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ABSTRACT

Despite advances in hierarchical reinforcement learning, its applications to path
planning in autonomous driving on highways are challenging. One reason is that
conventional hierarchical reinforcement learning approaches are not amenable to
autonomous driving due to its riskiness: the agent must move avoiding multiple
obstacles such as other agents that are highly unpredictable, thus safe regions are
small, scattered, and changeable over time. To overcome this challenge, we pro-
pose a spatially hierarchical reinforcement learning method for state space and
policy space. The high-level policy selects not only behavioral sub-policy but also
regions to pay mind to in state space and for outline in policy space. Subsequently,
the low-level policy elaborates the short-term goal position of the agent within the
outline of the region selected by the high-level command. The network structure
and optimization suggested in our method are as concise as those of single-level
methods. Experiments on the environment with various shapes of roads showed
that our method finds the nearly optimal policies from early episodes, outperform-
ing a baseline hierarchical reinforcement learning method, especially in narrow
and complex roads. The resulting trajectories on the roads were similar to those
of human strategies on the behavioral planning level.

1 INTRODUCTION

The essential idea of hierarchical reinforcement learning (HRL) is to find a proper hierarchy of ab-
stractions for tasks on loosely coupled Markov decision process (MDP) (Parr & Russell, 1998). One
predominant technique is temporal abstraction of policies, in which high-level command operates
on Semi-MDP that has lower temporal resolution than MDP, and the low-level policy specifies prim-
itive actions more frequently under the command (Sutton et al., 1999b). Another technique is state
abstraction, for which similar concepts are suggested in Dayan & Hinton (1992), Singh et al. (1994),
and Dietterich (2000). Regarding the two types of abstraction, Sutton et al. (1999b) proposed option
framework, where high-level policy selects an option that consists of an initiation set, a sub-policy,
and a termination condition. In respect of rewarding, two major directions exist: reward hiding
(Dayan & Hinton, 1992) empowers the manager to independently reward sub-managers according
to their compliance with the commands, while MAXQ value decomposition (Dietterich, 2000) as-
signs credit for task rewards by temporally decomposing a state-action value in the parent task into
expected total rewards during the execution of sub-policy and after the execution of sub-policy.

Advances in hierarchical approaches with deep neural networks, rooted in the aforementioned tech-
niques, engage with multiple challenges. Kulkarni et al. (2016) presented hierarchical deep Q net-
works where every policy is learned as a separate DQN and intrinsic rewards encourage sufficient
exploration in the subtask. For tasks on MDPs that are densely coupled in temporal dimension,
high-level goals are modified by a network module (Nachum et al., 2018). For discrete sub-policies,
option-critic (Bacon et al., 2017) learns the options end-to-end by policy gradient, without having to
manually define options. More diverse strategies became available through the use of a maximum
entropy objective that enables a latent layer of high-level policy networks to directly control the sub-
policy (Haarnoja et al., 2018). HiPPO (Li et al., 2020) adopted the control, formulated an unbiased
latent dependent baseline, and derived a new hierarchical policy gradient that allows joint training
of all levels with proximal policy optimization (PPO).
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Recent approaches of HRL for autonomous driving (AD) (Paxton et al., 2017; Chen et al., 2019;
Rezaee et al., 2019) kept up with some of these advances but did not fully reckon with following task-
specific attributes. In AD, vehicle states can change unpredictably, rapidly, and frequently due to
behaviors of ego agent and others. This does not satisfy the prerequisite of canonical HRL, a loosely
coupled MDP. Additionally, the agent must drive through obstacles including other agents and avoid
collision. Otherwise, it will be given a huge penalty and encounter the end of an episode without
reaching the goal that accompanies delayed positive rewards. Therefore, the agent is demanded to
keep an appropriate distance from obstacles concerning expected returns. In this respect, one way
to efficiently learn navigation in AD is to sample the short-term goal only in collision-free regions
which are relatively safe in near future and modify or re-sample them at subsequent time steps.

Even when given the knowledge about collision-free regions, the optimization is still tricky with
gradient-based methods when the structure of regions is complex. In dense traffic, locally optimal
intermediate goal position may exist for every inter-vehicle region (IVR) on a lane due to the contra-
diction of policy gradient directions between huge and hard-constrained objectives about collision
avoidance and small and soft-constrained objectives about travel time reduction. On this ground,
choosing one region among reachable regions in near future can be an effective task decomposition
where the subtask is to find the local optimum in the given IVR.

Thus, we propose a reinforcement learning method with a two-level hierarchy that accommodates
those attributes of AD on highways. Our agent can estimate the value of multi-lateral strategies
including short-term goals that can be local optima in IVRs and select the best one given the cir-
cumstance at every time step. Our contribution to HRL and AD is three-fold:

We rethink the role of hierarchical policies, and propose a deep reinforcement learning method
of spatial hierarchy. Our high-level policy selects a combination of behavioral sub-policy and its
components, the IVRs to be used as a part of state for the two levels and as the outline of the sub-
policy space. Our low-level policy generates an action in continuous space by elaborating within
the outline, using a unique network structure and algorithm that we name neural elaboration within
reinforced outline (NEWTRO).

We suggest a seamless HRL method for smooth state transition in short-term goal planning. The
high-level policy selects one of either the current subspace or a candidate goal subspace from their
subspace features, and the low-level policy can bridge the two subspaces. By sharing the value
network for the two-level policies, our network structure and memory are designed to be as concise
as those of a single-level actor critic, and learned without temporal abstraction.

Our methods showed drastic improvement of performance with fast optimization speed. In
experiments, the agent using our method received higher rewards from early episodes than a
baseline HRL, especially on narrow and complex roads. The traveling trajectory of the agent using
our method followed general human tactics, while the agent using the existing HRL did not.

2 BACKGROUND AND RELATED WORK

In this section, we introduce task definition in several branches of reinforcement learning (RL) and
advantage actor-critic underlying our method to help understanding it. Then we compare our method
in comparison with other HRL methods for autonomous driving on highways.

2.1 TASK DEFINITION IN BRANCHES OF REINFORCEMENT LEARNING

Canonical RL consists of the agent making action a ∈ A and the environment of the state s ∈ S ,
interacting with each other. The environment follows MDP: it assumes the situation that given the
current state st at time t, the next state st+1 does not depend on the past states and actions. When
the state is fully observable, the policy π can be established from the s to make a. In multi-agent
RL, MDP is expanded to the actions of multi-agents a, where the next state is determined by s
and a. In certain RLs with feature set or hierarchical RL, s can be abstracted to parts of s, or the
abstracted state can be defined in different space from (S). For goal-based RL methods of Universal
Value Function Approximators (Schaul et al., 2015) or the policies given goal from the high level
in hierarchy, the state-goal value V (s, g) or the state-action-goal value Q(s, a, g) can be estimated
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and learned. In single-agent RL or multi-agent RL with self-interested agents, a typical objective
is the expected long-term discounted rewards ρ(π) = E{

∑∞
t=1 γ

t−1rt|s0, π}. In RL with multi-
objectives, the reward can be multi-dimensional, expressible as rt = {r1,t, r2,t, · · · , rN−1,t, rN,t}
for N number of objectives. In this paper, we design a spatially hierarchical RL agent receiving
a long-term goal and multi-objectives who operates on the environment with self-interested multi-
agents.

2.2 POLICY GRADIENT AND ADVANTAGE ACTOR-CRITIC

Policy gradient methods aim to find optimal parametrized policies by performing gradient descent
to optimize an objective. The policy gradient theorem of Sutton et al. (1999a) derives the gradient
with respect to the parameters of stochastic policy θ as

∂ρ(πθ)

∂θ
=

∑
s

dπθ (s)
∑
a

∂πθ(s, a)

∂θ
Qπ(s, a), (1)

where dπθ (s) is the stationary distribution following the parameterized policy πθ, and Qπ(s, a) is
the value of a state-action pair given a policy

∑∞
t=1 E{γt−1rt − ρ(π)|s, a, π}.

For a designated start state s0, only the long-term rewards are cared forQπ(s, a). ***** add math!!!
In Konda (2002), Qπ(s, a) is designed as a feature vector φθ, which is critic. Advantage actor-critic
methods employ the advantage function Aπ(s, a) = Qπ(s, a) − V π(s), where V π(s) is the state
value used as the base line. The underlying reason is that the policy gradient suffers from its high
variance because of the dependency on the state-action values during a trajectory. In our method we
adopt n-step advantage estimate (Schulman et al., 2015) because it fits our hierarchical actor-critic
design aiming at efficient policy decomposition for domain-specific subspaces.

2.3 HIERARCHICAL POLICIES FOR AUTONOMOUS DRIVING ON HIGHWAYS

Reinforcement learning approaches have been adopted for autonomous driving on highways to teach
a vehicle agent several behaviors, such as cruise control (Chen et al., 2017; Zhao et al., 2017), lane
keeping (Kendall et al., 2019), lane changing (Wang et al., 2018), and traffic merging (Wang & Chan,
2017). Recently, Paxton et al. (2017); Rezaee et al. (2019); Chen et al. (2019) suggested hierarchical
methods where the high-level policies commonly function as a type of behavior planner, while the
low-level policies take different roles: primitive control (Paxton et al., 2017; Chen et al., 2019) and
motion planning (Rezaee et al., 2019).

The method of Paxton et al. (2017) generates motion plans by using tree search, where the high-level
options and the low-level actions are selected in turn to extract the best option sequence. For the low-
level policy, world states are abstracted to the set of continuous, logical, and agent-relative features.
Rezaee et al. (2019) designed a cruising method on multi-lanes, where the high-level behavioral
planner makes a decision on a discretized state-action space. They regarded path planning as a
sequence of symbolically punctuated behaviors, and handed over authority of reactive planning to
the low-level policy. They were concerned about specifying deadlines of a fixed expiration time of
the high-level command in AD, so designed the low-level policy as a motion planner that prioritizes
safety over the high-level decisions. Chen et al. (2019) designed networks with spatial and temporal
attention mechanism for input images of the front view. While a CNN encoder is shared for actor
and critic, the spatial and temporal attention is applied only for hierarchical policies. On top of the
encoder, salient regions are chosen by spatial attention networks, and the sequence of the regions
runs through LSTM, whose outputs are applied with temporal attention.

Our HRL method is limited to short-term goal planning because no temporal abstraction is used.
Putting aside the concerns on the temporal aspect in Rezaee et al. (2019) and Chen et al. (2019), our
HRL method focuses on policies with spatial decomposition because we consider that for driving
on the highway with dense traffic, spatially decomposing a state can be much easier than tempo-
rally decomposing a sequence of multi-dimensional states that are entangled with hierarchical ac-
tions of multi-agents. For state abstraction, rather than using popular approaches of abstraction for
sub-policy or spatial attention networks, we aimed at the high-level policy that can choose its own
features resembling our eyes looking at several focus points and deciding to return to the salient one.
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In previous research, the hierarchical policies have respective roles in different levels, such as
abstracted behavior, motion planning, and control. In this work, however, the two-level policies
work in the same policy space, which is the short-term goal generation.

3 ALGORITHM

In the temporal respect, if a short-term goal is reachable without the episode ending midway, the
expected returns of choosing a short-term goal position are the sum of expected returns during a
behavioral motion before reaching the goal and expected returns at the future state when ego vehicle
reaches the goal position. Although other agents are highly unpredictable, learning through multiple
explorations enables estimating the expected returns of the goal selection given a state st, a long-
term goal region lt, and a behavioral motion to reach its short-term goal gt at time t. The details of
a long-term goal region are in Section A.5 of Appendix, and we fix the region as l for each episode.
In this setting, our HRL algorithm additionally employs the features of inter-vehicle regions (IVRs)
that are subspaces of the action space acquired from our method using domain knowledge. The
details of IVRs are in Section A.4 of Appendix.

The subspaces are used in three ways, 1) as additional state features of the IVR that ego-vehicle
currently belongs to ct, 2) as selectable state features to pay mind to, and 3) as the outline that
confines the low-level policy space. The high-level policy π chooses one of the candidates h ∈ H
whose behavioral mode b ∈ B specifies a set of features of available subspaces to pay mind to, Mb,
and the subspace for the outline, ob. Thus, a candidate command is defined as h = {b,mb, ob}
where features of subspace to pay mind to is following mb ∈Mb. Table 1 in Appendix lists a set of
candidates determined by the condition of current state.

The high-level policy π at time step t is to select the candidate of maximum state-candidate value
Qh:

π = arg max
ht∈Ht

Q(lt, st, ct, ht)

' arg max
h̃t∈H̃t

Q(lt, st, ct, h̃t)

= arg max
h̃t∈H̃t

Q(lt, st, ct,mb,t, bt),

(2)

where h̃ is a partial candidate {b,mb}, and the command is chosen by exhaustive search for all
possible partial candidates H̃t at time step t. The features of outline region ob are not explicitly
indicated in inputs for the value estimation, since ob is either the current IVR or an IVR in mind,
and each behavioral mode includes the decision whether to stay in the current IVR or to move on to
IVR in mind given the features of both IVRs as inputs ct and mb,t. The information on encoding
process is described in Section 4 in detail.

In accordance with the high-level policy, our low-level stochastic policy search φ at time step t
generates a two-dimensional goal position at ∈ N2, where N = (0, 1), given a high-level command
ht, such that

at ∼ φ(lt, st, ct, ht)

= φ(lt, st, ct, bt,mb,t, ob,t).
(3)

The normalized goal position at is interpreted as a position in the local coordinate of the outline
region ob,t, and our manually designed function T : N2 → R2 transforms the local position at to
the corresponding position in the global coordinate gt given ob,t:

gt = T (at, ob,t). (4)

The details of the transformation function T are in Subsection A.2 and A.4 of Appendix. For
control of vehicle in reaching the goal gt, the outline region ob,t also determines the target heading
direction ψ.

Given high-level command at every time step, the actual goal position of the agent is deter-
mined by φ, thus the high-level state-command value is equal to the state value of low-level policy
working in accordance with the command,

Qh(st, ht) = Vl(st, ht). (5)
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By designing φ to be learned through actor-critic with the state value estimation, all state-candidate
values for our high-level policy can be estimated. When any low-level state value is well estimated,
and the low-level policy is locally optimal in a given inter-vehicle region, we can naturally assume
that the high-level policy that selects the candidate of maximum state-candidate value as the com-
mand is also optimal.

To achieve this global optimum requires nothing but quality learning through actor-critic for action
in continuous space, and we adopted proximal policy optimization (PPO) (Schulman et al., 2017)
to prevent an abrupt decrease in the optimality of learning. The surrogate objective of PPO for our
advantage actor-critic given high-level command is

LCLIPNEWTRO(θ) = Eτ
T−1∑
t=t0

min{wt(θ)Al(lt, st, ct, h̃t, at), wclipt (θ)Al(lt, st, ct, h̃t, at)}, (6)

where the clipped ratio is defined as wclipt = clip( πθ(at|lt,st,ct,h̃t)
piθold (at|lt,st,ct,h̃t)

, 1− ε, 1 + ε) and the trajectory

is given for time t0 to T .

The advantage is equal to the difference between the expected return and the state value
given high-level command,

Al(lt, st, ct, h̃t, at) = Gt − Vl(lt, st, ct, h̃t). (7)
Canonical policy gradient methods (Sutton et al., 1999a; Konda, 2002) learn from recent trajectories
for smooth update of policy parameters, and PPO employs a type of estimator for expected returns
G introduced in past work (Williams, 1992; Mnih et al., 2016b). We expand the estimator as

Ĝt = rt + γrt+1 + · · ·+ γT−t+1rT−1rt+1 + γT−tVmax(lT , sT , cT , H̃T ). (8)

In the last term in the right side of Equation 8, Vmax(lT , sT , cT , H̃T ) is the maximum state-candidate
value at time step T acquired from Equation 2 if T is a non-terminal time step, otherwise 0. Fortu-
nately, this type of expected returns are not tricky to save and batch, since the returns do not require
the set of H̃ from t to T − 1 that could include varying number of candidate regions to pay mind to
for each behavior through time. In practice, Gt is easily implemented by adding H̃T to the batched
trajectory at the training time step.

Algorithm 1: SHRL with proximal policy optimization
Initialize the parameters of a type of Actor-Critic networks, Θ = {θ, ϑ, ...}
for iteration=1,2,... do

Choose h = {b,mb, ob} ∈ H given l, s, c, b, and mb by max-Q policy of parameters ϑ
Choose a given l, s, c, b, mb, and ob, by policy search of parameters θ
Transform a to the goal position g by T (a, ob), where ob defines the local coordinate for a
Calculate the target heading direction ψ by using ob
Apply g and ψ to the controller of the agent
Save the transition < l, s, c, b,mb, a, r > to the memory
if memory size is equal to T − t0 then

Batch transitions, and put the batch and H̃T as training data
Optimize for policy surrogate objective and critic loss L w.r.t. Θ
Clear memory

end if
end for

In brief, the main computation flow of our method is summarized in Algorithm 1, where θ and ϑ
are parameters of the low-level actor and critic shared in the hierarchy, respectively.

4 DEEP NEURAL NETWORK STRUCTURE AND PROCESSING

The general learning model for AD deals with multi-modal features. In our environment, the model
receives three types of inputs: information on vehicles, obstacle positions, and inter-vehicle regions
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Figure 1: Model architecture for our method in autonomous driving

(IVRs). The detailed features are described in Subsection A.5 in Appendix. All types of informa-
tion include two-dimensional global positions such that the relative information of all feature types
is expected to be effectively encoded in our model. Our model consists of four distinctive mod-
ules: inter-vehicle relation encoder, multi-modal information encoder, policy networks, and value
networks. The overall structure of the modules is described in Figure 1. Actor and critic are im-
plemented with fully-connected layers, and other modules are explained in Subsections below. We
practically employed double-critics for stable value learning, which is proposed for deep Q networks
(van Hasselt et al., 2016).

4.1 INTER-VEHICLE RELATION ENCODER

Inter-vehicle relation encoder deals with feature information on ego vehicle and surrounding vehi-
cles. To integrate the features of a varying number of surrounding vehicles in respect of ego vehicle,
an architecture of graph attention networks, Transformer (Mnih et al., 2016a) is used for the encoder.
Transformer was originally proposed for natural language processing, and Leurent & Mercat (2019)
used it in AD to encode the state of vehicles to make high-level decisions for longitudinal control.
Transformer consists of encoder layers and decoder layers, and other operations. We used one layer
of decoder without encoding layers, where the source inputs receive the features of surrounding ve-
hicles and the target inputs receive the features of ego vehicle. The outputs of inter-vehicle relation
encoder are used as one type of the inputs for multi-modal information encoder.

4.2 MULTI-MODAL INFORMATION ENCODER

As seen in Figure 1, multi-modal information encoder integrates the long-term goal l, the vehi-
cle encoding v, range information r, the IVR that the ego belongs to c, and the IVR in mind m,
depending on the behavior mode b. The outputs are the encoding of goal, state, and the high-
level command used for actor and critic. Each behavioral mode relates these features while in-
terpreting them on the corresponding outline region whose features are received as c or m. For
behavioral mode, we will present the performance two types of designs: 1) indexed selection
for tabular encoding outputs, 2) network attention from the one-hot vector b on hidden layers,
a = fattend1(b), h = fabstract1(m), ande = fabstract2(h � a), which is similarly used in HRL
(Vezhnevets et al., 2017; Earle et al., 2018). The latter two designs allow that common features
and skills are shared across behavioral modes. The three different designs were compared in our
experiment to find a better structure.
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4.3 NEURAL ELABORATION WITHIN REINFORCED OUTLINE (NEWTRO)

The actor plays the role of the low-level policy, generating a goal for the two-dimensional center
position, which should be confined to the inside of the outline of the given IVR. For the confine-
ment, we adopt a simple normalization, applying a sigmoid function with the input coefficient
sigmoid(cx) as the activation function for the outputs of the actor network. This compares
favorably with constraint optimization methods in that it provides faster optimization speed, and
that the corners of the ego vehicle mostly stay inside the outline since the goal does not shift closer
to the border of the outline unless it is inevitable and values of huge magnitudes are output before
the activation. One problem of simply using the output normalization is that both the positions
of multi-modal input features that construct the encoding along with behavior and the featuring
positions of the outline IVR are specified with respect to the global coordinate frame, while the
outputs of the actor are normalized between 0 and 1. Thus, we devise an additional normalization
technique for the multi-modal information encoding e to train the actor to be invariant of the varying
size of the outline. Before being used as inputs for the actor network, e is simply copied and divided
by the length and sampled widths of the outline. An IVR is given as the positions of the left and right
sides sampled for N times along the progressing direction of vehicles. The length of the outline
along the progressing direction, lo, and the widths of the region, wo,1, wo,2, ·, wo,N−1, wo,N , which
are the distances between the two sides of each sample, are defined by the method in Subsection A.4
and A.4 of Appendix. Thus, e of d dimensions is copied 1 + N times, divided by these length and
widths, and concatenated so that e turns to e/lo, e/wo,1, e/wo,2, ·, e/wo,N−1, e/wo,N . Using the
copied encodings of (1 +N) dimension normalized by the outline that is selected by the reinforced
high-level policy, the local sub-policy network elaborates the outline by generating a goal position.

5 EXPERIMENTAL RESULTS

5.1 ENVIRONMENT

In our environment, agents appear at random lanes at the left end of the road at random time steps,
and an agent ends the episode when it reaches the goal region, which is the right end of the road,
or collides with either other vehicles or lane shoulders. When a collision occurs, vehicles stay stuck
on the road for a fixed delay time and then disappear from the road. The reward given to the agent
differs depending on the significance of objectives. Big reward or penalty is given at the end of the
episode while small rewards or penalties is given during the episode. The details of rewards are
described in the table in Section A.5 of Appendix. We prepared environments with various types of
roads, which are in Figure 4 of Appendix. To average the optimization of multi-agents and simplify
the comparison of performance for different methods in Figure 2, we adopted a joint training method
of Mnih et al. (2016a), which is originally for single-agent in multi-environments.

5.2 EVALUATION

Figure 2: Training evolution of our methods and a baseline on three types of roads

We compare various structures of our algorithm to a baseline HRL method with domain knowledge
about sub-goals. Figure 2 shows the performance of agents on the roads of four straight lanes (left),
two curved lanes (center), and two lanes merging into one (right). During the joint training of all
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vehicle agents using each method, we plotted moving average of the sum of returns for each episode
with initiation to 0 and alpha = 0.1.

The total episode rewards are close to 1 when an agent successfully learns the task including goal
reaching, and when an agent fails and have an accident, −1. In comparison with the baseline HRL,
our methods showed decent performance from early episodes for all types of roads taking advantage
of the outline. After then, the episodic returns tended to drop for a moment in cases, and steadily
increase through learning while adjusting to multi-agent interactions. We also tested the structural
design of separate modules for each mode, but it was not as effective as the two methods. The
baseline method showed fluctuating performance for straight lanes, low performance for the curved
lanes, and failed to learn in the merging lanes since safe short-term goals were hardly constructed as
the chance of collision increases.

5.3 VISUALIZATION

Figure 3: Trajectories of vehicles on two curved lanes

We qualitatively examined the traveling trajectory of vehicle agents on curved two lanes in our
method against that of the baseline HRL method. General human tactics for the agent is to take
the shortest possible path, which could be a straight line in the optimal environment. The agent
should consider collision avoidance, travel time reduction, and compliance with speed limits. In our
experiment, two vehicle agents start to drive from the left end of each lane almost simultaneously
with slight randomness. When an inter-vehicle region on the shortest possible path is available, then
the agent will move on to occupy the region. Figure 3 shows agents using our method. The agent on
two curved lane tried to take the inner lane at first, and then the outer lane in the end. The red agent
on merging lane wait until the green agents pass the lane in the middle, and follow the green agent.
Agents using the baseline HRL, with frequent accidents, and seemingly not following the optimal
path even when they complete the journey.

6 DISCUSSION AND FUTURE WORK

We presented hierarchical policies that can utilize space decomposition of state and policy by select-
ing a subspace at the high level and learning low-level policy with the given subspace. Although the
hierarchical policies are from different base value definitions that are high-level state-action value
and low-level state value given command, we integrated them as the same network structure learned
by single-level training. Thus, our method can be utilized as a part of a nested spatio-temporal hier-
archy of reinforcement learning where inner spatial hierarchy is implemented with our method and
outer temporal hierarchy is designed with canonical HRL methods.

For autonomous driving, our experiments showed that learning the short-term planning using domain
knowledge about collision-free space and its decomposition is extremely efficient. We expect that
the use of domain knowledge in deep reinforcement learning with integrated value in the hierarchy,
which is seemingly close to the basis of human cognitive thinking and proven to be efficient can
be applied to complex levels of reinforcement learning: model-based reinforcement learning with
predictive control or self-interested multi-agent reinforcement learning in game-theoretic situations.

The limitation of our method is that a separate process for spatial decomposition is required, and that
the performance highly depends on the decomposition ability. Effective automatic spatial decompo-
sition methods through unsupervised learning or reinforcement learning will be able to generalize
our HRL algorithm to different tasks.
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A APPENDIX

A.1 ROADS AND LANE APPROXIMATION

Our highway driving environments have one of three types of roads: four straight lanes, two curved
lanes, and two lanes merging into one, which are in Figure 4. To handle the information on these
various shapes of lanes, the agent uses the sampled points from each lane. For each lane, positions
of the left and right sides of the lane are sampled along the lane such that a concatenation of convex
quadrilaterals can be created. For each quadrilateral, information on adjacency to another quadrilat-
eral in bordering lanes is given as well.The quadrilaterals approximating a lane are used to define
inter-vehicle regions (IVRs). When two positions at the rear end (qr, vr) and the front end (qf , vf )
are given for a lane l, the distance between the two D(l, (qr, vr), (qf , vf )) is defined by the sum of
distances, (1− vr)d(Q(l, qr)) +

∑qf−1
i=qr+1 d(Q(l, i)) + vfd(Q(l, qf )), where Q(l, q) is the quadri-

lateral search function and d(Q) is the Euclidean distance between the center positions of the rear
end (0.5, 0) and the front end (0.5, 1) of the given quadrilateral.

A.2 NORMALIZED QUADRILATERAL COORDINATE

We are given four positions of a quadrilateral in a lane with respect to global coordinate or ego-
centric coordinate, (xfl, yfl), (xfr, yfr), (xrl, yrl), (xrr, yrr), which are positions of front-left,
front-right, rear-left, and rear-right. The goal of our transformation is two-fold: First, a position
inside the quadrilateral (x, y) should be transformed to the normalized position (u, v) of the given
quadrilateral so that (xfl, yfl), (xfr, yfr), (xrl, yrl), and (xrr, yrr) correspond to (1, 0), (1, 1),
(0, 0), and (0, 1). Second, (x, y) should be the interpolation of positions on both left and right sides
that divide the length of each side in the same proportion v along the progression. Thus, we designed
the transformation so that (x, y) is represented as the interpolation of (xvl, yvl) and (xvr, yvr) with
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Figure 4: Three types of roads for our highway driving environment

Figure 5: A position in a quadrilateral represented in normalized quadrilateral coordinate frame

ratio u, which are the interpolation of (xfl, yfl) and (xrl, yrl) with ratio v and the interpolation of
(xfr, yfr) and (xrr, yrr) with ratio v, respectively. Figure 5 shows the positions on an arbitrary
quadrilateral represented in both global coordinate frame and normalized quadrilateral coordinate
frame. The transformation from normalized position (u, v) to global position (x, y) is easily done
by the two steps of interpolation, while transformation from (x, y) to (u, v) is performed by solving
the following equations. For x axis,

xvl = xrl + v(xfl − xrl)
= xrl + vdl,

(9)

xvr = xrr + v(xfr − xrr)
= xrr + vdr,

(10)
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u =
(x− xvl)

(xvr − xvl)

=
x− (xrl + vdl)

(xrr + vdr)− (xrl + vdl)

=
(x− xrl)− vdl

v(dr − dl) + (xrr − xrl)

=
e− vdl
f + vg

,

(11)

where dl = xfl − xrl, e = x− xrl, f = xrr − xrl, and g = (xfr − xrr)− (xfl − xrl).

In the same way for y axis,

u =
i− vhl
j + vk

, (12)

where hl = yfl − yrl, i = y − yrl, j = yrr − yrl, and k = (yfr − yrr)− (yfl − yrl).

Now a quadratic equation about v is formed by combining the equations about u on both axes.

e− vdl
f + vg

=
i− vhl
j + vk

(13)

The Equation 13 can be developed to

(dlk − hlg)v2 + (gi+ dlj − hlf − ek)v + (ej − fi) = 0, (14)

which is a quadratic equation for v, and this can be substituted to

av2 + bv + c = 0, (15)

where a = dlk − hlg, b = (gi+ dlj − hlf − ek), and c = ej − fi.
Since (x, y) is inside the quadrilateral, u and v are between 0 and 1. Thus, the solution to Equation
15 satisfying the condition is v = −b+

√
b2−4ac

2ac if a > 0, v = −b−
√
b2−4ac

2ac if a < 0, otherwise,
v = −c/b. Then, u = e−vdl

f+vg if f + vg 6= 0, otherwise, i−vhlj+vk .

A.3 HASHING QUADRILATERALS

Figure 6: An exampling for understanding the hashing algorithm of the quadrilaterals of lanes

Lanes are static features with respect to a global reference point. Thus, if all lanes can be approxi-
mated before driving, or parts of lanes ahead of ego vehicle can be approximated before they come
in the view range, the approximated parts can be used repeatedly during driving. In addition, if
the quadrilaterals that approximate the lanes can be hashed, the time to search for the quadrilateral
inside which the center or a corner position of a vehicle exists can be reduced from O(n) to O(1)
where n is the number of quadrilaterals to be searched for. Thus, we devise a hashing algorithm that
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Table 1: Candidate behaviors with their available IVRs to pay mind to and the outline IVR

Behavioral mode Set of available IVRs to pay mind to Outline IVR

stay in current IVR {current IVR}, or {front IVR} or {rear IVR} current IVR
if a vehicle invades the lane of ego

maneuver to the other in lane {front IVR} if ego is in rear IVR IVR in mind
(optionally selectable) {rear IVR} if ego is in front IVR
pay mind to the left {IVRs on left lane in mind} current IVR

if the lane exists, otherwise ∅
maneuver to the left {IVRs on left lane ahead in mind} IVR in mind

if the lane exists, otherwise ∅
pay mind to the right {IVRs on right lane in mind} current IVR

if the lane exists, otherwise ∅
maneuver to the right {IVRs on right lane ahead in mind} IVR in mind

if the lane exists, otherwise ∅

can quickly search for quadrilaterals to which a given position can belong. Figure 6 is an example
for understanding the hashing algorithm. Our hash function can hash a position in two-dimension
to a bin, which can be represented as a blue rectangle of the smallest possible unit size. To store
the information of quadrilaterals in bins, we hash the vertices of the rectangular bounding box that
covers a quadrilateral and put the quadrilateral in the bin of each vertex so that the quadrilateral is
stored in one to four bins. The grey boxes in the dashed line and the red dots are examples of the
bounding boxes for quadrilaterals and the vertices of a bounding box, respectively. Practically, the
duplicate storing of a quadrilateral in one bin is avoided for fast search. The width and height of
any bin are kept longer than those of the bounding box that covers any quadrilateral, ensuring that
vertices of any bounding box are hashed to the same bin or bins that are adjacent to each other. This
also guarantees that for a position p, the hashing function b = H(p) can give the bin that contains
the quadrilateral to which p belongs because p is inside the bounding box that aligns with the bins.
The blue dot in Figure 6 is the center position of the blue vehicle, inside the bounding box with the
red dots as its vertices.

A.4 INTER-VEHICLE REGIONS

Figure 7: An example of inter-vehicle regions for the purple-colored vehicle

An inter-vehicle region (IVR) in a lane is defined as the region between the rear end NQC,
nr = (qr, vr), and the front end NQC, nf = (qf , vf ), bordered by surrounding vehi-
cles or any end of the view range. Figure 7 shows an example of IVRs for the purple-
colored vehicle. Given normalized positions of both ends, the featuring global positions,
(p0,l, p0,r), (p1,l, p1,r), ·, (pN−1,l, pN−1,r), (pN,l, pN,r), are acquired by sampling N times with
uniform distance interval on the left and right sides along the progressing direction, where (p0,l, p0,r)
and (pN,l, pN,r) are defined by nr and nf , respectively. By using the distance function A.2, the dis-
tance between the rear and frontDtotal = D(l, nr, nf ) is acquired, and from the rear, we can get the
next sample at the distance of Ds = Dtotal/(N − 1) in turn. Table 1 specifies candidate high-level
commands of behaviors, the corresponding set of available IVRs to pay mind to, and the outline
IVR.
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Table 2: Reward types and their definition given in our environment

Reward Type Definition

Goal Reward 1 if the ego center position gets into the long-term goal
Collision Penalty −1 if the vehicle image overlays on

the lane shoulders or other vehicles
Progression Reward cprovheading where 0 < cpro < 1
Max Speed Penalty cmaxmin(vheading − lmax, 0)

for speed limit lmax where −1 < cmax < −cpro
Min Speed Penalty cminmax(lmin − vheading, 0)

for speed limit lmin where −1 < cmin < 0

A.5 OTHER FEATURES, GOAL, AND REWARDS

In our autonomous driving environment, on top of inter-vehicle regions, two additional types of state
features exist: state of vehicles and range-sensing.

The feature of a vehicle j is

sj = [pfl,j , pfr,j , prl,j , prr,j , vj , ψj ]
T , (16)

where pfl,j = (xfl,j , yfl,j), pfr,j = (xfr,j , yfr,j), prl,j = (xrl,j , yrl,j), and prr,j = (xrr,j , yrr,j).
are the positions of the front-left, front-right, rear-left, and rear-right corners, respectively, vj =
vx,j , vy,j is the velocity, and psij is the orientation in radians. State of vehicles consists of features
of ego vehicle and arbitrary number of surrounding vehicles on the road in the view range.

Range-sensing features are acquired by simulating range sensing of ego vehicle and processing the
information about global or ego-centered positions. An odd number of rays are shot at uniform
angular intervals, θ, forming bilateral symmetry where the center ray is directed to the front of the
vehicle. Figure 8 shows an example of rays shot from each vehicle. Total features of range-sensing
include the positions of N number of rays: the start, r0 and the ends, r1, r2, ·, rN−1, rN . Rays
end where they hit obstacles such as other vehicles or lane shoulders, or at the maximum distance,
dmax. We used rays with N = 25, Nθ = 120, and dmax = 1000. Inter-vehicle regions can be

Figure 8: Range sensing of vehicles

applicable as the long-term goal. For experiments, we simply define a long-term goal region as the
rectangular box (l, r, t, b) to deal with two types of goal regions, the region reached after the right
end of a random lane and all lanes. Including the goal reaching reward, four types of rewards and
their definitions are as in Table 2.
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