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Abstract

Learning-to-communicate (LTC) in partially observable environments has gained in-1
creasing attention in deep multi-agent reinforcement learning, where the control and2
communication strategies are jointly learned. On the other hand, the impact of commu-3
nication has been extensively studied in control theory, through the lens of information4
structures (ISs). In this paper, we seek to formalize and better understand LTC by bridg-5
ing these two lines of work. To this end, we formalize LTC in decentralized partially6
observable Markov decision processes (Dec-POMDPs), and classify LTCs based on the7
ISs. We first show that non-classical LTCs are computationally intractable, and thus8
focus on quasi-classical (QC) LTCs. We then propose a series of conditions for QC9
LTCs, violating which can cause computational hardness in general. Further, we de-10
velop provable planning and learning algorithms for QC LTCs, and show that examples11
of QC LTCs satisfying the above conditions can be solved without computationally in-12
tractable oracles. Along the way, we also establish some relationship between (strictly)13
QC IS and the condition of having strategy-independent CIB beliefs (SI-CIB), as well14
as solving general Dec-POMDPs beyond those with SI-CIB, the only known condition15
that enables planning/learning in Dec-POMDPs without computationally intractable or-16
acles, which may be of independent interest.17

1 Introduction18

Learning-to-communicate (LTC) has emerged and gained traction in the area of (deep) multi-agent19
reinforcement learning (MARL) (Foerster et al., 2016; Sukhbaatar et al., 2016; Jiang & Lu, 2018).20
Unlike classical MARL, which aims to learn a control strategy that minimizes the expected accumu-21
lated costs, LTC seeks to jointly minimize over both the control and the communication strategies22
of all the agents, as a way to mitigate the challenges due to the agents’ partial observability of the23
environment. Despite the promising empirical successes, theoretical understandings of LTC remain24
largely underexplored.25

On the other hand, in control theory, a rich literature has investigated the role of communication26
in decentralized/networked control (Tatikonda & Mitter, 2004; Nair et al., 2007; Xiao et al., 2005;27
Yüksel, 2013), inspiring us to examine LTCs from such a principled and rigorous perspective. Most28
of these studies, however, focused on linear systems, and did not explore the computational or29
sample complexity guarantees when the system knowledge is not (fully) known. A few recent30
studies (Sudhakara et al., 2021; Kartik et al., 2022) started to explore the settings with general31
discrete spaces, with special communication protocols and state transition dynamics.32

More broadly, (the design of) communication strategy dictates the information structure (IS) of the33
control system, which characterizes who knows what and when (Witsenhausen, 1971). IS and its34
impact on the optimization tractability, especially for linear systems, have been extensively studied35
in decentralized control, see (Yüksel & Başar, 2023) for comprehensive overviews. In this work,36
we seek a more principled understanding of LTCs through the lens of information structures, with a37
focus on the computational and sample complexities of the problem.38
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Specifically, we formalize LTCs in the general framework of decentralized partially observable39
Markov decision processes (Dec-POMDPs) (Bernstein et al., 2002), as in the empirical works (Foer-40
ster et al., 2016; Sukhbaatar et al., 2016; Jiang & Lu, 2018). We detail our contributions as follows.41

Contributions. (i) We formalize learning-to-communicate in Dec-POMDPs under the common-42
information-based framework (Nayyar et al., 2013b;a; Liu & Zhang, 2023), allowing historical in-43
formation sharing. (ii) We classify LTCs through the lens of information structure, according to the44
ISs before additional information sharing. We then show that LTCs with non-classical (Mahajan45
et al., 2012) baseline IS is computationally intractable. (iii) Given the hardness, we thus focus on46
quasi-classical (QC) LTCs, and propose a series of conditions under which LTCs preserve the QC47
IS after sharing, while violating which can cause computational hardness in general. (iv) We pro-48
pose both planning and learning algorithms for QC LTCs, by reformulating them as Dec-POMDPs49
with strategy-independent (SI) common-information-based beliefs (SI-CIB) (Nayyar et al., 2013a;50
Liu & Zhang, 2023), with quasi-polynomial time and sample complexities. Along the way, we also51
establish some relationship between (strictly) quasi-classical ((s)QC) ISs and the SI-CIB condition52
in the framework of (Nayyar et al., 2013a), as well as solving general Dec-POMDPs beyond those53
with SI-CIBs, the only known condition that enables planning/learning in Dec-POMDPs without54
computationally intractable, which may be of independent interest.55

2 Preliminaries56

2.1 Learning-to-Communicate57

For n > 1 agents, a Learning-to-Communicate problem can be depicted by a tuple L =58
⟨H,S, {Ai,h}i∈[n],h∈[H], {Oi,h}i∈[n],h∈[H], {Mi,h}i∈[n],h∈[H],T,O, µ1, {Rh}h∈[H], {Kh}h∈[H]⟩,59
where H denotes the length of each episode, and other components are introduced as follows.60

Decision-making components We use S to denote the state space, and Ai,h to denote the control61
action space of agent i at timestep h ∈ [H]. We denote by sh ∈ S the state and by ai,h the62
control action of agent i at timestep h. We use ah := (a1,h, · · · , an,h) ∈ Ah :=

∏
i∈[n]Ai,h to63

denote the joint control action for all the n agents at timestep h. We denote by T = {Th}h∈[H] the64
collection of state transition kernels, where sh+1 ∼ Th(· | sh, ah) ∈ ∆(S) at timestep h. We use65
µ1 ∈ ∆(S) to denote the initial state distribution. We denote by Oi,h the observation space and by66
oi,h ∈ Oi,h the observation of agent i at timestep h. We use oh := (o1,h, o2,h, · · · , on,h) ∈ Oh :=67
O1,h × O2,h × · · ·On,h to denote the joint observation of all the n agents at timestep h. We use68
O = {Oh}h∈[H] to denote the collection of emission functions, where oh ∼ Oh(· | sh) ∈ ∆(Oh) at69
timestep h and state sh ∈ S . Also, we denote by Oi,h(· | sh) the emission for agent i, the marginal70
distribution of oi,h given Oh(· | sh) for all sh ∈ S. At each timestep h, agents will receive a common71
reward rh = Rh(sh, ah), whereRh : S ×Ah → [0, 1] denotes the reward function.72

Communication components In addition to reward-driven decision-making, agents also need to73
decide and learn (what) to communicate with others. At timestep h, agents share part of their infor-74
mation zh ∈ Zh with other agents, where Zh denotes the collection of all possible shared informa-75
tion at timestep h. Here we consider a general setting where the shared information zh may con-76
tain two parts, the baseline-sharing part zbh that comes from some existing sharing protocol among77
agents, and the additional-sharing part zai,h for each agent i that comes from explicit communication78
to be decided/learned, with the joint additional-sharing information zah := ∪ni=1z

a
i,h. This general79

setting covers those considered in most empirical works on LTC (Foerster et al., 2016; Sukhbaatar80
et al., 2016; Jiang & Lu, 2018), with a void baseline sharing part. We kept the baseline sharing81
since our focus is on the finite-time and sample tractability of LTC, for which a certain amount of82
information sharing is known to be necessary (Liu & Zhang, 2023). Note that zh = zbh ∪ zah and83
zbh ∩ zah = ∅. The shared information is part of the historical observations and (both control and84
communication) actions. We denote by Zb

h,Za
h , and Za

i,h the collections of all zbh, zah, and zai,h.85

At timestep h, the common information among all the agents is thus defined as the union of all the86
shared information so far: ch− = ∪h−1

t=1 zt ∪ zbh, and ch+ = ∪ht=1zt, where ch− and ch+ denote the87
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(accumulated) common information before and after additional sharing, respectively. Hence, the88
private information of agent i at time h before and after additional sharing is defined accordingly as89
pi,h− = {oi,1, ai,1, · · · , ai,h−1, oi,h}\ch− , pi,h+ = {oi,1, ai,1 · · · , ai,h−1, oi,h}\ch+ , respectively.90
We denote by ph− := (p1,h− , · · · , pn,h−) the joint private information before additional sharing, by91
ph+ := (p1,h+ , · · · , pn,h+) the joint private information after additional sharing, at timestep h. We92
then denote by τi,h− = pi,h− ∪ ch− , τi,h+ = pi,h+ ∪ ch+ the information available to agent i at93
timestep h, before and after additional sharing, respectively, with τh− = ph−∪ch− , τh+ = ph+∪ch+94
denoting the associated joint information. We use Ch− , Ch+ ,Pi,h− ,Pi,h+ ,Ph− ,95
Ph+ , Ti,h− , Ti,h+ , Th− , Th+ to denote, respectively, the corresponding collections of all possible96
ch− , ch+ , pi,h− , pi,h+ , ph− , ph+ , τi,h− , τi,h+ , τh− , τh+ .97

We use mi,h to denote the communication action of agent i at timestep h, and it will determine what98
information zai,h she will share, through the way specified later. We denote by Mi,h the space of99
mi,h, and by mh := (m1,h, · · · ,mn,h) ∈Mh :=M1,h×· · ·Mn,h the joint communication action100
of all the agents. Kh : Za

h → [0, 1] denotes the communication cost function, and κh = Kh(z
a
h)101

denotes the incurred communication cost at timestep h, due to additional sharing.102

System evolution The system’s evolution alternates between the communication and control steps.103

Communication step: At each timestep h, each agent i observes oi,h and may share part of her pri-104
vate information via baseline sharing, receives the baseline sharing of information from others, and105
forms pi,h− and ch− . Then, each agent i chooses her communication action, which determines the106
additional sharing of information, receives the additional-sharing of information from others, forms107
pi,h+ and ch+ , and incurs some communication cost κh. Formally, the evolution of the information108
is formalized as follows, which, unless otherwise noted, will be assumed throughout the paper.109

Assumption 2.1 (Information evolution). For each h ∈ [H],110

(a) (Baseline sharing). zbh+1 = χh+1(ph+ , ah, oh+1) for some fixed transformation χh+1;111

(b) (Additional sharing). For each agent i ∈ [n], zai,h = ϕi,h(pi,h− ,mi,h) for some function ϕi,h,112
given communication action mi,h, and mi,h ∈ zai,h; and the joint sharing zah := ∪i∈[n]z

a
i,h is113

thus generated by zah = ϕh(ph− ,mh), for some function ϕh;114

(c) (Private information before sharing). For each agent i ∈ [n], pi,(h+1)− =115
ξi,h+1(pi,h+ , ai,h, oi,h+1) for some fixed transformation ξi,h+1, and the joint private informa-116
tion thus evolves as p(h+1)− = ξh+1(ph+ , ah, oh+1) for some fixed transformation ξh+1;117

(d) (Private information after sharing). For each agent i ∈ [n], pi,h+ = pi,h−\zai,h;118

(e) (Full memory). For each agent i ∈ [n], τi,h− ⊆ τi,h+ ⊆ τi,(h+1)− , and oi,h ∈ τi,h− .119

Note that as fixed transformations (e.g., χh and ξi,h above), they are not affected by the realized120
values of the random variables, but dictate some pre-defined transformation of the input random121
variables. See (Nayyar et al., 2013b;a) and §B in (Liu & Zhang, 2023) for common examples of122
baseline sharing that admit such fixed transformations when there is no additional sharing, and123
examples in §A on how they are extended in the LTC setting. It should not be confused with124
some general function (e.g., ϕi,h above), which may depend on the realized values of the input125
random variables. (a) and (c) on baseline sharing follow from those in (Nayyar et al., 2013a; Liu126
& Zhang, 2023); (b) and (d) on additional sharing dictate how the communication action affects127
the sharing based on private information. For example, a common choice of (Mi,h, ϕi,h) is that128
Mi,h = {0, 1}|pi,h− | , for any pi,h− ∈ Pi,h− and mi,h ∈ Mi,h, ϕi,h(pi,h− ,mi,h) consists of the129
k-th element (k ∈ [|pi,h− |]) of pi,h− if and only if the k-th element of mi,h is 1. As mi,h (depicting130
what to share) will be known given zai,h (what has been shared), mi,h is thus also modeled as being131
shared, i.e., mi,h ∈ zai,h. This is also consistent with the models in (Sudhakara et al., 2021; Kartik132
et al., 2022) on control/communication joint optimization. (e) means that the agent has full memory133
of the information she has in the past and at present. We emphasize that this is closely related,134
but different from the common notion of perfect recall (Kuhn, 1953), where the agent has to recall135
all her own past actions. Condition (e), in contrast, relaxes the memorization of the actions, but136
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includes the instantaneous observation oi,h. This condition is satisfied by the models and examples137
in (Mahajan et al., 2012; Nayyar et al., 2013b;a; Liu & Zhang, 2023). See also §A for more examples138
that satisfy this assumption.139

Decision-making step: After the communication, each agent i chooses her control action ai,h, re-140
ceives a reward rh, and the joint action ah drives the state to sh+1 ∼ Th(· | sh, ah).141

Strategies and solution concept At timestep h, each agent i has two strategies, a control strat-142
egy and a communication strategy. We define a control strategy as gai,h : Ti,h+ → Ai,h and a143
communication strategy as gmi,h : Ti,h− → Mi,h. We denote by gah = (ga1,h, · · · , gan,h) the joint144
control strategy and by gmh = (gm1,h, · · · , gmn,h) the joint communication strategy. We denote by145
Gai,h,Gmi,h,Gah,Gmh the corresponding spaces of gai,h, g

m
i,h, g

a
h, g

m
h , respectively.146

The objective of the agents in the LTC problem is to maximize the expected accumulated sum of147
the reward and the negative communication cost from timestep h = 1 to H: JL(g

a
1:H , gm1:H) :=148

EL

[∑H
h=1(rh − κh)

∣∣∣∣ ga1:H , gm1:H

]
, where the expectation EL is taken over all the randomness in149

the system evolution, given the strategies (ga1:H , gm1:H). With this objective, for any ϵ ≥ 0, we can150
define the solution concept of ϵ-team optimum for L as follows.151

Definition 2.2 (ϵ-team optimum). We call a joint strategy (ga1:H , gm1:H) an ϵ-team optimal strategy152
of the LTC L if maxg̃a

1:H∈Ga
1:H ,g̃m

1:H∈Gm
1:H

JL(g̃
a
1:H , g̃m1:H)− JL(g

a
1:H , gm1:H) ≤ ϵ.153

2.2 Information Structures of LTC154

In decentralized stochastic control, the notion of information structure (Witsenhausen, 1975; Maha-155
jan et al., 2012) captures who knows what and when as the system evolves. In LTC, as the additional156
sharing via communication will also affect the IS and is not determined beforehand, when we dis-157
cuss the IS of an LTC problem, we will refer to that of the problem with only baseline sharing. In158
particular, an LTC L without additional sharing is essentially a Dec-POMDP (with potential base-159
line information sharing), as defined in §E for completeness. We call a Dec-POMDP induced by L160
as the problem without additional sharing, (as defined in F.3).161

(Strictly) quasi-classical ISs are important subclasses of ISs, which were first introduced for decen-162
tralized stochastic control (Witsenhausen, 1975; Mahajan & Yüksel, 2010; Yüksel & Başar, 2023)163
(see the instantiation for Dec-POMDPs in §F.2). An IS that is not QC is non-classical (Mahajan164
et al., 2012; Yüksel & Başar, 2023). We extend such a categorization to LTC problems as follows.165

Definition 2.3 ((Strictly) quasi-classical LTC). We call an LTC L (strictly) quasi-classical if the166
Dec-POMDP induced by L (cf. Definition F.3) is (strictly) quasi-classical. Namely, each agent in167
the intrinsic model of DL knows the information (and the actions) of the agents who influence her,168
either directly or indirectly.169

Note that intrinsic model (defined in F.3) is oftentimes used for discussing information structure,170
where each agent only acts once throughout the problem evolution, and the same agent in the state-171
space model at different timesteps is now treated as different agents.172

3 Structural Assumptions and Hardness173

It is known that computing an (approximate) team-optimum in Dec-POMDPs, which are LTCs with-174
out information-sharing, is NEXP-hard (Bernstein et al., 2002). The hardness cannot be fully cir-175
cumvented even when agents are allowed to share information: even if agents share all the informa-176
tion, the LTC problem becomes a Partially Observable Markov Decision Process (POMDP), which177
is known to be PSPACE-hard (Papadimitriou & Tsitsiklis, 1987; Lusena et al., 2001). Hence,178
additional assumptions are necessary to make LTCs computationally tractable. We introduce several179
such assumptions and their justifications below, whose proofs can be found in §B.180
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Recently, (Golowich et al., 2023) showed that observable POMDPs, a class of POMDPs with rela-181
tively informative observations, allow quasi-polynomial time algorithms to solve. Such a condition182
was then generalized to the joint emission function of Dec-POMDPs in (Liu & Zhang, 2023) . As183
solving LTCs is at least as hard as solving the Dec-POMDPs considered in (Liu & Zhang, 2023) ,184
we first also make such an observability assumption, to avoid computationally intractable oracles.185

Assumption 3.1 (γ-observability (Golowich et al., 2023)). There exists a γ > 0 such that ∀h ∈ [H],186
the emission Oh satisfies that ∀b1, b2 ∈ ∆(S),

∥∥O⊤
h b1 −O⊤

h b2
∥∥
1
≥ γ

∥∥b1 − b2
∥∥
1
.187

However, Assumption 3.1 is not enough when it comes to LTC, if the baseline sharing IS is not188
favorable, in particular, non-classical (Mahajan et al., 2012). The hardness persists even under a189
few additional assumptions to be introduced later (as shown in Lemma B.3).190

Hence, we will focus on the quasi-classical LTCs hereafter. Indeed, QC is also known to be critical191
for efficiently solving continuous-space and linear decentralized control (Ho et al., 1972; Lamperski192
& Lessard, 2015). However, in our discrete setting, even QC LTCs may not be computationally193
tractable: the additional sharing may break the QC IS, and introduce computational hardness. We194
formalize this intuition with the following discussions on when QC may break, and computational195
hardness results to justify the associated assumptions.196

Firstly, QC may break by additional sharing, if an agent influences others (only) via such sharing,197
while others cannot fully access the information used for determining the communication action.198
Indeed, the general communication-strategy space in §2.1 allows the dependence on agents’ private199
information, making this case possible. We show that this causes computational hardness in general.200

To avoid this hardness, we thus focus on communication strategies that only condition on the com-201
mon information. Intuitively, this assumption is not unreasonable, as it means that which historical202
information to share is determined by what has been shared (in the common information). Note that,203
this does not lose the generality in the sense that the private information pi,h− can still be shared.204
It only means that the communication action is not determined based on pi,h− , and the additional205
sharing is still dictated by zai,h = ϕi,h(pi,h− ,mi,h) (cf. Assumption 2.1), depending on pi,h− .206

Assumption 3.2 (Common-information-based communication strategy). The communication207
strategies take common information as input, with the following form:208

∀i ∈ [n], h ∈ [H], gmi,h : Ch− → Mi,h. (3.1)

Secondly, QC may break by additional sharing if it makes an agent influence others(’ available209
information) by sharing her control actions, while these other agents were not influenced by the210
agent in the baseline sharing, and thus did not have to access the available information that the agent211
decided her control actions upon. We make the following two assumptions to avoid the related212
pessimistic cases, followed by the hardness results when they are missing. The common idea behind213
the hardness results in both Lemmas B.5 and B.6 exactly follows from this insight.214

Specifically, in some special cases, the action of some agents may not influence the state transition.215
Such actions are thus useless in terms of decision-making, when there is no information sharing.216
However, if they were deemed non-influential, but shared via additional sharing, then QC may break217
for the LTC problem. We thus make the following assumption, followed by a justification result.218

Assumption 3.3 (Control-useless action is not used). For each i ∈ [n], h ∈ [H], if agent i’s ac-219
tion ai,h does not influence the state sh+1, namely, ∀sh ∈ S, ah ∈ Ah, a

′
i,h ∈ Ai,h, a

′
i,h ̸=220

ai,h,Th(· | sh, ah) = Th(· | sh, (a′i,h, a−i,h)). Then, ∀h′ > h, ai,h /∈ τh′− and ai,h /∈ τh′+ .221

Note that other than the justification above based on computational hardness, Assumption 3.3 has222
been implicitly made in the IS examples in the literature when there are uncontrolled state dynamics,223
see e.g., (Nayyar et al., 2013a; Liu & Zhang, 2023). Moreover, we emphasize that for common cases224
where actions do affect the state transition, this assumption becomes not necessary.225

Other than not influencing state transition, an action may also be non-influential if the emission226
functions of other agents are degenerate: they cannot sense the influence from previous agents’227
actions. We thus make the following assumption on the emissions, followed by a justification result.228
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Assumption 3.4 (Other agents’ emissions are non-degenerate). For ∀h ∈ [H], i ∈ [n], O−i,h satis-229
fies ∀b1, b2 ∈ ∆(S), b1 ̸= b2, O⊤

−i,hb1 ̸= O⊤
−i,hb2.230

Finally, for both the baseline and additional sharing protocols, we follow the convention in the231
series of works on partial history/information sharing (Nayyar et al., 2013b;a; Liu & Zhang, 2023;232
Sudhakara et al., 2021; Kartik et al., 2022) that, if an agent shares, she will share the information233
with all other agents. We make it more formally as follows.234

Assumption 3.5. ∀i1, i2 ∈ [n], h1, h2 ∈ [H], i1 ̸= i2, h1 < h2, if σ(oi1,h1
) ⊆ σ(τi2,h−

2
), then235

σ(oi1,h1
) ⊆ σ(ch−

2
), and if σ(ai1,h1

) ⊆ σ(τi2,h−
2
), then σ(ai1,h1

) ⊆ σ(ch−
2
); if σ(oi1,h1

) ⊆236
σ(τi2,h+

2
), then σ(oi1,h1

) ⊆ σ(ch+
2
), and if σ(ai1,h1

) ⊆ σ(τi2,h+
2
), then σ(ai1,h1

) ⊆ σ(ch+
2
).237

As will be shown later (cf. Theorem 4.1), LTCs under Assumptions 3.2, 3.3, 3.4, and 3.5 can238
indeed preserve the QC/sQC information structure after additional sharing, making it possible for239
the overall LTC to be computationally tractable, as we will show next. Some more examples that240
satisfy these assumptions can also be found in §A.241

4 Solving LTC Problems Provably242

We now study how to solve LTC provably, via either planning (with model knowledge) or learning243
(without model knowledge). Proofs of the results can be found in §C.244

4.1 An Equivalent Dec-POMDP245

Given any H-steps LTC L, we can reformulate it as an 2H-steps Dec-POMDP DL such that L and246
DL are equivalent. The elements in the odd timestep 2h− 1 of DL is constructed from elements of247
communication step (h−) in L, and the elements in the even timestep 2h of DL is constructed from248
decision-making step (h+) in L. We defer the formal reformulation in §C.1. The Dec-POMDP DL249
inherits the QC IS from L, formally stated as follows.250

Theorem 4.1 (Preserving (s)QC). If L is (s)QC and satisfies Assumptions 3.2, 3.3, 3.4, and 3.5,251
then the reformulated Dec-POMDP DL is also (s)QC.252

4.2 Strict Expansion of DL253

Despite being QC/sQC, it is not clear if one can solve DL without computationally intractable ora-254
cles. Note that, to the best of our knowledge, the only known finite-time computational complexity255
results for planning in such decentralized control models were in (Liu & Zhang, 2023), which were256
established under the strategy independence assumption (Nayyar et al., 2013a) on the common-257
information-based beliefs (Nayyar et al., 2013b;a). This SI assumption was shown critical for com-258
putation (Liu & Zhang, 2023) – it eliminates the need to enumerate the past strategies in dynamic259
programming, which would otherwise be prohibitively large. Thus, we need to connect QC/sQC to260
SI-CIB for tractable computation.261

Interestingly, under certain conditions, one can connect QC with SI-CIB for the reformulated Dec-262
POMDP DL. As the first step, we will expand the QC DL by adding the actions of the agents who263
influence the later agents in the intrinsic model of DL to the shared information. We denote the264
strictly expanded Dec-POMDP as D†

L. We replace the˜notation in DL by the˘notation in D†
L. The265

horizon, states, actions, observations, transitions, and reward functions remain the same, but the sets266
of information p̆h, c̆h, τ̆h, p̆i,h, τ̆i,h are different: for any h ∈ [H̃], i ∈ [n]267

c̆h = c̃h ∪ {ãj,t | j ∈ [n], t < h, σ(τ̃j,t) ⊆ σ(c̃h)}, p̆i,h = p̃i,h\{ãi,t | t < h, σ(τ̃i,t) ⊆ σ(c̃h)}.
(4.1)

It is not hard to verify that D†
L is sQC (as shown in Lemma C.3). Also, as shown below, a benefit268

of obtaining an sQC D†
L is that, it is SI-CIB (as shown in Theorem C.5), making it possible to be269

solved without computationally intractable oracles as in (Liu & Zhang, 2023). Furthermore, we can270
get the solution of DL by solving D†

L (as shown in Theorem C.4).271
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4.3 Refinement of D†
L272

Despite of being SI, D†
L is still not eligible for applying the results in (Liu & Zhang, 2023): the273

information evolution rules of D†
L break those in (Nayyar et al., 2013a; Liu & Zhang, 2023). To274

address this issue, we propose to further refine the D†
L to obtain a Dec-POMDP D′

L, which satisfies275
the information evolution rules. We replace the ˘ notation in D†

L by the¯notation in D′
L. The276

elements in D′
L remain the same as those in D†

L, except that the private information at odd steps is277
now refined as pi,2t−1 = pi,t−\c̆2t−1.278

The new Dec-POMDP D′
L is not equivalent to D†

L in general, since it enlarges the strategy space279
at the odd timesteps. However, if we define new strategy spaces in D′

L as Gi,2t−1 : C2t−1 →280
Ai,2t−1,Gi,2t : T i,2t → Ai,2t for each t ∈ [H], i ∈ [n], and thus define Gh to be the associated joint281
space, then solving D†

L is equivalent to finding a best-in-class team-optimal strategy of D′
L within282

space G1:H , as shown below.283

Theorem 4.2. Let D†
L be an sQC Dec-POMDP generated from L after reformulation and strict284

expansion, and D′
L be the refinement of D†

L as above. Then, finding the optimal strategy in D†
L is285

equivalent to finding the optimal strategy of D′
L in the space G1:H , and D′

L satisfies the information286
evolution rule. Furthermore, D′

L has SI-CIB with respect to the strategy spaces G1:H , i.e., for any287
h ∈ [H], sh ∈ S, ph ∈ Ph, ch ∈ Ch, g1:h−1, g

′
1:h−1 ∈ G1:h−1, it holds that288

PD′
L

h (sh, ph | ch, g1:h−1) = PD′
L

h (sh, ph | ch, g′1:h−1). (4.2)

289
4.4 Planning in QC LTC with Quasi-polynomial Time290

Now we focus on how to solve the SI-CIB Dec-POMDP D′
L computationally tractably, which has291

been studied in (Liu & Zhang, 2023). Given any such a Dec-POMDPD′
L, (Liu & Zhang, 2023) pro-292

posed to construct an (ϵr, ϵz)-expected-approximate common information modelM through finite293
memory (as defined in §C.6), when D′

L is γ-observable. ϵr and ϵz here denote the approximation294
errors for rewards and transitions, respectively, for which we defer a detailed introduction to §C.6).295

Hence, we can leverage the approaches in (Liu & Zhang, 2023) to find the optimal strategy g∗
1:H

by296
finding an optimal prescriptions γ∗

1:H
under each possible ĉ1:H with backward induction over the297

timesteps h = H, · · · , 1. Meanwhile, it is worth mentioning that at each step h ∈ [H], it requires298
maximizing the Q-value functions (as defined in §C.6) as follows299 (

ĝ∗1,h(· | ĉh, ·), · · · , ĝ∗n,h(· | ĉh, ·)
)
← argmax

γh

Q∗,M
h (ĉh, γh). (4.3)

Note that solving Eq. (4.3) is NP-hard in general (Tsitsiklis & Athans, 1985). Hence, the guarantee300
for the algorithms in (Liu & Zhang, 2023) also relies on the tractability of the one-step team-decision301
problem (Tsitsiklis & Athans, 1985). Note that this assumption is minimal for the computational302
tractability of finding a team-optimum in Dec-POMDPs/LTCs, since otherwise, even the H = 1 case303
is intractable (Tsitsiklis & Athans, 1985). That said, the structural results so far still hold without304
this assumption, and the hardness results in §3 still hold even with this assumption.305

Assumption 4.3 (One-step tractability). Eq. (4.3) can be solved in polynomial time.306

Assumption 4.3 is satisfied for several classes of Dec-POMDPs with information sharing (Liu &307
Zhang, 2023), which could result from structures of either the decision-making components of the308
model, or the information structures. We also include several such structural conditions in §G for309
completeness. With this assumption, we can obtain a planning algorithm with quasi-polynomial310
time complexity (cf. §C.7), and also shown in the Fig. 6 in §J.311

4.5 LTC with Quasi-polynomial Time and Samples312

Based on the previous results on planning, we are ready to solve the learning problem without313
model knowledge with both time and sample complexity guarantees. Now, one can only sample314
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from L, making it difficult to obtain an SI D′
L from L as before. Fortunately, the reformulation315

step (§4.1) does not change the system dynamics, but only maps the information to different random316
variables; the expansion step (§4.2) only requires agents to share more actions with each other,317
without changing the input and output of the environment; the refinement step (§4.3) only recovers318
the private information the agents had in the original L. Therefore, we can treat the samples from L319
as the samples from D′

L. This way, we can utilize similar algorithmic ideas in (Liu & Zhang, 2023)320
to develop the learning algorithm for LTC problems.321

Specifically, we construct an (ϵr, ϵz)-expected approximate common information model that de-322
pends on some given a strategy g1:H that generates the data for such a construction, which we323
denote by M̃(g1:H), and thus denote (ϵr, ϵz) as (ϵr(M̃(g1:H)), ϵz(M̃(g1:H))). For such a model,324
one could simulate and sample by running the strategy g1:H in the true model D′

L. The choice of325

g1:H will be carefully specified to ensure M̃(g1:H) to be a good approximation of D′
L. Then one326

can learn an empirical estimator M̂(g1:H) of M̃(g1:H) by sampling under g1:H and solving the327
planning problem in M̂(g1:H). Meanwhile, the sample complexity analysis of such an algorithm328
will depend on the notion of length for the approximate common information, denoted as L̂. We de-329
fer the formal introduction for M̃(g1:H), L̂, and corresponding algorithm to §C. Finally, we present330
our main results for learning in the LTC problem.331

Theorem 4.4. Given any QC LTC problem L satisfying Assumptions 3.1, 3.2, 3.3, and 3.4,332
we can construct an SI-CIB Dec-POMDP problem D′

L such that the following holds. Given333

a strategy g1:H , M̃(g1:H) satisfying Assumption 4.3, and L̂, where each gh is a complete334
strategy with gh

h−L̂:h
= Unif(A) for h ∈ [H], we define the statistical error for estimat-335

ing M̃(g1:H) as ϵapx(g
1:H , L̂). Then, there exists an algorithm that can learn an ϵ-team-336

optimal strategy for L with probability at least 1 − δ1, using a sample complexity N0 =337
poly(maxh∈[H] |Ph|,maxh∈[H] |Ĉh|, H,maxh∈[H] |Ah|,maxh∈[H] |Oh|) log(1/δ1), where ϵ :=338

poly(ϵapx, ϵr(M̃(g1:H)), ϵz(M̃(g1:H)). Specifically, if L has the baseline sharing protocols as in339
§A, there exists an algorithm that learns an ϵ-team optimal strategy forLwith both quasi-polynomial340
time and sample complexities.341

5 Solving General QC Dec-POMDPs342

In §4, we developed a pipeline for solving a special class of QC Dec-POMDPs generated by LTCs,343
without computationally intractable oracles. In fact, the pipeline can be extended to solving general344
QC Dec-POMDPs, which thus advances the results in (Liu & Zhang, 2023) that can only address345
SI-CIB Dec-POMDPs, a result of independent interest. Without much confusion given the context,346
we will adapt the notation of LTC to studying general Dec-POMDPs: we set h+ = h− = h and347
void the additional sharing protocol. We extend the results to general QC Dec-POMDPs as follows.348

Theorem 5.1. Consider a Dec-POMDP D that satisfies Assumptions 2.1 (e). If D is sQC and349
satisfies Assumptions 3.3, 3.4, and 3.5, then it has SI-CIB. Meanwhile, if D has SI-CIB and perfect350
recall, then it is sQC (up to null sets).351

Perfect recall here (Kuhn, 1953) means that the agents will never forget their own past information352
and actions (as formally defined in §D). Note that Assumption 2.1 (e) is similar but different from353
perfect recall: it is implied by the latter with oi,h ∈ τi,h. Also, Assumptions 3.3, 3.4, and 3.5 were354
made for LTCs, and here we meant to impose them for Dec-POMDPs with h+ = h− = h. Finally,355
by sQC up to null sets, we meant that if agent (i1, h1) influences agent (i2, h2) in the intrinsic356
model of the Dec-POMDP, then under any strategy g1:H , σ(τ i1,h1

) ⊆ σ(τ i2,h2
) except the null sets357

generated by g1:H , where we add ¯ for all the notation in the Dec-POMDP. Given Theorem 5.1358
and the results in §4, we illustrate the relationship between LTCs and Dec-POMDPs with different359
assumptions and ISs in Fig. 1 in §H, which may be of independent interest.360
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A Examples of QC LTC361

In this section, we introduce 8 examples of QC LTC problems, and 4 of them are extended from362
the information structures of the baseline sharing protocol considered in the literature (Nayyar et al.,363
2013a; Liu & Zhang, 2023). It can be shown that LTC with any of these 8 examples as baseline364
sharing is QC.365

• Example 1: One-step delayed information sharing: At timestep h ∈ [H], agents will share all366
the action-observation history in the private information until timestep h − 1. Namely, for any367
h ∈ [H], i ∈ [n], ch− = c(h−1)+ ∪ {oh−1, ah−1} and pi,h− = {oi,h}.368

• Example 2: State controlled by one controller with asymmetric delayed information shar-369
ing: The state dynamics and reward are controlled by only one agent (without loss of gener-370
ality, agent 1), i.e., Th(· | sh = Sh, a1,h = A1,h, a−1,h = A1,h) = Th(· | sh = Sh, a1,h =371
A1,h, a−1,h = A′

−1,h), Rh(· | sh = Sh, a1,h = A1,h, a−1,h = A−1,h) = Rh(· | sh = Sh, a1,h =372
A1,h, a−1,h = A′

−1,h) for all Sh ∈ S, A1,h ∈ A1,h, A−1,h ∈ A−1,h, A
′
−1,h ∈ A−1,h.373

Agent 1 will share all of her information immediately, while others will share their informa-374
tion with a delay of d ≥ 1 timesteps in the baseline sharing. Namely, for any h ∈ [H], i ̸= 1,375
ch− = c(h−1)+ ∪ {a1,h−1, o1,h, o−1,h−d}, p1,h− = ∅, pi,h− = pi,(h−1)+ ∪ {oi,h}\{oi,h−d}.376

• Example 3: Information sharing with one-directional-one-step-delay: For convenience, we377
assume there are 2 agents, and this example can be readily generalized to the multi-agent case.378
In this case, agent 1 will share the information immediately, while agent 2 will share information379
with one-step delay. Namely, c1− = {o1,1}, p1,1− = ∅, p2,1− = {o2,1}; for any h ≥ 2, i ∈380
[n], ch− = c(h−1)+ ∪ {o1,h, o2,h−1, ah}, p1,h− = ∅, p2,h− = {o2,h}.381

• Example 4: Uncontrolled state process: The state transition does not depend on the action of382
agents, i.e., Th(· | sh = Sh, ah = Ah) = Th(· | sh = Sh, ah = A′

h) for any sh ∈ S, a′h, ah ∈ Ah.383
All agents will share their information with a delay of d ≥ 1. For any h ∈ [H], i ∈ [n], ch− =384
c(h−1)+ ∪ {oh−d}, pi,h− = pi,(h−1)+ ∪ {oi,h}\{oi,h−d}.385

• Example 5: One-step delayed observation sharing: At timestep h, h ∈ [H], each agent has386
access to observations of all agents until timestep h− 1 and her present observation. Namely, for387
any h ∈ [H], i ∈ [n], ch− = c(h−1)+ ∪ {oh−1} and pi,h− = {oi,h}.388

• Example 6: One-step delayed observation and two-step delayed control sharing: At timestep389
h, h ∈ [H], each agent will share the observations history until timestep h− 1 and actions history390
until timestep h − 2 from the private information. Namely, for any h ∈ [H], i ∈ [n], ch− =391
c(h−1)+ ∪ {oh−1, ah−2}, pi,h− = {oi,h, ai,h−1}.392

• Example 7: State controlled by one controller with asymmetric delayed observation sharing:393
The state dynamics and reward are controlled by only one agent (i.e., system dynamics are the394
same as Example 2). Agent 1 will share all of her observations immediately, while others will395
share their observations with a delay of d ≥ 1 timesteps in baseline sharing. Namely, for any h ∈396
[H], i ̸= 1, ch− = c(h−1)+ ∪ {o1,h, o−1,h−d}, p1,h− = ∅, pi,h− = pi,(h−1)+ ∪ {oi,h}\{oi,h−d}.397

• Example 8: State controlled by one controller with asymmetric delayed observation and398
two-step delayed action sharing: The state dynamics and reward are controlled by only one399
agent (i.e., system dynamics are the same as Example 2). At timestep h, h ∈ [H], agent 1 will400
share all of her observations immediately and her actions history until timestep h−2, while others401
will share their observations with a delay of d ≥ 1. Namely, for any h ∈ [H], i ̸= 1, ch− =402
c(h−1)+ ∪ {o1,h, a1,h−2, o−1,h−d}, p1,h− = {a1,h−1}, pi,h− = pi,(h−1)+ ∪ {oi,h}\{oi,h−d}.403

In fact, the first 4 examples are all sQC LTC problems, while the other 4 examples are QC but not404
sQC problems, as shown in the following lemma.405

Lemma A.1. Given an LTC problem L. If the baseline sharing of L is one of the first 4 examples406
above, then L is sQC. If the baseline sharing of L is one of the last 4 examples above, then L is QC407
but not sQC.408
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Proof. Let DL denote the Dec-POMDP induced by L (cf. F.3). We prove this lemma case by case.409
For convenience, we use ˙ in the notation for the elements in DL.410

• Example 1: The information in DL evolves as ∀h ∈ [H], i ∈ [n], ċh = {ȯ1:h−1, ȧ1:h−1}411
and ṗi,h = {ȯi,h}. Then, for any i1, i2 ∈ [n], h1, h2 ∈ [H], h1 < h2, τ̇i1,h1

=412
{ȯ1:h1−1, ȧ1:h1−1, ȯi1,h1

} ⊆ ċh1+1 ⊆ ċh2
⊆ τ̇i2,h2

, and ȧi1,h1
⊆ ċh1+1 ⊆ ċh2

⊆ τ̇i2,h2
. There-413

fore, we have σ(τ̇i1,h1) ⊆ σ(τ̇i2,h2), and thus L is sQC.414

• Example 2: The information in DL evolves as ∀h ∈ [H], i ̸= 1, ċh =415
{ȧ1,1:h−1, ȯ1,1:h−1, ȯ−1,1:h−d}, ṗ1,h = ∅, ṗi,h = {oi,h−d+1:h}. Then, for any i1, i2 ∈416
[n], h1, h2 ∈ [H], h1 < h2. If i1 ̸= 1, then agent (i1, h1) will not influence agent (i2, h2).417
If i1 = 1, then τ̇i1,h1

= {ȯ1,1:h1
, ȧ1,1:h1−1, ȯ−1,1:h1−d} ⊆ ċh1+1 ⊆ ċh2

⊆ τ̇i2,h2
, and418

ȧi1,h1 ⊆ ċh1+1 ⊆ ċh2 ⊆ τ̇i2,h2 . Therefore, we have σ(τ̇i1,h1) ⊆ σ(τ̇i2,h2) if agent (i1, h1)419
influences agent (i2, h2), and thus L is sQC.420

• Example 3: The information in DL evolves as ∀h ∈ [H], ċh = {ȯ1:h−1, ȧ1:h−1, ȯ1,h} and ṗ1,h =421
∅, ṗ2,h = {ȯi,h}. Then, for any i1, i2 ∈ [n], h1, h2 ∈ [H], h1 < h2, ȧi1,h1

⊆ ċh1+1 ⊆ ċh2
⊆422

τ̇i2,h2
. If i1 = 1, then τ̇i1,h1

= {ȯ1:h1−1, ȧ1:h1−1, ȯ1,h1
} ⊆ ċh1+1 ⊆ ċh2

⊆ τ̇i2,h2
. If i1 = 2, then423

τ̇i1,h1 = {ȯ1:h1 , ȧ1:h1−1} ⊆ ċh1+1 ⊆ ċh2 ⊆ τ̇i2,h2 . Therefore, we have σ(τ̇i1,h1) ⊆ σ(τ̇i2,h2),424
and thus L is sQC.425

• Example 4: Since in DL, for any i1, i2 ∈ [n], h1, h2 ∈ [H], agent (i1, h1) does not influence426
agent (i2, h2), then L is sQC.427

• Example 5: The information in DL evolves as ∀h ∈ [H], i ∈ [n], ċh = {ȯ1:h−1} and ṗi,h =428
{ȯi,h}. Then, for any i1, i2 ∈ [n], h1, h2 ∈ [H], h1 < h2, τ̇i1,h1

= {ȯ1:h1−1, ȯi1,h1
} ⊆ ċh1+1 ⊆429

ċh2 ⊆ τ̇i2,h2 . However, agent (1, 1) may influence agent (1, 2) but σ(ȧ1,1) ⊈ σ(τ̇1,2). Hence, L430
is QC but not sQC.431

• Example 6: The information in DL evolves as ∀h ∈ [H], i ∈ [n], ċh = {ȯ1:h−1, ȧ1:h−2}432
and ṗi,h = {ȯi,h, ȧi,h−1}. Then, for any i1, i2 ∈ [n], h1, h2 ∈ [H], h1 < h2, τ̇i1,h1

=433
{ȯ1:h1−1, ȧ1:h1−2, ȯi1,h1

, ȧi1,h1−1} ⊆ ċh1+1 ⊆ ċh2
⊆ τ̇i2,h2

, and ȧi1,h1
⊆ ċh1+1 ⊆ ċh2

⊆ τ̇i2,h2
.434

However, agent (1, 1) may influence agent (2, 2) but σ(ȧ1,1) ⊈ σ(τ̇2,2). Hence, L is QC but not435
sQC.436

• Example 7: The information in DL evolves as ∀h ∈ [H], i ̸= 1, ċh =437
{ȯ1,1:h−1, ȯ−1,1:h−d}, ṗ1,h = ∅, ṗi,h = {oi,h−d+1:h}. Then, for any i1, i2 ∈ [n], h1, h2 ∈438
[H], h1 < h2. If i1 ̸= 1, then agent (i1, h1) will not influence agent (i2, h2). If i1 = 1, then439
τ̇i1,h1

= {ȯ1,1:h1
, ȯ−1,1:h1−d} ⊆ ċh1+1 ⊆ ċh2

⊆ τ̇i2,h2
. Therefore, we have σ(τ̇i1,h1

) ⊆440
σ(τ̇i2,h2) if agent (i1, h1) influences agent (i2, h2). However, agent (1, 1) may influence agent441
(1, 2) but σ(ȧ1,1) ⊈ σ(τ̇1,2). Hence, L is QC but not sQC.442

• Example 8: The information in DL evolves as ∀h ∈ [H], i ̸= 1, ċh =443
{ȯ1,1:h−1, ȧ1,1:h−2, ȯ−1,1:h−d}, ṗ1,h = {ȧ1,h−1}, ṗi,h = {oi,h−d+1:h}. Then, for any i1, i2 ∈444
[n], h1, h2 ∈ [H], h1 < h2. If i1 ̸= 1, then agent (i1, h1) will not influence agent (i2, h2). If445
i1 = 1, then τ̇i1,h1

= {ȯ1,1:h1
, ȧ1,h1−1, ȯ−1,1:h1−d} ⊆ ċh1+1 ⊆ ċh2

⊆ τ̇i2,h2
. Therefore, we446

have σ(τ̇i1,h1) ⊆ σ(τ̇i2,h2) if agent (i1, h1) influences agent (i2, h2). However, agent (1, 1) may447
influence agent (2, 2) but σ(ȧ1,1) ⊈ σ(τ̇2,2). Hence, L is QC but not sQC.448

This completes the proof.449

B Deferred Details of §3450

Remark B.1. In the following proofs, for clarity, we use O,A,M,C, P,T to denote the realiza-451
tions of random variables o, a,m, c, p, τ with the same subscripts.452

As a preliminary, we first have the following lemma.453

Lemma B.2. Given any QC LTC L, its induced Dec-POMDP DL and any i1, i2 ∈ [n], h1, h2 ∈454
[H]. If agent (i1, h1) influences agent (i2, h2) in the intrinsic model of DL, then for the random455
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variables τi1,h−
1
, τi2,h−

2
in L, we have σ(τi1,h−

1
) ⊆ σ(τi2,h−

2
). Moreover, if L is sQC, then for456

random variables ai1,h1
, τi2,h−

2
in L, we have σ(ai1,h1

) ⊆ σ(τi2,h−
2
).457

Proof. We denote by τ̇i1,h1
, τ̇i2,h2

the information of agent (i1, h1), (i2, h2) in the problem DL.458
From the definition of DL being QC, if agent (i1, h1) influences agent (i2, h2), then σ(τ̇i1,h1

) ⊆459
σ(τ̇i2,h2). Since for any h ∈ [H], i ∈ [n], τ̇i,h is the information of agent (i, h) without additional460
sharing, then we know that τi,h−\τ̇i,h ⊆ ∪h−1

t=1 z
a
t , τi,h+\τ̇i,h ⊆ ∪ht=1z

a
t . Therefore, we know that461

σ(τi1,h−
1
\τ̇i1,h1) ⊆ σ(∪h−1

t=1 z
a
t ) ⊆ σ(ch−

1
) ⊆ σ(ch−

2
) ⊆ σ(τi2,h−

2
). Also, we know σ(τ̇i1,h1) ⊆462

σ(τ̇i2,h2
) ⊆ σ(τi2,h−

2
). Thus, we can conclude that σ(τi1,h−

1
) ⊆ σ(τi2,h−

2
). Moreover, if L is sQC,463

then from the the definition of DL being sQC and agent (i1, h1) influences agent (i2, h2) in DL, it464
holds that σ(ai1,h1) ⊆ σ(τ̇i2,h2) ⊆ σ(τi2,h−

2
).465

B.1 Hardness results466

Lemma B.3 (Non-classical LTCs are hard). For non-classical LTCs under Assumption 3.1, 3.2, 3.3,467
3.4, and 4.3, finding an ϵ

H -team optimum is PSPACE-hard.468

Lemma B.4 (QC LTCs with full-history-dependent communication strategies are hard). For QC469
LTCs under Assumption 3.1, together with Assumptions 3.3, 3.4, and 4.3, computing a team-470
optimum in the general space of (Ga1:H ,Gm1:H) with Gmi,h := {gmi,h : Ti,h− →Mi,h} is NP-hard.471

Lemma B.5 (QC LTCs without Assumption 3.3 are hard). For QC LTCs under Assumptions 3.1,472
3.2, 3.4 and 4.3, finding a team-optimum is still NP-hard.473

Lemma B.6 (QC LTCs without Assumption 3.4 are hard). For QC LTCs under Assumption 3.1,474
3.2, 3.3, and 4.3, finding an ϵ/H-team optimum is still PSPACE-hard.475

B.2 Proof of Lemma B.3476

Proof. We first have the following proposition on the hardness of solving POMDPs.477

Proposition B.7. There exists an ϵ > 0, such that computing an ϵ-additive optimal strategy in478
POMDPs is PSPACE-hard.479

One can adapt the proof of (Lusena et al., 2001, Theorem 4.11), which proved the480
PSPACE-hardness of computing an ϵ-relative optimal strategy in POMDPs, to obtain such a481
result for an ϵ-additive one. In particular, any ϵ-additive optimal strategy in the POMDP constructed482
in the proof of Theorem 4.11 therein is also an ϵ-relative optimal strategy.483

Now we proceed with the proof of Lemma B.3 based on the Proposition B.7. Given any POMDP484
P = (SP ,AP ,OP , {OP

h }h∈[HP ], {TP
h }h∈[HP ], {RP

h }h∈[HP ], µ
P
1 ), we can construct an LTC L as485

follows:486

• Number of agents: n = 3; length of episode: H = 2HP .487

• Underlying state space: S = SP × [2]. For any s ∈ S, we can split s = (s1, s2), where488
s1 ∈ SP , s2 ∈ [2]. Intial state distribution: ∀s ∈ S, µ1(s) = µP

1 (s
1)/2.489

• Control action space: For any h ∈ [H],A1,h = AP ,A2,h = [2],A3,h = {∅}.490

• Transition functions: For any h ∈ [H − 1], sh, sh+1 ∈ S, ah ∈ Ah, if h = 2t − 1491
with t ∈ [HP ],Th(sh+1 | sh, ah) = TP

t (s
1
h+1 | s1h, a1,h)1[s2h+1 = s2h]; if h = 2t with492

t ∈ [HP − 1],Th(sh+1 | sh, ah) = 1[s1h+1 = s1h, s
2
h+1 = a2,h].493

• Observation space: For any h ∈ [H], if h = 2t−1 with t ∈ [HP ],O1,h = OP
t ,O2,h = O3,h = S;494

if h = 2t with t ∈ [HP ], O1,h = [2],O2,h = O3,h = S.495

• Emission matrix: For any h ∈ [H], if h = 2t−1 with t ∈ [HP ],∀oh ∈ Oh, sh ∈ S,Oh(oh | sh) =496
OP

h (o1,h | s1h)1[o2,h = o3,h = sh]; if h = 2t with t ∈ [HP ],∀oh ∈ Oh, sh ∈ S,Oh(oh | sh) =497
1[o1,h = s1h, o2,h = o3,h = sh].498
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• The baseline sharing: null.499

• The communication action space: For any h ∈ [H],M1,h = M2,h = {0, 1}2h−1,M3,h =500
{0, 1}h. For any i ∈ [2], pi,h− ∈ Pi,h− , ϕi,h(pi,h− ,mi,h) = {oi,k | k ≤ h, (2k −501
1)-th digit of pi,h− is 1 and oi,k ∈ pi,h−} ∪ {ai,k | k ≤ h, 2k-th digit of pi,h− is 1 and ai,k ∈502
pi,h−} ∪ {mi,h}. For agent 3, p3,h− ∈ P3,h− , ϕ3,h(p3,h− ,m3,h) = {o3,k | k ≤503
h, k-th digit of p3,h− is 1 and o3,k ∈ p3,h−} ∪ {m3,h}.504

• Reward function: For any h ∈ [H], i ∈ [3], sh ∈ S, ah ∈ Ah, if h = 2t − 1 with505
t ∈ [HP ],Rh(sh, ah) = RP

t (s
1
h, a1,h)/H; if h = 2t with t ∈ [HP ],Rh(sh, ah) = 1[a2,h = 1].506

• Communication cost function: For any h ∈ [H], zah ∈ Za
h ,Kh(z

a
h) = 1[zah ̸= {mh}]. It means507

that the communication cost is 1 unless there is no additional sharing.508

• We restrict the communication strategy only to use ch as input. And for any t ∈ [H − 1], we509
remove a3,t in τh for any h > t.510

We first verify that such a construction satisfies Assumptions 3.1, 3.2, 3.3, 3.4, and 4.3.511

• L satisfies Assumption 3.1, 3.4 because both agent 2 and agent 3 have individual γ-observability.512
That is, for any b1, b2 ∈ ∆(S), i = 2, 3, we have513

||O⊤
i,h(b1 − b2)||1 =

∑
oi,h∈Oh

|
∑
sh∈S

(b1(sh)− b2(sh))Oi,h(oi,h | sh)|

=
∑

oi,h∈Oh

|
∑
sh∈S

(b1(sh)− b2(sh))1[oi,h = sh]|

=
∑

oi,h∈Oh

|b1(oi,h)− b2(oi,h)| = ||b1 − b2||1.

• L satisfies Assumption 3.2 because we restrict communication strategy can only use ch as input.514

• L satisfies Assumption 3.3 since only a3,t, t ∈ [H − 1] do not influence underlying state, and we515
remove a3,t from τh for any h > t.516

• L satisfies Assumption 4.3 since it satisfies the Turn-based structures condition in §G, with517
ct(2t− 1) = 1, ct(2t) = 2 for any t ∈ [HP ].518

In this LTC problem L, agent 2 will always choose ai,2t = 1 at even steps to obtain r2h = 1.519
And there will be no additional sharing since any additional sharing at timestep h will incur a com-520

munication cost κh = 1 > max
∑HP

t=1R2t−1(s2t−1, a2t−1), and thus it cannot achieve optimum.521
Therefore, state s2h, h ∈ [H] are dummy states, and agents 2, 3 are dummy agents. Then, any522
(ga,∗1:H , gm,∗

1:H ) being an ϵ
H -team optimal strategy of L will directly give an ϵ-team-optimal strategy of523

P as {ga,∗1,2t−1}h∈[HP ]. From Proposition B.7, we can complete the proof.524

B.3 Proof of Lemma B.4525

Proof. We prove this result by showing a reduction from the Team Decision problem (Tsitsiklis &526
Athans, 1985).527

Definition B.8 (Team decision problem (TDP)). Given finite sets Y1, Y2, U1, U2, a rational proba-528
bility mass function p : Y1 × Y2 → Q, and an integer cost function c : Y1 × Y2 × U1 × U2 → N,529
find decision rules γi : Yi → Ui, i = 1, 2 that minimize the expected cost530

J(γ1, γ2) =
∑

y1∈Y1,y2∈Y2

c(y1, y2, γ1(y1), γ2(y2))p(y1, y2). (B.1)

We show the NP-hardness of solving LTC from the problem TDP. Given any TDP T D =531
(Ỹ1, Ỹ2, Ũ1, Ũ2, c̃, p̃, J̃) with |Ũ1| = |Ũ2| = 2, let Ũ1 = {1, 2}, Ũ2 = {1, 2}, then we can con-532
struct an H = 4 and 2-agent LTC L with two parameters n1 ∈ N, α1 ∈ R, α2 ∈ (0, 1) (to be533
specified later) such that:534
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• Number of agents: n = 2; length of episode: H = 4.535

• Underlying state: S = [2]4. For each s1 ∈ S, we can split s1 into 4 parts as s1 = (s11, s
2
1, s

3
1, s

4
1),536

where s11, s
2
1, s

3
1, s

4
1 ∈ [2]. Similarly, s2, s3, s4 ∈ S can be split in the same way.537

• Initial state distribution: ∀s1 ∈ S, µ1(s1) =
1
16 .538

• Control action space: For the first 2 timesteps, ∀i = 1, 2,Ai,1 = Ai,2 = {∅}; for h = 3,A1,3 =539
[2],A2,3 = {∅}; for h = 4,A2,4 = [2],A1,4 = {∅}.540

• Transition: ∀s ∈ S, a1 ∈ A1, a2 ∈ A2, a3 ∈ A3,T1(s | s, a1) = T2(s | s, a2) = T3(s | s, a3) =541
1. Note that under the transition dynamics above, s1 = s2 = s3 = s4 always holds, for any542
s1 ∈ S.543

• Observation space: O1,1 = O2,1 = O1,2 = O2,2 = [2]×S ,O1,3 = Ỹ1×S,O2,3 = Ỹ2×S,O1,4 =544
O2,4 = S; For each i ∈ [2], h ∈ [2], oi,h ∈ Oi,h, we can split oi,h into 2 parts as oi,h = (o1i,h, o

2
i,h),545

where o1i,h ∈ [2], o2i,h ∈ S. For each i ∈ [n], oi,3 ∈ Oi,3, similarly, we can split oi,3 into 2 parts as546

oi,3 = (o1i,3, o
2
i,3), where o1i,3 ∈ Ỹi, o

2
i,3 ∈ S.547

• The baseline sharing is null.548

• Communication action space: For i ∈ [2], h ∈ {1, 2, 4},Mi,h = {0, 1}h,Mi,3 = {1, 2};549
For each i ∈ [2], ϕi,h is defined as ∀h ∈ {1, 2, 4}, ϕi,h(pi,h− ,mi,h) = {oi,k | k ≤550
h, k-th digit of mi,h is 1 and oi,k ∈ pi,h−}; For h = 3, if mi,3 = 1, then ϕi,h(pi,3− ,mi,3) =551
{oi,1, oi,3,mi,3}; if mi,3 = 2, then ϕi,h(pi,h− ,mi,3) = {oi,2, oi,3,mi,3}.552

• Emission matrix: For any i ∈ [2], h ∈ [2], sh ∈ S, oi,h ∈ Oi,h,Oh(oh | sh) = Π2
i=1Oi,h(oi,h | sh)553

and Oi,h(oi,h | sh) is defined as:554

Oi,h(oi,h | sh) =


1−α2

16 o1i,h = si+2h−2
h , o2i,h ̸= sh

1−α2

16 + α2 o1i,h = si+2h−2
h , o2i,h = sh

0 o.w.
.

For i ∈ [2], s3 ∈ S, o3 ∈ O3,O3(o3 | s3) = O1
3(o

1
3 | s3)O2

3(o
2
3 | s3),O2

3 = Π2
i=1O2

i,3(o
2
i,3 | s3) is555

defined as:556

O1
3(o

1
3 | s3) = p̃(o11,3, o

1
2,3)

O2
i,3(o

2
3 | s3) =

{
1−α2

16 o2i,3 ̸= s3
1−α2

16 + α2 o2i,3 = s3
.

And for i ∈ [2], s4 ∈ S, oi,4 ∈ Oi,4,O4(o4 | sh) = Π2
i=1Oi,4(oi,4 | s4) and Oi,4(oi,4 | s4) is557

defined as:558

Oi,4(oi,4 | s4) =

{
1−α2

16 oi,4 ̸= s4
1−α2

16 + α2 oi,4 = s4
.

Such an emission matrix means that for each h ∈ [2] and i ∈ [2], agent i will accurately observe559
part of the underlying state si+2h−2

h and vaguely observe the whole underlying state sh. For h =560
4, i ∈ [2], agent i can only vaguely observe the whole underlying state sh. Such design is to make561
the problem satisfying Assumption 3.1. The reward functions are defined as:562

R1(s1, a1) = R2(s2, a2) = 0, ∀s1, s2 ∈ S, a1 ∈ A1, a2 ∈ A2;

R3(s3, a3) =

{
1 if a1,3 = s23 or a1,3 = s43
0 o.w.

;

R4(s4, a4) =

{
1 if a2,4 = s14 or a2,4 = s34
0 o.w.

.

13



Under review for RLC 2025, to be published in RLJ 2025

The communication cost functions are defined as:563

∀h ∈ {1, 2, 4}, zah ∈ Za
h ,Kh(z

a
h) = 1 if zah ̸= {m1,h,m2,h} else 0;

K3(z
a
3 ) =


c̃(o11,3, o

1
2,3, 1, 1)/α1 if {o1,1, o2,1} ⊆ za3 and {o1,2, o2,2} ∩ za3 = ∅

c̃(o11,3, o
1
2,3, 2, 1)/α1 if {o1,2, o2,1} ⊆ za3 and {o1,1, o2,2} ∩ za3 = ∅

c̃(o11,3, o
1
2,3, 1, 2)/α1 if {o1,1, o2,2} ⊆ za3 and {o1,2, o2,1} ∩ za3 = ∅

c̃(o11,3, o
1
2,3, 2, 2)/α1 if {o1,2, o2,2} ⊆ za3 and {o1,1, o2,1} ∩ za3 = ∅

.

Let α0 = maxy1,y2,u1,u2
c̃(y1, y2, u1, u2), and set α1 = 2α0. Under such a construction, L satisfies564

the following conditions:565

• Problem L is QC: For ∀i1, i2 ∈ [2], h1, h2 ∈ [4], agent (i1, h1) does not influence (i2, h2) because566
agent (i1, h1) cannot influence the observation of agent (i2, h2), and baseline sharing is null.567

• Problem L satisfies Assumptions 3.1 and 3.4: We prove this by showing that each agent i ∈ [2]568
satisfies γ-observability. For ∀i ∈ [2], h ∈ [2], b1, b2 ∈ ∆(S), let569

||O⊤
i,h(b1 − b2)||1 =

∑
o1i,h∈[2]

∑
o2i,h∈S

|
∑
sh∈S

(b1(sh)− b2(sh))Oi,h((o
1
i,h, o

2
i,h) | sh)|

≥
∑

o2i,h∈S

|
∑

o1i,h∈[2]

∑
sh∈S

(b1(sh)− b2(sh))Oi,h((o
1
i,h, o

2
i,h) | sh)|

=
∑

o2i,h∈S

|
∑
sh∈S

∑
o1i,h∈[2]

(b1(sh)− b2(sh))1[o
1
i,h = si+2h−2

h ](
1− α2

16
+ α21[o

2
i,h = sh])|

=
∑

o2i,h∈S

|
∑
sh∈S

(b1(sh)− b2(sh))(
1− α2

16
+ α21[o

2
i,h = sh])|

=
∑

o2i,h∈S

|1− α2

16
(
∑
sh∈S

(b1(sh)− b2(sh))) + α2(b1(o
2
i,h)− b2(o

2
i,h))|

=
∑

o2i,h∈S

α2|b1(o2i,h)− b2(o
2
i,h)| = α2||b1 − b2||1.

For ∀i ∈ [2], h = 3, 4, the proof is similar, by replacing o1i,h ∈ [2] with o1i,h ∈ Ỹi for h = 3 and570
replacing the space o1i,h ∈ [2] with ∅ for h = 4.571

• Problem L satisfies Assumption 3.3, because control actions a1:4 does not influence underlying572
states and we restrict the communication and control strategies do not use them as input.573

• Problem L satisfies Assumption 4.3 since it satisfies the Turn-based structures condition in §G,574
with ct(1) = ct(2) = ct(3) = 1, ct(4) = 2.575

We will show as follows that computing a team-optimal strategy can give us a team-optimal strategy576
in T D. Given (ga,∗1:4 , g

m,∗
1:4 ) to be a team optimal strategy of L, firstly it will have no additional shar-577

ing at timesteps h = 1, 2, 4, namely, for h = 1, 2, 4,P(zah ̸= {m1,h,m2,h} | ga,∗1:4 , g
m,∗
1:4 ) = 1,578

since any additional sharing at timesteps h = 1, 2, 4 will incur a cost as high as 1, and can-579
not achieve the optimum. Also, for the additional sharing at timestep h = 3, agent i will580
definitely share oi,3 and choose to share oi,1 or oi,2. Then ∀τ1,3+ ∈ T1,3+ , ga,∗1,3 (τ1,3+) =581 {
o2,1 if o2,1 ∈ τ1,3+

o2,2 if o2,2 ∈ τ1,3+
and ∀τ2,4+ ∈ T2,4+ , ga,∗2,4 (τ2,4+) =

{
o1,1 if o1,1 ∈ τ2,4+

o1,2 if o1,2 ∈ τ2,4+
, since such ac-582

tion can achieve the optimal reward r3 = r4 = 1. Therefore, JL(g
a,∗
1:H , gm,∗

1:H ) = E[
∑4

h=1 rh −583
κh | ga,∗1:H , gm,∗

1:H ] = 2 − E[κ3 | ga,∗1:H , gm,∗
1:H ] = 2 − E[c̃(o11,3, o12,3,m1,3,m2,3)], where m1,3 =584

gm,∗
1,3 ({o1,1, o1,2, o1,3}). Since κ3 is independent of o1,1, o1,2, o

1
1,3, o1,1, o1,2, o11,3 are useless in-585

formation for agent 1 to choose m1,3 and minimize the κ. Therefore, not using them in gm,∗
1,3586

does not lose any optimality. Hence, we can consider the gm,∗
1,3 that only has o11,3 as input.587
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In the same way, we consider the gm,∗
2,3 that has o12,3 as input. Therefore, JL(g

a,∗
1:H , gm,∗

1:H ) =588

2−
∑

o11,3,o
2
1,3,m1,3,m2,3

c̃(o11,3,o
1
2,3,m1,3,m2,3

α1
gm,∗
1,3 (m1,3 | o11,3)g

m,∗
2,3 (m2,3 | o12,3)p̃(o11,3, o12,3). Then we589

can construct γ1 = gm,∗
1,3 , γ2 = gm,∗

2,3 , which minimize J̃ . Therefore, we can conclude that computing590
a team optimal strategy of L can give us a team optimal strategy of T D. From the NP-hardness591
of the TDP problem (Tsitsiklis & Athans, 1985), we complete our proof.592

593

B.4 Proof of Lemma B.5594

Proof of Lemma B.5. We prove this result by showing a reduction from the Team Decision problem.595
Given any TDP T D = (Ỹ1, Ỹ2, Ũ1, Ũ2, c̃, p̃, J̃) with |Ũ1| = |Ũ2| = 2, let Ũ1 = {1, 2}, Ũ2 = {1, 2},596
then we can construct an H = 5 and 2 agents LTC L as follows:597

• Underlying state: S = [2]4. For each s1 ∈ S, we can split s1 into 4 parts as s1 = (s11, s
2
1, s

3
1, s

4
1),598

where s11, s
2
1, s

3
1, s

4
1 ∈ [2]. Similarly, s2, s3, s4, s5 ∈ S can be split in the same way.599

• Initial state distribution: ∀s1 ∈ S, µ1(s1) =
1
16 .600

• Control action space: For ∀i = 1, 2, for h = 1, 2, Ai,1 = Ai,2 = {∅}; For h = 3, Ai,3 =601
{(0, x), (x, 0) |x ∈ [2]}; We can write ai,3 = (a1i,3, a

2
i,3), a

1
i,3, a

2
i,3 ∈ {0, 1, 2}. For h = 4,A1,4 =602

[2],A2,4 = {∅}; For h = 5,A2,5 = [2],A1,5 = {∅}.603

• Transition: ∀s ∈ S, a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, a4 ∈ A4,T1(s | s, a1) = T2(s | s, a2) =604
T3(s | s, a3) = T4(s | s, a4) = 1. Note that under the transition dynamics above, s1 = s2 = s3 =605
s4 = s5 always holds, for any s1 ∈ S.606

• Observation space: O1,1 = O2,1 = O1,2 = O2,2 = [2]×S ,O1,3 = Ỹ1×S,O2,3 = Ỹ2×S,O1,4 =607
O2,4 = O1,5 = O2,5 = S; For each i ∈ [2], h ∈ [2], oi,h ∈ Oi,h, we can split oi,h into 2 parts as608
oi,h = (o1i,h, o

2
i,h), where o1i,h ∈ [2], o2i,h ∈ S. For each i ∈ [2], oi,3 ∈ Oi,3, similarly, we can split609

oi,3 into 2 parts as oi,3 = (o1i,3, o
2
i,3), where o1i,3 ∈ Ỹi, o

2
i,3 ∈ S.610

• The baseline sharing is null.611

• Communication action space: For i ∈ [2], h ∈ {1, 2, 3, 5},Mi,h = {0, 1}2h−1 and ϕi,h is612
defined as ϕi,h(pi,h− ,mi,h) = {oi,k ∈ pi,h− | k ≤ h, (2k − 1)th digit of mi,h is 1} ∪ {ai,k ∈613
pi,h− | k ≤ h − 1, 2kth digit of mi,h is 1} ∪ {mi,h}; For h = 4,Mi,4 = {1, 2}, ϕi,h(pi,h− , 1) =614
{oi,3,mi,h}, ϕi,h(pi,h− , 2) = {oi,3, ai,3,mi,h}.615

• Emission matrix: For any i ∈ [2], h ∈ [2], sh ∈ S, oi,h ∈ Oi,h,Oh(oh | sh) = Π2
i=1Oi,h(oi,h | sh)616

and Oi,h(oi,h | sh) is defined as:617

Oi,h(oi,h | sh) =


1−α2

16 o1i,h = si+2h−2
h , o2i,h ̸= sh

1−α2

16 + α2 o1i,h = si+2h−2
h , o2i,h = sh

0 o.w.
.

For i ∈ [2], s3 ∈ S, o3 ∈ O3,O3(o3 | s3) = O1
3(o

1
3 | s3)O2

3(o
2
3 | s3),O2

3 = Π2
i=1O2

i,3(o
2
i,3 | s3) is618

defined as:619

O1
3(o

1
3 | s3) = p̃(o11,3, o

1
2,3)

O2
i,3(o

2
3 | s3) =

{
1−α2

16 o2i,3 ̸= s3
1−α2

16 + α2 o2i,3 = s3
.

And for i ∈ [2], h = 4 or 5, sh ∈ S, oi,h ∈ Oi,h,Oh(oh | sh) = Π2
i=1Oi,h(oi,h | sh) and620

Oi,h(oi,h | sh) is defined as:621

Oi,h(oi,h | sh) =

{
1−α2

16 oi,h ̸= sh
1−α2

16 + α2 oi,h = sh
.
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• Reward functions:622

R1(s1, a1) = R2(s2, a2) = R3(s3, a3) = 0, ∀s1, s2, s3 ∈ S, a1 ∈ A1, a2 ∈ A2, a3 ∈ A3;

R4(s4, a4) =

{
1 if a1,4 = s24 or a1,4 = s44
0 o.w.

;

R5(s5, a5) =

{
1 if a2,5 = s15 or a2,5 = s35
0 o.w.

.

• Communication cost functions:623

∀h ∈ {1, 2, 3, 5}, zah ∈ Za
h ,Kh(z

a
h) = 1 if zah ̸= {m1,h,m2,h} else 0;

K4(z
a
4 ) =



c̃(o11,3, o
1
2,3, 1, 1)/α1 if a1,3, a2,3 ∈ za3 , a

1
1,3 = 0, a12,3 = 0

c̃(o11,3, o
1
2,3, 2, 1)/α1 if a1,3, a2,3 ∈ za3 , a

2
1,3 = 0, a12,3 = 0

c̃(o11,3, o
1
2,3, 1, 2)/α1 if a1,3, a2,3 ∈ za3 , a

1
1,3 = 0, a22,3 = 0

c̃(o11,3, o
1
2,3, 2, 2)/α1 if a1,3, a2,3 ∈ za3 , a

2
1,3 = 0, a22,3 = 0

1 o.w.

;

Let α0 = maxy1,y2,u1,u2 c̃(y1, y2, u1, u2), set α1 = 2α0, and restrict agents to decide their commu-624
nication strategy only based on their common information. Under such a construction, L satisfies625
the following conditions:626

• Problem L is QC: For ∀i1, i2 ∈ [2], h1, h2 ∈ [4], agent (i1, h1) does not influence (i2, h2) because627
agent (i1, h1) cannot influence the observation of agent (i2, h2), and the baseline sharing is null.628

• Problem L satisfies Assumptions 3.1 and 3.4: We prove this by showing that each agent i ∈ [2]629
satisfies γ-observability. For ∀i ∈ [2], h ∈ [2], b1, b2 ∈ ∆(S), let630

||O⊤
i,h(b1 − b2)||1 =

∑
o1i,h∈[2]

∑
o2i,h∈S

|
∑
sh∈S

(b1(sh)− b2(sh))Oi,h((o
1
i,h, o

2
i,h) | sh)|

≥
∑

o2i,h∈S

|
∑

o1i,h∈[2]

∑
sh∈S

(b1(sh)− b2(sh))Oi,h((o
1
i,h, o

2
i,h) | sh)|

=
∑

o2i,h∈S

|
∑
sh∈S

∑
o1i,h∈[2]

(b1(sh)− b2(sh))1[o
1
i,h = si+2h−2

h ](
1− α2

16
+ α21[o

2
i,h = sh])|

=
∑

o2i,h∈S

|
∑
sh∈S

(b1(sh)− b2(sh))(
1− α2

16
+ α21[o

2
i,h = sh])|

=
∑

o2i,h∈S

|1− α2

16
(
∑
sh∈S

(b1(sh)− b2(sh))) + α2(b1(o
2
i,h)− b2(o

2
i,h))|

=
∑

o2i,h∈S

α2|b1(o2i,h)− b2(o
2
i,h)| = α2||b1 − b2||1.

For ∀i ∈ [2], h = 3, 4, the proof is similar, by replacing o1i,h ∈ [2] with o1i,h ∈ Ỹi for h = 3 and631
replacing the space o1i,h ∈ [2] with {∅} for h = 4, 5.632

• Problem L satisfies Assumption 3.2 since we restrict agents to decide their communication strate-633
gies only based on common information.634

• Problem L satisfies Assumption 4.3 since it satisfies the Turn-based structures condition in §G,635
with ct(1) = ct(2) = ct(3) = ct(4) = 1, ct(5) = 2.636

Now, we show that any team optimal strategy of L will give us the decision rules γ1, γ2 solving T D.637
Let (ga,∗1:5 , g

m,∗
1:5 ) be a team optimal strategy. First, ∀τi,4− ∈ Ti,4− , gm,∗

i,4 (τi,4−) = 2, otherwise it will638
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have communication cost κi,3 = 1, and can cannot achieve the team optimum. Define ga1:5, g
m
1:5 as639

∀τi,3+ ∈ Ti,3+ , gai,3+(τi,3+) =

{
(o1i,1, 0) if ai,3 = ga,∗i,3+(τi,3+), a

1
i,3 = 0

(0, o1i,2) o.w.

∀τ1,4+ ∈ T1,4+ , ga1,4+(τ1,4+) =

{
a12,4 if a12,4 ̸= 0

a22,4 o.w.

gm1:5 = gm,∗
1:5 , ga1:2 = ga,∗1:2 , g

a
4:5 = ga,∗4:5 .

Then, JL(ga1:5, g
m
1:5) − JL(g

a,∗
1:5 , g

m,∗
1:5 ) ≥ 0. Hence (ga1:5, g

m
1:5) is a team optimal strategy. Then,640

JL(g
a
1:5, g

m
1:5) = 2 − E[κ4 | ga1:5, gm1:5] = 2 − E[κ4 | ga3 ], where ga3 minimizes κ4. Note that τi,3+ =641

{oi,1, oi,2, oi,3}. Since κ4 is independent of oi,1, oi,2, o2i,3, they are useless information for agent642
i to choose ai,3 and minimize κ4. Therefore, only using o1i,3 to determine ai,3 does not lose any643
optimality, and we can consider ga,∗1,3 that has only o1i,3 as input. In the same way, we consider ga,∗2,3644
that has only o1i,3 as input. Then, we can construct γ1 = ga,∗1,3 , γ2 = ga,∗2,3 as decision rules that645

minimize J̃ . Therefore, we can conclude that computing a team optimal strategy of L can give us a646
team optimal strategy of T D. From the NP-hardness of the TDP problem (Tsitsiklis & Athans,647
1985), we complete our proof.648

B.5 Proof of Lemma B.6649

Proof. We prove this by showing a reduction from the hardness of finding an ϵ-optimal strategy in650
POMDP. Given any POMDP P = (SP ,AP ,OP , {OP

h }h∈[HP ], {TP
h }h∈[HP ], {RP

h }h∈[HP ], µ
P
1 ),651

we can construct a LTC L with 2 agents as follows:652

• Number of agents: n = 2; length of episode: H = HP .653

• S = SP ,∀s ∈ S.654

• Initial state distribution: ∀s1 ∈ S, µ1(s1) = µP
1 (s1).655

• Control action space: ∀h ∈ [H], A1,h = AP
h ,A2,h = {∅}.656

• Transition: ∀sh, sh+1 ∈ S, ah ∈ Ah,Th(sh+1 | sh, ah) = TP
h (sh+1 | sh, a1,h).657

• Observation space: ∀h ∈ [H],O1,h = OP ,O2,h = S.658

• Emission matrix: For any h ∈ [H],∀oh ∈ Oh, sh ∈ S, Oh(oh | sh) = OP
h (o1,h | sh)1[o2,h = sh].659

• Reward functions: For any h ∈ [H], i ∈ [2], sh ∈ S, ah ∈ Ah,Rh(sh, ah) = RP(sh, a1,h)/H .660

• The baseline sharing: For any h ∈ [H], zbh = {o1,h, a1,h−1}.661

• Communication action space: For any h ∈ [H],M1,h = {∅},M2,h = {0, 1}h. For any662
p1,h− ∈ P1,h− , p2,h− ∈ P2,h− ,mh ∈ Mh, ϕ1,h(p1,h− ,m1,h) = {m1,h}, ϕ2,h(p2,h− ,m2,h) =663
{o2,k | k-th digit of p2,h− is 1 and o2,k ∈ pi,h−} ∪ {m2,h}.664

• Communication cost functions: For any h ∈ [H], zah ∈ Za
h ,Kh(z

a
h) = 1[zah ̸= {mh}]. It means665

the communication cost is 1 unless there is no additional sharing.666

• We restrict that the communication strategy can only use ch as input, and remove a2,t in τh for667
any h > t.668

We first verify that L is QC and satisfies Assumptions 3.1, 3.2, 3.3, and 4.3.669

• L is QC: For any ∀h1 < h2 ≤ H , agent (2, h1) does not influence agent (1, h2) under baseline670
sharing since agent (2, h1) does not influence s1h,∀h ∈ [H], then does not influence o1,h,∀h ∈671
[H], and thus not influencing agent (1, h1). For any ∀h1 < h2 ≤ H , under baseline sharing,672
p1,h− = ∅. Then σ(τ1,h−

1
) ⊆ σ(ch−

1
) ⊆ σ(ch−

2
) ⊆ σ(τ2,h−

2
).673
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• L satisfies Assumption 3.1: For any h ∈ [H], b1, b2 ∈ ∆(S), Oh satisfies674

||O⊤
h (b1 − b2)||1 =

∑
o1,h∈OP

∑
o2,h∈S

|
∑
sh∈S

(b1(sh)− b2(sh))Oh((o1,h, o2,h) | sh)|

≥
∑

o2,h∈S
|

∑
o1,h∈OP

∑
sh∈S

(b1(sh)− b2(sh))O1,h(o1,h | sh)O2,h(o2,h | sh)|

=
∑

o2,h∈S
|
∑
sh∈S

(b1(sh)− b2(sh))O2,h(o2,h | sh)
∑

o1,h∈OP

O1,h(o1,h | sh)|

=
∑

o2,h∈S
|
∑
sh∈S

(b1(sh)− b2(sh))1[o2,h = sh]

=
∑

o2,h∈S
|b1(o2,h)− b2(o2,h)| = ||b1 − b2||1.

• L satisfies Assumption 3.2: For any h ∈ [H], we restrict that each agent decides mi,h based on675
ch.676

• L satisfies Assumption 3.3: For any h ∈ [H], a2,h does not influence sh+1, and it is removed from677
τ .678

• L satisfies Assumption 4.3 since it satisfies the Turn-based structures condition in §G, with679
ct(h) = 1 for any h ∈ [H].680

Agent 2 will share nothing through additional sharing, otherwise it will suffer the communication681
cost κh = 1 > max

∑H
h=1Rh(sh, ah) and cannot achieve optimum. Hence, Agent 2 is the dummy682

player. Therefore, any (ga,∗1:H , gm,∗
1:H ) be an ϵ/H-team optimal strategy of L will directly gives the683

ϵ-optimal of P as {ga,∗1,1:H}h∈[H]. From Proposition B.7, we can complete our proof.684

C Deferred Details of §4685

C.1 Reformulation of L686

Given an LTC problem L, we can reformulate it as a Dec-POMDP DL defined as687
⟨H̃, S̃, {Ãi,h}i∈[n],h∈[H̃], {Õi,h}i∈[n],h∈[H̃], T̃, Õ, µ̃1, {R̃h}h∈[H̃]⟩ as follows688

H̃ = 2H, S̃ = S, s̃2h−1 = s̃2h = sh, Ãi,2h−1 =Mi,h, Ãi,2h = Ai,h, ãi,2h−1 = mi,h,

ãi,2h = ai,h, Õi,2h−1 = Oi,h, Õi,2h = {∅}, õi,2h−1 = oi,h, õi,2h = ∅,

T̃2h−1(s̃2h | s̃2h−1, ã2h−1) = 1[s̃2h = s̃2h−1], T̃2h(s̃2h+1 | s̃2h, ã2h) = Th(s̃2h+1 | s̃2h, ã2h),

µ̃1 = µ1, R̃2h−1 = −Kh, R̃2h = Rh, p̃i,2h−1 = pi,h− , p̃i,2h = pi,h+ , c̃2h−1 = ch− ,

c̃2h = ch+ , z̃2h−1 = zbh, z̃2h = zah, τ̃i,2h−1 = ch− , τ̃i,2h = τi,h+ ,
(C.1)

Note that, at the odd timestep 2h− 1, we set τ̃i,2h−1 = ch− under Assumption 3.2, i.e., in DL, each689
agent only uses the common information so far for decision-making at timestep 2h−1. Correspond-690
ingly, for any h ∈ [H̃], i ∈ [n], we denote by g̃i,h, g̃h the (joint) strategy and by G̃i,h, G̃h the (joint)691

strategy spaces. Similarly, the objective of DL is defined as JDL(g̃1:H̃) = EDL [
∑H̃

h=1 r̃h | g̃1:H̃ ].692
Essentially, this reformulation splits the H-step decision-making and communication procedure into693
a 2H-step one. A similar splitting of the timesteps was also used in Sudhakara et al. (2021); Kartik694
et al. (2022). In comparison, we consider a more general setting, where the state is not decoupled,695
and agents are allowed to share the observations and actions at the previous timesteps, due to the696
generality of our LTC formulation. The equivalence between L and DL is more formally stated as697
follows.698

Proposition C.1 (Equivalence between L and DL). Let DL be the reformulated Dec-POMDP from699
L, then the solutions of the two problems are equivalent, in the sense that ∀gm1:H ∈ Gm1:H , ga1:H ∈700
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Ga1:H , i ∈ [n], let g̃1:H̃ = (gm1 , ga1 , · · · , gmH , gaH), then JDL(g̃1:H̃) = JL(g
m
1:H , ga1:H). Also, ∀g̃1:H̃ ∈701

G̃1:H̃ , i ∈ [n], let gm1:H = (g̃1, g̃3, · · · , g̃H̃−1), g
a
1:H = (g̃2, g̃4, · · · , g̃H̃), then JL(g

m
1:H , ga1:H) =702

JDL(g̃1:H̃).703

C.2 Proof of Theorem 4.1704

Proof. We prove the following lemma first.705

Lemma C.2. Let theL be the QC LTC problem satisfying Assumptions 3.3, 3.4, and 3.5, andDL be706
the reformulated Dec-POMDP. Then for i1, i2 ∈ [n], t1, t2 ∈ [H], if agent (i1, 2t1) influences agent707
(i2, 2t2) in DL, then σ(τi1,t−1

) ⊆ σ(τi2,t−2
) in L. Moreover, if L is sQC, then σ(ai1,t1) ⊆ σ(τi2,t−2

).708

Proof. We prove this by cases.709

• If ai1,t1 influences the underlying state st1+1, then from Assumption 3.4, agent (i1, t1) influences710
o−i1,t1+1, so there must exist i3 ̸= i1, such that agent (i1, t1) influences oi3,t1+1. From part (e) of711
Assumption 2.1 and t1 < t2, we know oi3,t1+1 ∈ τi3,(t1+1)− ⊆ τi3,t−2

even under no additional712

sharing, and then we get agent (i1, t1) influences agent (i3, t2) in DL (the Dec-POMDP induced713
by L). From Lemma B.2, it holds that σ(τi1,t−1 ) ⊆ σ(τi3,t−2

). From Assumption 3.5 and i3 ̸= i1,714
we know σ(τi1,t−1

) ⊆ σ(ct−2
) ⊆ σ(τi2,t−2

). (Similarly, if L is sQC, we have σ(ai1,t1) ⊆ σ(τi3,t−2
)715

from Assumption 3.5, and σ(ai1,t1) ⊆ σ(ct−2
) ⊆ σ(τi2,t−2

) from Assumption 3.5).716

• If ai1,t1 does not influence st1+1, from Assumption 3.3, ∀t > t1, ai1,t1 /∈ τt− and ai1,t1 /∈ τt+ .717
Then in DL, agent (i1, 2t1) does not influence τ̃i,2t1+1,∀i ∈ [n], hence it does not influence718
ãi,2t1+1,∀i ∈ [n]. Then it does not influence z̃2t1+1, and further does not influence τ̃i,2t1+2 and719
ãi,2t1+2,∀i ∈ [n]. From induction, we know agent (i1, 2t1) does not influence agent (i2, 2t2),720
which leads to a contradiction.721

This completes the proof of this lemma.722

We now go back to prove the theorem. Firstly, we prove the QC cases. To show DL is QC, we need723
to prove ∀i1, i2 ∈ [n], h1, h2 ∈ [H̃], if agent (i1, h1) influences agent (i2, h2) with h1 < h2, then724
σ(τ̃i1,h1

) ⊆ σ(τ̃i2,h2
), where we use τ̃i,h to denote the available information of agent (i, h) in DL.725

We prove this by considering the following cases:726

1. If h1 = 2t1 − 1 with t1 ∈ [H], by the construction of DL and Assumption 3.2, we have τ̃i1,h1
=727

c̃h1
= ct−1

⊆ τ̃i2,h2
, since common information accumulates over time by definition, and will728

always be included in the available information τ̃i,h in later steps. Thus, σ(τ̃i1,h1
) ⊆ σ(τ̃i2,h2

).729

2. If h1 = 2t1, h2 = 2t2 with t1, t2 ∈ [H], then τ̃i1,h1
= τi1,t+1

= τi1,t−1
∪ zat1 by definition.730

Consider agent (i1, t1) and (i2, t2) in L. From Lemma C.2, we know σ(τi1,t−1
) ⊆ σ(τi2,t−2

) ⊆731
σ(τi2,t+2

) . Also, zat1 ⊆ ct+1
⊆ ct+2

⊆ τi2,t+2
= τ̃i2,h2

by the accumulation of ch+ over time. Thus,732
we have σ(τ̃i1,h1

) ⊆ σ(τ̃i2,h2
).733

3. If h1 = 2t1, h2 = 2t2 − 1, t1, t2 ∈ [H], then τ̃i2,h2
= c̃h2

, then ∃i3 ∈ [n], i3 ̸= i1, τ̃i2,h2
⊆734

c̃h2+1 ⊆ τ̃i3,h2+1. From agent (i1, h1) influences (i2, h2), we know agent (i1, h1) also influences735
agent (i3, h2 + 1) in DL, hence agent (i1, t1) influences agent (i2, t2) in L. Since L is QC,736
we know σ(τi1,t−1

) ⊆ σ(τi3,t−2
). From Assumption 3.5 and i1 ̸= i3, we know σ(τ̃i1,h1) =737

σ(τi1,t−1
) ⊆ σ(ct−2

) = σ(τ̃i2,h2).738

Second, we prove the sQC case. In DL, for ∀i1, i2 ∈ [n], h1, h2 ∈ [H̃], agent (i1, h1) influences739
(i2, h2). From the proof above, we know σ(τ̃i1,h1) ⊆ σ(τ̃i2,h2). We only need to prove σ(ãi1,h1) ⊆740
σ(τ̃i2,h2

).741

1. If h1 = 2t1 − 1 with t1 ∈ [H], then we know ãi1,h1 = mi1,t. From Assumption 2.1, we know742
that mi1,t ⊆ zai1,t. Then we get σ(ãi1,h1

) ⊆ σ(z̃i1,h1+1) ⊆ σ(c̃h2
) ⊆ σ(τ̃i2,h2

).743
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2. If h1 = 2t1, h2 = 2t2 with t1, t2 ∈ [H], then from Lemma C.2, we know that σ(ãi1,h1
) ⊆744

σ(τ̃i2,h2
).745

3. If h1 = 2t1, h2 = 2t2 − 1, t1, t2 ∈ [H], then τ̃i2,h2 = c̃h2 , then ∃i3 ∈ [n], i3 ̸= i1, τ̃i2,h2 ⊆746
c̃h2+1 ⊆ τ̃i3,h2+1. From agent (i1, h1) influences (i2, h2), we know agent (i1, h1) also influences747
agent (i3, h2 + 1) in DL, hence agent (i1, t1) influences agent (i2, t2) in L. Since L is sQC,748
we know σ(ai1,t−1

) ⊆ σ(τi3,t−2
). From Assumption 3.5 and i1 ̸= i3, we know σ(ãi1,h1

) =749
σ(ai1,t1) ⊆ σ(ct−2

) = σ(τ̃i2,h2
).750

This completes the proof.751

Lemma C.3. If DL is QC, then D†
L is sQC.752

C.3 Proof of Lemma C.3753

Proof. From the construction of D†
L, since D†

L requires agent to share more than DL, it is easy to754
observe the fact that ∀h ∈ [H̃], i ∈ [n], c̃h ⊆ c̆h, τ̃i,h ⊆ τ̆i,h.755
Let i1, i2 ∈ [n], h1, h2 ∈ [H̃], h1 < h2, and agent (i1, h1) influences agent (i2, h2) in D†

L.756

• If h1 = 2t1 − 1 with t1 ∈ [H], then h1 is communication step. So τ̆i1,h1
= c̆h1

⊆ c̆h2
, and757

ãi1,h1
= mi1,t1 ⊆ c̆h1+1 ⊆ c̆h2

from Assumption 2.1. Therefore, we have σ(τ̆i1,h1
)∪σ(ăi1,h1

) ⊆758
σ(c̆h1

) ⊆ σ(τ̆i2,h2
).759

• If h1 = 2t1, h2 = 2t2 − 1 with t1, t2 ∈ [H], then τ̆i2,h2 = c̆h2 . If agent (i1, h1) does not760
influence (i2, h2) inDL, but agent (i1, h1) influences (i2, h2) inD†

L, then it means ăi1,h1
∈ τ̆i2,h2

761
but ãi1,h1

/∈ τ̃i2,h2
. This can only happen when σ(τ̃i1,h1

) ⊆ σ(c̃h2
) ⊆ σ(c̆h2

), and ãi1,h1
⊆762

c̆h2
. Also, from the construction of D†

L, we know that τ̆i1,h1
\τ̃i1,h1

⊆ c̆h1
. Therefore, we have763

σ(τ̆i1,h1
) ∪ σ(ãi1,h1

) ⊆ σ(c̆h2
) ⊆ σ(τ̆i2,h2

).764

If agent (i1, h1) influences (i2, h2) inDL, then from QC ofDL, we know that σ(τ̃i1,h1
) ⊆ σ(c̃h2

),765
then from the construction of D†

L, we have ãi1,h1
∈ c̆h2

. Still, we have τ̆i1,h1
\τ̃i1,h1

⊆ c̆h1
.766

Therefore, σ(τ̆i1,h1) ∪ σ(ãi1,h1) ⊆ σ(τ̆i2,h2).767

• If h1 = 2t1, h2 = 2t2 with t1, t2 ∈ [H]. If agent (i1, h1) does not influence (i2, h2) in DL,768
then it means sharing ãi1,h1

leads to the influence. Then, σ(τ̃i1,h1
) ⊆ σ(c̃h2

) ⊆ σ(c̆h2
), and769

ãi1,h1
⊆ c̆h2

. We can conclude σ(τ̆i1,h1
) ∪ σ(ãi1,h1

) ⊆ σ(c̆h2
) ⊆ σ(τ̆i2,h2

).770

Now we consider the case that agent (i1, h1) influences (i2, h2) in DL. If i1 ̸= i2, then we have771
τ̃i1,h1

⊆ τ̃i2,h2
. From Assumption 3.5, and i1 ̸= i2, we know τ̃i1,h1

⊆ c̃h2
. Then, from the772

construction of D†
L, we have ãi1,h1

⊆ c̆h2
. Finally, we have σ(τ̆i1,h1

) ∪ σ(ãi1,h1
) ⊆ σ(τ̆i2,h2

).773

If i1 = i2, then from the perfect recall of L, we know that τ̃i1,h1
∪ ãi1,h1

⊆ τ̃i2,h2
. From774

τ̆i1,h1
\τ̃i1,h1

⊆ c̆h1
, we conclude σ(τ̆i1,h1

) ∪ σ(ãi1,h1
) ⊆ σ(τ̆i2,h2

).775

This completes the proof.776

Theorem C.4. Let DL be the QC Dec-POMDP reformulated from a QC LTC L, and D†
L be the777

sQC expansion of DL. Then, for any ϵ-team-optimal strategy ğ∗
1:H̆

of D†
L, there exists a function φ778

such that g̃∗
1:H̃

= φ(ğ∗
1:H̆

,DL) is an ϵ-team-optimal strategy of DL, with JDL(g̃
∗
1:H̃

) = JD†
L
(ğ∗

1:H̆
).779

C.4 Proof of Theorem C.4780

Proof. We firstly prove that given any strategy ğ1:H and g̃1:H = φ(ğ1:H ,DL), JD†
L
(ğ1:H) =781

JDL(g̃1:H), where the function φ is shown in Algorithm 3. Since D†
L only changes what to782

share, τ̃h = τ̆h always hold. Then, for any i ∈ [n], h ∈ [H̃], τ̃h ∈ T̃h, let τ̃i,h, τ̆i,h be the783
corresponding information of agent i in DL,D†

L, respectively. From Algorithm 3, we know that784
g̃i,h(τ̃i,h) = ği,h(τ̆i,h). This is because, for any ãj,t ∈ τ̆i,h\τ̃i,h, j ∈ [n], t < h, there must holds785
that σ(τ̃j,t) ⊆ σ(c̃i,h). Therefore, we can always recover ãj,t from τ̆i,h and g̃i,h. As a result, we can786
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have JD†
L
(ğ1:H) = JDL(g̃1:H).787

Since D†
L has larger strategy spaces, i.e., maxg̃

1:H̃
∈G̃

1:H̃
JDL(g̃1:H̃) ≤ maxğ1:H̆∈Ğ1:H̆

JD†
L
(ğ1:H̆).788

Let ğ∗
1:H̆

be the strategy satisfying JD†
L
(ğ∗

1:H̆
) ≥ maxğ1:H̆∈Ğ1:H̆

JD†
L
(ğ1:H̆) − ϵ. Then, we have789

JDL(φ(ğ
∗
1:H̆

,DL)) = JD†
L
(ğ∗

1:H̆
) ≥ maxğ1:H̆∈Ğ1:H̆

JD†
L
(ğ1:H̆)−ϵ ≥ maxg̃

1:H̃
∈G̃

1:H̃
JDL(g̃1:H̃)−ϵ.790

Then φ(ğ∗
1:H̆

,DL) is an ϵ-team optimal strategy of DL.791

Theorem C.5. Let D†
L be an sQC Dec-POMDP generated from L after reformulation and strict792

expansion, then D†
L has strategy-independent common-information-based beliefs (Nayyar et al.,793

2013a; Liu & Zhang, 2023). More formally, for any h ∈ [H̆], any two different joint strategies794
ğ1:h−1 and ğ′1:h−1, and any common information c̆h that can be reached under strategy ğ1:h−1, for795

any joint private information p̆h ∈ P̆h and state s̆h ∈ S̆,796

PD†
L

h (s̆h, p̆h | c̆h, ğ1:h−1) = PD†
L

h (s̆h, p̆h | c̆h, ğ′1:h−1). (C.2)

C.5 Proof of Theorem C.5797

Proof. To prove that D†
L has SI-CIB, it is sufficient to prove that for any h = 2, · · · , H̆ , fix798

any h1 ∈ [h − 1], i1 ∈ [n], and for any ğ1:h−1 ∈ Ğ1:h−1, ğ
′
i1,h1

∈ Ği1,h1
, let ğ′h1

:=799
(ğ1,h1

, · · · , ği1,h1
, · · · , ğn,h1

) and ğ′1:h−1 := (ğ1, · · · , ğ′h1
, · · · , ğh−1), the following holds800

P(s̆h, p̆h | c̆h, ğ1:h−1) = P(s̆h, p̆h | c̆h, ğ′1:h−1). (C.3)

We prove this case-by-case as follows:801

1. If there exists some i3 ̸= i1 such that σ(τ̆i1,h1) ⊆ σ(τ̆i3,h), σ(ăi1,h1) ⊆ σ(τ̆i3,h), then from802
Assumption 3.5, we know that σ(τ̆i1,h1) ⊆ σ(c̆h), σ(ăi1,h1) ⊆ σ(c̆h). Therefore, there exist803
deterministic functions α1, α2 such that τ̆i1,h1

= α1(c̆h), ăi1,h1
= α2(c̆h), and further it holds804

that805

P(s̆h, p̆h | c̆h, ğ1:h−1) = P(s̆h, p̆h |α1(c̆h), α2(c̆h), c̆h, ğ1:h−1)

= P(s̆h, p̆h | τ̆i1,h1
, ăi1,h1

, c̆h, ğ1:h−1) = P(s̆h, p̆h | τ̆i1,h1
, ăi1,h1

, c̆h, ğ
′
1:h−1).

The last equality is due to the fact that the input and output of ği1,h1 are τ̆ ′i1,h1
and ă′i1,h1

, respec-806
tively.807

2. If there does not exist any i2 ̸= i1 such that σ(τ̆i1,h1
) ⊈ σ(τ̆i2,h) or σ(ăi1,h1

) ⊈ σ(τ̆i2,h), then808
agent (i1, h1) does not influence agent (i2, h) for any i2 ̸= i1 in D†

L because D†
L is sQC, and809

h1 = 2k1 with k1 ∈ [n]. (If h1 is odd, then τ̆i1,h1
= c̆h1

⊆ c̆h ⊆ τ̆i2,h, and ăi1,h1
= m

i1,
h1+1

2
∈810

zah1+1
2

= z̆h1+1 ⊆ c̆h based on Assumption 2.1(b), which leads to a contradiction.) Now, we811

claim that agent (i1, h1) does not influence state s̆h, and does not influences τ̆i1,h, and prove this812
case-by-case as below:813

(a) If h = 2k−1, k ∈ [n], then p̆h = ∅. If agent (i1, h1) influences s̆h inD†
L, then agent (i1, h1)814

influences s̃h in DL (because strict expansion does not change system dynamics). From815
Assumption 3.4, we know that she also influences õ−i1,h. Then there exists i3 ̸= i1 such816
that agent (i1, h1) influences õi3,h inDL. From Assumption 2.1 (e), it holds õi3,h ∈ τ̃i3,h+1.817
Therefore, agent (i1, h1) influences agent (i3, h+1) in the problem DL. From Lemma C.2,818
we know σ(τi1,k−

1
) ⊆ σ(τi3,k−) in L. Furthermore, from Assumption 3.5 and i3 ̸= i1,819

it holds σ(τi1,k−
1
) ⊆ σ(ck−). Also, from the reformulation, it holds τ̃i1,h1

= τi1,k+
1

=820
τi1,k−

1
∪ zak1

and zak1
= z̃h1 ⊆ c̃h. Then, we have σ(τ̃i1,h1) ⊆ σ(c̃h) = σ(τ̃i3,h). Based821

on the strict expansion from DL to D†
L, we can get τ̆i1,h1

\τ̃i1,h1
⊆ c̆i1,h1

⊆ τ̆i3,h, and822
ăi1,h1

∈ c̆h. Then, it holds that σ(τ̆i1,h1
) ⊆ σ(τ̆i3,h), σ(ăi1,h1

) ⊆ σ(τ̆i3,h), which leads823
to contradition of σ(τ̆i1,h1) ⊈ σ(τ̆i2,h) or σ(ăi1,h1) ⊈ σ(τ̆i2,h). Hence, we know agent824
(i1, h1) does not influence state s̆h. Additionally, for any i2 ̸= i1, since agent (i1, h1) does825
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not influences agent (i2, h), and τ̆i1,h = c̆h = τ̆i2,h, then we know that agent (i1, h1) does826
not influence τ̆i1,h.827

(b) If h = 2k, k ∈ [n]. If agent (i1, h1) influences s̆h1+1, then from Assumption 3.4, agent828
(i1, h1) influences ŏ−i1,h1+1, and then there exists i3 ̸= i1 such that agent (i1, h1) influence829
ŏi3,h1+1. Howver, from Assumption 2.1 (e), we know that ŏi3,h1+1 ∈ τ̆i3,h, which means830
agent (i1, h1) influences agent (i3, h) and leads to a contradiction. Therefore, we know that831
agent (i1, h1) does not influence s̆h1+1, and further does not influence s̆h. Also, from the832
Assumption 3.3, ăi1,h1

/∈ τ̆i1,h′ ,∀h′ > h1, and agent (i1, h1) does not influence s̆h1+1.833
This means she does not influence any element in τ̆i1,h1+1. Therefore, agent (i1, h1) does834
not influence τ̆i1,h1+1, and hence does not influence ăi1,h1+1. In the same way, we know835
that agent (i1, h1) does not τ̆i1,h′ and ăi1,h′ for any h′ > h1. Finally, we conclude that agent836
(i1, h1) does not influence τ̆i1,h/837

Therefore, we know agent (i1, h1) does not influence s̆h, and does not influence τ̆i,h,∀i ∈ [n].838

P(s̆h, p̆h | c̆h, ğ1:h−1) = P(s̆h, p̆h, c̆h | c̆h, ğ1:h−1) = P(s̆h, τ̆h | c̆h, ğ1:h−1)

= P(s̆h, {τ̆i,h}i∈[n] | c̆h, ğ1:h−1) = P(s̆h, {τ̆i,h}i∈[n] | c̆h, ğ′1:H) = P(s̆h, p̆h | c̆h, ğ′1:h−1).

This completes the proof.839

840

C.6 Proof of Theorem 4.2841

Proof. Firstly, from the construction of D′
L and strategy space G1:H , we know that for any h ∈842

[H], i ∈ [n], C2h−1 = C̆2h−1,Ai,2h−1 = Ăi,2h−1, T i,2h = T̆i,2h,Ai,2h = Ăi,2h. Therefore,843
G1:H = Ğ1:H̆ , and finding a team optimal strategy of D′

L in the strategy space G1:H is equivalent to844
finding a team-optimum of D†

L in the strategy space Ğ1:H̆ .845
Secondly, we will prove that the Dec-POMDP D′

L satisfies the information evolution rules in the846
theorem. For each t ∈ [H], we define the random variable p̂i,2t−1 = pi,t− , p̂2t−1 = pt− . Recall847
that in the reformulation, p̃i,2t−1 = ∅ rather than pi,t− . Then, from the 2H-reformulation and848
Assumption 2.1, it holds that, for any i ∈ [n], h ∈ [H], if h = 2t− 1 with t ∈ [2 : H]849

z̃h = χt(p̃h−1, ãh−1, õh), p̂i,h = ξi,t(p̃i,h−1, ãi,h−1, õi,h);

if h = 2t with t ∈ [H], then850

z̃h = ϕt(p̂h−1, ãh−1), p̃i,h = p̂i,h−1\ϕi,t(p̂i,h−1, ãi,h−1),

where χt, ξi,t are fixed transformations and ϕh, ϕi,h are additional-sharing functions. Then, we can851
construct the {χh+1}h∈[H], {ξi,h+1}i∈[n],h∈[H] accordingly as follows:852

• If h = 2t − 1 with t ∈ [H], for any ph−1, ah−1, oh, since ph−1 = p̆h−1 from construc-853
tion of D′

L, we can select a p̃h−1 that p̆h−1 can be generated from p̃h−1 through expansion854
(such p̃h−1 might not be unique). Then, define χh(ph−1, ah−1, oh) = χt(p̃h−1, ah−1, oh) ∪855
{aj,h1 | j ∈ [n], h1 < h, aj,h1 ∈ ph−1, σ(τ̃j,h1) ⊆ σ(c̃h)}\(p̃h−1\ph−1). Since χt is a856
fixed transformation and we remove the p̃h−1\ph−1 part from zh, the value χh(ph−1, ah−1, oh)857
is the same no matter what p̃h−1 we select, and thus such χh is well-defined. Similarly,858
we can define ξi,h(pi,h−1, ai,h−1, oi,h−1) = ξi,t(p̃i,h−1, ai,h−1, oi,h)\{ai,h1

|h1 < h, ai,h1
∈859

pi,h−1, σ(τ̃i,h1
) ⊆ σ(c̃h)}\(p̃i,h−1\pi,h−1).860

• If h = 2t with t ∈ [H], for any ph−1, ah−1, from the construction of D′
L, we can select a p̂h−1861

that ph−1 can be generated from p̂h−1 = pt− through expansion (such p̂h−1 might not be unique).862
Also, it holds that oh = ∅, then define χh(ph−1, ah−1, oh) = ϕt(p̂h−1, ah−1) ∪ {aj,h1

| j ∈863
[n], h1 < h, aj,h1

∈ ph−1, σ(τ̃j,h1
) ⊆ σ(c̃h)}\(p̂h−1\ph−1). Still, since ϕt is the addition-864

sharing function, which part of p̂h−1 to share only depends on ah−1, and not depends on the865
value of p̂h−1, and we remove the p̂h−1\ph−1 part from zh, the value of χh(ph−1, ah−1, oh)866
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is the same no matter what p̂h−1 we select, and thus such χh is well-defined. Similarly, we867
can define ξi,h(pi,h−1, ai,h−1, oi,h−1) = pi,h−1\{ai,h1

|h1 < h, ai,h1
∈ pi,h−1, σ(τ̃i,h1

) ⊆868
σ(c̃h)}\ϕi,t(p̂i,h−1, ai,h−1).869

Therefore, the common and private information of D′
L satisfies that870

ch+1 = ch ∪ zh+1, zh+1 = χh+1(ph, ah, oh+1)

for each i ∈ [n], pi,h+1 = ξi,h+1(pi,h, ai,h, oi,h+1),

with some functions {χh+1}h∈[H], {ξi,h+1}i∈[n],h∈[H].871

Thirdly, we prove that such a Dec-POMDP D′
L is SI with respect to the strategy space G1:H . This is872

equivalent to that for any h ∈ [2 : H], sh ∈ S, ph ∈ Ph, ch ∈ Ch, i1 ∈ [n], h1 < h, g1:h−1, g
′
i1,h1

∈873
Gi1:h1

, let g′1:h−1 = (g1,1, · · · , gi1−1,h1
, g′i1,h1

, · · · , gn,h−1), it holds that874

PD′
L

h (sh, ph | ch, g1:h−1) = PD′
L

h (sh, ph | ch, g′1:h−1). (C.4)

We prove this case by case. If h = 2t with t ∈ [H], then from the result of Theorem C.5, it holds875
that876

PD′
L

h (sh, ph | ch, g1:h−1) = PD†
L

h (sh, ph | ch, g1:h−1)

= PD†
L

h (sh, ph | ch, g′1:h−1) = PD′
L

h (sh, ph | ch, g′1:h−1).

If h = 2t − 1 with t ∈ [H], and h1 = 2t1 − 1 with t1 ∈ [H], which means that ah1 corresponds877
to the communication action in previously L. Then it holds that ch1 ⊆ ch, ai1,h1 = m

i1,
h1+1

2
∈ ch,878

then879

PD′
L

h (sh, ph | ch, g1:h−1) = PD′
L

h (sh, ph | ch1 , ai1,h1 , ch, g1:h−1)

= PD′
L

h (sh, ph | ch1
, ai1,h1

, ch, g1:h−1\gi1,h1
) = PD′

L
h (sh, ph | ch, g′1:h−1),

where the second equality is because the input and output of gi1,h1
are ch1

and ai1,h1
.880

If h = 2t − 1 with t ∈ [H], and h1 = 2t1 with t1 ∈ [H], which means that h1 is in the control881
timestep, then if agent (i1, h1) influences the underlying state sh1+1, then from Assumption 3.4, we882
know that there exists i2 ̸= i1 that, agent (i1, t1) influences oi2,t, and thus influences agent (i2, t)883
in problem L even there is no additional sharing. From QC of L and Assumption 3.5, we know that884
σ(τi1,t−1

) ⊆ σ(τi2,t−) ⊆ σ(ct). Also, from τi1,t−\τi1,t+1 ⊆ ct+ , we get σ(τi1,t+1 ) ⊆ σ(ct). After885
reformulation, we have σ(τ̃i1,h1

) ⊆ σ(c̃h). From the definition of strict expansion in Eq. (4.1), we886
have ai1,h1

∈ ch, and σ(τ i1,h1
) ⊆ σ(ch). Then, we conclude887

PD′
L

h (sh, ph | ch, g1:h−1) = PD′
L

h (sh, ph | τ i1,h1
, ai1,h1

, ch, g1:h−1)

= PD′
L

h (sh, ph | τ i1,h1
, ai1,h1

, ch, g1:h−1\gi1,h1
) = PD′

L
h (sh, ph | ch, g′1:h−1),

where the second equal sign is because the input and output of gi1,h1
are τ i1,h1

and ai1,h1
.888

If agent (i1, h1) does not influence the underlying state sh1+1, then from Assumption 3.3, ai1,h1
/∈889

τh2
for any h2 > h1. Then, agent (i1, h1) will not influence sh and ph. Then, it directly holds that890

PD′
L

h (sh, ph | ch, g1:h−1) = PD′
L

h (sh, ph | ch, g′1:h−1),

which completes the proof.891

C.7 Important Definitions of SI Dec-POMDP892

Given a Dec-POMDP SI D′
L obtained from L after reformulation, strict expansion and refinement.893

In this part, we only need to discuss how to solve this D′
L. Recall that we use ¯ for the notation of894

the elements and quantities in D′
L.895

896

First, we define the following quantities.897
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Definition C.6 (Value function). For each i ∈ [n] and h ∈ [H], given common information ch and898
strategy g1:H , the value function conditioned on the common information is defined as:899

V
g,D′

L
h (ch) := ED′

L
g [

H∑
h′=h

Rh′(sh′ , ah′ , ph′) | ch], (C.5)

where Rh′ takes sh′ , ah′ , ph′ as input, since after reformulation, the reward may come from com-900
munication cost, which is a function of ph′ and ah′ .901

Definition C.7 (Prescription and Q-Value function). Prescription is an important concept in the902
common-information-based framework (Nayyar et al., 2013b;a). The prescription of agent i at903
the timestep h is defined as γi,h : Pi,h → Ai,h. We use γh to denote the joint prescription and904
Γi,h,Γh to denote the prescription space. The prescriptions are the marginalization of strategy gh,905
i.e., γi,h(· | pi,h) = gi,h(· | ch, pi,h). Then we can define the Q-value function as906

Q
g,D′

L
h (ch, γh) := ED′

L
g

 H∑
h′=h

Rh′(s′h, a
′
h, p

′
h) | ch, γh

 . (C.6)

Remark C.8. In this paper, for any Dec-POMDP D′
L generated by an L after reformulation, strict907

expansion, and refinement, we only consider the strategy spaces at odd timesteps as Gi,2t−1 :908
C2t−1 → Ai,2t−1 and aim to find the optimal strategy in these classes. Therefore, we define the909
prescription spaces at odd timesteps as ∀h ∈ [H], i ∈ [n],Γi,2h−1 = Ai,2h−1,Γ2h−1 = A2h−1.910

Definition C.9 (Expected approximate common information model). We define an expected ap-911
proximate common information model of D′

L as912

M :=
(
{Ĉh}h∈[H], {ϕ̂h}h∈[H], {P

M,z
h }h∈[H],Γ, {R̂

M
h }h∈[H]

)
, (C.7)

where Γ is the joint prescription space, Ĉh is the space of approximate common information at913
step h. PM,z

h : Ĉh × Γh → ∆(Zh+1) gives the probability of zh+1 under ĉh and γh. R̂M
h :914

Ĉh × Γh → [0, 1] gives the reward at timestep h given ĉh and γh. Then, we call that M is an915
(ϵr(M), ϵz(M))-expected-approximate common information model ofD′

L with some compression916
function Compressh such that ĉh =Compressh(ch) satisfies the following:917

• There exists a transformation function ϕ̂h such that918

ĉh = ϕ̂h(ĉh−1, zh), (C.8)

where zh = ch\ch−1 in D′
L.919

• For any g1:h−1 and any prescription γh ∈ Γh, it holds that920

ED′
L

a1:h−1,o1:h∼g1:h−1
|ED′

L [Rh(sh, ah, ph) | ch, γh]− R̂M
h (ĉh, γh)| ≤ ϵr(M). (C.9)

• For any g1:h−1 and any prescription γh ∈ Γh, it holds that921

ED′
L

a1:h−1,o1:h∼g1:h−1
||PD′

L
h (· | ch, γh)− PM,z

h (· | ĉh, γh)||1 ≤ ϵz(M). (C.10)

Definition C.10 (Value function under M). Given an Dec-POMDP D′
Land its expected approxi-922

mate common information modelM. For any strategy g1:H ∈ G1:H , h ∈ [H], we define the value923
function as924

V
g1:H ,M
h (ch) =R̂M

h (Compressh(ch), {gj,h(· | ch, ·)}j∈[n])

+ EM[V
g1:H ,M
h (ch+1) |Compressh(ch), {gj,h(· | ch, ·)}j∈[n]].

(C.11)
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Definition C.11 (Model-belief consistency). We say the expected approximate common informa-925
tion model M is consistent with some belief {PM,c

h (sh, ph | ĉh)}h∈[H] if it satisfies the following926
for all i ∈ [n], h ∈ [H]:927

PM,z
h (zh+1 | ĉh, γh) =

∑
sh,ph,ah,oh+1:

χh+1(ph,ah,oh+1)=zh+1

(C.12)

(
PM,c
h (sh, ph | ĉh)1[ah = γh(ph)]

∑
sh+1

Th(sh+1 | sh, ah)]Oh+1(oh+1 | sh+1)
)
, (C.13)

R̂M
h (ĉh, γh) =

∑
sh,ph,ah

PM,c
h (sh, ph | ĉh)1[ah = γh(ph)]Rh(sh, ah). (C.14)

Definition C.12 (Strategy-dependent approximate common information model). Given a model M̃928
(as in Definition C.9) and H joint strategies g1:H , where each gh ∈ G1:H for h ∈ [H], we say M̃929
is a strategy-dependent expected approximate common information model, denoted as M̃(π1:H), if930

it is consistent with the strategy-dependent belief {Pπh,D′
L

h (sh, ph | ĉh)}h∈[H] (as per C.11). we say931

M̃ is a strategy-dependent expected approximate common information model, denoted as M̃(g1:H),932

if it is consistent with the strategy-dependent belief {Pgh,D′
L

h (sh, ph | ĉh)}h∈[H] (as per C.11).933

Definition C.13 (Length of approximate common information). Given the compression func-934
tions {Compressh}h∈[H+1], we define the integer L̂ > 0 as the minimum length such that935

there exists a mapping f̂h : Amax{1,h−L̂}:h−1 × Omax{1,h−L̂+1},h → Ĉh such that for936

each h ∈ [H + 1] and joint history {o1:h, a1:h−1}, we have f̂h(xh) = ĉh, where xh =937
{amax{h−L̂,1}, omax{h−L̂,1}+1, · · · , ah−1, oh}.938

C.8 Main Results for Planning in QC LTC939

Finally, we provide the formal guarantees for planning in QC LTC.940

Theorem C.14. Given any QC LTC problem L satisfying Assumptions 3.1, 3.2, 3.3, 3.4, and 4.3,941
we can construct an SI Dec-POMDP problem D′

L such that for any ϵ > 0, solving an ϵ-team op-942
timal strategy in D′

L can give us an ϵ-team optimal strategy of L, and the following holds. Fix943
ϵr, ϵz > 0 and given any (ϵr, ϵz)-expected-approximate common information modelM for D′

L that944
is consistent with some given approximate belief {PM,c

h (sh, ph | ĉh)}h∈[H], Algorithm 1 can com-945

pute a (2Hϵr +H
2
ϵz)-team optimal strategy for the original LTC problem L with time complexity946

maxh∈[H] |Ĉh| · poly(|S|, |Ah|, |Ph|, H). In particular, for fixed ϵ > 0, if L has any one of base-947
line sharing protocols as in §A, one can construct aM and apply Algorithm 1 to compute an ϵ-team948
optimal strategy for L in quasi-polynomial time.949

Proof. We divide the proof into the following three Parts.950
951

Part I: Given any QC LTC problem L satisfying Assumptions 3.1, 3.2, 3.3, and 3.4, we can952
construct an SI Dec-POMDP problem D′

L such that finding an ϵ-team optimal strategy can give us953
an ϵ-team optimal strategy of L, as shown in Algorithm 1.954
We can construct a Dec-POMDP D′

L from L through Algorithm 1. From Proposition C.1 and955
Theorems C.4, C.5. We know that D′

L is SI and an ϵ-team-optimal strategy of D′
L can give us an956

ϵ-team optimal strategy of L.957
958

Part II: Given any ϵ-expected-approximate common information model M of the Dec-POMDP959
D′

L, there exists an algorithm, Algorithm 6, that can output an ϵ-team optimal strategy of D′
L.960

First, we need to prove that solving M can get the ϵ-team optimal strategy of D′
L. We prove the961

following 2 lemmas first.962
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Lemma C.15. For any strategy g1:H , and h ∈ [H], we have963

ED′
L

g1:H
[|V g1:H ,D′

L
h (ch)− V

g1:H ,M
h (ch)|] ≤ (H − h+ 1)ϵr +

(H − h+ 1)(H − h)

2
ϵz. (C.15)

Proof. We prove it by induction. For h = H + 1, we have V
g1:H ,D′

L
h (ch) = V

g1:H ,M
h (ch) = 0.964

For the step h ≤ H , we have965

ED′
L

g1:H
[|V g1:H ,D′

L
h (ch)− V

g1:H ,M
h (ch)|]

≤ED′
L

g1:H

[
|EDL [Rh(sh, ah, ph) | ch, {gj,h(· | ch, ·)}j∈[n]]− R̂M

h (ĉh, {gj,h(· | ch, ·)}j∈[n])|
]

+ ED′
L

g1:H

[
|E

zh+1∼P
D′

L
h (· | ch,{gj,h(· | ch,·)}j∈[n])

[V
g1:H ,D′

L
h (ch ∪ zh+1)]

− Ezh+1∼PM,z
h (· | ĉh,{gj,h(· | ch,·)}j∈[n])

[V
g1:H ,M
h (ch ∪ zh+1)]|

]
≤ϵr + (H − h)ED′

L
a1:h−1,o1:h∼g1:h−1

||PD′
L

h (· | ch, γh)− PM,z
h (· | ĉh, γh)||1

+ ED′
L

a1:h−1,o1:h∼g1:h−1

[
|V g1:H ,D′

L
h+1 (ch+1)− V

g1:H ,M
h+1 (ch+1)|

]
≤ϵr + (H − h)ϵz + (H − h)ϵr +

(H − h)(H − h− 1)

2
ϵz

≤(H − h+ 1)ϵr +
(H − h)(H − h+ 1)

2
ϵz.

The proof mainly follows from the proof of Lemma 2 in (Liu & Zhang, 2023). But the dif-966
ference is that D′

L may not satisfy Assumption 2.1. In the third line of this proof, we had967

zh+1 ∼ PD′
L

h (· | ch, {gj,h(· | ch, ·)}j∈[n]), where zh+1 is generated as968

PD′
L

h (zh+1 | ch, γh) =
∑

sh∈S,ph∈Ph

PD′
L

h (sh, ph | ch)

∑
sh+1∈S,oh+1∈Oh+1

Th+1(sh+1 | sh, γh(ph))Oh+1(oh+1 | sh+1)1[χh+1(ph, γh(ph), oh+1)],

with γh = {gj,h(· | ch, ·)}j∈[n].969

Lemma C.16. Let ĝ∗
1:H

be the strategy output by Algorithm 6, then for any h ∈ [H], ch ∈970

Ch, g1:H ∈ G1:H , it holds that971

V
g1:H ,M
h (ch) ≤ V

ĝ∗
1:H

,M
h (ch). (C.16)

Proof. We prove it by induction. For h = H + 1, we have V
g1:H ,M
h (ch) = V

ĝ∗
1:H

,M
h (ch) = 0.972

For the timestep h ≤ H , we have973

V
g1:H ,M
h (ch) = EM[r̂Mh (ĉh) + V

g1:H ,M
h+1 (ch+1) | ĉh, g1:H ]

≤ EM[r̂Mh (ĉh) + V
ĝ1:H ,M
h+1 (ch+1) | ĉh, g1:H ]

= Q
ĝ1:H,M
h (ch, {gj,h(· | ch)}j∈[n])

≤ Q
ĝ1:H,M
h (ch, {gj,h(· | ch)}j∈[n])

= V
ĝ∗
1:H

,M
h (ch).

For the first inequality, we use the induction hypothesis. For the second inequality sign, we use the974

property of argmax in algorithm and V
ĝ∗
1:H

,M
h (ch) = V

ĝ∗
1:H

,M
h (ĉh). By induction, we complete the975

proof.976
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We now go back to the proof of the theorem. Let ĝ∗
1:H

be the solution output by Algorithm 6, then977

for any g1:H ∈ G1:H , h ∈ [H], ch ∈ Ch, we have978

ED′
L

g1:H

[
V

g1:H ,D′
L

h (ch)− V
ĝ∗
1:H

,D′
L

h (ch)
]

= ED′
L

g1:H

[(
V

g1:H ,D′
L

h (ch)− V
ĝ∗
1:H

,M
h (ch)

)
+

(
V

ĝ∗
1:H

,M
h (ch)− V

ĝ∗
1:H

,D′
L

h (ch)
)]

≤ ED′
L

g1:H

[(
V

g1:H ,D′
L

h (ch)− V
g1:H ,M
h (ch)

)
+
(
V

ĝ∗
1:H

,M
h (ch)− V

ĝ∗
1:H

,D′
L

h (ch)
)]

≤ (H − h+ 1)ϵr +
(H − h)(H − h+ 1)

2
ϵz + (H − h+ 1)ϵr +

(H − h)(H − h+ 1)

2
ϵz

= 2(H − h+ 1)ϵr + (H − h)(H − h+ 1)ϵz.
(C.17)

For the first inequality, we use Lemma C.16. For the second inequality sign, we use Lemma C.15.979

Then apply h = 1, we have JD′
L
(g1:H) ≤ JD′

L
(ĝ∗

1:H
) + 2Hϵr +H

2
ϵz . This completes the proof of980

Part II.981
982

Part III: If the baseline sharing of L is one of the 4 cases in §A, we can construct an expected-983
approximate common information model of D′

L.984
3kkk We first prove following lemmas: We aim to bound (ϵr, ϵz) using the following lemma.985

Lemma C.17. Given any belief {PM,c
h (sh, ph}h∈[H] consistent with the expected-approximate-986

common-information modelM, it holds that for any h ∈ [H], Ch, γh ∈ Γh:987

||PD′
L

h (· | ch, γh)− PM,z
h (· | ĉh, γh)||1 ≤ ||P

D′
L

h (·, · | ch)− PM,c
h (·, · | ĉh)||1,

|ED′
L [Rh(sh, ah, ph) | ch, γh]− R̂M

h (ĉh, γh)| ≤ ||P
D′

L
h (·, · | ch)− PM,c

h (·, · | ĉh)||1,

where ĉh =Compressh(ch).988

Proof. Adapted from Lemma 3 in (Liu & Zhang, 2023) by changing the reward function of989
ri,h(sh, ah) to Rh(sh, ah, ph). Note that the latter can still be evaluated given the common-990

information-based belief, PD′
L

h (sh, ph | ch).991

Then we define the belief states following the notation in (Golowich et al., 2023; Liu & Zhang,992
2023) as b1(∅) = µ1, bh(a1:h−1, o1:h) = P(sh = · | o1:h, a1:h−1), bh(a1:h−1, o1:h−1) = P(sh =993
· | o1:h−1, a1:h−1), where b ∈ ∆(S). Also, we define the approximate belief state using the most994
recent L-step history, that995

b
′
h(ah−L:h−1, oh−L+1:h−1) = P(sh = · | sh−L ∼ Unif(S), ah−L:h−1, oh−L+1:h)

b
′
h(ah−L:h−1, oh−L+1:h−1) = P(sh = · | sh−L ∼ Unif(S), ah−L:h−1, oh−L+1:h).

Also, for any set N ⊆ [n], we define aN,h = {ai,h}i∈N , and the same for oN,h. We can also define996
the belief of states given historical observations and actions as follows: for any N ⊆ [n],997

bh(a1:h−1, o1:h−1, oN,h) = P(sh = · | a1:h−1, o1:h−1, oN,h)

b
′
h(ah−L:h−1, oh−L+1:h−1, oN,h) = Ph(sh = · | sh−L ∼ Unif(S), ah−L:h−1, oh−L+1:h−1, oN,h).

Then, we have the following lemma.998

Lemma C.18. There is a constant C ≥ 1 such that the following holds. Given any LTC problem L999
satisfying Assumption 3.1, and let D′

L be the Dec-POMDP after reformulation, strict expansion and1000
refinement. Let ϵ ≥ 0, fix a strategy g1:H and indices 1 ≤ h−L < h−1 ≤ H . If L ≥ Cγ−4 log(Sϵ ),1001
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then the following set of inequalities hold1002

Ea1:h−1,o1:h∼g1:H
||bh(a1:h−1, o1:h)− b

′
h(ah−L:h−1, oh−L+1:h)||1 ≤ ϵ (C.18)

Ea1:h−1,o1:h∼g1:H
||bh(a1:h−1, o1:h−1)− b

′
h(ah−L:h−1, oh−L+1:h−1)||1 ≤ ϵ (C.19)

Ea1:h−1,o1:h∼g1:H
||bh(a1:h−1, o1:h−1, oN,h)− b

′
h(ah−L:h−1, oh−L+1:h−1, oN,h)||1 ≤ ϵ. (C.20)

Proof. Given any LTC problem L, we can construct a Dec-POMDP Ď that the transition and obser-1003
vation functions of Ď are the same as L. And the information of Ď is fully sharing, which means it1004
shares all the o1:h−1, a1:h as common information at timestep h. Since D′

L is reformulated from L,1005
we have1006

bh(a1:h−1, o1:h) = b⌊h+1
2 ⌋(a1:⌊h−1

2 ⌋, o1:⌊h+1
2 ⌋) = b̌⌊h+1

2 ⌋(ǎ1:⌊h−1
2 ⌋, ǒ1:⌊h+1

2 ⌋)

bh(a1:h−1, o1:h−1) = b⌊h+1
2 ⌋(a1:⌊h−1

2 ⌋, o1:⌊h
2 ⌋
) = b̌⌊h+1

2 ⌋(ǎ1:⌊h−1
2 ⌋, ǒ1:⌊h

2 ⌋
).

And for the approximate belief state, we have1007

b
′
h+1(ah−L:h, oh−L+1:h) = b′⌊h+2

2 ⌋(a⌊h−L
2 ⌋:⌊h

2 ⌋
, o⌊h−L+2

2 ⌋:⌊h+1
2 ⌋)

= b̌′⌊h+2
2 ⌋(ǎ⌊h−L

2 ⌋:⌊h
2 ⌋
, ǒ⌊h−L+2

2 ⌋:⌊h+1
2 ⌋)

b
′
h(ah−L:h−1, oh−L+1:h)

= b′⌊h+1
2 ⌋(a⌊h−L

2 ⌋:⌊h−1
2 ⌋, o⌊h−L+2

2 ⌋:⌊h+1
2 ⌋) = b̌′⌊h+1

2 ⌋(ǎ⌊h−L
2 ⌋:⌊h−1

2 ⌋, ǒ⌊h−L+2
2 ⌋:⌊h

2 ⌋
).

Also, since for any t ∈ [H], a2t−1 are communication actions, o2t = ∅ is null, and s2t−1 = s2t1008
always holds. Then we can write Eq. (C.18) and Eq. (C.19) as1009

E
{a2t}

⌊h−1
2

⌋
t=1 ,{o2t−1}

⌊h+1
2

⌋
t=1 ∼g1:H

||bh(a1:h−1, o1:h)− b
′
h(ah−L:h−1, oh−L+1:h)||1 ≤ ϵ (C.21)

E
{a2t}

⌊h−1
2

⌋
t=1 ,{o2t−1}

⌊h+1
2

⌋
t=1 ∼g1:H

||bh(a1:h−1, o1:h−1)− b
′
h(ah−L:h−1, oh−L+1:h−1)||1 ≤ ϵ. (C.22)

Since Ď has a fully-sharing IS, for any i ∈ [n], h ∈ [H] and information τ i,h, τ i,2h, we have1010
σ(τ i,h) ⊆ σ(τ̌i,⌊h+1

2 ⌋). Therefore, given any strategy g1:H , we can construct a strategy ǧ1:H such1011
that, for any a1:h−1, o1:h1012

P({a2t}
⌊h−1

2 ⌋
t=1 , {o2t−1}

⌊h+1
2 ⌋

t=1 | g1:H) = P(ǎ1:⌊h−1
2 ⌋, ǒ1:⌊h+1

2 ⌋ | ǧ1:H).

Since Ď satisfies Assumption 3.1, we can apply the Theorem 10 in (Liu & Zhang, 2023) with ǧ1:H1013
to get the result that there is a constant C0 ≥ 1 such that if L′ ≥ C0γ

−4 log(Sϵ ), the following holds1014

Eǎ
1:⌊h−1

2
⌋
,ǒ

1:⌊h+1
2

⌋
∼ǧ1:H (C.23)

||b̌⌊h+1
2 ⌋(ǎ1:⌊h−1

2 ⌋, ǒ1:⌊h+1
2 ⌋)− b̌′⌊h+1

2 ⌋(ǎ⌊h
2 ⌋−L′:⌊h−1

2 ⌋, ǒ⌊h+1
2 ⌋−L′+1:⌊h+1

2 ⌋)||1 ≤ ϵ (C.24)

Eǎ
1:⌊h−1

2
⌋
,ǒ

1:⌊h+1
2

⌋
∼ǧ1:H (C.25)

||b̌⌊h+1
2 ⌋(ǎ1:⌊h−1

2 ⌋, ǒ1:⌊h
2 ⌋
)− b̌′⌊h+1

2 ⌋(ǎ⌊h
2 ⌋−L′:⌊h−1

2 ⌋, ǒ⌊h+1
2 ⌋−L′+1:⌊h

2 ⌋
)||1 ≤ ϵ. (C.26)

We choose C = 3C0, L = 2L′ + 1. If L ≥ Cγ−4 log(Sϵ ), there must have L′ ≥ C0γ
−4 log(Sϵ ).1015

Therefore, we directly get Eq. (C.21) and Eq. (C.22).1016
For Eq. (C.20), we cannot directly apply Theorem 10 in (Liu & Zhang, 2023), but we can slightly1017
change the Eq. (E.11) of Theorem 10 in (Liu & Zhang, 2023) as1018

ED′
L

a1:h−1,o1:h∼g1:H ||bh(a1:h−1, o1:h−1, oN,h)− b
′
h(ah−L:h−1, oh−L+1:h−1, oN,h)||1 ≤ ϵ. (C.27)

It still holds if the posterior update F q(P : o1,h) is changed to F q(P : oN,h), when applying Lemma1019
9 in the proof of Theorem 10 of (Liu & Zhang, 2023). Therefore, we can use the same arguments to1020
prove Eq. (C.20) from Eq. (C.27) as above, and this completes the proof.1021
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Then we can compress the common information using a finite-memory truncation. Here, we discuss1022
case-by-case how to compress it for the 8 examples of QC LTC given in §A. Note that after refor-1023
mulation, strict expansion, and refinement, Examples 5 and 6 will be the same as Example 1, and1024
Examples 7 and 8 will be the same as Example 2. Therefore, we can categorize the examples in §A1025
into 4 types.1026

Type 1: Baseline sharing of L is one of Examples 1, 5, 6 in §A. Then, common information should1027
be that for any t ∈ [H], c2t−1 = {o1:2t−2, a1:2t−2}, c2t = {o1:2t−2, a1:2t−1, oN,2t−1}, N ⊆ [n],1028
where N is the set of agents choose to share their observations through additional shar-1029

ing, and N can be inferred from c2t. Then we have that PD′
L

2t−1(s2t−1, p2t−1 | c2t−1) =1030
b2t−1(a1:2t−2, o1:2t−2)(s2t−1)O2t−1(o2t−1 | s2t−1). Fix compress length L > 0, we1031
define the approximate common information as ĉ2t−1 = {a2t−1−L:2t−2, o2t−L:2t−2},1032
and the common information conditioned belief as PM,c

2t−1(s2t−1, p2t−1 | ĉ2t−1) =1033
b2t−1(a2t−1−L:2t−2, o2t−L:2t−2)(s2t−1)O2t−1(o2t−1 | s2t−1). Also, we have1034

PD′
L

2t (s2t, p2t | c2t) = b2t−1(a1:2t−1, o1:2t−2, oN,2t−1)(s2t−1)P2t−1(o−N,2t−1 | s2t−1, oN,2t−1).1035
Fix compress length L > 0, we define the approximate com-1036
mon information a ĉ2t = {a2t−1−L:2t−2, o2t−L:2t−2, oN,2t−1}, and1037
the common information conditioned belief as PM,c

2t (s2t, p2t | ĉ2t) =1038

b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−2, oN,2t−1)(s2t−1)P2t−1(o−N,2t−1 | s2t−1, oN,2t−1), where1039

P2t−1(o−N,2t−1 | s2t−1, oN,2t−1) =
O2t−1(oN,2t−1,o−N,2t−1 | s2t−1)∑

o′−N,2t−1
O2t−1(oN,2t−1,o′−N,2t−1 | s2t−1)

. Now, we need1040

to verify that Definition C.9 is satisfied.1041

• The {ĉh}h∈[H] satisfied the Eq. (C.8) since for any h ∈ [H], ĉh+1 ⊆ ĉh ∪ zh.1042

• Note that for any c2t−1 and the corresponding ĉ2t−1 constructed above:1043

||PD′
L

2t−1(·, · | ch)− PM,c
2t−1(·, · | ĉh)||1

=
∑

s2t−1,o2t−1

|b2t−1(a1:2t−2, o1:2t−2)(s2t−1)O2t−1(o2t−1 | s2t−1)

− b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−1)(s2t−1)O2t−1(o2t−1 | s2t−1)|

= ||b2t−1(a1:2t−2, o1:2t−2)− b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−1)||1.

For any c2t and the corresponding ĉ2t constructed above:1044

||PD′
L

2t (·, · | ch)− PM,c
2t (·, · | ĉh)||

=
∑

s2t−1,o−N,2t−1

|b2t−1(a1:2t−1, o1:2t−2, oN,2t−1)(s2t−1)P2t−1(o−N,2t−1 | s2t−1, oN,2t−1)

− b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−2, oN,2t−1)(s2t−1)P2t−1(o−N,2t−1 | s2t−1, oN,2t−1)|

= ||b2t−1(a1:2t−1, o1:2t−2, oN,2t−1)− b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−2, oN,2t−1)||1.

If we choose L ≥ Cγ−4 log(Sϵ ), then we have that for any h ∈ [H]1045

Ea1:h−1,o1:h∼g1:H
||PD′

L
h (·, · | ch)− PM,c

h (·, · | ĉh)||1 ≤ ϵ.

Therefore, such a model is an ϵ-expected-approximate common information model.1046
1047

Type 2: Baseline sharing of L is Example 3 in §A. Then, common information com-1048
mon information should be that for any t ∈ [H], c2t−1 = {o1:2t−2, a1:2t−2, o1:2t−1}, c2t =1049
{o1:2t−2, a1:2t−1, oN,2t−1}, N ⊆ [n], 1 ∈ N . Here N is the same as defined in1050
case 1, but it must satisfy that 1 ∈ N . Then we similarly as case 1, we con-1051
struct ĉ2t−1 = {o2t−L:2t−2, a2t−L−1:2t−2, o1:2t−1}, ĉ2t = {a2t−1−L:2t−2, o2t−L:2t−2, oN,2t−1},1052
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and approximate common information conditioned belief as PM,c
2t−1(s2t−1, p2t−1 | ĉ2t−1) =1053

b2t−1(a2t−1−L:2t−2, o2t−L:2t−2, o1,2t−1)(s2t−1)P2t−1(o−1,2t−1 | s2t−1, o1,2t−1),PM,c
2t (s2t,1054

p2t | ĉ2t) = b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−2, oN,2t−1)(s2t−1)P2t−1(o−N,2t−1 | s2t−1, oN,2t−1).1055

Now, we need to verify Definition C.9 is satisfied.1056

• The {ĉh}h∈[H] satisfies the Eq. (C.8) since for any h ∈ [H], ĉh+1 ⊆ ĉh ∪ zh.1057

• Note that for any c2t−1 and the corresponding ĉ2t−1 constructed above:1058

||PD′
L

2t−1(·, · | ch)− PM,c
2t−1(·, · | ĉh)||1

=
∑

s2t−1,o−1,2t−1

|b2t−1(a1:2t−1, o1:2t−2, o1,2t−1)(s2t−1)P2t−1(o−1,2t−1 | s2t−1, o1,2t−1)

− b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−2, o1,2t−1)(s2t−1)P2t−1(o−1,2t−1 | s2t−1, o1,2t−1)|

= ||b2t−1(a1:2t−1, o1:2t−2, o1,2t−1)− b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−2, o1,2t−1)||1.

For any c2t and the corresponding ĉ2t constructed above:1059

||PD′
L

2t (·, · | ch)− PM,c
2t (·, · | ĉh)||1

=
∑

s2t−1,o−N,2t−1

|b2t−1(a1:2t−1, o1:2t−2, oN,2t−1)(s2t−1)P2t−1(o−N,2t−1 | s2t−1, oN,2t−1)

− b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−2, oN,2t−1)(s2t−1)P2t−1(o−N,2t−1 | s2t−1, oN,2t−1)|

= ||b2t−1(a1:2t−1, o1:2t−2, oN,2t−1)− b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−2, oN,2t−1)||1.

If we choose L ≥ Cγ−4 log(Sϵ ), then from Lemma C.18 we have, for any h ∈ [H]1060

Ea1:h−1,o1:h∼g1:H
||PD′

L
h (·, · | ch)− PM,c

h (·, · | ĉh)||1 ≤ ϵ.

Therefore, such a model is an ϵ-expected-approximate common information model.1061
1062

Type 3: Baseline sharing of L is one of Examples 2, 7, 8 in §A. Then the common information1063

should be that, for any h ∈ [H], ch = {o1:h−2d, a1,1:h−1, {a−1,2t−1}
⌊h

2 ⌋
t=⌊h−2d+1

2 ⌋, o1,h−2d+1:h, oM},1064

where M ⊂ {(i, t) | 1 < i ≤ n, h−2d+1 ≤ t ≤ h} and oM = {oi,t | (i, t) ∈M}, and correspond-1065
ing ph = {oi,t | 1 < i ≤ n, h− 2d < t ≤ h, (i, t) /∈ M}. Actually, oM are the observations shared1066

by the additional sharing in L. Denote fτ,h−2d = {a1:h−2d−1, oh−2d, {a−1,2t−1}
⌊h

2 ⌋
t=⌊h−2d+1

2 ⌋}, fa =1067

{a1,h−2d:h−1}, fo = {o1,h−2d+1:h, oM}. We can compute the common-information-based belief as1068

PD′
L

h (sh, ph | ch) =
∑
sh−2d

PD′
L

h (sh, ph | sh−2d, fa, fo)P
D′

L
h (sh−2d | fτ,h−2d, fa, fo)

=
∑
sh−2d

PD′
L

h (sh, ph | sh−2d, fa, fo)
PD′

L
h (sh−2d, fa, fo | fτ,h−2d)∑

s′h−2d
PD′

L
h (s′h−2d, fa, fo | fτ,h−2d)

.

Denote the probability Ph(fo | sh−2d, fa) := Π2d
t=1P

D′
L

h (o1,h−2d+t, oMh−2d+t
| sh−2d, a1,h−2d:h−2d+t),1069

where Mh−2d+t = {(i, h − 2d + t) | (i, h − 2d + t) ∈ M} denotes the set of observations at1070
timestep h− 2d+ t and shared through additional sharing. With such notation, we have1071

PD′
L

h (sh−2d | fτ,h−2d, fa, fo) =
bh−2d(a1:h−2d−1, o1:h−2d)(sh−2d)Ph(fo | sh−2d, fa)∑

s′h−2d
bh−2d(a1:h−2d−1, o1:h−2d)(s

′
h−2d)Ph(fo | s′h−2d, fa)

=FPh(· | ·,fa)(bh−2d(a1:h−2d−1, o1:h−2d); fo)(sh−2d),
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where FPh(· | ·,fa)(·; fo) : ∆(S) → ∆(S) is the posterior belief update function. The formal1072
definition is shown in Lemma 9 in (Liu & Zhang, 2023).1073
Then, we define the approximate common information as ĉh :=1074
{o1,h−2d−L+1:h, a1,h−2d−L:h−1, oM} and corresponding approximate common information1075
conditioned belief as1076

PM,c
h (sh, ph | ĉh) =

∑
sh−2d

PD′
L

h (sh, ph | sh−2d, fa, fo)F
Ph(· | ·,fa)(b

′
h−2d(ah−2d−L:h−2d−1, oh−2d−L+1:h−2d); fo)(sh−2d).

Now we verify that Definition C.9 is satisfied.1077

• Obviously, the {ĉh}h∈[H satisfies Eq. (C.8).1078

• For any ch and the corresponding ĉh constructed above:1079

||PD′
L

h (·, · | ch)− PM,c
h (·, · | ĉh)||1 ≤ ||FP (· | ·,fa)(bh−2d(a1:h−2d−1, o1:h−2d); fo)−

FP (· | ·,fa)(b
′
h−2d(ah−2d−L:h−2d−1, oh−2d−L+1:h−2d); fo)||1.

If we choose L ≥ Cγ−4 log(Sϵ ), then for any strategy g1:H , by taking expectations over1080
fτ,h−2d, fa, fo, from Lemma C.18 and Lemma 9 in (Liu & Zhang, 2023), we have, for any1081
h ∈ [H]1082

Ea1:h−1,o1:h∼g1:H
||PD′

L
h (·, · | ch)− PM,c

h (·, · | ĉh)||1 ≤ ϵ.

Therefore, such a model is an ϵ-expected-approximate common information model.1083
1084

Type 4: Baseline sharing of L is Example 4 in §A. Then, for any h ∈ [H], the common information1085

should be ĉh = {o1:h−2d, {a2t−1}
⌊h

2 ⌋
t=1 , oM}, where M = {(i, t) | i ∈ [n], h − 2d + 1 ≤ t ≤ h}.1086

Then, still we denote fτ,h−2d = {o1:h−2d, {a2t−1}
⌊h

2 ⌋
t=1}, fo = {oM}. We can compute the common1087

information-based belief as1088

PD′
L

h (sh, ph | ch) =
∑
sh−2d

PD′
L

h (sh, ph | sh−2d, fo)P
D′

L
h (sh−2d | fτ,h−2d, fo)

=
∑
sh−2d

PD′
L

h (sh, ph | sh−2d, fo)
PD′

L
h (sh−2d, fo | fτ,h−2d)∑

s′h−2d
PD′

L
h (s′h−2d, fo | fτ,h−2d)

.

Denote the probability Ph(fo | sh−2d) := Π2d
t=1P

D′
L

h (o1,h−2d+t, oMh−2d+t
| sh−2d), where1089

Mh−2d+t = {(i, h − 2d + t) | (i, h − 2d + t) ∈ M} denotes the set of observations at timestep1090
h − 2d + t and shared through additional sharing. Since the actions do not influence underlying1091
states, here we use the belief notation bk(o1:k), bk(ok−L:k), ∀k ∈ [H], L < k. With such notation,1092
we have1093

PD′
L

h (sh−2d | fτ,h−2d, fo)

=
bh−2d(o1:h−2d)(sh−2d)Ph(fo | sh−2d)∑

s′h−2d
bh−2d(o1:h−2d)(s

′
h−2d)Ph(fo | s′h−2d)

= FPh(· | ·)(bh−2d(o1:h−2d); fo)(sh−2d),

where FPh(· | ·)(·; fo) : ∆(S) → ∆(S) is the posterior belief update function, the same as men-1094
tioned in Type 3.1095
Then, we define the approximate common information as ĉh := {oh−2d−L+1:h, oM} and corre-1096
sponding approximate common information conditioned belief as1097

PM,c
h (sh, ph | ĉh) =

∑
sh−2d

PD′
L

h (sh, ph | sh−2d, fo)F
Ph(· | ·)(b

′
h−2d(oh−2d−L+1:h−2d); fo)(sh−2d).

Now we verify that Definition C.9 is satisfied.1098
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• Obviously, the {ĉh}h∈[H satisfies Eq.(C.8).1099

• For any ch and corresponding ĉh constructed above:1100

||PD′
L

h (·, · | ch)− PM,c
h (·, · | ĉh)||1

≤ ||FP (· | ·)(bh−2d(o1:h−2d); fo)− FP (· | ·)(b
′
h−2d(ah−2d−L:h−2d−1, oh−2d−L+1:h−2d); fo)||1.

If we choose L ≥ Cγ−4 log(Sϵ ), then for any strategy g1:H , by taking expectations over1101
fτ,h−2d, fo, from Lemma C.18 and Lemma 9 in (Liu & Zhang, 2023), we have, for any h ∈ [H]1102

Ea1:h−1,o1:h∼g1:H
||PD′

L
h (·, · | ch)− PM,c

h (·, · | ĉh)||1 ≤ ϵ.

Therefore, such a model is an ϵ-expected-approximate common information model.1103
1104

Combining Parts I, II, III, we complete the proof.1105

Remark C.19. Let L be an LTC problem satisfying Assumptions 3.1, 3.2, 3.3, and 3.4, and D′
L1106

be the Dec-POMDP after reformulation, strict expansion and refinement. Then, if L has any one1107
of baseline sharing protocols as in Appendix A, and L satisfies the conditions as follows, then D′

L1108
satisfies Assumption 4.3.1109

• If L has baseline sharing protocol as one of Examples 1, 5, 6 in A, L needs to satisfy the part (1)1110
of Factorized structure in G.1111

• If L has baseline sharing protocol as one of Examples 2, 7, 8 in A, L needs to sat-1112
isfy Rh(· | sh, a1,h, a−1,h) = Rh(· | sh, a1,h, a′−1,h) for any h ∈ [H], sh ∈ S, a1,h ∈1113
A1,h, a−1,h, a

′
−1,h ∈ A−1,h.1114

• If L has baseline sharing protocol as one of Examples 3, 4 in A, it does not need additional1115
condition.1116

Actually, such condition is also considered in (Liu & Zhang, 2023). For L with baseline sharing1117
protocols as one of examples in A and satisfying the conditions as above, we can construct expected1118
common information modelM of D′

L as mentioned in the proof of Theorem C.14. If the baseline1119
sharing protocol of L is one of Examples 1, 5, 6, then D′

L and M satisfy Factorized structures1120
condition in G; If the baseline sharing protocol of L is one of Examples 2, 7, 8, then D′

L and1121
M satisfy Turn-based structures condition in G; If the baseline sharing protocol of L is one of1122
Examples 3, 4, then D′

L andM satisfy Nested private information condition in G. From Lemma1123
G.1, we can conclude that Assumption 4.3 holds.1124

C.9 Main Results for Learning in QC LTC1125

Here we provide a full version of Theorem 4.4 as follows.1126

Theorem C.20. Given any QC LTC problem L satisfying Assumptions 3.1, 3.2, 3.3, 3.4, and 4.3,1127
we can construct an SI-CIB Dec-POMDP problem D′

L such that the following holds. Given a1128

strategy g1:H , M̃(g1:H), and L̂, where each gh is a complete strategy with gh
h−L̂:h

= Unif(A) for1129

h ∈ [H], we define the statistical error for estimating M̃(g1:H) as ϵapx(g
1:H , L̂, ζ1, ζ2, θ1, θ2, ϕ)1130

for some parameters δ1, ζ1, ζ2, θ1, θ2, ϕ > 0. Then, there exists an algorithm that can learn an1131
ϵ-team-optimal strategy for L with probability at least 1 − δ1, using a sample complexity N0 =1132
poly(maxh∈[H] |Ph|,maxh∈[H] |Ĉh|, H,maxh∈[H] |Ah|,maxh∈[H] |Oh|, 1/ζ1, 1/ζ2, 1/θ1, 1/θ2) ·1133

log(1/δ1), where ϵ := Hϵr(M̃(g1:H)) + H
2
ϵz(M̃(g1:H)) + (H

2
+1134

H)ϵapx(g
1:H , L̂, ζ1, ζ2, θ1, θ2, ϕ). Specifically, if L has the baseline sharing protocols as in §A,1135

there exists an algorithm that learns an ϵ-team optimal strategy for L with both quasi-polynomial1136
time and sample complexities.1137
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Proof. Firstly, given any LTC problem L, we can apply Algorithm 2 to solve such problem. From1138
the proof of C.14, we know that Algorithm 6 can output the team optimal strategy of M̂(g1:H,j) for1139
each j ∈ [K]. Then, from Theorem 4 in (Liu & Zhang, 2023), it can guarantee that g∗

1:H
is an ϵ-team1140

optimum of D′
L with probability at least 1 − δ1, where ϵ = Hϵr(M̃(g1:H)) +H

2
ϵz(M̃(g1:H)) +1141

(H
2
+ H)ϵapx(g

1:H , L̂, ζ1, ζ2, θ1, θ2, ϕ) + Hϵe. Then, from the proof of Theorem C.14, we have1142
that (gm,∗

1:H , ga,∗1:H) is an ϵ-team optimal strategy of L is g∗
1:H

is an ϵ-team optimal strategy of D′
L.1143

Therefore, we complete the proof.1144

D Deferred Details of §51145

In the following, we will use ¯ to denote the elements and random variables in the Dec-POMDP D.1146
We first introduce the notion of perfect recall (Kuhn, 1953):1147

Definition D.1 (Perfect recall). We say that agent i has perfect recall if ∀h ∈ 2, · · · , H , it holds that1148
τi,h−1 ∪ {ai,h−1} ⊆ τi,h. If for any i ∈ [n], agent i has perfect recall, we call that the Dec-POMDP1149
has a perfect recall property.1150

D.0.1 Proof of Theorem 5.11151

Proof. sQC⇒ SI-CIB:1152
Let D be the Dec-POMDP with an sQC information structure, and D satisfy Assumptions 3.3,1153
3.4, and 3.5. To prove that D has SI-CIB, it is sufficient to prove that for any h = 2, · · · , H ,1154
fix any h1 ∈ [h − 1], i1 ∈ [n], and for any g1:h−1 ∈ G1:h−1, g

′
i1,h1

∈ Gi1,h1
, let g′h1

:=1155
(g1,h1

, · · · , g′i1,h1
, · · · , gn,h1

) and g′1:h−1 := (g1, · · · , g′h1
, · · · , gh−1), the following holds1156

P(sh, ph | ch, g1:h−1) = P(sh, ph | ch, g′1:h−1). (D.1)

We prove this case-by-case as follows:1157

1. If there exists some i3 ̸= i1 such that σ(τ i1,h1) ∪ σ(ai1,h1) ⊆ σ(τ i3,h), then from Assumption1158
3.5, we know that σ(τ i1,h1

) ∪ σ(ai1,h1
) ⊆ σ(ch). Therefore, there exist deterministic functions1159

β1, β2 such that τ i1,h1
= β1(ch), ai1,h1

= β2(ch), and further it holds that1160

P(sh, ph | ch, g1:h−1) = P(sh, ph |β1(ch), β2(ch), ch, g1:h−1)

= P(sh, ph | τ i1,h1
, ai1,h1

, ch, g1:h−1) = P(sh, ph | τ i1,h1
, ai1,h1

, ch, g
′
1:h−1).

The last equality is due to the fact that the input and output of gi1,h1
are τ i1,h1 and ai1,h1 ,1161

respectively.1162

2. If there does not exist any i2 ̸= i1 such that σ(τ i1,h1
)∪σ(ai1,h1

) ⊆ σ(τ i2,h), i.e., for all i2 ̸= i1,1163
either σ(τ i1,h1

) ⊈ σ(τ i2,h) or σ(ai1,h1
) ⊈ σ(τ i2,h), then agent (i1, h1) does not influence agent1164

(i2, h) for any i2 ̸= i1, since D is sQC. Now, we first claim that agent (i1, h1) does not influence1165
sh1+1: since if it influences, from Assumption 3.4, there exists some i3 ̸= i1 such that agent1166
(i1, h1) influences oi3,h1+1; however, from Assumption 2.1 (e), we know oi3,h1+1 ∈ τ i3,h1+1 ⊆1167
τ i3,h; therefore, agent (i1, h1) influences agent (i3, h), contradicting the argument above that the1168
former does not influence (i2, h) for any i2 ̸= i1. Hence, we further have that agent (i1, h1) does1169
not influence sh2

for any h2 > h1. Therefore, by Assumption 3.3, for any h2 > h1, ai1,h1
/∈ τh2

.1170

Second, we claim that agent (i1, h1) does not influence τ i4,h2
, for any i4 ∈ [n] and h2 > h1.1171

This is because of the fact that agent (i1, h1) does not influence sh1+1 and thus not oi4,h1+1 for1172
any i4 ∈ [n], together with the fact proved above that ai1,h1

/∈ τh1+1, implies that agent (i1, h1)1173
does not influence any element in τ i4,h1+1 for any i4 ∈ [n], either directly or indirectly. Since1174
τ i4,h1+1 is the input of agent i4’s strategy at timestep h1+1 to decide ai4,h1+1, agent (i1, h1) thus1175
does not influence ai4,h1+1 for any i4 ∈ [n], either, which, together with the fact that it does not1176
influence sh1+2 and thus not oi4,h1+2 for any i4 ∈ [n], further implies that it does not influence1177
any element in τ i4,h1+2 for any i4 ∈ [n]. By recursion, agent (i1, h1) does not influence τ i4,h2

1178
for any i4 ∈ [n] and h2 > h1.1179
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Therefore, agent (i1, h1) does not influence ch = ∩ni4=1τ i4,h nor ph = τh\ch, which thus leads1180
to1181

P(sh, ph | ch, g1:h−1) = P(sh, ph | ch, g′1:h−1).

SI-CIB⇒ sQC:1182
Since D has perfect recall and has SI-CIB, i.e., ∀i ∈ [n], h ∈ [H],∀g1:h−1, g

′
1:h−1 ∈ G1:h−1, ch ∈1183

Ch, sh ∈ S, ph ∈ Ph, the following holds1184

P(sh, ph | ch, g1:h−1) = P(sh, ph | ch, g′1:h−1).

Our goal is to prove that D is sQC (up to null sets). In particular, we meant to prove that if agent1185
(i1, h1) influences agent (i2, h2) in the intrinsic model of the Dec-POMDP (cf. §F), then under any1186
strategy g1:H ∈ G1:H , σ(τ i1,h1

) ⊆ σ(τ i2,h2
) except the null sets generated by g1:H .1187

We prove this by contradiction. If this is not true, then there exists some strategy g1:H1188
and i1, i2 ∈ [n], h1, h2 ∈ [H], such that agent (i1, h1) influences agent (i2, h2), but either1189
σ(τ i1,h1

) ⊈ σ(τ i2,h2
) or σ(ai1,h1

) ⊈ σ(τ i2,h2
) (up to the null sets generated by g1:H ). First, we1190

can assume i2 ̸= i1, since otherwise it always holds that τ i1,h1 ⊆ τ i1,h2 and ai1,h1 ∈ τ i1,h2 , due to1191
the assumption that the agents in D have perfect recall.1192

1193

Then, we discuss the following different cases. Note that in the following discussion, when it comes1194
to σ-algebra inclusion, we meant it up to the null sets generated by g1:H .1195

1. If σ(ai1,h1) ⊈ σ(τ i2,h2), then it implies that σ(ai1,h1) ⊈ σ(ch2) because ch2 ⊆ τ i2,h2 . This1196
also implies that ai1,h1 /∈ ch2 , and thus ai1,h1 ∈ pi1,h2

due to perfect recall. Note that there must1197
exist some realizations ch2 ∈ Ch2 , ph2

∈ Ph2 , sh2 ∈ S such that ch2 has non-zero probability1198
under g1:h2−1, and P(sh2 , ph2

| ch2 , g1:h2−1) ̸= 0. Meanwhile, there must exist another different1199
action realization a′i1,h1

such that1200

P(sh2
, ph2
\{ai1,h1

} ∪ {a′i1,h1
} | ch2

, g1:h2−1) ̸= 0, (D.2)

since otherwise it holds that σ(ai1,h1
) ⊆ σ(ch2

). Actually, this means that there are some non-1201
zero probability trajectories containing ai1,h1

and ch2
, and some non-zero probability trajectories1202

containing a′i1,h1
and ch2

. Then, we define another strategy g′i1,h1
as:1203

∀τ i1,h1
∈ T i1,h1

, g′i1,h1
(τ i1,h1

) = a′i1,h1
, (D.3)

and we let g′h1
:= (g1,h1

, · · · , g′i1,h1
, · · · , gn,h1

) and g′1:h2−1 := (g1, · · · , g′h1
, · · · , gh2−1).1204

Now we claim that ch2
has non-zero probability under g′1:h2−1. From that ch2

has non-1205
zero probability under g1:h2−1, and P(sh2

, ph2
\{ai1,h1

} ∪ {a′i1,h1
} | ch2

, g1:h2−1) ̸= 0, we1206
can get P(a′i1,h1

, ch2
| g1:h2−1) > 0. Since g′1:h2−1 only differs from g1:h2−1 in the strat-1207

egy of agent (i1, h1), and g′i1,h1
always chooses a′i1,h1

, then we get P(a′i1,h1
, ch2
| g′1:h2−1) ≥1208

P(a′i1,h1
, ch2 | g1:h2−1) > 0 because g1:h2−1 and g′1:h2−1 are the same in those trajectories con-1209

taining a′i1,h1
and ch2 , and thus P(ch2 | g′1:h2−1) > 0. Hence, we prove our claim.1210

Meanwhile, due to (D.3), notice that1211

P(sh2
, ph2

| ch2
, g′1:h2−1) = 0 ̸= P(sh2

, ph2
| ch2

, g1:h2−1), (D.4)

which leads to a contradiction to the fact that D has SI-CIB.1212

2. If σ(ai1,h1
) ⊆ σ(τ i2,h2

), then it implies that σ(τ i1,h1
) ⊈ σ(τ i2,h2

), and further implies1213
that σ(τ i1,h1

) ⊈ σ(ch2
) since ch2

⊆ τ i2,h2
. Note that there must exist some realizations1214

ch2
∈ Ch2

, τ i2,h2
∈ T i2,h2

such that τ i2,h2
has non-zero probability under g1:h2−1 and ch2

⊆1215
τ i2,h2

, and there exist two realizations τ i1,h1
, τ ′i1,h1

∈ T i1,h1
such that P(τ i1,h1

| τ i2,h2
) >1216

0,P(τ ′i1,h1
| τ i2,h2

) > 0, since otherwise, it holds that σ(τ i1,h1
) ⊆ σ(ch2

). Furthermore,1217
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we know that there exist sh2
∈ S, ph2

∈ Ph2
such that P(sh2

, ph2
| ch2

, g1:h2−1) > 0 and1218
τ ′i2,h2

⊆ ch2
∪ ph2

. Since σ(ai1,h1
) ⊆ σ(τ i2,h2

), we know that there exists ai1,h1
that1219

P(ai1,h1
| τ i2,h2

) = 1. Let τ := τ i1,h1
\ch2

and τ ′ := τ ′i1,h1
\ch2

. and consider another ac-1220
tion a′i1,h1

̸= ai1,h1 and strategy g′i1,h1
defined such that1221

g′i1,h1
(τ i1,h1

) = a′i1,h1
, g′i1,h1

(τ ′i1,h1
) = ai1,h1

, (D.5)

and keeps g′i1,h1
(τ ′′i1,h1

) the same as gi1,h1
(τ ′′i1,h1

) for any other τ ′′i1,h1
. We denote g′h1

:=1222
(g1,h1

, · · · , g′i1,h1
, · · · , gn,h1

) and g′1:h2−1 := (g1, · · · , g′h1
, · · · , gh2−1). Since (τ ′i1,h1

, τ i2,h2
)1223

has non-zero probability under g1:h2−1 and P(ai1,h1
| τ i2,h2

), then we know (τ ′i1,h1
, τ i2,h2

) has1224
non-zero probability under g;1:h2−1. Hence, we know that ch2 has non-zero probability under1225
g;1:h2−1. Meanwhile, it holds that1226

P(sh2
, ph2

| ch2
, g′1:h2−1) =

P(sh2 , ph2
, ch2 | g′1:h2−1)

P(ch2
| g′1:h2−1)

=
P(sh2 , τh2 | g′1:h2−1)

P(ch2
| g′1:h2−1)

= 0 ̸= P(sh2
, ph2

| ch2
, g1:h2−1),

(D.6)

where the third equal sign is because ai1,h1 ∈ τh2 , τ i1,h1 ⊆ τh2 from perfect recall, and1227
ai1,h1

, τ i1,h1
can never happen together under g′1:h2−1 due to (D.5). Therefore, (D.6) leads to1228

a contradiction to the fact that D has SI-CIB and thus completes the proof.1229

1230

E Collection of Algorithm Pseudocodes1231

Here we collect both our planning and learning algorithms as pseudocodes in Algorithms 1, 2, 3, 4,1232
5, and 6.

Algorithm 1 Planning in QC LTC Problems

Require: LTC L, accuracy levels ϵr, ϵz > 0
Reformulate L to DL based on Eq. (C.1).
Expand DL to D†

L based on Eq. (4.1).
Refine D†

L to D′
L based on L.

Construct expected Approximate Common-information ModelM from D′
L with error ϵr, ϵz .

g∗
1:H̃
← Algorithm 6(M)

g̃∗
1:H̃
← φ(g∗

1:H̃
,DL)

gm,∗
1:H ← {g̃∗1 , g̃∗3 , · · · , g̃∗2H−1}
ga,∗1:H ← {g̃2, g̃4, · · · , g̃2H}
Return (gm,∗

1:H , ga,∗1:H)

1233

F Decentralized POMDPs (with Information Sharing)1234

A Dec-POMDP with n agents and potential information sharing can be characterized by a tuple1235

D = ⟨H,S, {Ai,h}i∈[n],h∈[H], {Oi,h}i∈[n],h∈[H], {Th}h∈[H], {Oh}h∈[H], µ1, {Rh}h∈[H]⟩,

where H denotes the length of each episode, S denotes state space, and Ai,h denotes the control1236
action spaces of agent i at timestep h. We denote by sh ∈ S the state and by ai,h the control action1237
of agent i at timestep h. We use ah := (a1,h, · · · , an,h) ∈ Ah := A1,h × A2,h × · · ·An,h to1238
denote the joint control action for all the n agents at timestep h, with Ah denoting the joint control1239
action space at timestep h. We denote T = {Th}h∈[H] the collection of transition functions, where1240
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Algorithm 2 Learning in QC LTC Problems

Require: Underlying environment LTC L, iteration number K.
Reformulate L to DL based on Eq. (C.1).
Refine DL to D′

L based on Eq. (4.1).
Obtain {g1:H,j}Kj=1 by calling Algorithm 3 of (Golowich et al., 2022).
for j = 1 to K do

Construct M̂(g1:H,j) by calling Algorithm 5 of (Liu & Zhang, 2023) with the underlying
environment D′

L and g1:H,j .
gj,∗
1:H
← Algorithm 6(M̂(g1:H,j))

end for
g∗
1:H
← Algorithm 8({gj,∗

1:H
}Kj=1) of (Liu & Zhang, 2023).

g̃∗
1:H̃
← φ(g∗

1:H
,DL)

gm,∗
1:H ← {g̃∗1 , g̃∗3 , · · · , g̃∗2H−1}
ga,∗1:H ← {g̃2, g̃4, · · · , g̃2H}
Return (gm,∗

1:H , ga,∗1:H)

Algorithm 3 Vanilla Realization of φ(ğ1:H̆ ,DL)

Require: Strategy ğ1:H̆ , QC Dec-POMDP DL
g̃1:H̆ ← ∅
for h2 = 1 to H̆ , i2 = 1 to n, τ̃i2,h2 ∈ T̃i2,h2 do
τ̆i2,h2 ← τ̃i2,h2

for h1 = 1 to h2 − 1, i1 = 1 to n do
if σ(τ̃i1,h1

) ⊆ σ(τ̃i2,h2
) in DL then

ãi1,h1
← g̃i1,h1

(τ̃i1,h1
)

τ̆i2,h2 ← τ̆i2,h2 ∪ {ãi1,h1}
end if

end for
g̃i2,h2

(τ̃i2,h2
)← ği2,h2

(τ̆i2,h2
)

end for
Return g̃1:H̃

Algorithm 4 Efficient Implementation of φ(ğ1:H̆ ,DL)

Require: Strategy ğ1:H̆ , QC Dec-POMDP DL

for h = 1 to H̆ do
for i = 1 to n do

Agent i receives τ̃i,h
τ̆i,h ← Recover(τ̃i,h, ğ1:h−1,DL) \\ Defined in Algorithm 5
Agent i chooses ği,h(τ̆i,h) as ãi,h

end for
end for
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Algorithm 5 Recover τ̆i,h from τ̃i,h

Require: Information τ̃i,h, Strategy ğ1:h−1, QC Dec-POMDP DL
τ̆i,h ← τ̃i,h
for j = 1 to n, h′ = 1 to h− 1 do

if σ(τ̃j,h′) ⊆ σ(c̃h) in DL and ãj,h′ /∈ τ̆i,h then
τ̆j,h′ ← Recover(τ̃j,h′ , ğ1:h′−1,DL)
ãj,h′ ← ğj,h′(τ̆j,h)
τ̆i,h ← τ̆j,h ∪ {ãj,h′}

end if
end for
Return τ̆i,h

Algorithm 6 Planning in Dec-POMDP with expected Approximate Common-information Model

Require: Expected Approximate Common-information ModelM.
for i ∈ [n] and ĉH+1 ∈ ĈH+1 do
V ∗,M
i,H+1

(ĉH+1)← 0

end for
for h = H to 1 do

for ĉh ∈ Ĉh do
Define Q∗,M

h (ĉh, γ1,h, · · · , γn,h) := R̂M
h (ĉh, γh) + EM

[
V ∗,M
h+1 (ĉh+1) | ĉh, γh

]
(
ĝ∗1,h(· | ĉh, ·), · · · , ĝ∗n,h(· | ĉh, ·)

)
← argmax

γ1:n,h∈Γh

Q∗,M
h (ĉh, γ1,h, · · · , γn,h) (E.1)

end for
V ∗,M
h (ĉh)← maxγ1:n,h

Q∗,M
h (ĉh, γ1,h, · · · , γn,h)

end for
Return ĝ∗

1:H
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Th(· | sh, ah) ∈ ∆(S) gives the transition probability to the next state sh+1 when taking the joint1241
control action ah at state sh. We use µ1 ∈ ∆(S) to denote the distribution of the initial state s1. We1242
denote byOi,h the observation space and by oi,h ∈ Oi,h the observation of agent i at timestep h. We1243
use oh := (o1,h, o2,h, · · · , on,h) ∈ Oh := O1,h × O2,h × · · ·On,h to denote the joint observation1244
of all the n agents at timestep h, with Oh denoting the joint observation space at timestep h. We1245
use {Oh}h∈[H] to denote the collection of emission matrices, where oh ∼ Oh(· | sh) ∈ ∆(Oh) at1246
timestep h under state sh ∈ S. For notational convenience, we adopt the matrix convention, where1247
Oh is a matrix with each row Oh(· | sh) for all sh ∈ S . Also, we denote by Oi,h the marginalized1248
emission for agent i at timestep h. Finally, {Rh}h∈[H] is a collection of reward functions among all1249
agents, whereRh : S ×Ah → [0, 1].1250

At timestep h, each agent i in the Dec-POMDP has access to some information τi,h, a subset of his-1251
torical joint observations and actions, namely, τi,h ⊆ {o1, a1, o2, · · · , ah−1, oh}, and the collection1252
of all possible such available information is denoted by Ti,h. We use τh to denote the joint available1253
information at timestep h. Meanwhile, agents may share part of the history with each other. The1254
common information ch = ∪ht=1zt at timestep h is thus a subset of the joint history τh, where zh1255
is the information shared at timestep h. We use Ch to denote the collection of all possible ch at1256
timestep h, and use Ti,h to denote the collection of all possible τi,h of agent i at timestep h. Besides1257
the common information ch, each agent also has her private information pi,h = τi,h\ch, where the1258
collection of pi,h is denoted by Pi,h. We also denote by ph the joint private information, and by Ph1259
the collection of all possible ph at timestep h. We refer to the above the state-space model of the1260
Dec-POMDP (with information sharing).1261

Each agent i at timestep h chooses the control action ai,h based on some strategy gi,h : Ti,h → Ai,h.1262
We denote by gh := (g1,h, g2,h, · · · , gn,h) the joint control strategy of all the agents, and by g1:h :=1263
(g1, g2, · · · , gh),∀h ∈ [H] the sequence of joint strategies from timestep 1 to h. We use Gi,h to1264
denote the strategy space of gi,h, and use Gh,G1:h to denote joint strategy spaces, correspondingly.1265

Next, we introduce some background on the intrinsic model and information structure of Dec-1266
POMDPs.1267

F.1 Intrinsic Model1268

In an intrinsic model (Witsenhausen, 1975), we regard the agent i at different timesteps as dif-1269
ferent agents, and each agent only acts once throughout. Any Dec-POMDP D with n agents1270
can be formulated within the intrinsic-model framework, and can be characterized by a tuple1271
⟨(Ω,F ), N, {(Ul,Ul)}Nl=1, {(Il,Il)}Nl=1⟩ (Mahajan et al., 2012), where (Ω,F) is a measurable1272
space of the environment, N = n × H is the number of agents in the intrinsic model. By a slight1273
abuse of notation, we write [N ] := [n]× [H], and write l := (i, h) ∈ [N ] for notational convenience.1274
This way, any agent l ∈ [N ] corresponds to an agent i ∈ [n] at timestep h ∈ [H] in the state-space1275
model. We denote by Ul the measurable action space of agent l and by Ul the σ-algebra over Ul. For1276
A ⊆ [N ], let HA := Ω ×

∏
l∈A Ul and H := H[N ]. For any σ-algebra C over HA, let ⟨C ⟩ denote1277

the cylindrical extension of C on H. Let HA := ⟨F⊗(⊗l∈AUl)⟩ and H = H[N ]. We denote1278
by Il the space of information available to agent l, and by Il the σ-algebra over H. For l ∈ [N ],1279
we denote by Il the information of agent l, and Ul the action of agent l. The spaces and random1280
variables of agent l = (i, h) in the intrinsic model are related to those in the state-space model as1281
follows: ∀l = (i, h) ∈ [N ],Ul = Ai,h, Il = Ti,h, Ul = ai,h, Il = τi,h.1282

F.2 Information Structures of Dec-POMDPs1283

An important class of IS is the quasi-classical one, which is defined as follows (Witsenhausen, 1975;1284
Mahajan et al., 2012; Yüksel & Başar, 2023).1285

Definition F.1 (Quasi-classical Dec-POMDPs). We call a Dec-POMDP problem QC if each agent1286
in the intrinsic model knows the information available to the agents who influence her, directly or1287
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indirectly, i.e. ∀l1, l2 ∈ [N ], l1 = (i1, h1), l2 = (i2, h2), i1, i2 ∈ [n], h1, h2 ∈ [H], if agent l11288
influences agent l2, then Il1 ⊆ Il2 .1289

Furthermore, strictly quasi-classical IS (Witsenhausen, 1975; Mahajan & Yüksel, 2010), as a sub-1290
class of QC IS, is defined as follows.1291

Definition F.2 (Strictly quasi-classical Dec-POMDPs). We call a Dec-POMDP problem sQC if each1292
agent in the intrinsic model knows the information and actions available to the agents who influence1293
her, directly or indirectly. That is, ∀l1, l2 ∈ [N ], l1 = (i1, h1), l2 = (i2, h2), i1, i2 ∈ [n], h1, h2 ∈1294
[H], if agent l1 influences agent l2, then Il1 ∪ ⟨Ul1⟩ ⊆ Il2 .1295

F.3 Intrinsic Model of LTC Problems1296

Firstly, we formally define the Dec-POMDP induced by LTC as follows1297

Definition F.3 (Dec-POMDP (with information sharing) induced by LTC). For an LTC L , we call1298
a Dec-POMDP (with information sharing)DL the Dec-POMDP (with information sharing) induced1299
by L if the agents share information only following the baseline sharing protocol of L, i.e., without1300
additional sharing. We may refer to it as the Dec-POMDP induced by LTC or the induced Dec-1301
POMDP for short.1302

Given any LTC L of the state-space-model form defined in §2.1, we define the intrinsic model of L1303
as a tuple ⟨(Ω,F ), N, {(Ul,Ul)}Nl=1, {(Ml,Ml)}Nl=1, {(Il− ,Il−)}Nl=1,1304
{(Il+ ,Il+)}Nl=1⟩, where (Ω,F ) is the measure space representing all the uncertainty in the system;1305
N = n ×H is the number of agents in the intrinsic model. By a slight abuse of notation, we write1306
[N ] := [n] × [H], and write l := (i, h) ∈ [N ] for convenience. This way, any agent l ∈ [N ]1307
corresponds to an agent i ∈ [n] at timestep h ∈ [H] in the state-space model, and we thus define1308
l− := (i, h−) and l+ := (i, h+) accordingly. We denote by Ul and Ml the measurable control and1309
communication action spaces of agent l, and by Ul and Ml the σ-algebra over Ul and Ml, respec-1310
tively. For any A ⊆ [N ], let HA := Ω×

∏
l∈A(Ul×Ml) and H := H[N ]. For any σ-algebra C over1311

HA, let ⟨C ⟩ denote the cylindrical extension of C on H. Let HA := ⟨F⊗(⊗l∈AUl)⊗(⊗l∈AMl)⟩,1312
H = H[N ]. We denote by Il− and Il+ the spaces of information available to agent l before and1313
after additional sharing, respectively, and by Il− ⊆ H and Il+ ⊆ H the associated σ-algebra.1314
The spaces and random variables of agent l = (i, h) in the intrinsic model are related to those in1315
the state-space model as follows: ∀l = (i, h) ∈ [N ],Ul = Ai,h,Ml = Mi,h, Il− = Ti,h− , Il+ =1316
Ti,h+ , Ul = ai,h,Ml = mi,h, Il− = τi,h− , Il+ = τi,h+ . For notational convenience, for any random1317
variable B in LTC and the σ-algebra B generated by B, we overload σ(B) to denote the cylindrical1318
extension of B on H, i.e., σ(B) = ⟨B⟩.1319

G Conditions Leading to Assumption 4.31320

As a minimal requirement for computational tractability (for both Dec-POMDPs and LTCs), As-1321
sumption 4.3 is needed for the one-step tractability of the team-decision problem involved in the1322
value iteration in Algorithm 6. We now adapt several such structural conditions from (Liu & Zhang,1323
2023) to the LTC setting, which lead to this assumption and have been studied in the literature. Note1324
that since we need to do planning in the approximate model M, which is oftentimes constructed1325
based on the original problem L and approximate belief {PM,c

h (sh, ph | ĉh)}h∈[H], we necessarily1326
need assumptions on these two models L andM, for which we refer to as the Part (1) and Part (2)1327
of the conditions below, respectively.1328

• Turn-based structures. Part (1): At each timestep h ∈ [H], there is only one agent, denoted1329
as ct(h) ∈ [n], that can affect the state transition. More concretely, the transition dynamics take1330
the forms of Th : S × Act(h) → ∆(S). Additionally, we assume the reward function admits an1331
additive structure such that Rh(sh, ah) =

∑
i∈[n]Ri,h(sh, ai,h) for some functions {Ri,h}i∈[n].1332

Meanwhile, since only agent ct(h) takes the action, we assume the increment of the common1333
information zbh+1 = χh+1(ph+ , act(h),h, oh+1). Part (2): No additional requirement. Such a1334
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structure has been commonly studied in (fully observable) stochastic games and multi-agent RL1335
(Filar & Vrieze, 2012; Bai & Jin, 2020).1336

• Nested private information. Part (1): No additional requirement. Part (2): At each timestep1337
h ∈ [H], all the agents form a hierarchy according to the private information after ai,h they1338
possess, in the sense that ∀ i, j ∈ [n], j < i, pj,h = Y i,j

h (pi,h) for some function Y i,j
h . More1339

formally, the approximate belief satisfies that PM,c
h (pj,h = Y i,j

h (pi,h) | pi,h, ĉh) = 1. Such a1340
structure has been investigated in (Peralez et al., 2024) with heuristic search, and in (Liu & Zhang,1341
2023) with finite-time complexity analysis.1342

• Factorized structures. Part (1): At each timestep h ∈ [H], the state sh can be partitioned into1343
n local states, i.e., sh = (s1,h, s2,h, · · · , sn,h). Meanwhile, the transition kernel takes the product1344
form of Th(sh+1 | sh, ah) =

∏n
i=1 Ti,h(si,h+1 | si,h, ai,h), the emission also takes the product1345

form of Oh(oh | sh) =
∏n

i=1 Oi,h(oi,h | si,h), and the reward function can be decoupled into n1346
terms such that Rh(sh, ah) =

∑
i,hRh(si,h, ai,h). Part (2): At each even timestep h ∈ [H],1347

the approximate common information is also factorized so that ĉh = (ĉ1,h, ĉ2,h, · · · , ĉn,h) and its1348
evolution satisfies that ĉi,h+1 = ϕ̂i,h+1(ĉi,h, zi,h) for some function ϕ̂i,h+1. Correspondingly, the1349
approximate belief need to satisfy that PM,c

h (sh, ph | ĉh) = Πn
i=1P

M,c
i,h (si,h, pi,h | ĉi,h) for some1350

functions {PM,c
i,h }i∈[n],h∈[H] Such a structure, under general information sharing protocols, can1351

lead to non-classical IS. In this case, it can be viewed an example of non-classical ISs where the1352
agents have no incentive for signaling (Yüksel & Başar, 2023, §3.8.3).1353

Lemma G.1. Given any LTC problem L and D′
L is the Dec-POMDP after reformulation and ex-1354

pansion. For anyM to be the approximate model of DL and {PM,c
h }h∈[H] to be the approximate1355

belief, if they satisfy any of the 3 conditions above, then Eq. (E.1) in Algorithm 6 can be solved in1356
polynomial time, i.e., Assumption 4.3 holds.1357

Proof. We prove the result case by case:1358

• Turn-based structures: For any h = 2t, t ∈ [H], γct(h),h ∈ Γct(h), γ−ct(h),h, γ
′
−ct(h),h ∈1359

Γ−ct(h),h, where ct(h) is the controller, it holds for any ĉh that1360

Q∗,M
h (ĉh, γct(h),h, γ−ct(h),h)

=
∑

sh,ph,sh+1,oh+1

PM,c
h (sh, ph | ĉh)Th(sh+1 | sh, γct(h),h(pct(h),h)γ−ct(h),h(p−ct(h),h))

Oh+1(oh+1 | sh+1)[Rh(sh, γct(h),h(pct(h),h)) + V ∗,M
h+1 (ĉh+1)]

=
∑

sh,ph,sh+1,oh+1

PM,c
h (sh, ph | ĉh)Th(sh+1 | sh, γct(h),h(pct(h),h)

Oh+1(oh+1 | sh+1)[Rh(sh, γct(h),h(pct(h),h)) + V ∗,M
h+1 (ĉh+1)],

where the last step is due to the fact that ĉh+1 = ϕ̂h+1(ĉh, zh+1). And zh+1 = zbh
2 +1

=1361

χh
2 +1(ph, act(h),h, oh+1). Therefore, right-hand side does no depend on γ−ct(h),h. Therefore,1362

Eq. (E.1) with complexity poly(S,Pct(h),Act(h)).1363

• Nested private information: For any i ∈ [n], h = 2t, t ∈ [H], we first define the ui,h ∈ Ui,h :=1364
{(×i

j=1Pj,h)× (×i−1
j=1Aj,h)→ Ai,h} and slightly abuse the notation for Q∗,M

h as follows1365

Q∗,M
h (ĉh, u1,h, · · · , un,h)

:=
∑

sh,ph,ah,sh+1,oh+1

PM,c
h (sh, ph | ĉh)Πn

i=11[ai,h = ui,h(p1:i,h, a1:i−1,h)]Th(sh+1 | sh, ah)

Oh+1(oh+1 | sh+1)[Rh(sh, ah) + V ∗,M
h+1 (ĉh+1)]
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Since the space of Ui,h covers the space Γi,h, then for the u∗
1:n,h be an optimal one that maximize1366

the Q∗,M
h , we have1367

Q∗,M
h (ĉh, u

∗
1,h, · · · , u∗

n,h)

= max
{ui,h∈Ui,h}i∈[n]

Q∗,M
h (ĉh, u1,h, · · · , un,h) ≥ max

{γi,h∈Γi,h}i∈[n]

Q∗,M
h (ĉh, γ1,h, · · · , γn,h).

Meanwhile, due to the nested private information condition, for any ph ∈ Ph, there must exists1368
γ′
1:n,h such that γ′

1:n,h output the same actions as u∗
1:n,h under ph. Therefore, we can conclude1369

that1370

max
{ui,h∈Ui,h}i∈[n]

Q∗,M
h (ĉh, u1,h, · · · , un,h) = max

{γi,h∈Γi,h}i∈[n]

Q∗,M
h (ĉh, γ1,h, · · · , γn,h)

Therefore, we can solve Eq. (E.1) and compute γ∗
1:n,h from computing u∗

1:n,h, which can be solved1371

with complexity poly(Ph,Ah,S).1372

• Factorized structures: For any h ∈ [H], t ∈ [H], for any ĉh ∈ Ĉh, γh ∈ Γh we use backward1373
induction to prove that, there exist n functions {Fi,h}i∈[n] such that1374

Q∗,M
h (ĉh, γh) =

n∑
i=1

Fi,h(ĉi,h, γi,h)

It holds for h = H + 1 obviously. For any h ≤ H , it holds that1375

Q∗,M
h (ĉh, γh)

=
∑

sh,ph,sh+1,oh+1

PM,c
h (sh, ph | ĉh)Th(sh+1 | sh, γh(ph))Oh+1(oh+1 | sh+1)

[

n∑
i=1

Ri,h(si,h, γi,h(pi,h) + Fi,h+1(ĉi,h+1, ĝ
∗
i,h+1(ĉi,h+1))]

=

n∑
i=1

∑
si,h,pi,h,si,h+1,oi,h+1

PM,c
i,h (si,h, pi,h | ĉi,h)Th(si,h+1 | si,h, γi,h(pi,h))

Oi,h+1(oi,h+1 | si,h+1)[Ri,h(si,h, γi,h(pi,h) + Fi,h+1(ĉi,h+1, ĝ
∗
i,h+1(ĉi,h+1))]

=:

n∑
i=1

Fi,h(ĉi,h, γi,h).

Then, by induction, we know that it holds for any h ∈ [H]. We can define1376
ĝ∗i,h(ĉh) ∈ argmaxγi,h∈Γi,h

Fi,h+1(ĉi,h+1, γi,h), and thus solve Eq.(E.1) with complexity
∑n

i=11377

poly(Si,Ai,h,Pi,h).1378

This completes the proof.1379

H Venn Diagrams of LTCs and General POSGs1380

Here, we show some examples of the areas ①-⑤ in the Venn diagram in Fig. 1b.1381

• ①: Multi-agent MDP (Boutilier, 1999) with historical states. The Dec-POMDPs satisfying that1382
for any h ∈ [H], i ∈ [n],Oi,h = S,Oi,h(s | s) = 1, ch = s1:h, ph = ∅ lie in the area ①.1383

• ②: Uncontrolled state process without any historical information. The Dec-POMDPs satisfy-1384
ing that for any h ∈ [H], i ∈ [n], sh, ah, a

′
h,Th(· | sh, ah) = Th(· | sh, a′h), ch = ∅, pi,h = {oi,h}1385

lie in the area ②.1386

• ③: Dec-POMDPs with sQC information structure and perfect recall, and satisfying Assump-1387
tions 3.3 and 3.4. This class is what we mainly considered in §5.1388
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LTCs
①QC LTCs

②QC LTCs w/ A

③sQC LTCs

④sQC LTCs w/ A

(a)

Dec-POMDPs

QC sQC

SI-CIB

PR

①

②

③

④

⑤

(b)

Figure 1: (a) Venn diagram of LTCs with different ISs: ① QC LTCs. ② QC LTCs satisfying As-
sumptions 3.2, 3.3, and 3.4. ③ sQC LTCs. ④ sQC LTCs satisfying Assumptions 3.2, 3.3, and 3.4,
whose reformulated Dec-POMDPs have SI-CIB; (b) Venn diagram of general Dec-POMDPs with
different ISs. PR denotes perfect recall. ③ denotes the Dec-POMDPs we mainly consider, e.g., the
examples in (Nayyar et al., 2013a; Liu & Zhang, 2023).

• ④: State controlled by one controller with no sharing and only observability of controller. We1389
consider a Dec-POMDPD. The state dynamics are controller by only one agent (, for convenience,1390
agent 1), and only agent 1 has observability, i.e. Th(· | sh, a1,h, a−1,h) = Th(· | sh, a1,h, a′−1,h)1391
for all sh, a1,h, a−1,h, a

′
−1,h, andO−1,h = ∅. There is no information sharing, i.e. ch = ∅, p1,h =1392

{o1:h, a1:h−1}, pj,h = {aj,1:h−1},∀j ̸= 1. Then ∀j ̸= 1, h1 < h2 ∈ [H], agent (1, h1) does1393
not influence (j, h2), since τj,h2 = {aj,1:h2−1} is not influenced by agent (1, h1). Therefore, D1394
is sQC and has perfect recall, D is not SI (underlying state sh influenced by g1,1:h−1). This is1395
because D does not satisfy Assumption 3.4. Then D lies in the area ④.1396

• ⑤: One-step delayed observation sharing and two-step delayed action sharing. The Dec-1397
POMDPs satisfying that for any h ∈ [H], i ∈ [n], ch = {o1:h−1, a1:h−2}, pi,h = {ai,h−1, oi,h}1398
lie in the area ⑤.1399

I Experimental Results1400

For the experiments, we validate both the implementability and performance of our LTC algorithms,1401
and conduct ablation studies for LTCs with different communication costs and horizons.1402

Experimental setup We conduct our experiments on two popular and modest-scale partially ob-1403
servable benchmarks, Dectiger (Nair et al., 2003) and Grid3x3 (Amato et al., 2009). We train the1404
agents in each LTC problem in the two environments with 20 different random seeds and different1405
communication cost functions, and execute them in problems with horizons [4, 6, 8, 10]. To fit the1406
setting of LTC in our paper. We regularize the reward between [0,1] and set the base information1407
structure as one-step-delay. As for the communication cost function, we set Kh(Z

a
h) = α|Za

h |, and1408
set α ∈ [0.01, 0.05, 0.1] for the purpose of ablation study. Also, we study 2 baselines under the1409
same environment with information structure of one-step delay and fully-sharing, respectively. The1410
one-step-delay baseline can be regarded as an LTC problem with extremely high communication1411
cost, thus no additional sharing. On the other hand, the fully-sharing baseline is the LTC problem1412
with no communication cost.1413
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Figure 2: The average-values achieved under different communication costs and horizons. Each full
bar, the dark part, and the light part denote the values associated with the reward, the communication
cost, and the overall objective (reward minus cost) of the agents, respectively. Note that, as baselines,
there is no communication cost in the no additional sharing and fully sharing cases.

Figure 3: Learning curves with different communication costs.
Horizon/Cost No Sharing Cost=0.1 Cost=0.05 Cost=0.01 Fully Sharing

H=4 w/ cost 1.32±0.025 1.33±0.044 1.44±0.034 1.54±0.013 1.57±0.004

H=4 w/o cost - 1.36±0.032 1.48±0.034 1.59±0.002 -

H=6 w/ cost 1.95±0.009 1.97±0.07 2.08±0.068 2.26±0.012 2.29±0.002

H=6 w/o cost - 2.01±0.047 2.14±0.072 2.27±0.011 -

H=8 w/ cost 2.56±0.041 2.64±0.078 2.74±0.118 2.96±0.021 3.0±0.002

H=8 w/o cost - 2.7±0.044 2.83±0.117 2.98±0.02 -

H=10 w/ cost 3.31±0.024 3.37±0.135 3.51±0.153 3.69±0.029 3.87±0.007

H=10 w/o cost - 3.46±0.069 3.63±0.152 3.71±0.026 -

Table 1: Experimental results for Dectiger.

Results and analysis The attained average-values are presented in Fig. 2, and the learning curves1414
are shown in Fig. 3. Additionally, the results of different horizons and communications costs over1415
20 random seeds are shown in Tables 1 and 2. The results show that communication is beneficial1416
for agents to obtain higher values with better sample efficiency. Also, cheaper communication costs1417
can encourage agents to share more information, and jointly achieve a better strategy.1418

J Additional Figures1419

We provide a few figures to better illustrate the paradigms and algorithmic ideas of this paper. Fig. 41420
and Fig. 5 illustrate the paradigm and the timeline of the LTC problems considered in this paper, and1421
Fig. 6 illustrates how Algorithm 1 solves the LTC problems, including the subroutines presented in1422
§4.1423
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Horizon/Cost No Sharing Cost=0.1 Cost=0.05 Cost=0.01 Fully Sharing

H=4 w/ cost 0.14±0.003 0.14±0.019 0.15±0.002 0.26±0.028 -0.48±0.023

H=4 w/o cost - 0.14±0.019 0.21±0.007 0.33±0.023 -

H=6 w/ cost 0.33±0.02 0.32±0.025 0.4±0.009 0.48±0.059 -0.38±0.075

H=6 w/o cost - 0.32±0.025 0.54±0.02 0.62±0.075 -

H=8 w/ cost 0.52±0.084 0.52±0.051 0.58±0.072 0.67±0.031 -0.4±0.022

H=8 w/o cost - 0.52±0.051 0.72±0.035 0.82±0.074 -

H=10 w/ cost 0.73±0.02 0.73±0.037 0.9±0.169 1.03±0.019 -0.15±0.188

H=10 w/o cost - 0.73±0.037 1.08±0.14 1.25±0.062 -

Table 2: Experimental results for Grid3x3.
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Figure 4: Illustrating the paradigm of the Learning-to-Communicate problem considered in this
paper.
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Figure 5: Timeline of the information sharing and evolution protocols in the Learning-to-
Communicate problem considered in this paper.

K Related Work1424

Communication-control joint optimization. The joint design of control and communication strate-1425
gies has been studied in the control literature (Xiao et al., 2005; Yüksel, 2013; Sudhakara et al.,1426
2021; Kartik et al., 2022). However, even with model knowledge, the computational complexity1427
(and associated necessary conditions) of solving these models remains elusive, let alone the sample1428
complexity when it comes to learning. Moreover, these models mostly have more special structures,1429
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Figure 6: Illustrating the subroutines in §4 for solving the LTC problems.

e.g., with linear systems (Xiao et al., 2005; Yüksel, 2013), or allowing to share only instantaneous1430
observations (Sudhakara et al., 2021; Kartik et al., 2022).1431

Information sharing and information structures. Information structure has been extensively stud-1432
ied to characterize who knows what and when in decentralized control (Mahajan et al., 2012; Yüksel1433
& Başar, 2023). Our paper aims to formally understand LTC through the lens of information struc-1434
tures. The common-information-based approaches to formalize information sharing in (Nayyar1435
et al., 2013b;a) serve as the basis of our work. In comparison, these results focused on the structural1436
results, without concrete computational (and sample) complexity analysis.1437

Partially observable MARL theory. Planning and learning in partially observable MARL are1438
known to be hard (Papadimitriou & Tsitsiklis, 1987; Lusena et al., 2001; Jin et al., 2020; Bernstein1439
et al., 2002). Recently, (Liu et al., 2022; Altabaa & Yang, 2024) developed polynomial-sample com-1440
plexity algorithms for partially observable stochastic games, but with computationally intractable1441
oracles; (Liu & Zhang, 2023) developed quasi-polynomial-time and sample algorithms for such1442
models, leveraging information sharing. In contrast, our paper focuses on optimizing/learning to1443
share, together with control strategy optimization/learning.1444

L Concluding Remarks1445

We formalized the learning-to-communicate problem under the Dec-POMDP framework, and pro-1446
posed a few structural assumptions for LTCs with quasi-classical information structures, violating1447
which can cause computational hardness in general. We then developed provable planning and1448
learning algorithms for QC LTCs. Along the way, we also established some relationship between1449
the strictly quasi-classical information structure and the condition of having strategy-independent1450
common-information-based beliefs, as well as solving general Dec-POMDPs without computa-1451
tionally intractable oracles beyond those with the SI-CIB condition. Our work has opened up1452
many future directions, including the formulation, together with the development of provable plan-1453
ning/learning algorithms, of LTC in non-cooperative (game-theoretic) settings, and the relaxation of1454
(some of) the structural assumptions when it comes to equilibrium computation.1455
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