten do not publicly disclose. Recent advancements
have focused on automating carbon footprint anal-
ysis through data-driven approaches (Gupta et al.,
2022; Balaji et al., 2023). These approaches typi-
cally utilize publicly available data, such as indus-
try averages or estimates, which tend to be less
accurate than the more precise, company-specific
data used in traditional LCA methods. The appli-
cation of question-answering (QA) systems within
the sustainability domain is relatively nascent. To
the best of our knowledge, our work is the first to
apply QA systems for carbon footprint assessments
within sustainability reports.

7 Conclusion

In this work, we introduce CarbonPDF-QA,
an open-source product carbon footprint QA
dataset with comprehensive annotations, compris-
ing around 25,000 questions of various types. We
leverage this dataset to fine-tune CarbonPDF, en-
abling it to perform reasoning with reference aug-
mentation and generate accurate results through our
program-based reasoning approach. We demon-
strate its effectiveness through extensive experi-
ments and show that CarbonPDF outperforms the
best baseline on all metrics. We anticipate that
the CarbonPDF-QA dataset and CarbonPDF model
will serve as valuable benchmarks and baselines,
fostering the development of more advanced QA
models for PDF documents and carbon footprint
estimation.

8 Limitations

One key limitation of current PDF parsing meth-
ods is their difficulty in handling data presented in
graphical forms, such as pie charts or bar graphs.
These visual elements are often used to convey
complex data, but traditional parsing techniques
that focus on text extraction struggle with purely
graphical content. This limitation poses a signifi-
cant challenge, as crucial information within these
visual elements can be missed or misinterpreted.
Since CarbonPDF primarily relies on text data, it
cannot effectively answer questions based on con-
tent that combines graphs and text. However, our
technique remains useful when numerical data is
presented alongside these graphs, as it can still ex-
tract and analyze this information. In the future,
we plan to explore multimodal large language mod-
els (LLMs) to perform reasoning on both text and
visual data.

Although CarbonPDF can handle various types
of questions, there are still limitations. For ex-
ample, if CarbonPDF is asked about the carbon
footprint of processors, but the exact term "proces-
sor" does not appear in the text, the system might
incorrectly deem the reference as irrelevant, even
if related terms like "mainboard" are present. This
occurs because the model is not capable of un-
derstanding synonyms or recognizing that certain
components are subsets of larger systems. A key
question for future research is whether large lan-
guage models (LLMs) can be trained to handle
such nuances, improving their reasoning ability to
understand related terms and components within a
broader context.

9 Ethics Statement

In this work, we first highlight the challenges of
processing PDF documents using examples from
our dataset. We then discuss how we collected and
processed our CarbonPDF-QA dataset. Following
this, we propose our CarbonPDF model, which fine-
tunes an LLM (Llama 3gp) to perform program-
based reasoning on unstructured PDF data. Our
model is developed using open-source tools and
datasets to aid in understanding and processing of
product sustainability reports. Therefore, we do
not anticipate any potential risks or negative ethical
issues associated with this work.

9.1 Data Collection and Licensing

We collected the product carbon footprint reports
that are publicly available. Our CarbonPDF-QA
dataset consists of content extracted from these
reports. We plan to release the data under CDLA-
Permissive' license. This will allow broad access
and use of our dataset, allowing recipients to mod-
ify and share the data freely.

9.2 Potential Risk

CarbonPDF may produce inaccurate results for cer-
tain questions. This may lead to misleading conclu-
sions or errors in evaluating environmental impacts.

References

Acer Inc. 2024. Acer library document collection (prod-
uct carbon footprint). Accessed: 2024-08-12.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Self-reflective
retrieval augmented generation. In NeurIPS 2023
Workshop on Instruction Tuning and Instruction Fol-
lowing.

Bharathan Balaji, Venkata Sai Gargeya Vunnava, Geof-
frey Guest, and Jared Kramer. 2023. Caml: Carbon
footprinting of household products with zero-shot
semantic text similarity. In Proceedings of the ACM
Web Conference 2023, pages 4004—-4014.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint ArXiv:2005.14165.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2019. Tabfact: A large-
scale dataset for table-based fact verification. arXiv
preprint arXiv:1909.02164.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Wang. 2020. Hybridga: A
dataset of multi-hop question answering over tabular
and textual data. arXiv preprint arXiv:2004.07347.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan Routledge, et al.
2021. Finqa: A dataset of numerical reasoning over
financial data. arXiv preprint arXiv:2109.00122.

Zhiyu Chen, Shiyang Li, Charese Smiley, Zhigiang Ma,
Sameena Shah, and William Yang Wang. 2022. Con-
vfinga: Exploring the chain of numerical reasoning
in conversational finance question answering. arXiv
preprint arXiv:2210.03849.

Dell Inc. 2024. Dell library document collection (prod-
uct carbon footprint). Accessed: 2024-08-12.

"https://cdla.dev/permissive-2-0/

https://www.acer.com/us-en/sustainability/product-carbon-footprint
https://www.acer.com/us-en/sustainability/product-carbon-footprint
https://www.acer.com/us-en/sustainability/product-carbon-footprint
https://www.dell.com/en-us/dt/corporate/social-impact/advancing-sustainability/climate-action/product-carbon-footprints.htm#tab0=0
https://www.dell.com/en-us/dt/corporate/social-impact/advancing-sustainability/climate-action/product-carbon-footprints.htm#tab0=0
https://www.dell.com/en-us/dt/corporate/social-impact/advancing-sustainability/climate-action/product-carbon-footprints.htm#tab0=0

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark re-
quiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161.

Matthew Dunn, Levent Sagun, Mike Higgins, V Ugur
Guney, Volkan Cirik, and Kyunghyun Cho. 2017.
Searchqa: A new g&a dataset augmented with
context from a search engine. arXiv preprint
arXiv:1704.05179.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine

Learning, pages 10764—-10799. PMLR.

Izacard Gautier, Lewis Patrick, Lomeli Maria, Hosseini
Lucas, Petroni Fabio, Schick Timo, Dwivedi-Yu Jane,
Joulin Armand, Riedel Sebastian, and Grave Edouard.
2022. Few-shot learning with retrieval augmented
language models. arXiv preprint arXiv: 2208.03299.

Google DeepMind. 2023. Gemini-1.5-flash. Accessed:
2024-08-10.

Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei,
Hsien-Hsin S Lee, David Brooks, and Carole-Jean
Wu. 2022. Act: Designing sustainable computer sys-
tems with an architectural carbon modeling tool. In
Proceedings of the 49th Annual International Sympo-
sium on Computer Architecture, pages 784—799.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929-3938. PMLR.

Michael Z Hauschild, Ralph K Rosenbaum, Stig Irving
Olsen, et al. 2018. Life cycle assessment, volume
2018. Springer.

HP Inc. 2024. HP library document collection (product
carbon footprint). Accessed: 2024-08-12.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense in-
formation retrieval with contrastive learning. arXiv
preprint arXiv:2112.09118.

DP Kingma. 2014. Adam: a method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Lenovo Inc. 2024. Lenovo library document collection
(product carbon footprint). Accessed: 2024-08-12.

10

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
tdschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843—
3857.

Moxin Li, Fuli Feng, Hanwang Zhang, Xiangnan He,
Fengbin Zhu, and Tat-Seng Chua. 2022. Learning
to imagine: Integrating counterfactual thinking in
neural discrete reasoning. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 57—69.

Xiao Li, Yin Zhu, Sichen Liu, Jiangzhou Ju, Yuzhong
Qu, and Gong Cheng. 2023. Dyrren: A dynamic
retriever-reranker-generator model for numerical rea-
soning over tabular and textual data. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 37, pages 13139-13147.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2022.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. arXiv preprint arXiv:2212.10511.

Meta Al 2023. Llama 3 8b. Accessed: 2024-08-10.

Olivier M. Schwab. 2022. Sustainability reporting: why
it’s important. [Online; accessed 14-August-2024].

OpenAl. 2023. GPT-4. https://openai.com/
research/gpt-4. Accessed: 2024-08-12.

PyMuPDF Developers. 2024. PyMuPDF documenta-
tion. Accessed: 2024-08-08.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Rodriguez, Isabel and Caglio, Ariela. 2023. Tackling
the sustainability reporting challenge. a policy guide.
[Online; accessed 14-August-2024].

Diogo Silva, A Oliveira Nunes, Aparecida
da Silva Moris, Cassiano Moro, and Thiago
Oliveira Rodrigues Piekarski. 2017. How important
is the lca software tool you choose comparative
results from gabi, openlca, simapro and umberto. In
Proceedings of the VII Conferencia Internacional
de Andlisis de Ciclo de Vida en Latinoamérica,
Medellin, Colombia, pages 10-15.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
arXiv preprint arXiv:1803.06643.

https://deepmind.google/technologies/gemini/flash/
https://h20195.www2.hp.com/v2/library.aspx?doctype=95&footer=95&filter_doctype=no&showregionfacet=yes&filter_country=no&cc=us&lc=en&filter_oid=no&filter_prodtype=rw&prodtype=ij&showproductcompatibility=yes&showregion=yes&showreglangcol=yes&showdescription=yes%23doctype-95&sortorder-popular&teasers-off&isRetired-false&isRHParentNode-false&titleCheck-false
https://h20195.www2.hp.com/v2/library.aspx?doctype=95&footer=95&filter_doctype=no&showregionfacet=yes&filter_country=no&cc=us&lc=en&filter_oid=no&filter_prodtype=rw&prodtype=ij&showproductcompatibility=yes&showregion=yes&showreglangcol=yes&showdescription=yes%23doctype-95&sortorder-popular&teasers-off&isRetired-false&isRHParentNode-false&titleCheck-false
https://h20195.www2.hp.com/v2/library.aspx?doctype=95&footer=95&filter_doctype=no&showregionfacet=yes&filter_country=no&cc=us&lc=en&filter_oid=no&filter_prodtype=rw&prodtype=ij&showproductcompatibility=yes&showregion=yes&showreglangcol=yes&showdescription=yes%23doctype-95&sortorder-popular&teasers-off&isRetired-false&isRHParentNode-false&titleCheck-false
https://www.lenovo.com/us/en/compliance/eco-declaration/?orgRef=https%253A%252F%252Fwww.google.com%252F
https://www.lenovo.com/us/en/compliance/eco-declaration/?orgRef=https%253A%252F%252Fwww.google.com%252F
https://www.lenovo.com/us/en/compliance/eco-declaration/?orgRef=https%253A%252F%252Fwww.google.com%252F
https://llama.meta.com/
https://www.weforum.org/agenda/2022/06/sustainability-reporting-why-important/
https://www.weforum.org/agenda/2022/06/sustainability-reporting-why-important/
https://www.weforum.org/agenda/2022/06/sustainability-reporting-why-important/
https://openai.com/research/gpt-4
https://openai.com/research/gpt-4
https://openai.com/research/gpt-4
https://pymupdf.readthedocs.io/en/latest/
https://pymupdf.readthedocs.io/en/latest/
https://pymupdf.readthedocs.io/en/latest/
https://unctad.org/system/files/official-document/diae2022d3_en.pdf
https://unctad.org/system/files/official-document/diae2022d3_en.pdf
https://unctad.org/system/files/official-document/diae2022d3_en.pdf

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Yifan Wei, Fangyu Lei, Yuanzhe Zhang, Jun Zhao, and
Kang Liu. 2023. Multi-view graph representation
learning for answering hybrid numerical reasoning
question. arXiv preprint arXiv:2305.03458.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Zigiang Yuan, Kaiyuan Wang, Shoutai Zhu, Ye Yuan,
Jingya Zhou, Yanlin Zhu, and Wenqi Wei. 2024. Fin-
Ilms: A framework for financial reasoning dataset
generation with large language models. arXiv
preprint arXiv:2401.10744.

Yongwei Zhou, Junwei Bao, Chaoqun Duan, Youzheng
Wu, Xiaodong He, and Tiejun Zhao. 2022. Unirpg:
Unified discrete reasoning over table and text as pro-
gram generation. arXiv preprint arXiv:2210.08249.

Fengbin Zhu, Wenqiang Lei, Fuli Feng, Chao Wang,
Haozhou Zhang, and Tat-Seng Chua. 2022. Towards
complex document understanding by discrete reason-
ing. In Proceedings of the 30th ACM International
Conference on Multimedia, pages 4857—4866.

Fengbin Zhu, Wengqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and
Tat-Seng Chua. 2021. Tat-qa: A question answering
benchmark on a hybrid of tabular and textual content
in finance. arXiv preprint arXiv:2105.07624.

Fengbin Zhu, Ziyang Liu, Fuli Feng, Chao Wang,
Moxin Li, and Tat-Seng Chua. 2024. Tat-lIm:
A specialized language model for discrete reason-
ing over tabular and textual data. arXiv preprint
arXiv:2401.13223.

A Appendix

A.1 Prompt templates

The template for CarbonPDF training prompt is
shown in Listing 1. For testing, we use the prompt
in Listing 2 and ask the model to complete it. List
3 displays the few-shot prompt template used to
obtain the results in Table 5. List 4 and List 5 are
the prompt templates designed to train and test the
model without carbon modeling.

A.2 Evidence Locating Examples

Table 7 presents examples of evidence locating
during the testing of CarbonPDF across different
question types. Generally, CarbonPDF success-
fully identifies the correct evidence text, though it

11

occasionally makes mistakes in predicting the pre-
cise evidence index (with blue text representing the
ground truth and red text indicating errors in pre-
diction). However, since the carbon modeling step
relies on the text itself rather than the index, our
goal of guiding the LLM to find the evidence loca-
tions is effectively achieved. It is also worth noting
that in the Word Match example, there are two start-
end index pairs for each evidence text. This occurs
because the percentage value and the associated
name are separated into different positions within
the text, requiring the use of two start-end pairs to
accurately locate them.

A.3 Carbon PDF Error Examples

Table 8 provides examples of errors in CarbonPDF.
In the evidence locating error example, the pre-
diction incorrectly identifies a percentage of 7.1%
(highlighted in red) instead of the correct value of
14.8% (highlighted in blue) located just before it,
leading to an incorrect final answer. In the pro-
gram generation error example, the LLM generates
two unnecessary lines of code, which result in the
correct carbon footprint of the power supply unit
being incorrectly calculated as the total carbon foot-
print. In the example for relevant token prediction
error, although both the product name and the com-
ponents are present in the reference, CarbonPDF
incorrectly classifies it as irrelevant. For the PDF
file parsing error example, the blue text in the cor-
rected reference indicates where the red text in the
original raw reference should be. After converting
a PDF file into raw text, issues such as spurious
data (like the duplicated "0.0%") and formatting
problems (such as the long space between "g" and
"e" in "percentage") can be introduced, leading to
misinterpretations.

oI N - . I N R)

Listing 1: CarbonPDF Training Prompt Template

You'll be provided with some questions and a reference. First, you must check
whether the reference is relevant to the question and generate a token. If the
reference is relevant, identify the necessary evidence from it to answer the
questions. View the whole reference text as a character array. Output the
evidence and the locations of the evidence as start and end indexes in the
character array. Based on the evidence and indexes, generate the Python program
to compute and answer the questions. The indexes are enclosed by square brackets

The program is enclosed by triple backticks. The final answer in the program
is of list type.

Question: {question}

Reference: {reference text}

Is Reference Text Relevant?: {True/False}

Evidence: {[index]:"evidence text"}

Program:

{program}

Listing 2: CarbonPDF Testing Prompt Template

You'll be provided with some questions and a reference. First, you must check
whether the reference is relevant to the question and generate a token. If the
reference is relevant, identify the necessary evidence from it to answer the
questions. View the whole reference text as a character array. Output the
evidence and the locations of the evidence as start and end indexes in the
character array. Based on the evidence and indexes, generate the Python program
to compute and answer the questions. The indexes are enclosed by square brackets

The program is enclosed by triple backticks. The final answer in the program
is of list type.

Question: {question}

Reference: {reference text}

Is Reference Text Relevant?:

Question Type | Evidence
G:{"[1014,1018], [1643,1649]": "47.7%, Display", "[1032,1035], [1684,1703]": "7.1%, Power Supply
Word Match Unit(s)", "[1062,1065], [1809,1817]": "0.5%, Packaging"}
P:{"[1014,1018], [1643,1649]": "47.7%, Display", "[1030,1033], [1684,1703]": "7.1%, Power Supply
Unit(s)", "[1059,1062], [1809,1817]": "0.5%, Packaging"}
G:{"[2396,2410]": "Hard Drive 3.0%", "[2430,2441]": "Battery 2.7%", "[2372,2394]": "Chassis &
Assembly 4.8%", "[2412,2428]": "Power Supply 7.0%", "[2443,2474]": "Mainboard and Other Boards
Max/Min 26.6%", "[2476,2488]": "Display 35.2%", "[2490,2503]": "Packaging 0.4%"}
P:{"[2396,2410]": "Hard Drive 3.0%", "[2430,2441]": "Battery 2.7%", "[2372,2394]": "Chassis &
Assembly 4.8%", "[2412,2428]": "Power Supply 7.0%", "[2443,2474]": "Mainboard and Other Boards
26.6%", "[2476,2488]": "Display 35.2%", "[2490,2503]": "Packaging 0.4%"}
G:{"[138,150]": "Chassis 21.0%", "[180,219]": "Power Supply Unit & External Cables 1.7%",
"[106,136]": "Mainboard and other boards 9.6%", "[92,104]": "Display 61.6%", "[165,178]":
Top 3/5 "Packaging 2.2%"}
P:{"[138,150]": "Chassis 21.0%", "[180,219]": "Power Supply Unit & External Cables 1.7%",
"[106,136]": "Mainboard and other boards 9.6%", "[92,104]": "Display 61.6%", "[165,178]":
"Packaging 2.2%"}
G:{"[2925,2938]": "125kg CO 2 eq.", "[2944,2960]": "Manufacturing 69%", "[211,248]": "Power Supply
Unit & External Cables 4%", "[148,158]": "Display 33%", "[187,196]": "Chassis 7%", "[117,146]": "
Calculation Mainboard and other boards 38%" }
P:{"[2925,2938]": "125kg CO 2 eq.", "[2944,2960]": "Manufacturing 69%", "[211,248]": "Power Supply
Unit & External Cables 4%", "[147,157]": "Display 33%", "[187,196]": "Chassis 7%", "[117,146]": "
Mainboard and other boards 38%" }

Table 7: Examples of the evidence locating in our CarbonPDF. G and P represent ground truth and prediction.

12

© ® NN R W

25
26
27

IS IRV I NI)

Listing 3: Few-Shot Prompt Template

You'll be provided with some questions and a reference. First, you must check
whether the reference is relevant to the question and generate a token. If the
reference is relevant, identify the necessary evidence from it to answer the
questions. View the whole reference text as a character array. Output the
evidence and the locations of the evidence as start and end indexes in the
character array. Based on the evidence and indexes, generate the Python program
to compute and answer the questions. The indexes are enclosed by square brackets

The program is enclosed by triple backticks. The final answer in the program
is of list type.

Here are some examples.

Example 1:

Question: {question}

Reference: {reference text}

Is Reference Text Relevant?: {True}
Evidence: {[index]:"evidence text"}
Program:

{program}

Example 2:

Question: {question}

Reference: {reference text}

Is Reference Text Relevant?: {False}
Evidence: {[index]:"evidence text"}
Program:

{program}

Now the question and reference are shown below. What are the answers to the question
?

Question: {question}

Reference: {reference text}

Is Reference Text Relevant?:

Listing 4: CarbonPDF without Carbon Modeling Training Prompt Template

You'll be provided with some questions and a reference. First, you must check
whether the reference is relevant to the question and generate a token. If the
reference is relevant, extract the essential information to answer the questions

View the whole reference text as a character array. Output the evidence and
the locations of the evidence as start and end indexes in the character array.
Based on the evidence and indexes, compute and answer the questions. The indexes

are enclosed by square brackets. The final answer is of list type.

Question: {question}

Reference: {reference text}

Is Reference Text Relevant?: {True/False}

Evidence: {[index]:"evidence text"}

Answer: {answer}

Listing 5: CarbonPDF without Carbon Modeling Testing Prompt Template

You'll be provided with some questions and a reference. First, you must check
whether the reference is relevant to the question and generate a token. If the
reference is relevant, extract the essential information to answer the questions

View the whole reference text as a character array. Output the evidence and
the locations of the evidence as start and end indexes in the character array.
Based on the evidence and indexes, compute and answer the questions. The indexes

are enclosed by square brackets. The final answer is of list type.

Question: {question}

Reference: {reference text}

Is Reference Text Relevant?:

13

Error Type Example

Q: What are the carbon footprint percentages of the manufacturing, power supply unit,
and mainboard and other boards in the VS2690G desktop?

R: 23.8% 14.8% 7.1% ... Product breakout ... Mainboard (and other boards)

Power Supply Unit(s) Chassis.. Manufacturing 53.4%

G: [53.4%, 14.8%, 23.8%]

P: [53.4%, 7.1%, 23.8%]

Q: What are the carbon footprints of power supply unit, total, and batteries

Evidence

in the C723T-TCO laptop?
R: 212 +/- 401kgCO2e ... 9.5% ... 3.4% ... Power Supply Unit(s) ... Battery
G Program:

total_carbon=212.0

power_percent=0.095

power_carbon=total_carbon*power_percent

batteries_percent=0.034

batteries_carbon=total_carbon*batteries_percent
answer=[power_carbon,total_carbon,batteries_carbon]

Program Reasoning | P Program:

total_carbon=212.0

power_percent=0.095

power_carbon=total_carbon*power_percent

power_answer=total_carbon

batteries_percent=0.034

batteries_carbon=total_carbon*batteries_percent

batteries_answer=batteries_carbon

answer=[power_answer,total_carbon,batteries_answer]

G: [20.14, 212.0, 7.208]

P: [212.0,212.0, 7.208]

Q: What are the carbon footprints of HDD, display, and batteries in the Latitude 3520 laptop?
R: Dell Latitude 3520 ... Hard Drive 3.1% ... Battery 2.6% ... Display 42.8%

G: True

P: False

Q: What are the carbon footprint percentages of the packaging, mainboard and other boards,
chassis, and power supply unit in the VX8715GT desktop?

R: by percentag e % 43.0% 23.9% 15.8% 7.5% 3.0% 2.0% 1.7% 1.7% 0.9% 0.6% 0.0% 0.0%
... End of Life Product breakout Use Mainboard (and other boards) Power Supply Unit(s)
Chassis Transport Optical Drive(s) Hard Drive(s) Solid State Drive(s) 2023/Jun Packaging
0.00 0.00 Product Weight

R Corrected: by percentage % 43.0% 23.9% 15.8% 7.5% 3.0% 2.0% 1.7% 1.7% 0.9% 0.6%
0:0%-0:0% ... Product breakout Use Mainboard (and other boards) Power Supply Unit(s)
Chassis Transport Optical Drive(s) Hard Drive(s) Solid State Drive(s) End of Life Packaging
06:00-0-00 2023/Jun Product Weight

G:[0.6%, 23.9%, 7.5%, 15.8%]

P:[1.7%, 23.9%, 7.5%, 15.8%]

Relevant Token

PDF File Parsing

Table 8: Examples of the errors in our CarbonPDF. Q, R, G, and P represent question, reference text, ground truth,
and prediction.

14

	Introduction
	CarbonPDF-QA Dataset
	Data Collection
	Dataset Preparation

	CarbonPDF Design
	Overview
	Retriever
	Program-based Reasoning
	Training

	Evaluation Methodology
	Baseline Techniques
	Metrics

	Results
	Baseline Performance
	Performance on Different Question Types
	Performance on Multi-answer Questions
	Ablation Study
	Error Analysis

	Related Work
	Conclusion
	Limitations
	Ethics Statement
	Data Collection and Licensing
	Potential Risk

	Appendix
	Prompt templates
	Evidence Locating Examples
	Carbon PDF Error Examples

