

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MATRIS: TOWARD RELIABLE AND EFFICIENT PRE- TRAINED MACHINE LEARNING INTERACTION POTEN- TIALS

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Universal MLIPs (uMLIPs) demonstrate broad applicability across diverse material systems and have emerged as a powerful and transformative paradigm in chemical and computational materials science. Equivariant uMLIPs achieve state-of-the-art accuracy in a wide range of benchmarks by incorporating equivariant inductive bias. However, the reliance on tensor products and high-degree representations makes them computationally costly. This raises a fundamental question: as quantum mechanical-based datasets continue to expand, can we develop a more compact model to thoroughly exploit high-dimensional atomic interactions? In this work, we present MatRIS (**M**aterials **R**epresentation and **I**nteraction **S**imulation), an invariant uMLIP that introduces attention-based modeling of three-body interactions. MatRIS leverages a novel separable attention mechanism with linear complexity $O(N)$, enabling both scalability and expressiveness. MatRIS delivers accuracy comparable to that of leading equivariant models on a wide range of popular benchmarks (Matbench-Discovery, MatPES, MDR phonon, Molecular dataset, etc). Taking Matbench-Discovery as an example, **MatRIS achieves an F1 score of up to 0.847 while improving training efficiency by 13.0–13.5 \times at comparable accuracy**. The work indicates that our carefully designed invariant models can match or exceed the accuracy of equivariant models at a fraction of the cost, shedding light on the development of accurate and efficient uMLIPs.

1 INTRODUCTION

Quantum Mechanism (QM)-based calculations are the cornerstone of modern drug and material research, providing highly accurate modeling of interatomic interactions. However, its prohibitive computational cost makes large-scale simulations intractable (De Vivo et al., 2016; Jain et al., 2013b; Merchant et al., 2023). Machine learning interatomic potentials (MLIPs) have emerged as a powerful alternative, enabling accelerated, long-timescale molecular dynamics (MD) simulations while retaining near-quantum-chemical accuracy. With the increase in QM-based reference data and model innovations, MLIPs have demonstrated remarkable accuracy and generalization in property prediction and materials discovery (Merchant et al., 2023; Barroso-Luque et al., 2024; Zhang et al., 2024; Yang et al., 2024; Zhang et al., 2025; Fu et al., 2025; Wood et al., 2025).

Graph neural networks (GNNs) have been widely adopted for 3D molecular modeling, where atoms are represented as nodes and interatomic interactions as edges (Qu & Krishnapriyan, 2024; Liao & Smidt, 2023; Liao et al., 2024b). Through Message Passing (MP), node features are iteratively updated to capture local and global structural interactions. To enhance model expressiveness and generalization, many MLIPs incorporate domain-specific inductive biases (e.g., translation, rotation, permutation, reflection invariance, or equivariance). Depending on how these symmetries are encoded, **MLIPs are broadly divided into invariant, equivariant and unconstrained architectures (Duval et al., 2024; Jacobs et al., 2025)**. In invariant models, the structural descriptor is encoded based on attributes such as interatomic distances, bond angles, and dihedral angles (Gasteiger et al., 2022b;c; 2024; Deng et al., 2023; Zhang et al., 2025). In equivariant models, higher-order equivariance is typically enforced through computationally intensive tensor products of rotation order L (Batzner et al., 2022; Batatia et al., 2023; Liao & Smidt, 2023; Liao et al., 2024b).

054 Previous work demonstrates that equivariant models often deliver superior accuracy (Batzner et al., 2022). In contrast, 055 unconstrained models do not explicitly encode 056 symmetries; instead, the model learns them 057 from data or approximates them through data 058 augmentation or auxiliary losses, leading 059 to more flexible architectural design (Duval 060 et al., 2024; Neumann et al., 2024; Rhodes 061 et al., 2025). Meanwhile, the results in a 062 popular benchmark (Matbench-Discovery 063 leaderboard (Riebesell et al., 2025)) indicate 064 that equivariant GNNs achieve higher accuracy. 065 When the training data is MPTrj (Deng et al., 066 2023), eSEN-30M-MP (Fu et al., 2025) and 067 eqV2 S DeNS (Barroso-Luque et al., 2024) 068 reach F1 scores of 0.831 and 0.815, with 069 energy errors of 0.033 and 0.036 meV/atom, 070 respectively. Despite the accuracy gains, the 071 heavy equivariant operations make equivariant 072 methods significantly more computationally 073 expensive and memory-intensive. Our investigation 074 into the training cost of several mainstream 075 pretrained models is summarized in Figure 1. eSEN-30M-MP 076 and eqV2 S DeNS show superior F1 077 score while requiring 705 and 228 GPU days, 078 respectively. This high computational demand 079 can be caused by three main factors: 1) the intensive 080 equivariant operations such as tensor products, 081 2) the large number of model parameters, and 082 3) the prolonged training schedules (e.g., 100, 150, 083 and 600 training epochs are reported for eSEN-30M-MP, 084 eqV2 S DeNS, and SevenNet-l3i5 (Kim et al., 085 2024), respectively).

086 Incorporating equivariance into the GNN MLIPs serves as an implicit form of data augmentation. 087 AlphaFold has shown that, with sufficient data, non-equivariant models can accurately predict 088 protein secondary structures (Jumper et al., 2021; Abramson et al., 2024). In MLIPs, the rapid increase 089 in QM-based reference datasets (Barroso-Luque et al., 2024; Levine et al., 2025; Gharakhanyan 090 et al., 2025; Sriram et al., 2025) motivates us to ask: **Is the equivariance indispensable as the QM-based 091 dataset continues to increase? Can we develop a more compact architecture to capture 092 the high-dimensional atomic interactions encoded in QM-based data sufficiently?**

093 We have the following findings: 1) Recent studies (Yang et al., 2024; Zhang et al., 2024; 094 2025) show that invariant models offer reliable property predictions and enable a wide range of scientific 095 applications while maintaining computational efficiency. 2) On a more compact architecture (an 096 architecture that can fully exploit QM-based data). Element types and pairwise interactions have 097 been shown to be insufficient for distinguishing graphs with different chemical properties (Xu et al., 098 2019). Incorporating three-body interactions is needed to exploit the knowledge in QM-based data. 099 Self-attention mechanisms (Mazitov et al., 2025; Qu & Krishnapriyan, 2024) have proven to be a 100 promising method in improving model expressiveness, also benefiting in model scalability.

101 Building on these insights, we introduce an invariant MLIP: interatomic potential for **Materials** 102 **Representation and Interaction Simulation (MatRIS)**. To the best of our knowledge, our model 103 is the first to explicitly leverage an $O(N)$ attention mechanism to model three-body interactions. 104 MatRIS consists of graph generation, feature embedding, graph attention, refinement, and a readout 105 block. We provide the ablation study of these modules in this paper. Putting all these modules 106 together, MatRIS achieves state-of-the-art (SOTA) accuracy and efficiency across a wide range of 107 chemical applications. Additionally, the novel separable attention has lower complexity ($O(N)$) 108 compared to full attention ($O(N^2)$). Across diverse benchmarks, MatRIS achieves competitive 109 results. MatRIS-L achieves SOTA results on compliant Matbench-Discovery with an F1 of **0.847** 110 and a root mean square displacement (RMSD) of **0.0717**. Moreover, MatRIS-S and MatRIS-M 111 deliver accuracy comparable to eqV2 S DeNS and eSEN-30M-MP, respectively, while improving 112 training efficiency by **13.0 \times** and **13.5 \times** , respectively. These results demonstrate MatRIS’s strong 113 potential for applications in materials science and drug discovery.

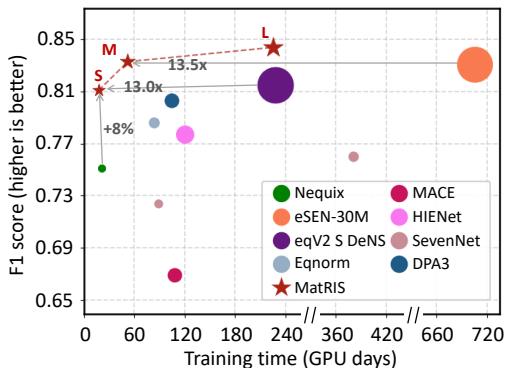


Figure 1: Trade-offs between training time and F1 score of uMLIPs. Training times for eSEN-30M and eqV2 S DeNS are estimated on an Nvidia A100 GPU. Nequix (Koker & Smidt, 2025) was trained on JAX; all others on PyTorch. Larger marks indicate models with more parameters.

2

108
109

2 RELATED WORKS

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

Invariant MLIPs. Invariant MLIPs are models whose intermediate representations are invariant under rotations and translations (Duval et al., 2024). This invariance is achieved by using internal coordinates instead of Cartesian coordinates, with features such as interatomic distances, bond angles, and dihedral angles remaining unchanged under rotations and translations of the system (Schütt et al., 2017; Gasteiger et al., 2020; Novikov et al., 2020; Fan et al., 2022; Gasteiger et al., 2022c; Chen & Ong, 2022; Deng et al., 2023; Zhang et al., 2025). Early invariant MLIPs, such as SchNet (Schütt et al., 2017), CGCNN (Xie & Grossman, 2018), and PhysNet (Unke & Meuwly, 2019), employ relative distances between node pairs and encode local geometric information via learnable radial basis functions. More recent MLIPs enhance representational expressiveness by incorporating higher-order many-body scalar features. For example, the DimeNet (Gasteiger et al., 2020; 2022a) series introduced directional message passing, allowing angular information to be embedded in edge updates between atoms. The GemNet series (Gasteiger et al., 2022c; 2024) further incorporates dihedral angles to improve performance. SphereNet (Liu et al., 2022) and ComENet (Wang et al., 2022) proposed methods to efficiently extract four-body angles within local neighborhoods, avoiding the need to iterate over all three-hop neighbors. DPA3 (Zhang et al., 2025) builds upon the line graph series (LiGS), capturing higher-order interactions. Invariant MLIPs are progressively increasing their representational expressiveness while maintaining inherent computational efficiency. Building upon these insights, we design MatRIS from an invariant perspective. We further provide a detailed discussion in Appendix A, highlighting how MatRIS differs from other MLIPs that incorporate three-body encodings or attention-based mechanisms.

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

Equivariant MLIPs. Equivariant MLIPs are models where intermediate representations are invariant (e.g., scalars) or equivariant (e.g., vectors or higher-order tensors) under rotations (Duval et al., 2024). Current equivariant MLIPs can be divided into scalarization-based models (Schütt et al., 2021; Du et al., 2023; Thölke & Fabritiis, 2022; Aykent & Xia, 2025) and high-degree steerable models (Zhou et al., 2024; Batzner et al., 2022; Batatia et al., 2023; Liao & Smidt, 2023). Scalarization-based MLIPs model interatomic interactions in the Cartesian coordinate system while restricting the set of operations on geometric features to preserve equivariance (Duval et al., 2024; Wang et al., 2024; Yin et al., 2025). On the other hand, high-degree steerable equivariant MLIPs use irreducible representations (irreps) to encode features, ensuring equivariance under 3D rotations. Each irrep of degree L corresponds to a $(2L + 1)$ -dimensional vector space (Batzner et al., 2022; Batatia et al., 2023; Liao & Smidt, 2023). In equivariant GNN-based MLIPs, MP involves transforming and combining these type- L vectors. To interact across degrees during MP, tensor products (by using Clebsch–Gordan coefficients to combine) are employed. To avoid excessive computational complexity, these models typically employ only low-degree equivariant representations (Park et al., 2024; Liao et al., 2024b; Fu et al., 2025). Equivariant MLIPs continue to deliver SOTA accuracy on various benchmarks (Tran et al., 2023; Riebesell et al., 2025), while remaining computationally demanding.

146
147
148
149
150
151
152
153
154
155
156
157

Unconstrained MLIPs. Unconstrained MLIPs do not impose strict constraints on their intermediate representations. Instead, these models typically learn symmetries directly from the data or incorporate additional loss terms to encourage symmetry learning (Duval et al., 2024; Rhodes et al., 2025). For example, Qu & Krishnapriyan (2024); Neumann et al. (2024); Rhodes et al. (2025) use data augmentation (applying random rotations to training samples) to learn rotational equivariance and have demonstrated promising results. In addition, Neumann et al. (2024) enhances stability in MD simulations by removing net force and torque, while Rhodes et al. (2025) introduces an ‘Equigrad’ loss to incentivize rotational invariance of energy. Unconstrained MLIPs have inference efficiency comparable to invariant MLIPs and more flexible architectures. These models demonstrate competitive accuracy in multiple benchmarks (Chanussot et al., 2021; Tran et al., 2023; Riebesell et al., 2025). However, studies indicate that they may lead to errors in certain property prediction tasks (Fu et al., 2023; Póta et al., 2025; Bigi et al., 2025).

158
159

3 MATRIS

160
161
In this section, we introduce the detailed architecture of MatRIS. The interaction between the atom graph and the line graph is described in Section 3.1. The Graph Attention module is depicted in

162 Section 3.2. In Section 3.3, we describe other key components of MatRIS. An overview of MatRIS
 163 is shown in Figure 3, and the model formalizations are detailed in Appendix B.
 164

165 3.1 LINE-ATOM GRAPH INTERACTION

167 To model three-body interactions, we explicitly construct a Line Graph. In the Atom Graph,
 168 nodes represent atom types and edges represent pairwise interactions (bonds), whereas in the Line
 169 Graph, nodes represent edges of the atom graph and edges represent three-body interactions (an-
 170 gles) (Harary & Norman, 1960; Whitney, 1992).

171 Specifically, given an Atom Graph $G^a = (V^a, E^a)$, where V^a
 172 is the set of atoms and E^a is the set of edges within a cutoff
 173 distance r_{cut}^a , the corresponding Line Graph $G^l = (V^l, E^l)$ is
 174 constructed as follows: ① Each node in V^l corresponds to an
 175 edge in E^a ; ② An edge $e \in E^l$ is added between two nodes
 176 if their corresponding edges in E^a share a common atom, rep-
 177 resenting the angular information formed by the three atoms
 178 (i.e., the three-body interaction). The conversion from the
 179 atom graph to the line graph is illustrated in Figure 2.

180 For graph information fusion, we first update the Line Graph
 181 to obtain edge and angular features encoding three-body inter-
 182 actions. The updated edge features are then propagated back
 183 to the Atom Graph, allowing atomic features to incorporate higher-order information from the Line
 184 Graph.

185 3.2 GRAPH ATTENTION

187 In this section, we introduce the design motivation and implementation of the Dim-wise Softmax
 188 and Separable Attention mechanisms.

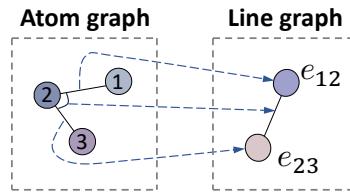
190 **Dim-wise Softmax.** Recent studies have shown that attention mechanisms play an important role
 191 in improving both the accuracy and scalability of MLIPs (Liao & Smidt, 2023; Liao et al., 2024b;
 192 Qu & Krishnapriyan, 2024). Existing approaches (Liao & Smidt, 2023; Wang et al., 2024; Shao
 193 et al., 2024; Liao et al., 2024b) typically compute attention weights α_{id} to weight the value vectors
 194 $V \in \mathbb{R}^{\text{neighbors} \times D}$, where D denotes the hidden dimension. The weights α_{id} depend on the fea-
 195 tures of node i and its neighbors $\mathcal{N}(i)$, while the values V are obtained by applying a nonlinear
 196 transformation to the fused edge and node features.

197 In these methods, the same attention weights are applied to all feature dimensions, implicitly as-
 198 suming equal importance across dimensions. However, this assumption limits the model’s ability
 199 to distinguish the independent contributions of different feature dimensions. Our proposed Dim-
 200 wise Softmax computes attention scores independently for each feature dimension. Given an input
 201 feature $x \in \mathbb{R}^{\text{neighbors} \times D}$ and a neighbor list \mathcal{N} , the Dim-wise Softmax is computed as follows:

$$203 \quad \alpha_{id} = \text{Dim-wise Softmax}(x_{id}, \mathcal{N}(i)) = \frac{\exp(x_{id})}{\sum_{k \in \mathcal{N}(i)} \exp(x_{kd})} \quad (1)$$

206 where $\alpha \in \mathbb{R}^{\text{neighbors} \times D}$ is the attention weight matrix, x_{id} denotes the d -th feature of node i , and
 207 $\mathcal{N}(i)$ represents the set of neighboring nodes of node i . This approach preserves the independence
 208 of feature dimensions while emphasizing the relative importance of different neighbors in each di-
 209 mension, thereby enhancing the model’s ability to capture local structural information.

211 **Separable Attention.** In molecular systems, interatomic interactions are directional, and each
 212 atom plays two roles: target node and source node. Most existing methods only aggregate informa-
 213 tion from the source node to the target node (Liao & Smidt, 2023; Liao et al., 2024b; Wang et al.,
 214 2024; Shao et al., 2024), which assumes symmetric information flow. However, this is not always
 215 true in real physical systems. For example, in polar bonds, charged environments, or local defect
 structures, the effect of the source node on the target node can differ from the effect of the target node



216 Figure 2: Conversion from an
 217 Atom graph to a Line graph.

on the source node (Bengtsson, 1999; Kühne & Khaliullin, 2013). To address this, we introduce two independent sets of attention weights: source attention weights and target attention weights. The first models how neighboring nodes affect the central node, while the second captures how the central node influences its neighbors. In this way, the two roles of nodes are explicitly separated during aggregation. The overall workflow is illustrated in Figure 3(b). Given the interaction e_{ij} between a target node v_i and a source node v_j , we compute the attention weights as follows:

$$t_{ij} = \text{Linear}(e_{ij}) \quad \text{and} \quad ta_{ij} = \text{Dim-wise Softmax}(t_{ij}, \mathcal{N}(i)) \quad (2)$$

$$s_{ij} = \text{Linear}(e_{ij}) \quad \text{and} \quad sa_{ij} = \text{Dim-wise Softmax}(s_{ij}, \mathcal{N}(j)) \quad (3)$$

Here, $\mathcal{N}(i)$ and $\mathcal{N}(j)$ denote the indices of the target and source nodes, respectively. The final attention outputs are obtained as the weighted sum of ta_{ij} , sa_{ij} , and e'_{ij} . Here, e'_{ij} is obtained by concatenating e_{ij} , v_i , and v_j , followed by target and source feature fusion through a gMLP (see Figure 3(d)). The two attention branches share the same computational flow and can therefore be executed in parallel. We also implement optimized kernels to improve training efficiency.

Generality Analysis. As mentioned earlier, many MLIPs are either unconstrained or equivariant. Unconstrained MLIPs are flexible, allowing Dim-wise Softmax and Separable Attention to be applied directly. For equivariant MLIPs, symmetry must be preserved. To ensure this, Dim-wise Softmax is computed on invariant features (e.g., $L = 0$), producing attention weights that are themselves invariant. These weights are then applied to equivariant features within each irrep channel, without mixing components of different orders, ensuring that the features remain equivariant under geometric transformations. Separable Attention extends this approach with two branches, computing attention equivariantly and aggregating information separately over the indices of the target and source nodes.

3.3 OVERALL ARCHITECTURE

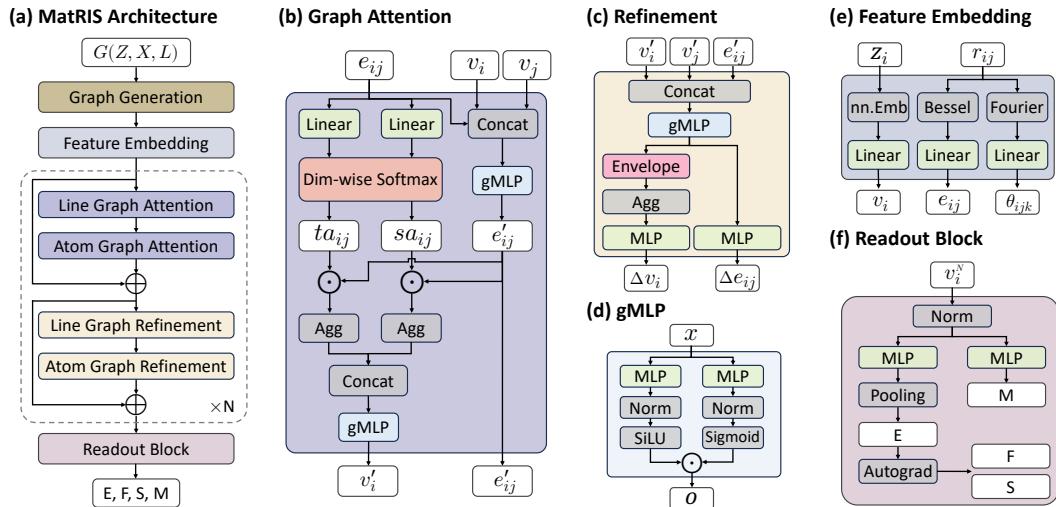


Figure 3: Overview of MatRIS. The model architecture (a) consists of feature embedding (e), graph attention (b), refinement (c), and a readout block(f).

Graph Generation. Given a crystalline system $G(Z, X, L)$, where $Z \in \mathbb{R}^{\text{natoms}}$ denotes the atomic numbers, $X \in \mathbb{R}^{\text{natoms} \times 3}$ represents the atomic coordinates, and $L \in \mathbb{R}^{3 \times 3}$ refers to the lattice. We first perform periodic repetition of the structure and then employ a radius-cutoff graph construction to represent it. Inspired by CHGNet (Deng et al., 2023), we construct the atom graph G^a (with atoms as nodes and bonds as edges) based on r_{cut}^a and the line graph G^l (with bonds as nodes and angles as edges) based on r_{cut}^l for the crystal structure.

270 **Feature Embedding.** Atomic numbers are initialized using trainable embeddings, while pairwise
 271 distances are encoded via a learnable radial Bessel basis with envelope functions (Gasteiger et al.,
 272 2022b). For bond angles, we employ a learnable Fourier basis expansion following Deng et al.
 273 (2023). These input features are then passed through a linear layer to generate initial node, edge,
 274 and three-body representations. This block is illustrated in Figure 3(e).

275 **Refinement.** The output of Graph Attention v'_i and e'_{ij} is concatenated and processed by a gMLP
 276 operator (shown in Figure 3(c)). This representation is further refined by an Envelope func-
 277 tion (Gasteiger et al., 2022b) (ensures smoothness). The refined signals are then aggregated over
 278 neighboring interactions, enabling each edge to integrate local information. Finally, the output is
 279 transformed by a MLP operator to produce the residual node features Δv_i and edge features Δe_{ij} .

280 **Readout Block.** The Readout Block (Figure 3(f)) takes the node features v_i from the last MP
 281 layer. After the normalization layer, the features are passed through MLPs to predict node energies
 282 and magnetic moments (M). Atomic energies are summed to obtain total energy (E). To ensure the
 283 reliability (Bigi et al., 2025), atomic forces (F_i) and stress (σ) are computed by Equation 4. \mathcal{V} is
 284 volume.

$$F_i = -\frac{\partial E}{\partial X_i}, \sigma = \frac{1}{\mathcal{V}} \frac{\partial E}{\partial \epsilon} \quad (4)$$

289 4 EXPERIMENTS

290 We evaluated MatRIS on Matbench-Discovery benchmark (Section 4.1), MatPES benchmark (Sec-
 291 tion 4.2), MDR phonon benchmark (Section 4.3), Molecular zero-shot benchmark (Section 4.4).
 292 The best results are in bold, and the second best are underlined. Moreover, we conducted ablation
 293 studies on the network modules and training methods (Section 4.5). Finally, we analyzed the effi-
 294 ciency of MatRIS (Section 4.6). In addition, the results of experiments on the **Matbench-Discovery**
 295 **benchmark (non-compliant)**, **LAMBench benchmark** (Peng et al., 2025), Zeolite benchmark (Yin
 296 et al., 2025), DPA2 test sets (Zhang et al., 2024) and **MD stability evaluation** are provided in Ap-
 297 pendix D. The training strategies are introduced in Appendix C, and the training hyperparameter
 298 settings are detailed in Appendix E.

300 4.1 MATBENCH DISCOVERY

301 Table 1: MatRIS performance on the compliant Matbench-Discovery benchmark with results on
 302 unique structure prototypes. ‘↑’/‘↓’ stands for higher/lower is better. All models accessed before
 303 September 24, 2025.

306 Model	Param.	F1↑	DAF↑	Precision↑	Recall↑	Accuracy↑	MAE↓	R2↑	$K_{srme}\downarrow$	RMSD↓	
307 CHGNet	0.41M	0.613	3.361	0.514	0.758	0.851	0.063	0.689	1.717	0.0949	
308 MACE-MP-0	4.69M	0.669	3.777	0.577	0.796	0.878	0.057	0.697	0.647	0.0915	
309 GRACE-2L	15.3M	0.691	4.163	0.636	0.757	0.896	0.052	0.741	0.525	0.0897	
310 Allegro-MP-L	18.7M	0.751	4.516	0.690	0.823	0.915	0.044	0.778	0.504	0.0816	
311 Nequix MP	0.71M	0.751	4.455	0.681	0.836	0.914	0.044	0.782	0.446	0.0853	
312 SevenNet-13i5	1.17M	0.760	4.629	0.708	0.821	0.920	0.044	0.776	0.550	0.0847	
313 NequiP-MP-L	9.6M	0.761	4.704	0.719	0.809	0.921	0.043	0.791	0.452	0.0856	
314 ORB v2 MPTrj	25.2M	0.765	4.702	0.719	0.817	0.922	0.045	0.756	1.725	0.1007	
315 HIENet	7.51M	0.777	4.932	0.754	0.801	0.929	0.041	0.793	0.642	0.0795	
316 Eqnorm MPTrj	1.31M	0.786	4.844	0.741	0.838	0.929	0.040	0.799	<u>0.408</u>	0.0837	
317 DPA-3.1-MPTrj	4.81M	0.803	5.024	0.768	0.841	0.936	0.037	0.812	0.650	0.0801	
318 eqV2 S DeNS	31.2M	0.815	5.042	0.771	<u>0.864</u>	0.941	0.036	0.788	1.676	0.0757	
319 eSEN-30M-MP	30.1M	0.831	5.260	0.804	0.861	0.946	0.033	<u>0.822</u>	0.340	0.0752	
320	MatRIS-S	4.3M	0.811	5.127	0.784	0.840	0.940	0.036	0.803	0.730	0.0766
321 MatRIS-M	6.3M	<u>0.833</u>	<u>5.363</u>	<u>0.820</u>	0.847	<u>0.948</u>	<u>0.033</u>	0.820	0.542	<u>0.0742</u>	
322 MatRIS-L	10.4M	0.847	5.422	0.829	0.865	0.951	0.031	0.829	0.489	0.0717	

323 **Dataset and Setting.** The Matbench-Discovery benchmark (Riebesell et al., 2025) is a well-
 324 established benchmark for evaluating the ability of models in new material discovery. In this bench-
 325 mark, all models are required to optimize the geometry and predict the formation energy of each

of the 256k structures in the WBM test set (Wang et al., 2021). These results are then used to assess thermodynamic stability at the ground state (0 K). In the “compliant” setting, all models are required to use MPTrj (Deng et al., 2023) as the training dataset, whereas in the “non-compliant” setting, this requirement is relaxed. More details on the hyperparameters can be found in Table 12. Moreover, inspired by Zaidi et al. (2022) and Liao et al. (2024a), we apply denoising pretraining to MatRIS-M and MatRIS-L. The specific details are described in Appendix E. Notably, this denoising is also adopted in several other works (ORB v2 MPTrj (Neumann et al., 2024), eqV2 S DeNS, and eSEN-30M-MP). Structures are relaxed using MatRIS and the FIRE (Bitzek et al., 2006) optimizer, with convergence reached after 500 steps or when the maximum force falls below 0.05 eV/Å.

Results of the Compliant Benchmark We summarize the comparison with other models in Table 1 (as of September 24, 2025). MatRIS-S/M achieves performance comparable to eqV2 S DeNS/eSEN-30M-MP while using fewer parameters and lower computational costs (see Figure 1 for a comparison of training cost). These results demonstrate the effectiveness of MatRIS. Moreover, MatRIS-L achieves state-of-the-art (SOTA) performance across all metrics, with an F1 score of 0.847. It also achieves an RMSD of 0.0717 when comparing relaxed structures to DFT reference values.

4.2 MATCALC BENCHMARK

Table 2: Summary of model performance on the MatCalc benchmark. All results were obtained using the MatCalc package and its associated dataset.

Model	Param.	Equilibrium			Near-equilibrium		
		$d \downarrow$	$Ef \downarrow$	$K \downarrow$	$G \downarrow$	$CV \downarrow$	$f/f_{DFT} \uparrow$
MatPES-trained models							
M3GNet	0.66M	0.42	0.11	26	25	27	0.97
CHGNet	2.7M	0.43	0.082	24	21	23	0.91
TensorNet	0.84M	0.37	0.081	18	15	13	0.93
MatRIS	1.4M	0.54	0.068	15	13	<u>16</u>	0.96
MPTrj-trained models							
CHGNet	2.7M	0.51	0.092	17.0	30.0	24.0	0.830
MACE-L	5.7M	0.43	–	25.3	22.5	11.6	0.829
SevenNet-I3i5	1.17M	0.55	0.057	13.2	170.2	8.03	0.922
eqV2 S DeNS	31.2M	0.25	0.033	27.2	29.1	25.9	0.964
eSEN-30M-MP	30.1M	0.34	0.039	18.8	77.3	4.66	0.986
MatRIS-M	6.3M	0.32	0.041	12.4	16.4	7.39	0.983
OAM-trained models							
SevenNet-MF-ompa	25.7M	0.502	0.028	13.3	32.2	4.60	0.976
eqV2 M	31.2M	0.235	0.017	25.4	17.5	80.4	0.999
eSEN-30M-OAM	30.1M	0.299	0.089	11.9	14.8	4.35	0.996
MatRIS-10M-OAM	10.4M	0.316	<u>0.025</u>	10.6	13.3	3.97	0.985

Dataset and Settings. MatCalc benchmark (Kaplan et al., 2025) covers equilibrium properties (relaxed structure similarity d , formation energy Ef), near-equilibrium properties (bulk modulus K , shear modulus G , constant-volume heat capacity CV , force softening f/f_{DFT}), and is constructed from test data collected from the Materials Project (Jain et al., 2013a), Alexandria (Schmidt et al., 2024), WBM high-energy states (Wang et al., 2021). We compare models trained on MatPES-PBE (Kaplan et al., 2025), MPTrj and OAM, with the results reported in Table 2. The training parameters are listed in Table 12. Specifically, when evaluating all MPTrj-trained models and OAM-trained models, we used the **default settings** in MatCalc for all configurations to ensure consistency across all models.

Results and Analysis. Table 2 summarizes the performance of models trained on the MatPES-PBE, MPTrj and OAM datasets. For models trained on MatPES-PBE, MatRIS achieves the best overall performance, clearly outperforming other models in predicting formation energy Ef .

For models trained on MPTrj, MatRIS attains SOTA or near-SOTA results on 83% of the evaluated metrics. Notably, MatRIS remains robust on Near-equilibrium” tasks regardless of the training

dataset. Although the higher fraction of near-equilibrium structures in MPTrj amplifies PES “Softening” (f/f_{DFT}) (Deng et al., 2024; Kaplan et al., 2025), MatRIS maintains stable performance. Comparisons with CHGNet further indicate that changing the training dataset does not result in significant softening, underscoring the effectiveness of the architectural design.

The same trend is observed for models trained on OAM, where MatRIS-10M-OAM performs robustly across all metrics and achieves SOTA performance overall.

4.3 MDR PHONON BENCHMARK

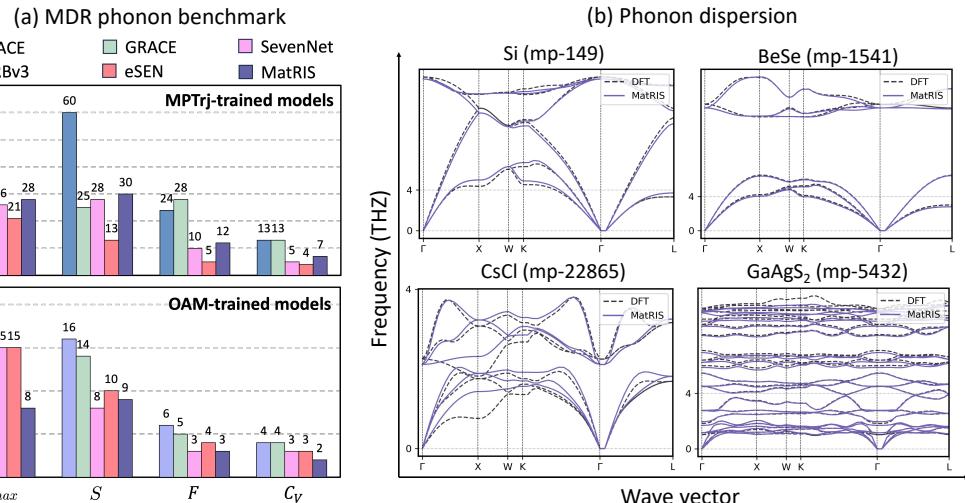


Figure 4: (a) Summary of model performance on the MDR phonon benchmark. The evaluation metrics include ω_{max} (K), S (J/K/mol), F (kJ/mol), and C_V (J/K/mol), where the reported values represent the MAE between the model predictions and the DFT results. (b) Predicted phonon dispersion obtained using MatRIS with a 0.01 Å displacement. The DFT results are taken from the phononDB dataset.

Dataset and Settings. The MDR phonon benchmark (Loew et al., 2025) is used to evaluate the ability of MLIPs to predict phonon properties. It requires MLIPs to compute the maximum phonon frequency (ω_{max}), entropy (S), free energy (F), and heat capacity at constant volume (C_V) for approximately 10,000 structures. To ensure a fair comparison, we follow the evaluation protocol adopted in Loew et al. (2025). Specifically, we first optimize the structures using the FIRE optimizer (max steps=500, fmax=0.005). Displacements are generated with a magnitude of 0.01 Å, and the properties are computed at 300 K.

Results and Analysis. Results for both the MPTrj-trained and OAM-trained models are shown in Figure 4(a). MatRIS achieves competitive results among the MPTrj-trained models. As the training dataset grows, MatRIS-10M-OAM achieves SOTA accuracy on most metrics, with a particularly significant improvement in the maximum phonon frequency (ω_{max}). It is worth noting that MatRIS-10M-OMat achieves higher accuracy, with values of ω_{max} , S , and C_V being 7.08, 7.12, 2.12, and 1.91, respectively.

We also selected four representative structures from the phononDB dataset (Togo) for visualization, as shown in Figure 4(b). We find that MatRIS-MP-L not only reproduces the highest frequencies but also aligns well with the DFT results overall.

4.4 MOLECULAR ZERO-SHOT BENCHMARK

Dataset and Settings. AIMNet and DPA2-Drug were trained on the datasets from Anstine D (2023) and Yang et al. (2025), respectively, while the other models were pre-trained on SPICE-

432 Table 3: MatRIS performance on the Molecular zero-shot benchmark. Energy (E) is reported in
 433 kcal/mol and Force (F) in kcal/mol/Å.
 434

435 436 437 Model	438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 779 780 781 782 783 784 785 786 787 788 789 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 809 810 811 812 813 814 815 816 817 818 819 819 820 821 822 823 824 825 826 827 828 829 829 830 831 832 833 834 835 836 837 838 839 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 859 860 861 862 863 864 865 866 867 868 869 869 870 871 872 873 874 875 876 877 878 879 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 909 910 911 912 913 914 915 916 917 918 919 919 920 921 922 923 924 925 926 927 928 929 929 930 931 932 933 934 935 936 937 938 939 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 959 960 961 962 963 964 965 966 967 968 969 969 970 971 972 973 974 975 976 977 978 979 979 980 981 982 983 984 985 986 987 988 989 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1198 1199 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1298 1299 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1398 1399 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1598 1599 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1698 1699 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1798 1799 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1898 1899 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1998 1999 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2098 2099 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2198 2199 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2			

486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 196

- 540 Ashok Thillaisundaram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong, Michal Zielinski,
 541 Augustin Žídek, Victor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, and John M.
 542 Jumper. Accurate structure prediction of biomolecular interactions with AlphaFold 3. *Nature*,
 543 630(8016):493–500, June 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-07487-w. URL
 544 <https://doi.org/10.1038/s41586-024-07487-w>.
- 545 Marco Anselmi, Greg Slabaugh, Rachel Crespo-Otero, and Devis Di Tommaso. Molecular
 546 graph transformer: stepping beyond alignn into long-range interactions. *Digital Discovery*, 3:
 547 1048–1057, 2024. doi: 10.1039/D4DD00014E. URL <http://dx.doi.org/10.1039/D4DD00014E>.
- 549 Isayev O Anstine D, Zubatyuk R. A neural network potential to meet your neutral, charged, organic,
 550 and elemental-organic needs. 2023. doi: 10.26434/chemrxiv-2023-296ch.
- 552 Sarp Aykent and Tian Xia. Gotennet: Rethinking efficient 3d equivariant graph neural networks.
 553 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=5wxCQDtbMo>.
- 555 Luis Barroso-Luque, Muhammed Shuaibi, Xiang Fu, Brandon M Wood, Misko Dzamba, Meng
 556 Gao, Ammar Rizvi, C Lawrence Zitnick, and Zachary W Ulissi. Open materials 2024 (omat24)
 557 inorganic materials dataset and models. *arXiv preprint arXiv:2410.12771*, 2024.
- 559 Ilyes Batatia, Dávid Péter Kovács, Gregor N. C. Simm, Christoph Ortner, and Gábor Csányi. Mace:
 560 Higher order equivariant message passing neural networks for fast and accurate force fields, 2023.
 561 URL <https://arxiv.org/abs/2206.07697>.
- 562 Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Korn-
 563 bluth, Nicola Molinari, Tess E. Smidt, and Boris Kozinsky. E(3)-equivariant graph neural net-
 564 works for data-efficient and accurate interatomic potentials. *Nature Communications*, 13(1), May
 565 2022. ISSN 2041-1723. doi: 10.1038/s41467-022-29939-5. URL <http://dx.doi.org/10.1038/s41467-022-29939-5>.
- 566 Lennart Bengtsson. Dipole correction for surface supercell calculations. *Phys. Rev. B*, 59:12301–
 567 12304, May 1999. doi: 10.1103/PhysRevB.59.12301. URL <https://link.aps.org/doi/10.1103/PhysRevB.59.12301>.
- 568 Filippo Bigi, Marcel F. Langer, and Michele Ceriotti. The dark side of the forces: assessing non-
 569 conservative force models for atomistic machine learning. In *Forty-second International Confer-
 570 ence on Machine Learning*, 2025.
- 571 Erik Bitzek, Pekka Koskinen, Franz Gähler, Michael Moseler, and Peter Gumbsch. Structural relax-
 572 ation made simple. *Phys. Rev. Lett.*, 97:170201, Oct 2006. doi: 10.1103/PhysRevLett.97.170201.
 573 URL <https://link.aps.org/doi/10.1103/PhysRevLett.97.170201>.
- 574 Rebecca R. Brew, Ian A. Nelson, Meruyert Binayeva, Amlan S. Nayak, Wyatt J. Simmons, Joseph J.
 575 Gair, and Corin C. Wagen. Wiggle150: Benchmarking Density Functionals and Neural Network
 576 Potentials on Highly Strained Conformers. *Journal of Chemical Theory and Computation*, 21
 577 (8):3922–3929, April 2025. ISSN 1549-9618. doi: 10.1021/acs.jctc.5c00015. URL <https://doi.org/10.1021/acs.jctc.5c00015>. Publisher: American Chemical Society.
- 578 Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks?, 2022. URL
 579 <https://arxiv.org/abs/2105.14491>.
- 580 Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Morgane
 581 Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati, Anuroop Sri-
 582 ram, Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick, and Zachary Ulissi.
 583 Open catalyst 2020 (oc20) dataset and community challenges. *ACS Catalysis*, 11(10):6059–6072,
 584 May 2021. ISSN 2155-5435. doi: 10.1021/acscatal.0c04525. URL <http://dx.doi.org/10.1021/acscatal.0c04525>.
- 585 Chi Chen and Shyue Ping Ong. A universal graph deep learning interatomic potential for the periodic
 586 table. *Nature Computational Science*, 2(11):718–728, November 2022. ISSN 2662-8457. URL
 587 <https://doi.org/10.1038/s43588-022-00349-3>.

- 594 Stefan Chmiela, Valentin Vassilev-Galindo, Oliver T. Unke, Adil Kabylda, Huziel E. Sauceda,
 595 Alexandre Tkatchenko, and Klaus-Robert Müller. Accurate global machine learning force
 596 fields for molecules with hundreds of atoms. *Science Advances*, 9(2):eadf0873, 2023.
 597 doi: 10.1126/sciadv.adf0873. URL <https://www.science.org/doi/abs/10.1126/sciadv.adf0873>.
- 598
- 599 Kamal Choudhary and Brian DeCost. Atomistic Line Graph Neural Network for improved ma-
 600 terials property predictions. *npj Computational Materials*, 7(1):185, November 2021. ISSN
 601 2057-3960. doi: 10.1038/s41524-021-00650-1. URL <https://doi.org/10.1038/s41524-021-00650-1>.
- 602
- 603 Kamal Choudhary, Brian DeCost, Lily Major, Keith Butler, Jeyan Thiyyagalingam, and Francesca
 604 Tavazza. Unified graph neural network force-field for the periodic table: solid state applications.
 605 *Digital Discovery*, 2(2):346–355, 2023. ISSN 2635-098X. doi: 10.1039/d2dd00096b. URL
 606 <http://dx.doi.org/10.1039/D2DD00096B>.
- 607
- 608 Marco De Vivo, Matteo Masetti, Giovanni Bottegoni, and Andrea Cavalli. Role of Molecular Dy-
 609 namics and Related Methods in Drug Discovery. *Journal of Medicinal Chemistry*, 59(9):4035–
 610 4061, 2016.
- 611 Bowen Deng, Peichen Zhong, KyuJung Jun, Janosh Riebesell, Kevin Han, Christopher J. Bartel,
 612 and Gerbrand Ceder. Chgnet as a pretrained universal neural network potential for charge-
 613 informed atomistic modelling. *Nature Machine Intelligence*, pp. 1–11, 2023. doi: 10.1038/s42256-023-00716-3.
- 614
- 615 Bowen Deng, Yunyeong Choi, Peichen Zhong, Janosh Riebesell, Shashwat Anand, Zhuohan Li,
 616 KyuJung Jun, Kristin A. Persson, and Gerbrand Ceder. Overcoming systematic softening in uni-
 617 versal machine learning interatomic potentials by fine-tuning, 2024. URL <https://arxiv.org/abs/2405.07105>.
- 618
- 619 Weitao Du, Yuanqi Du, Limei Wang, Dieqiao Feng, Guifeng Wang, Shuiwang Ji, Carla Gomes, and
 620 Zhi-Ming Ma. A new perspective on building efficient and expressive 3d equivariant graph neural
 621 networks, 2023. URL <https://arxiv.org/abs/2304.04757>.
- 622
- 623 Alexandre Duval, Simon V. Mathis, Chaitanya K. Joshi, Victor Schmidt, Santiago Miret,
 624 Fragkiskos D. Malliaros, Taco Cohen, Pietro Liò, Yoshua Bengio, and Michael Bronstein. A
 625 hitchhiker’s guide to geometric gnns for 3d atomic systems, 2024. URL <https://arxiv.org/abs/2312.07511>.
- 626
- 627 Zheyong Fan, Yanzhou Wang, Penghua Ying, Keke Song, Junjie Wang, Yong Wang, Zezhu Zeng,
 628 Ke Xu, Eric Lindgren, J Magnus Rahm, et al. Gpumd: A package for constructing accurate
 629 machine-learned potentials and performing highly efficient atomistic simulations. *The Journal of
 630 Chemical Physics*, 157(11), 2022.
- 631
- 632 Estefanía Fernández-Villanueva, Pablo G. Lustemberg, Minjie Zhao, Jose Soriano Rodriguez, Patri-
 633 cia Concepción, and M. Verónica Ganduglia-Pirovano. Water and Cu+ Synergy in Selective CO₂
 634 Hydrogenation to Methanol over Cu-MgO-Al₂O₃ Catalysts. *Journal of the American Chemical
 635 Society*, 146(3):2024–2032, January 2024. ISSN 0002-7863. doi: 10.1021/jacs.3c10685. URL
 636 <https://doi.org/10.1021/jacs.3c10685>. Publisher: American Chemical Society.
- 637
- 638 Xiang Fu, Zhenghao Wu, Wujie Wang, Tian Xie, Sinan Keten, Rafael Gomez-Bombarelli, and
 639 Tommi Jaakkola. Forces are not enough: Benchmark and critical evaluation for machine learn-
 640 ing force fields with molecular simulations, 2023. URL <https://arxiv.org/abs/2210.07237>.
- 641
- 642 Xiang Fu, Brandon M. Wood, Luis Barroso-Luque, Daniel S. Levine, Meng Gao, Misko Dzamba,
 643 and C. Lawrence Zitnick. Learning smooth and expressive interatomic potentials for physical
 644 property prediction, 2025.
- 645
- 646 Yuxiang Gao, Fenglin Deng, Ri He, and Zhicheng Zhong. Spontaneous curvature in two-
 647 dimensional van der Waals heterostructures. *Nature Communications*, 16(1):717, January 2025.
 648 ISSN 2041-1723. doi: 10.1038/s41467-025-56055-x. URL <https://doi.org/10.1038/s41467-025-56055-x>.
- 649

- 648 Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for molec-
 649 ular graphs. In *International Conference on Learning Representations (ICLR)*, 2020.
- 650
- 651 Johannes Gasteiger, Shankari Giri, Johannes T. Margraf, and Stephan Günnemann. Fast and
 652 uncertainty-aware directional message passing for non-equilibrium molecules, 2022a. URL
 653 <https://arxiv.org/abs/2011.14115>.
- 654 Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for molec-
 655 ular graphs, 2022b.
- 656
- 657 Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram, Stephan Günnemann, Zachary Ulissi,
 658 C. Lawrence Zitnick, and Abhishek Das. Gemnet-oc: Developing graph neural networks for
 659 large and diverse molecular simulation datasets, 2022c. URL <https://arxiv.org/abs/2204.02782>.
- 660
- 661 Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional graph
 662 neural networks for molecules, 2024.
- 663 Vahe Gharakhanyan, Luis Barroso-Luque, Yi Yang, Muhammed Shuaibi, Kyle Michel, Daniel S.
 664 Levine, Misko Dzamba, Xiang Fu, Meng Gao, Xingyu Liu, Haoran Ni, Keian Noori, Brandon M.
 665 Wood, Matt Uyttendaele, Arman Boromand, C. Lawrence Zitnick, Noa Marom, Zachary W.
 666 Ulissi, and Anuroop Sriram. Open molecular crystals 2025 (omc25) dataset and models, 2025.
 667 URL <https://arxiv.org/abs/2508.02651>.
- 668
- 669 Jonathan Godwin, Michael Schaarschmidt, Alexander Gaunt, Alvaro Sanchez-Gonzalez, Yulia
 670 Rubanova, Petar Veličković, James Kirkpatrick, and Peter Battaglia. Simple gnn regularisation for
 671 3d molecular property prediction beyond, 2022. URL <https://arxiv.org/abs/2106.07971>.
- 672
- 673 Frank Harary and Robert Z. Norman. Some properties of line digraphs. *Rendiconti del Circolo
 674 Matematico di Palermo*, 9(2):161–168, May 1960. ISSN 1973-4409. doi: 10.1007/BF02854581.
 675 URL <https://doi.org/10.1007/BF02854581>.
- 676
- 677 Ryan Jacobs, Dane Morgan, Siamak Attarian, Jun Meng, Chen Shen, Zhenghao Wu, Clare Yijia
 678 Xie, Julia H. Yang, Nongnuch Artrith, Ben Blaiszik, Gerbrand Ceder, Kamal Choudhary, Gabor
 679 Csanyi, Ekin Dogus Cubuk, Bowen Deng, Ralf Drautz, Xiang Fu, Jonathan Godwin, Vasant
 680 Honavar, Olexandr Isayev, Anders Johansson, Boris Kozinsky, Stefano Martiniani, Shyue Ping
 681 Ong, Igor Poltavsky, KJ Schmidt, So Takamoto, Aidan P. Thompson, Julia Westermayr, and
 682 Brandon M. Wood. A practical guide to machine learning interatomic potentials – status and
 683 future. *Current Opinion in Solid State and Materials Science*, 35:101214, March 2025. ISSN
 684 1359-0286. doi: 10.1016/j.cossms.2025.101214. URL <http://dx.doi.org/10.1016/j.cossms.2025.101214>.
- 685
- 686 Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
 687 Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin A. Persson.
 688 Commentary: The materials project: A materials genome approach to accelerating materials in-
 689 novation. *APL Materials*, 1(1):011002, 07 2013a. ISSN 2166-532X. doi: 10.1063/1.4812323.
 690 URL <https://doi.org/10.1063/1.4812323>.
- 691
- 692 Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
 693 Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, et al. Commentary: The ma-
 694 terials project: A materials genome approach to accelerating materials innovation. *APL materials*,
 695 1(1), 2013b.
- 696
- 697 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 698 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,
 699 Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
 700 Paredes, Stanislav Nikolov, Rishabh Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
 701 Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Se-
 702 bastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
 703 meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with AlphaFold.
 704 *Nature*, 596(7873):583–589, August 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03819-2.
 705 URL <https://doi.org/10.1038/s41586-021-03819-2>.

- 702 Aaron D. Kaplan, Runze Liu, Ji Qi, Tsz Wai Ko, Bowen Deng, Janosh Riebesell, Gerbrand Ceder,
 703 Kristin A. Persson, and Shyue Ping Ong. A foundational potential energy surface dataset for
 704 materials, 2025. URL <https://arxiv.org/abs/2503.04070>.
- 705
- 706 Jaesun Kim, Jisu Kim, Jaehoon Kim, Jiho Lee, Yutack Park, Youngho Kang, and Seungwu Han.
 707 Data-efficient multi-fidelity training for high-fidelity machine learning interatomic potentials,
 708 2024. URL <https://arxiv.org/abs/2409.07947>.
- 709
- 710 Teddy Koker and Tess Smidt. Training a foundation model for materials on a budget, 2025. URL
 711 <https://arxiv.org/abs/2508.16067>.
- 712
- 713 Dávid Péter Kovács, J. Harry Moore, Nicholas J. Browning, Ilyes Batatia, Joshua T. Horton, Yixuan
 714 Pu, Venkat Kapil, William C. Witt, Ioan-Bogdan Magdău, Daniel J. Cole, and Gábor Csányi.
 715 Mace-off: Transferable short range machine learning force fields for organic molecules, 2025.
 716 URL <https://arxiv.org/abs/2312.15211>.
- 717
- 718 Thomas D. Kühne and Rustam Z. Khalilullin. Electronic signature of the instantaneous asymme-
 719 try in the first coordination shell of liquid water. *Nature Communications*, 4(1):1450, February
 720 2013. ISSN 2041-1723. doi: 10.1038/ncomms2459. URL <https://doi.org/10.1038/ncomms2459>.
- 721
- 722 Daniel S. Levine, Muhammed Shuaibi, Evan Walter Clark Spotte-Smith, Michael G. Taylor,
 723 Muhammad R. Hasyim, Kyle Michel, Ilyes Batatia, Gábor Csányi, Misko Dzamba, Peter East-
 724 man, Nathan C. Frey, Xiang Fu, Vahe Gharakhanyan, Aditi S. Krishnapriyan, Joshua A. Rackers,
 725 Sanjeev Raja, Ammar Rizvi, Andrew S. Rosen, Zachary Ulissi, Santiago Vargas, C. Lawrence
 726 Zitnick, Samuel M. Blau, and Brandon M. Wood. The open molecules 2025 (omol25) dataset,
 727 evaluations, and models, 2025. URL <https://arxiv.org/abs/2505.08762>.
- 728
- 729 Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
 730 graphs, 2023. URL <https://arxiv.org/abs/2206.11990>.
- 731
- 732 Yi-Lun Liao, Tess Smidt, Muhammed Shuaibi, and Abhishek Das. Generalizing denoising to non-
 733 equilibrium structures improves equivariant force fields, 2024a. URL <https://arxiv.org/abs/2403.09549>.
- 734
- 735 Yi-Lun Liao, Brandon Wood, Abhishek Das, and Tess Smidt. Equiformerv2: Improved equivariant
 736 transformer for scaling to higher-degree representations, 2024b.
- 737
- 738 Yi Liu, Limei Wang, Meng Liu, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical message
 739 passing for 3d graph networks, 2022. URL <https://arxiv.org/abs/2102.05013>.
- 740
- 741 Antoine Loew, Dewen Sun, Hai-Chen Wang, Silvana Botti, and Miguel A. L. Marques. Universal
 742 machine learning interatomic potentials are ready for phonons, 2025. URL <https://arxiv.org/abs/2412.16551>.
- 743
- 744 Nataliya Lopanitsyna, Guillaume Fraux, Maximilian A. Springer, Sandip De, and Michele Ceri-
 745 otti. Modeling high-entropy transition-metal alloys with alchemical compression, 2023. URL
 746 <https://arxiv.org/abs/2212.13254>.
- 747
- 748 Arslan Mazitov, Filippo Bigi, Matthias Kellner, Paolo Pegolo, Davide Tisi, Guillaume Fraux, Sergey
 749 Pozdnyakov, Philip Loche, and Michele Ceriotti. Pet-mad, a lightweight universal interatomic
 750 potential for advanced materials modeling, 2025. URL <https://arxiv.org/abs/2503.14118>.
- 751
- 752 Amil Merchant, Simon Batzner, Samuel S. Schoenholz, Muratahan Aykol, Gowoon Cheon, and
 753 Ekin Dogus Cubuk. Scaling deep learning for materials discovery. *Nature*, 624(7990):80–85,
 754 2023.
- 755
- 756 Mark Neumann, James Gin, Benjamin Rhodes, Steven Bennett, Zhiyi Li, Hitarth Choubisa, Arthur
 757 Hussey, and Jonathan Godwin. Orb: A fast, scalable neural network potential, 2024. URL
 758 <https://arxiv.org/abs/2410.22570>.

- 756 Ivan S Novikov, Konstantin Gubaev, Evgeny V Podryabinkin, and Alexander V Shapeev. The mlip
 757 package: moment tensor potentials with mpi and active learning. *Machine Learning: Science*
 758 and *Technology*, 2(2):025002, dec 2020. doi: 10.1088/2632-2153/abc9fe. URL <https://dx.doi.org/10.1088/2632-2153/abc9fe>.
- 759
- 760 Yutack Park, Jaesun Kim, Seungwoo Hwang, and Seungwu Han. Scalable parallel algorithm
 761 for graph neural network interatomic potentials in molecular dynamics simulations. *Journal*
 762 of *Chemical Theory and Computation*, 20(11):4857–4868, May 2024. ISSN 1549-9626. doi:
 763 10.1021/acs.jctc.4c00190. URL <http://dx.doi.org/10.1021/acs.jctc.4c00190>.
- 764
- 765 Anyang Peng, Chun Cai, Mingyu Guo, Duo Zhang, Chengqian Zhang, Wanrun Jiang, Yinan Wang,
 766 Antoine Loew, Chengkun Wu, Weinan E, Linfeng Zhang, and Han Wang. Lambench: A bench-
 767 mark for large atomistic models, 2025. URL <https://arxiv.org/abs/2504.19578>.
- 768
- 769 Sergey N. Pozdnyakov and Michele Ceriotti. Smooth, exact rotational symmetrization for deep
 770 learning on point clouds. In *Proceedings of the 37th International Conference on Neural Infor-*
 771 *mation Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.
- 772
- 773 Balázs Póta, Paramvir Ahlawat, Gábor Csányi, and Michele Simoncelli. Thermal conductivity pre-
 774 dictions with foundation atomistic models, 2025. URL <https://arxiv.org/abs/2408.00755>.
- 775
- 776 Eric Qu and Aditi S. Krishnapriyan. The importance of being scalable: Improving the speed and
 777 accuracy of neural network interatomic potentials across chemical domains, 2024. URL <https://arxiv.org/abs/2410.24169>.
- 778
- 779 Benjamin Rhodes, Sander Vandenhante, Vaidotas Šimkus, James Gin, Jonathan Godwin, Tim
 780 Duignan, and Mark Neumann. Orb-v3: atomistic simulation at scale, 2025. URL <https://arxiv.org/abs/2504.06231>.
- 781
- 782 Janosh Riebesell, Rhys E. A. Goodall, Philipp Benner, Yuan Chiang, Bowen Deng, Gerbrand Ceder,
 783 Mark Asta, Alpha A. Lee, Anubhav Jain, and Kristin A. Persson. A framework to evaluate
 784 machine learning crystal stability predictions. *Nature Machine Intelligence*, 7(6):836–847, 2025.
- 785
- 786 Jonathan Schmidt, Tiago F.T. Cerqueira, Aldo H. Romero, Antoine Loew, Fabian Jäger, Hai-Chen
 787 Wang, Silvana Botti, and Miguel A.L. Marques. Improving machine-learning models in materials
 788 science through large datasets. *Materials Today Physics*, 48:101560, 2024. ISSN 2542-5293. doi:
 789 <https://doi.org/10.1016/j.mtphys.2024.101560>.
- 790
- 791 Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre
 792 Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
 793 for modeling quantum interactions, 2017. URL <https://arxiv.org/abs/1706.08566>.
- 794
- 795 Kristof T. Schütt, Oliver T. Unke, and Michael Gastegger. Equivariant message passing for the
 796 prediction of tensorial properties and molecular spectra, 2021. URL <https://arxiv.org/abs/2102.03150>.
- 797
- 798 Shihao Shao, Haoran Geng, Zun Wang, and Qinghua Cui. Freecg: Free the design space of clebsch-
 799 gordan transform for machine learning force fields, 2024. URL <https://arxiv.org/abs/2407.02263>.
- 800
- 801 Justin S. Smith, Ben Nebgen, Nicholas Lubbers, Olexandr Isayev, and Adrian E. Roitberg. Less is
 802 more: Sampling chemical space with active learning. *The Journal of Chemical Physics*, 148(24):
 803 241733, 05 2018. ISSN 0021-9606. doi: 10.1063/1.5023802. URL <https://doi.org/10.1063/1.5023802>.
- 804
- 805 Tyler G. Sours and Ambarish R. Kulkarni. Predicting Structural Properties of Pure Silica Zeolites
 806 Using Deep Neural Network Potentials. *The Journal of Physical Chemistry C*, 127(3):1455–1463,
 807 January 2023. ISSN 1932-7447. doi: 10.1021/acs.jpcc.2c08429. URL <https://doi.org/10.1021/acs.jpcc.2c08429>. Publisher: American Chemical Society.
- 808
- 809

- 810 Anuroop Sriram, Logan M. Brabson, Xiaohan Yu, Sihoon Choi, Kareem Abdelmaqsoud, Elias
 811 Moubarak, Pim de Haan, Sindy Löwe, Johann Brehmer, John R. Kitchin, Max Welling,
 812 C. Lawrence Zitnick, Zachary Ulissi, Andrew J. Medford, and David S. Sholl. The open dac
 813 2025 dataset for sorbent discovery in direct air capture, 2025. URL <https://arxiv.org/abs/2508.03162>.
- 814
- 815 Philipp Thölke and Gianni De Fabritiis. Torchmd-net: Equivariant transformers for neural network
 816 based molecular potentials, 2022. URL <https://arxiv.org/abs/2202.02541>.
- 817
- 818 Atsushi Togo. Phonon database. URL <https://doi.org/10.48505/nims.4197>.
- 819
- 820 A. Torres, F. J. Luque, J. Tortajada, and M. E. Arroyo-de Dompablo. Analysis of Minerals as Elec-
 821 trode Materials for Ca-based Rechargeable Batteries. *Scientific Reports*, 9(1):9644, July 2019.
 822 ISSN 2045-2322. doi: 10.1038/s41598-019-46002-4. URL <https://doi.org/10.1038/s41598-019-46002-4>.
- 823
- 824 Richard Tran, Janice Lan, Muhammed Shuaibi, Brandon M. Wood, Siddharth Goyal, Abhishek Das,
 825 Javier Heras-Domingo, Adeesh Kolluru, Ammar Rizvi, Nima Shoghi, Anuroop Sriram, Félix
 826 Therrien, Jehad Abed, Oleksandr Voznyy, Edward H. Sargent, Zachary Ulissi, and C. Lawrence
 827 Zitnick. The open catalyst 2022 (oc22) dataset and challenges for oxide electrocatalysts. *ACS
 828 Catalysis*, 13(5):3066–3084, February 2023. ISSN 2155-5435. doi: 10.1021/acscatal.2c05426.
 829 URL <http://dx.doi.org/10.1021/acscatal.2c05426>.
- 830
- 831 Oliver T. Unke and Markus Meuwly. Physnet: A neural network for predicting energies, forces,
 832 dipole moments, and partial charges. *Journal of Chemical Theory and Computation*, 15(6):
 833 3678–3693, May 2019. ISSN 1549-9626. doi: 10.1021/acs.jctc.9b00181. URL <http://dx.doi.org/10.1021/acs.jctc.9b00181>.
- 834
- 835 Jonathan Vandermause, Yu Xie, Jin Soo Lim, Cameron J. Owen, and Boris Kozinsky. Ac-
 836 tive learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of
 837 H/Pt. *Nature Communications*, 13(1):5183, September 2022. ISSN 2041-1723. doi: 10.1038/
 838 s41467-022-32294-0. URL <https://doi.org/10.1038/s41467-022-32294-0>.
- 839
- 840 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 841 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL <https://arxiv.org/abs/1706.03762>.
- 842
- 843 Brook Wander, Muhammed Shuaibi, John R. Kitchin, Zachary W. Ulissi, and C. Lawrence Zit-
 844 nick. Cattsunami: Accelerating transition state energy calculations with pre-trained graph neural
 845 networks, 2024. URL <https://arxiv.org/abs/2405.02078>.
- 846
- 847 Hai-Chen Wang, Silvana Botti, and Miguel A. L. Marques. Predicting stable crystalline com-
 848 pounds using chemical similarity. *npj Computational Materials*, 7(1):12, January 2021. ISSN
 849 2057-3960. doi: 10.1038/s41524-020-00481-6. URL <https://doi.org/10.1038/s41524-020-00481-6>.
- 850
- 851 Limei Wang, Yi Liu, Yuchao Lin, Haoran Liu, and Shuiwang Ji. Comenet: Towards complete and
 852 efficient message passing for 3d molecular graphs, 2022. URL <https://arxiv.org/abs/2206.08515>.
- 853
- 854 Tong Wang, Xinheng He, Mingyu Li, Bin Shao, and Tie-Yan Liu. AIMD-Chig: Exploring the
 855 conformational space of a 166-atom protein Chignolin with ab initio molecular dynamics. *Sci-
 856 entific Data*, 10(1):549, August 2023. ISSN 2052-4463. doi: 10.1038/s41597-023-02465-9. URL
 857 <https://doi.org/10.1038/s41597-023-02465-9>.
- 858
- 859 Yusong Wang, Tong Wang, Shaoning Li, Xinheng He, Mingyu Li, Zun Wang, Nanning Zheng,
 860 Bin Shao, and Tie-Yan Liu. Enhancing geometric representations for molecules with equivariant
 861 vector-scalar interactive message passing. *Nature Communications*, 15(1):313, January 2024.
 862 ISSN 2041-1723. doi: 10.1038/s41467-023-43720-2. URL <https://doi.org/10.1038/s41467-023-43720-2>.
- 863
- 864 Hassler Whitney. *Congruent Graphs and the Connectivity of Graphs*, pp. 61–79. Birkhäuser
 865 Boston, Boston, MA, 1992. doi: 10.1007/978-1-4612-2972-8_4. URL https://doi.org/10.1007/978-1-4612-2972-8_4.

- 864 Brandon M. Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-
 865 Luque, Kareem Abdelmaqsoud, Vahe Gharakhanyan, John R. Kitchin, Daniel S. Levine, Kyle
 866 Michel, Anuroop Sriram, Taco Cohen, Abhishek Das, Ammar Rizvi, Sushree Jagriti Sahoo,
 867 Zachary W. Ulissi, and C. Lawrence Zitnick. Uma: A family of universal models for atoms,
 868 2025.
- 869 Tian Xie and Jeffrey C. Grossman. Crystal graph convolutional neural networks for an accurate
 870 and interpretable prediction of material properties. *Physical Review Letters*, 120(14), April 2018.
 871 ISSN 1079-7114. doi: 10.1103/physrevlett.120.145301. URL <http://dx.doi.org/10.1103/PhysRevLett.120.145301>.
- 872
- 873 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 874 networks?, 2019. URL <https://arxiv.org/abs/1810.00826>.
- 875
- 876 Han Yang, Chenxi Hu, Yichi Zhou, Xixian Liu, Yu Shi, Jielan Li, Guanzhi Li, Zekun Chen,
 877 Shuizhou Chen, Claudio Zeni, Matthew Horton, Robert Pinsler, Andrew Fowler, Daniel Zügner,
 878 Tian Xie, Jake Smith, Lixin Sun, Qian Wang, Lingyu Kong, Chang Liu, Hongxia Hao, and Ziheng
 879 Lu. Mattersim: A deep learning atomistic model across elements, temperatures and pressures,
 880 2024.
- 881
- 882 M. Yang, D. Zhang, X. Wang, B. Li, L. Zhang, W. E, T. Zhu, and H. Wang. Ab initio accuracy
 883 neural network potential for drug-like molecules. 2025. doi: 10.34133/research.0837.
- 884
- 885 Bangchen Yin, Jiaao Wang, Weitao Du, Pengbo Wang, Penghua Ying, Haojun Jia, Zisheng Zhang,
 886 Yuanqi Du, Carla P. Gomes, Chenru Duan, Graeme Henkelman, and Hai Xiao. Alphanet: Scal-
 887 ing up local-frame-based atomistic interatomic potential, 2025. URL <https://arxiv.org/abs/2501.07155>.
- 888
- 889 Sheheryar Zaidi, Michael Schaarschmidt, James Martens, Hyunjik Kim, Yee Whye Teh, Alvaro
 890 Sanchez-Gonzalez, Peter Battaglia, Razvan Pascanu, and Jonathan Godwin. Pre-training via de-
 891 noising for molecular property prediction, 2022. URL <https://arxiv.org/abs/2206.00133>.
- 892
- 893 Duo Zhang, Xinjian Liu, Xiangyu Zhang, Chengqian Zhang, Chun Cai, Hangrui Bi, Yiming Du,
 894 Xuejian Qin, Anyang Peng, Jiameng Huang, Bowen Li, Yifan Shan, Jinzhe Zeng, Yuzhi Zhang,
 895 Siyuan Liu, Yifan Li, Junhan Chang, Xinyan Wang, Shuo Zhou, Jianchuan Liu, Xiaoshan Luo,
 896 Zhenyu Wang, Wanrun Jiang, Jing Wu, Yudi Yang, Jiyuan Yang, Manyi Yang, Fu-Qiang Gong,
 897 Linshuang Zhang, Mengchao Shi, Fu-Zhi Dai, Darrin M. York, Shi Liu, Tong Zhu, Zhicheng
 898 Zhong, Jian Lv, Jun Cheng, Weile Jia, Mohan Chen, Guolin Ke, Weinan E, Linfeng Zhang, and
 899 Han Wang. DPA-2: a large atomic model as a multi-task learner. *npj Computational Materials*,
 900 10(1):293, 2024.
- 901
- 902 Duo Zhang, Anyang Peng, Chun Cai, Wentao Li, Yuanchang Zhou, Jinzhe Zeng, Mingyu Guo,
 903 Chengqian Zhang, Bowen Li, Hong Jiang, Tong Zhu, Weile Jia, Linfeng Zhang, and Han Wang.
 904 A graph neural network for the era of large atomistic models, 2025.
- 905
- 906 Yaolong Zhang, Xueyao Zhou, and Bin Jiang. Bridging the Gap between Direct Dynamics and Glob-
 907 ally Accurate Reactive Potential Energy Surfaces Using Neural Networks. *The Journal of Phys-
 908 ical Chemistry Letters*, 10(6):1185–1191, March 2019. doi: 10.1021/acs.jpclett.9b00085. URL
 909 <https://doi.org/10.1021/acs.jpclett.9b00085>. Publisher: American Chemical
 910 Society.
- 911
- 912 Yuan Zhou, Qiuyue Wang, Yuxuan Cai, and Huan Yang. Allegro: Open the black box of
 913 commercial-level video generation model, 2024. URL <https://arxiv.org/abs/2410.15458>.
- 914
- 915
- 916
- 917

918 APPENDIX
919920 A Additional related works
921922 A.1 Explicit three-body modeling in MLIPs
923924 A.2 Attention-based MLIPs
925926 B Details of MatRIS
927928 C Training strategies
929930 C.1 Load-balance strategy
931932 C.2 Loss-balance strategy
933934 C.3 Details of denoising pretraining
935936 D Additional evaluation
937938 D.1 Matbench-Discovery benchmark (non-compliant)
939940 D.2 LAMBench benchmark
941942 D.3 Zeolite benchmark
943944 D.4 DPA2 test sets
945946 D.5 MD stability evaluation
947948 E Training details and hyper-parameters
949950 A ADDITIONAL RELATED WORKS
951952 A.1 EXPLICIT THREE-BODY MODELING IN MLIPs
953

954 Three-body information is important for predicting various material properties (Choudhary & De-
955 Cost, 2021; Choudhary et al., 2023; Zhang et al., 2025). Several MLIPs explicitly model three-
956 body interactions, including the ALIGNN series (Choudhary & DeCost, 2021; Choudhary et al.,
957 2023), DimeNet series (Gasteiger et al., 2020; 2022a), GemNet series (Gasteiger et al., 2022c;
958 2024), M3GNet series (Chen & Ong, 2022; Yang et al., 2024), and DPA3 (Zhang et al., 2025),
959 where three-body features are updated within the interaction block and then used to refine edge and
960 node features. MatRIS also explicitly models three-body interactions, but differs in its update and
961 aggregation strategy:

- 962 1. In MatRIS, three-body features are updated using an attention mechanism with $O(N)$ com-
963 plexity, which improves model accuracy while maintaining computational efficiency (see
964 Table 4(a), Index 1 and 3).
- 965 2. During message aggregation, a learnable envelope function is used to smooth the three-
966 body contributions, instead of using a simple distance-based attenuation. This design yields
967 better performance (see Table 4(a), Index 3 and 4).

968 Beyond the above distinctions, MatRIS also achieves SOTA or near-SOTA performance across mul-
969 tiple benchmarks. Notably, on Matbench-Discovery (Riebesell et al., 2025), MatRIS-M attains accu-
970 racy comparable to eSEN-30M-MP but with significantly fewer parameters and substantially lower

972 training cost. This demonstrates the effectiveness of combining three-body interaction modeling
 973 with attention mechanisms for materials modeling.
 974

975 **A.2 ATTENTION-BASED MLIPs**
 976

977 **Full Attention MLIPs.** In potential energy surface modeling, full-attention methods have been
 978 widely used, with representative models including DPA2 (Zhang et al., 2024), PET (Pozdnyakov &
 979 Ceriotti, 2023), and EScAIP (Qu & Krishnapriyan, 2024). In these models, all features are concate-
 980 nated into a message tensor of shape $[\text{natoms}, \text{neighbors}, D]$, where D is the hidden dimension, and
 981 updated using a full attention mechanism (Vaswani et al., 2023). This mechanism can fully leverage
 982 information from neighboring atoms and enable feature interactions. However, due to the $O(N^2)$
 983 computational cost of full attention, the computation quickly becomes expensive as the system size
 984 grows. To maintain efficiency, these MLIPs typically consider only two-body interactions.
 985

986 In contrast, MatRIS employs an attention mechanism with $O(N)$ complexity to capture both two-
 987 body and three-body interactions. This allows MatRIS to incorporate more geometric information
 988 and enhance the model’s expressive power while maintaining computational efficiency.
 989

989 **Linear-Complexity Attention MLIPs.** Although there exist many MLIPs with attention mecha-
 990 nisms of $O(N)$ complexity, such as Equiformer (Liao & Smidt, 2023), ViSNet (Wang et al., 2024),
 991 FreeCG (Shao et al., 2024), and MGT (Anselmi et al., 2024), we note that these architectures still
 992 differ from MatRIS in several technical aspects.
 993

994 First, Equiformer is a high-degree steerable equivariant MLIP that employs multi-layer perceptron
 995 attention (Liao & Smidt, 2023; Brody et al., 2022) for feature encoding, with $O(N)$ complexity,
 996 and can support vectors of any degree L . However, unlike MatRIS, its attention mechanism is not
 997 directly used to encode three-body interactions and only considers the source-to-target direction.
 998

999 ViSNet and FreeCG belong to equivariant MLIPs. Their attention mechanisms can capture up to
 1000 four-body interactions and also have $O(N)$ complexity. Nevertheless, their technical approaches
 1001 differ fundamentally from that of MatRIS: ViSNet and FreeCG implicitly extract and refine three-
 1002 or four-body features, without directly employing attention to encode and update such features. In
 1003 contrast, MatRIS explicitly extracts three-body features and utilizes attention mechanisms to encode
 1004 and update them.
 1005

1006 It is also worth noting that MGT employs attention and explicitly extracts three-body features. Nev-
 1007 ertheless, its attention mechanism operates on node and edge feature updates, and relies on the
 1008 ALIGNN module (Choudhary & DeCost, 2021) to further refine three-body features. Similar to
 1009 ViSNet and FreeCG, MGT leverages attention to refine three-body features rather than directly en-
 1010 code them.
 1011

1012 In contrast to all the above attention-based models, MatRIS introduces a separable attention mecha-
 1013 nism that explicitly models three-body interactions. Its key innovations include:
 1014

1. **Dimension-wise:** the attention weights vary across feature dimensions, distinguishing the
 1015 relative importance of different dimensions.
2. **Separable:** it considers both source-to-target and target-to-source directions, generating
 1016 separate attention weights for each direction.
3. **Explicit and efficient modeling:** due to its $O(N)$ complexity, MatRIS can efficiently
 1017 and explicitly encode and update three-body features, thereby significantly enhancing the
 1018 model’s expressive power.

1019 **B DETAILS OF MATRIS**
 1020

1021 For completeness, in this section we present the details of MatRIS. Given a material graph $G =$
 1022 (Z, X, L) , the atomic numbers are denoted as $Z \in \mathbb{R}^{\text{natoms} \times 1}$, the atomic positions as $X \in \mathbb{R}^{\text{natoms} \times 3}$,
 1023 and the lattice as $L \in \mathbb{R}^{3 \times 3}$. In **Graph Generation** (see Figure 6), we first perform periodic
 1024 repetition, and then construct the Atom Graph G^a and the Line Graph G^l based on radial cutoffs
 1025 r_{cut}^a and r_{cut}^l , respectively. We typically set $r_{cut}^l < r_{cut}^a$ for computational efficiency.
 1026

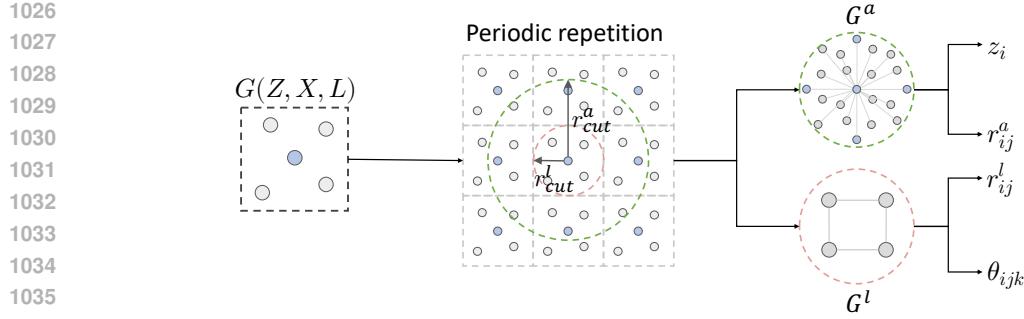


Figure 6: The detail of Graph Generation.

In **Feature Embedding**, the atomic types z_i are expanded using a learnable embedding matrix $A \in \mathbb{R}^{\text{max_element} \times D}$ (see Equation 5). Following Gasteiger et al. (2022b), the pairwise distances r_{ij}^a of G^a are expanded with Bessel basis functions, and smoothed with a envelope function($\mu(r_{ij})$) to ensure that pairwise interactions decay smoothly to zero at the cutoff radius, as shown in Equation 6. For the initialization of three-body interactions θ_{ijk} , we follow Deng et al. (2023) and employ the computationally simpler Fourier basis instead of spherical harmonics (we also tested spherical harmonics but observed no change in accuracy), as shown in Equation 7. Finally, all initialized features undergo nonlinear transformations and are projected into a higher-dimensional space.

$$v_i^0 = W(z_i A) + b \quad (5)$$

$$e_{ij}^0 = \mu(r_{ij}^a) \cdot \sqrt{\frac{2}{r_a}} \frac{\sin(\frac{n\pi}{r_a} r_{ij}^a)}{r_{ij}^a} \quad (6)$$

$$a_{ijk,m}^0 = \begin{cases} \frac{1}{\sqrt{\pi}} \cos[m\theta_{ijk}], & m \in [0, M_{max}/2], \\ \frac{1}{\sqrt{\pi}} \sin[(m - M_{max}/2)\theta_{ijk}], & m \in [M_{max}/2 + 1, M_{max}]. \end{cases} \quad (7)$$

In the **Graph Attention** module, we consider the n -th layer, which contains the Atom Graph G^a with features v_i^n and e_{ij}^n , and the Line Graph G^l with features e_{ij}^n and θ_{ijk}^n . The two graphs share the edge features e_{ij}^n . To fuse information between the graphs, we first update G^l and then incorporate its output into G^a to aid atomic feature updates (see Equation 8). Specifically, e_{ij}^n and θ_{ijk}^n are input to the ‘Line Graph Attention’ module, producing $e_{ij,l}^{'(n)}$ and $\theta_{ijk}^{'(n)}$. The updated edge feature $e_{ij,l}^{'(n)}$ encodes three-body interactions and is combined with v_i^n as input to the ‘Atom Graph Attention’ module, yielding $v_i^{'(n)}$ and $e_{ij}^{'(n)}$.

$$\begin{aligned} e_{ij,l}^{'(n)}, \theta_{ijk}^{'(n)} &\leftarrow \text{Line Graph Attention}(e_{ij}^n, \theta_{ijk}^n) \\ v_i^{'(n)}, e_{ij}^{'(n)} &\leftarrow \text{Atom Graph Attention}(v_i^n, e_{ij,l}^{'(n)}) \end{aligned} \quad (8)$$

Notably, in G^a , atoms are treated as nodes and pairwise distances as edges, whereas in G^l , pairwise distances are treated as nodes and three-body interactions as edges. Therefore, the computation of the Line Graph Attention and Atom Graph Attention follows the same computation, differing only in their inputs. Here, we take the update of G^a as an example and present the detailed operations of the Graph Attention module.

Given the input of the current attention layer, v_i and e_{ij} (for simplicity, we denote v_i^n and $e_{ij}^{'(n)}$ as v_i and e_{ij}), we first generate the fusion feature:

$$e_{ij}' = \text{gMLP}(v_i || v_j || e_{ij}) \quad (9)$$

Meanwhile, e_{ij} undergoes two nonlinear transformations. It is then passed through Dim-wise Softmax to get the attention weights for the source and target nodes, sa_{ij} and ta_{ij} . These weights are

1080 then element-wise multiplied with e'_{ij} and fused to produce the output of the attention layer, v'_i , as
 1081 shown in the equation:
 1082

$$1083 \quad tv_i = \sum_{k \in \mathcal{N}(i)} (ta_{kj} \odot e'_{kj}), \quad sv_i = \sum_{k \in \mathcal{N}(j)} (sa_{kj} \odot e'_{kj}) \quad (10)$$

$$1085 \quad v'_i = \text{gMLP}(tv_i \| sv_i)$$

1086 After the Attention layer, we employ a **Refinement** layer to further enhance the geometric encod-
 1087 ings. In this module, we also apply a learnable envelope function to smooth the potential energy
 1088 surface. As before, we first update G^l and then G^a . Taking the update of G^a as an example, the
 1089 inputs are v'_i and e'_{ij} , and we fuse the features from the attention layer:
 1090

$$1091 \quad m_{ij}^{(n)} = \text{gMLP}(v'_i \| v'_j \| e'_{ij}) \quad (11)$$

1092 The fusion feature $m_{ij}^{(n)}$ is transformed nonlinearly to yield the edge update Δe_{ij} . For the node
 1093 update Δv_i , we first apply the learnable envelope function (Equation 12), then aggregate, and finally
 1094 apply a nonlinear transformation.
 1095

$$1096 \quad \mu_{ij}^{(n)} = \text{Linear}(e_{ij}^0) \quad (12)$$

$$1097 \quad \Delta v_i = \text{MLP}\left(\sum_{k \in \mathcal{N}(i)} (\mu_{ij}^{(n)} \odot m_{ij}^{(n)})\right) \quad (13)$$

$$1099 \quad \Delta e_{ij} = \text{MLP}(m_{ij}^{(n)})$$

1100 In the Readout block, the final atom features $v_i^{(N)}$ are used to directly predict the total energy (E)
 1101 and magnetic moments (M):
 1102

$$1103 \quad E = \sum_i \text{MLP}(v_i^{(N)}) + \text{ref}(z_i) \quad (14)$$

$$1104 \quad M = \text{MLP}(v_i^{(N)})$$

1106 Here, $\text{ref}(z_i)$ is obtained by performing a least-squares fit to the dataset energies. The atomic forces
 1107 F_i and stress (σ) are obtained via automatic differentiation of the energy with respect to the atomic
 1108 Cartesian coordinates X_i and the lattice strain tensor (ε).
 1109

$$1110 \quad F_i = -\frac{\partial E}{\partial X_i}, \quad \sigma = \frac{1}{V} \frac{\partial E}{\partial \varepsilon} \quad (15)$$

1112 C TRAINING STRATEGIES

1116 C.1 LOAD-BALANCE STRATEGY

1118 In most atomic datasets, the sizes of structures typically follow a long-tailed distribution (Deng
 1119 et al., 2023; Barroso-Luque et al., 2024). Figure 7(a) visualizes the distributions of atom and edge
 1120 counts in the MPTrj dataset (cutoff radius 6.0). In distributed training, allocating samples with a
 1121 fixed batch size may cause two issues: (1) a GPU may receive only large samples, leading to out-of-
 1122 memory (OOM) and limiting the maximum batch size; (2) assuming memory allows, some GPUs
 1123 may have higher computational loads while others have lower loads, causing idle time and extra
 1124 synchronization overhead. To address this, we adopt a **load balancing strategy**:
 1125

1. Shuffle the entire dataset to ensure randomness, then split it into multiple chunks.
2. Within each chunk, sort samples in descending order of size.
3. Using a greedy algorithm, assign samples sequentially to GPUs, prioritizing the GPU with
 the largest remaining capacity. If all GPUs are “full” or the chunk has no remaining samples,
 a batch is generated.

1131 As shown in Figure 7(b), with load balancing, the cumulative speedup reaches **1.35–1.75**×, indi-
 1132 cating that synchronization overhead due to load imbalance is significant during each training step.
 1133 Building on this, the global batch size can be increased (denoted as “Batch expansion”), resulting in
 a cumulative speedup of **2.05–2.63**×.

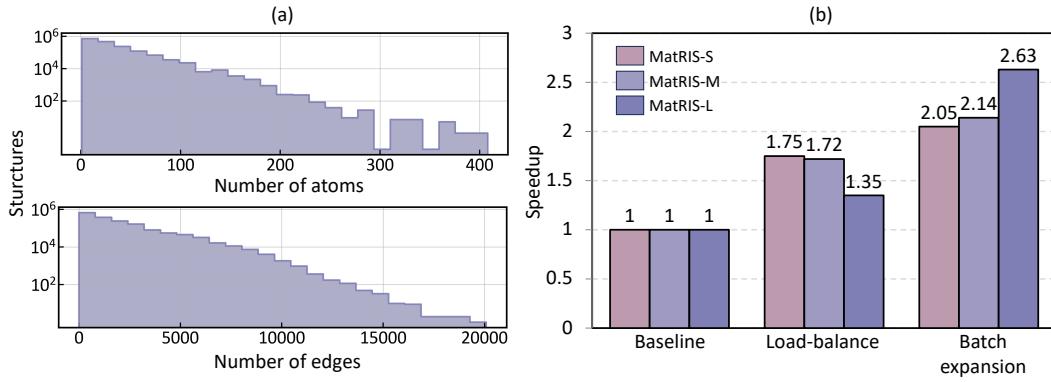


Figure 7: (a) Number of atoms and edges in MPTrj dataset. (b) Training speedup achieved by load balancing.

C.2 LOSS-BALANCE STRATEGY

Besides load imbalance during training, the loss computation can also be imbalanced. This is especially clear for the force and magmom loss(e.g., node-level tasks). For example, the MSE loss (forces only) is defined as:

$$L_f = \frac{1}{3N_B} \sum_{i=1}^{N_B} |f_i^{\text{pred}} - f_i^{\text{DFT}}|^2 \quad (16)$$

where N_B denotes the total number of atoms in this global batch.

This reduction method causes the losses of large samples to dominate during training, effectively making the model prioritize large samples and resulting in a loss imbalance. To address this, we adopt a graph-level loss reduction strategy (referred to as **Graph-level loss**). Specifically, when computing node-level losses such as force or magmom, we first reduce the loss within each graph, and then perform a second reduction across the global batch, thereby mitigating the loss imbalance. Ablation studies in Table 4(b) demonstrate the effectiveness of this method. The corresponding formula is as follows:

$$L_f = \frac{1}{B} \sum_{b=1}^B \left(\frac{1}{N_b} \sum_{i=1}^{N_b} \|f_i^{\text{pred}} - f_i^{\text{DFT}}\|^2 \right) \quad (17)$$

where B is the number of graphs in this global batch, N_b is the number of atoms in the b -th graph.

C.3 DETAILS OF DENOISING PRETRAINING

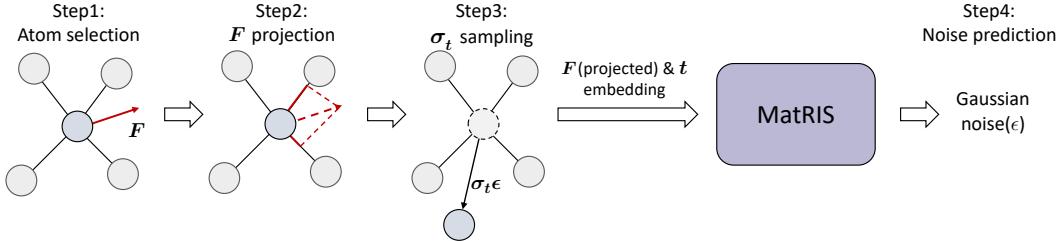


Figure 8: The workflow of denoising pretraining on MatRIS.

In this section, we present the denoising strategy used in our work. Several studies, such as Noisy Node (Godwin et al., 2022) and DeNS (Liao et al., 2024a), have demonstrated that denoising can mitigate the over-smoothing of GNNs and improve generalization. However, these methods have restricted applicability. For example, Noisy Node must be applied to equilibrium structures, while DeNS extends it to non-equilibrium states but is limited to equivariant neural networks. In practice, most mainstream atomic datasets are not fully in equilibrium (Deng et al., 2023; Schmidt et al.,

2024; Barroso-Luque et al., 2024), and MLIPs are not necessarily equivariant GNNs. The training of MatRIS faces this scenario. For non-equivariant GNNs on non-equilibrium structures, a key challenge in applying denoising is how to encode forces. Inspired by Liao et al. (2024a), we project forces onto edges to scalarize the vectors. The denoising workflow is illustrated in Figure 8.

1. Given a corruption probability, we randomly select atoms to corrupt.
2. For each corrupted atom, we project its force onto the relative position edges by computing inner products, resulting in a scalarized force feature $F(\text{projected})$.
3. We sample a random timestep t and obtain the noise standard deviation σ_t from a linear schedule. We then add noise as $\sigma_t \epsilon$, where ϵ is standard Gaussian noise.
4. The noisy structure, the projected force $F(\text{projected})$, and the timestep t are used as inputs to the MatRIS model, which directly predicts the added Gaussian noise.

After completing the denoising training, we fine-tune the model based on these weights.

D ADDITIONAL EVALUATION

D.1 MATBENCH-DISCOVERY BENCHMARK (NON-COMPLIANT)

We report the performance of non-compliant MatRIS-10M-OAM models, all of which were accessed before September 24, 2025. In this benchmark, the training data for each model is not restricted. We follow the setup used by most models, with pretraining on the OMat24 (Barroso-Luque et al., 2024) dataset and joint fine-tuning with sAlex (Schmidt et al., 2024; Barroso-Luque et al., 2024) and MPTrj (Deng et al., 2023). Results on the full, unique, and 10k most stable splits are shown in Table 5, Table 6, and Table 7, respectively. Although MatRIS-10M-OAM has fewer parameters than most models, it still delivers competitive performance across all splits.

Table 5: MatRIS performance on the non-compliant Matbench-Discovery benchmark with results on **full test set**.

Model	Param.	F1↑	DAF↑	Precision↑	Recall↑	Accuracy↑	MAE↓	R2↑	RMSD↓
GRACE-2L-OAM-L	26.4M	0.862	5.093	0.874	0.851	0.953	0.022	0.856	0.064
DPA3-3M-FT	3.27M	0.864	4.912	0.843	0.887	0.952	0.022	<u>0.862</u>	0.069
Nequip-OAM-L	9.6M	0.870	5.060	0.868	0.872	0.955	0.022	0.858	0.065
Allegro-OAM-L	9.7M	0.873	4.876	0.837	0.912	0.954	0.021	0.861	0.065
AlphaNet-v1-OMA	4.65M	0.883	5.000	0.858	<u>0.910</u>	0.959	0.023	0.827	0.079
SevenNet-MF-ompa	25.7M	0.884	5.082	0.872	0.895	0.960	0.021	0.861	0.064
ORB v3	25.5M	0.887	5.159	0.885	0.888	0.961	0.023	0.820	0.075
eqV2 M	86.6M	0.896	5.243	0.900	0.893	<u>0.965</u>	0.020	0.842	0.069
eSEN-30M-OAM	30.2M	<u>0.902</u>	5.281	0.906	0.899	0.967	0.018	0.860	<u>0.061</u>
MatRIS-10M-OAM	10.4M	0.903	<u>5.275</u>	<u>0.905</u>	0.901	0.967	<u>0.019</u>	0.864	0.060

D.2 LAMBENCH BENCHMARK

We evaluated the performance of MatRIS-10M-OAM on LAMBench benchmark (Peng et al., 2025), which mainly tests the generalizability of MLIPs. The benchmark covers test domains including molecules, inorganic materials, and catalysis, and includes tasks such as force field prediction and property calculation.

We first performed the force field prediction task, in which the model is evaluated on datasets from the molecules, inorganic materials, and catalysis domains, predicting energies, forces, and virials. For fair comparison, we selected MLIPs trained on OMat+sAlex+MPTrj as reference. The results are reported in Table 8. Overall, MatRIS-10M-OAM achieves the best accuracy, and for molecules and inorganic materials, it generally outperforms other models in force prediction.

1242 Table 6: MatRIS performance on the non-compliant Matbench-Discovery benchmark with results
1243 on unique structure prototypes.
1244

Model	Param.	F1↑	DAF↑	Precision↑	Recall↑	Accuracy↑	MAE↓	R2↑	$K_{srme}\downarrow$	RMSD↓
GRACE-2L-OAM-L	26.4M	0.883	5.840	0.893	0.874	0.964	0.022	0.862	0.169	0.064
DPA3-3M-FT	3.27M	0.884	5.667	0.866	0.903	0.963	0.023	0.869	0.469	0.069
Nequip-OAM-L	9.6M	0.893	5.832	0.890	0.895	0.967	0.022	0.865	0.166	0.065
Allegro-OAM-L	9.7M	0.895	5.674	0.867	0.923	0.966	0.022	0.868	0.319	0.065
AlphaNet-v1-OMA	4.65M	0.901	5.747	0.879	0.924	0.968	0.024	0.831	0.644	0.079
SevenNet-MF-ompa	25.7M	0.901	5.825	0.890	0.911	0.969	0.021	0.867	0.317	0.064
ORB v3	25.5M	0.905	5.912	0.904	0.907	0.971	0.024	0.821	0.210	0.075
eqV2 M	86.6M	0.917	6.047	0.924	0.910	0.975	0.020	0.848	1.771	0.069
eSEN-30M-OAM	30.2M	0.925	6.069	0.928	0.923	0.977	0.018	0.866	0.170	0.061
MatRIS-10M-OAM	10.4M	0.921	6.039	0.923	0.918	0.976	0.019	0.871	0.218	0.060

1255 Table 7: MatRIS performance on the non-compliant Matbench-Discovery benchmark with results
1256 on 10k most stable.
1257

Model	Param.	F1↑	DAF↑	Precision↑	Recall↑	Accuracy↑	MAE↓	R2↑	RMSD↓
GRACE-2L-OAM-L	26.4M	0.980	6.280	0.960	1.000	0.960	0.025	0.835	0.064
DPA3-3M-FT	3.27M	0.987	6.369	0.987	1.000	0.987	0.019	0.901	0.069
Nequip-OAM-L	9.6M	0.985	6.344	0.985	1.000	0.985	0.021	0.854	0.065
Allegro-OAM-L	9.7M	0.987	6.371	0.974	1.000	0.974	0.018	0.908	0.065
AlphaNet-v1-OMA	4.65M	0.965	6.312	0.980	1.000	0.980	0.020	0.882	0.079
SevenNet-MF-ompa	25.7M	0.970	6.346	0.985	1.000	0.985	0.019	0.888	0.064
ORB v3	25.5M	0.964	6.307	0.964	1.000	0.964	0.021	0.860	0.075
eqV2 M	86.6M	0.988	6.382	0.976	1.000	0.976	0.015	0.904	0.069
eSEN-30M-OAM	30.2M	0.971	6.350	0.971	1.000	0.971	0.016	0.901	0.061
MatRIS-10M-OAM	10.4M	0.986	6.366	0.973	1.000	0.973	0.015	0.904	0.060

1269 In addition, we also evaluated the performance on property calculation tasks, which include reaction
1270 barrier prediction (OC20-NEB task), elastic constant prediction (Elastic Properties task), and
1271 molecular conformer energy prediction (Wiggle150 task). The results are reported in Table 9. In
1272 the OC20-NEB task, MatRIS-10M-OAM achieves competitive results, but we observe that its pre-
1273 dictions for reaction barriers (Ea) and reaction energies (d) are worse than those of other models,
1274 while its success rate remains relatively high. We speculate that this is because MatRIS uses MAE
1275 to compute energy loss during training, without placing extra weight on outlier data points, which
1276 amplifies their effect in this task; even so, the success rate is not significantly affected. In the elastic
1277 and Wiggle150 tasks, MatRIS-10M-OAM achieves the best performance.
1278

1279 Overall, the cross-domain evaluation on LAMBench shows that MatRIS-10M-OAM performs con-
1280 sistently well across both force field prediction and property calculation tasks, achieving either the
1281 best or highly competitive results, demonstrating strong generalizability and application potential.
1282

1283 D.3 ZEOLITE BENCHMARK

1284 The Zeolite Dataset (Yin et al., 2025) comprises 16 zeolite structures relevant to catalysis, ad-
1285 sorption, and separation applications. For each type, atomic trajectories were generated via AIMD
1286 simulations at 2000 K using VASP. We adopt the pre-partitioned training, validation, and test sets,
1287 containing 48,000, 16,000, and 16,000 structures per zeolite, respectively. The model’s prediction
1288 targets are the total energies and atomic forces of the systems. The results are shown in Table 10;
1289 MatRIS achieves SOTA performance overall.
1290

1291 D.4 DPA2 TEST SET

1292 We evaluate the performance of the MatRIS model on the DPA2 dataset (Zhang et al., 2024) to assess
1293 its ability to handle small-scale datasets. This composite dataset integrates 18 domain-specific sub-
1294 sets (e.g., Alloy, Drug, H_2O , OC2M) and is generated using various DFT software packages (e.g.,
1295 VASP, Gaussian, ABACUS), with the training data for each subset ranging from 6K to 2,000K. We

1296 Table 8: Summary of model performance on LAMbench (Force Field Prediction). Energy (E) RMSE
1297 is in meV/atom, Force (F) RMSE in meV/Å, Virial (V) RMSE in meV/atom.
1298

	GRACE-2L-OAM			SevenNet-MF-ompa			ORBv3-mpa			MatRIS-10M-OAM		
	E	F	V	E	F	V	E	F	V	E	F	V
Molecules												
AIMD-Chig (Wang et al., 2023)	3.1	239.8	-	3.4	247.9	-	2.4	200.2	-	2.6	200.0	-
ANI-1x (Smith et al., 2018)	32.1	365.5	-	26.1	337.7	-	20.0	247.9	-	22.1	246.1	-
MD22 (Chmiela et al., 2023)	3.5	235.9	-	4.7	238.1	-	2.8	163.9	-	2.4	161.5	-
Catalysis												
Vandermause et al. (2022)	5.5	99.4	60.6	12.7	100.8	39.1	6.8	92.6	51.2	13.8	110.9	47.8
Zhang et al. (2019)	251.6	723.0	-	392.2	937.5	-	464.9	1169.4	-	609.2	963.4	-
Fernández-Villanueva et al. (2024)	3.3	131.8	-	3.0	95.6	-	2.0	86.4	-	1.8	79.0	-
Inorganic materials												
Lopanitsyna et al. (2023)	55.4	294.7	200.1	55.4	268.8	226.9	56.4	324.2	198.2	61.0	257.2	212.9
Lopanitsyna et al. (2023)	70.1	309.7	243.1	69.8	265.3	235.8	71.0	330.6	242.4	75.6	261.2	251.6
Batzner et al. (2022)	0.8	111.5	-	0.7	107.9	-	0.6	103.7	-	0.6	103.4	-
Torres et al. (2019)	3.2	161.2	-	2.8	167.9	-	2.8	141.9	-	2.6	148.5	-
Gao et al. (2025)	17.8	135.7	164.1	17.7	104.8	161.1	20.4	167.4	141.4	14.9	83.9	150.1
Sours & Kulkarni (2023)	6.5	162.8	-	6.5	173.6	-	6.5	182.7	-	6.5	176.1	-

1312
1313 Table 9: Summary of model performance on LAMbench (Property Calculation). Metrics are lower-
1314 is-better unless otherwise noted.
1315

Model	OC20-NEB (Wander et al., 2024)					Elastic Properties			Wiggle150 (Brew et al., 2025)		
	MAE_Ea (eV)	MAE_d (eV)	Transfer (%)↑	Desorption (%)↑	Dissociation (%)↑	Shear Modulus MAE (GPa)	Bulk Modulus MAE (GPa)	MAE (kcal/mol)	RMSE (kcal/mol)		
GRACE-2L-OAM	1.6	0.7	65.1	90.5	72.2	9.1	7.5	12.1	14.0		
SevenNet-MF-ompa	2.1	1.3	66.9	92.9	68.3	9.5	7.5	11.0	12.8		
ORBv3-mpa	2.3	1.5	61.7	87.4	72.2	9.7	7.6	11.9	12.9		
MatRIS-10M-OAM	4.0	3.6	64.6	90.6	69.0	8.8	6.4	9.5	10.6		

1321
1322 evaluate MatRIS-M using the same training configurations and maintain consistency with the training
1323 and test sets as in Zhang et al. (2024) to ensure comparability. More detailed hyper-parameters
1324 are reported in Table 12.
13251326 All results are summarized in Table 11, with benchmark data for other models taken from Zhang
1327 et al. (2024; 2025). Overall, MatRIS-M achieves better accuracy in both energy and force predictions,
1328 demonstrating its robustness across diverse domains. Notably, however, eqV2 and GemNet-
1329 OC exhibit lower force errors than MatRIS in certain systems. This advantage likely stems from
1330 their non-conservative force prediction, where energy and forces are fitted separately at the expense
1331 of physical consistency.
1332

1333 D.5 MD STABILITY EVALUATION

1334 We assessed the stability of MatRIS by examining energy conservation in MD simulations under the
1335 NVE ensemble (microcanonical ensemble), using energy drift and thermostatted stability as eval-
1336 uation metrics. The test data were taken from LAMBench (Peng et al., 2025), including organic
1337 molecules and inorganic material systems, which are out-of-distribution for MatRIS-M trained on
1338 MPTrj dataset. For each system, atomic velocities were first randomly initialized at 300 K using the
1339 Maxwell-Boltzmann distribution. Subsequently, MD simulations were performed in the NVE en-
1340 semble for 80 ps with a 1 fs time step. Figure 9 shows the results of the MD simulations. MatRIS-M
1341 is able to conserve energy over long simulations, with both the total energy and the kinetic temper-
1342 ature fluctuating around their initial values, and no large drifts are observed.
13431344 E TRAINING DETAILS AND HYPER-PARAMETERS
13451346 We summarize the hyperparameters of the models across different datasets and versions in Table 12.
1347 For the MPTrj dataset, we experimented with models of different sizes by varying the number of
1348 layers (S, M, and L correspond to 4, 6, and 10 layers, respectively). The learning rate follows a
1349 cosine annealing schedule, decaying to the minimum value at the last epoch. In distributed training,
we implemented a load balancing scheme to reduce synchronization overhead (see Section C.1), so

1350 Table 10: MatRIS performance on Zeolite dataset. Energy(**E**) MAE is in **meV**, force(**F**) MAE is in
 1351 **meV/Å**.

Type	Deep Pot		AlphaNet		DPA3-L24		MatRIS-M	
	E	F	E	F	E	F	E	F
ABWopt	90	90	<u>12</u>	<u>19</u>	13.7	19.1	3.4	6.8
BCTopt	110	50	<u>6.8</u>	<u>12</u>	<u>6.8</u>	<u>12.0</u>	3.0	4.9
BPHopt	210	60	<u>29</u>	<u>16</u>	28.6	<u>16.5</u>	39.2	8.3
CANopt	150	90	<u>18</u>	<u>15</u>	<u>17.3</u>	15.1	10.2	6.5
EDIopt	40	50	<u>8.7</u>	<u>13.5</u>	10.8	15.1	3.6	6.2
FERopt	290	130	<u>43</u>	28	<u>41.6</u>	<u>25.4</u>	30.6	11.9
GISopt	60	50	<u>11</u>	<u>11</u>	12.1	11.8	6.2	5.8
JBWopt	150	70	10	13	<u>9.7</u>	<u>12.4</u>	4.0	5.9
LOSopt	110	70	<u>21</u>	<u>12</u>	<u>21.0</u>	13.1	17.9	6.5
LTAopt	150	64	19	<u>12</u>	21.3	13.5	<u>20.5</u>	7.0
LTJopt	70	110	15	<u>11</u>	13.4	11.2	<u>14.4</u>	6.7
NATopt	210	110	<u>16</u>	<u>15</u>	17.2	15.6	8.0	7.4
PARopt	90	70	<u>18</u>	<u>24</u>	21.4	24.2	9.5	6.8
PHIopt	60	120	20	<u>14</u>	<u>19.6</u>	14.4	15.9	7.5
SODopt	200	110	<u>9.5</u>	<u>12</u>	11.0	13.4	4.4	5.7
THOopt	160	60	<u>17</u>	<u>15</u>	20.2	16.9	7.5	8.0

1371
 1372 Table 11: MatRIS performance on DPA2 test sets from Zhang et al. (2024). Energy (**E**) RMSE
 1373 is in **meV/atom**, force (**F**) RMSE is in **meV/Å**. ‘OOM’ indicates an Out-Of-Memory error. ‘NC’
 1374 indicates that the model employs a non-conservative force prediction.

Dataset	Size	GemNet-OC ^{NC}		NequIP		MACE		eqV2 ^{NC}		DPA3-L24		MatRIS-M	
		E	F	E	F	E	F	E	F	E	F	E	F
Alloy	71K	14.3	<u>85.1</u>	44.0	175.6	16.2	190.2	8.5	62.7	<u>7.1</u>	99.2	5.8	96.2
Cathode-P	59K	1.5	17.9	14.3	69.8	2.6	37.8	1.1	<u>14.9</u>	<u>0.6</u>	18.6	0.3	11.9
Cluster-P	139K	47.7	69.6	75.1	216.6	41.3	189.7	34.6	<u>104.4</u>	<u>29.3</u>	118.3	12.8	113.9
Drug	1380K	40.5	93.6	21.6	187.2	-	-	29.8	807.4	<u>5.5</u>	<u>54.2</u>	1.4	39.7
FerroEle-P	7K	1.5	17.9	1.1	23.0	2.3	31.7	1.1	<u>13.0</u>	0.3	13.4	0.2	10.9
OC2M	2000K	25.0	129.1	97.4	226.1	-	-	<u>6.7</u>	45.2	9.0	128.0	5.9	<u>77.9</u>
SSE-PBE-P	15K	2.7	8.2	1.6	41.1	1.8	29.9	OOM	OOM	<u>0.5</u>	<u>19.8</u>	0.3	11.4
SemiCond	137K	8.0	<u>94.4</u>	20.5	180.7	12.7	182.8	3.9	40.8	<u>3.4</u>	108.3	2.7	95.0
H2O-PD	46K	OOM	OOM	0.9	27.1	79.9	29.7	OOM	OOM	<u>0.4</u>	<u>13.7</u>	0.3	10.7
Ag \cup Au-PBE	17K	106.0	<u>8.0</u>	42.3	43.8	369.1	34.5	23.4	4.4	1.1	10.9	<u>2.5</u>	10.7
Al \cup Mg \cup Cu	24K	5.9	<u>9.4</u>	38.0	48.3	7.7	42.9	<u>1.9</u>	5.7	2.0	13.0	1.2	15.9
Cu	15K	6.1	<u>5.8</u>	6.2	16.7	38.8	13.6	<u>1.7</u>	3.8	<u>1.7</u>	7.2	0.5	6.1
Sn	6K	8.4	<u>33.7</u>	18.2	62.2	-	-	5.2	19.6	<u>2.9</u>	49.8	2.3	45.9
Ti	10K	44.5	87.9	27.6	137.4	8.3	94.2	19.1	48.6	<u>4.1</u>	91.7	3.3	<u>80.2</u>
V	15K	17.9	79.3	8.8	91.6	14.2	140.4	5.6	47.4	<u>2.8</u>	71.8	1.9	<u>62.9</u>
W	42K	79.1	81.2	20.8	160.4	15.6	181.2	46.8	51.3	<u>2.5</u>	83.3	1.9	<u>66.3</u>
C12H26	34K	125.8	<u>518.7</u>	121.4	715.6	81.9	802.3	123.1	907.4	<u>42.4</u>	541.6	19.5	287.6
HfO2	28K	1.2	16.1	1.5	58.8	2.3	14.7	<u>1.0</u>	9.1	1.4	28.9	0.3	<u>14.6</u>

1395
 1396 the number of samples per GPU may vary; the table reports the average global batch size. Notably,
 1397 the loss reduction in distributed training is performed using a graph-level scheme to avoid bias
 1398 toward larger systems (see Section C.2). Additionally, for the Matbench-Discovery benchmark, we
 1399 pre-trained the MatRIS-M and L models with a denoising process to enhance generalization, with
 1400 details in Section C.3.

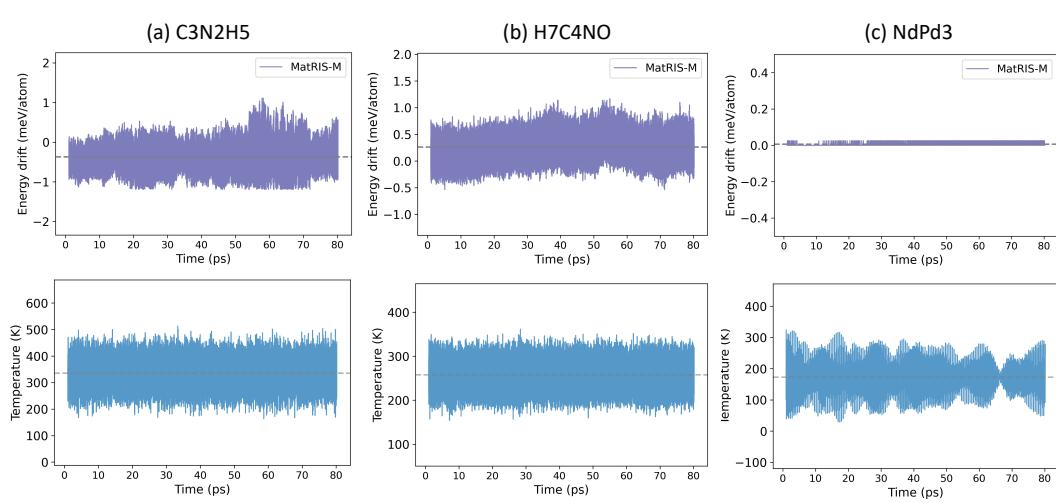


Figure 9: NVE MD simulations of three systems using MatRIS-M. The top row shows the energy drift, and the bottom row shows the time series for the kinetic temperature.

Table 12: Hyper-parameters for MatRIS variants reported in this paper. In MatRIS-OAM, values outside parentheses denote the OMat configuration, those in parentheses the sAlex+MPTrj fine-tuning configuration, and values without parentheses are shared.

Hyper-parameters	MPTrj-S	MPTrj-M	MPTrj-L	MatRIS-OAM	SPICE-M	MatPES-1.4M	Others
Number of MatRIS layers	4	6	10	10	6	3	6
Dimension of atom features	128	128	128	128	128	64	128
Dimension of edge features	128	128	128	128	128	64	128
Dimension of three-body features	128	128	128	128	128	64	128
Radial basis function	Bessel	Bessel	Bessel	Bessel	Bessel	Bessel	Bessel
Number of radial basis functions	7	7	7	7	7	7	7
Pairwise cutoff	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Three-body cutoff	4.0	4.5	4.5	4.5	4.0	4.0	4.0
Global batch size (avg)	512	512	320	512(320)	128	64	1/256
Optimizer	AdamW	AdamW	AdamW	AdamW	AdamW	Adam	AdamW
Weight decay	1e-2	1e-2	1e-2	1e-3	1e-3	0.0	1e-3
Maximum Learning rate	5e-4	3e-4	3e-4	3e-4(1e-4)	3e-4	3e-4	3e-4
Minimum Learning rate	5e-6	3e-6	3e-6	3e-6(1e-6)	3e-6	3e-6	3e-6
Learning rate scheduling	CosLR	CosLR	CosLR	CosLR	CosLR	CosLR	CosLR
Number of epochs	30	40	100	4(8)	200	30	100
Loss function	Huber($\delta=0.01$)	Huber($\delta=0.01$)	MAE / L2MAE	MAE / L2MAE	Huber($\delta=0.01$)	MAE	Huber($\delta=0.01$)
Gradient clipping norm	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Energy loss prefactor	5	5	5	5	5	5	5
Force loss prefactor	5	5	5	5	5	5	5
Stress loss prefactor	0.1	0.1	0.1	0.1	-	0.1	0.1
Magmom loss prefactor	0.1	0.1	0.1	0.1	-	0.1	-
Denoising Settings							
Corruption probability	-	100%	100%	-	-	-	-
Maximum number of steps	-	1000	1000	-	-	-	-
Maximum sigma	-	1.0	1.0	-	-	-	-
Minimum sigma	-	0.0	0.0	-	-	-	-
Noise Schedule	-	Linear	Linear	-	-	-	-
Number of epochs	-	20	20	-	-	-	-