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ABSTRACT

Universal MLIPs (uMLIPs) demonstrate broad applicability across diverse ma-
terial systems and have emerged as a powerful and transformative paradigm in
chemical and computational materials science. Equivariant uMLIPs achieve state-
of-the-art accuracy in a wide range of benchmarks by incorporating equivari-
ant inductive bias. However, the reliance on tensor products and high-degree
representations makes them computationally costly. This raises a fundamental
question: as quantum mechanical-based datasets continue to expand, can we
develop a more compact model to thoroughly exploit high-dimensional atomic
interactions? In this work, we present MatRIS (Materials Representation and
Interaction Simulation), an invariant uMLIP that introduces attention-based mod-
eling of three-body interactions. MatRIS leverages a novel separable attention
mechanism with linear complexity O(NN), enabling both scalability and expres-
siveness. MatRIS delivers accuracy comparable to that of leading equivariant
models on a wide range of popular benchmarks (Matbench-Discovery, MatPES,
MDR phonon, Molecular dataset, etc). Taking Matbench-Discovery as an ex-
ample, MatRIS achieves an F1 score of up to 0.847 while improving training
efficiency by 13.0-13.5x at comparable accuracy. The work indicates that our
carefully designed invariant models can match or exceed the accuracy of equivari-
ant models at a fraction of the cost, shedding light on the development of accurate
and efficient uMLIPs.

1 INTRODUCTION

Quantum Mechanism (QM)-based calculations are the cornerstone of modern drug and material
research, providing highly accurate modeling of interatomic interactions. However, its prohibitive
computational cost makes large-scale simulations intractable (De Vivo et al., 2016} |Jain et al.,[2013bj
Merchant et al, |2023). Machine learning interatomic potentials (MLIPs) have emerged as a pow-
erful alternative, enabling accelerated, long-timescale molecular dynamics (MD) simulations while
retaining near-quantum-chemical accuracy. With the increase in QM-based reference data and model
innovations, MLIPs have demonstrated remarkable accuracy and generalization in property predic-
tion and materials discovery (Merchant et al., 2023 Barroso-Luque et al., 2024; Zhang et al., 2024;
Yang et al.l 2024; Zhang et al., 2025; [Fu et al.| |[2025; |Wood et al.| |2025)).

Graph neural networks (GNNs) have been widely adopted for 3D molecular modeling, where atoms
are represented as nodes and interatomic interactions as edges (Qu & Krishnapriyan, 2024 |Liao
& Smidt, 2023} |Liao et al., [2024b). Through Message Passing (MP), node features are itera-
tively updated to capture local and global structural interactions. To enhance model expressive-
ness and generalization, many MLIPs incorporate domain-specific inductive biases (e.g., transla-
tion, rotation, permutation, reflection invariance, or equivariance). Depending on how these sym-
metries are encoded, MLIPs are broadly divided into invariant, equivariant and unconstrained ar-
chitectures (Duval et al., [2024; Jacobs et al [2025). In invariant models, the structural descrip-
tor is encoded based on attributes such as interatomic distances, bond angles, and dihedral an-
gles (Gasteiger et al., [2022bzc; 2024} |Deng et al., 2023 [Zhang et al.,|[2025). In equivariant models,
higher-order equivariance is typically enforced through computationally intensive tensor products of
rotation order L (Batzner et al., 2022; Batatia et al.,|[2023}; [Liao & Smidt, 2023} |Liao et al., [2024Db)).



Under review as a conference paper at ICLR 2026

Previous work demonstrates that equiv-

ariant models often deliver superior accu- 0851 I

racy (Batzner et all 2022). In contrast, & 5/’:3':13'5" .

unconstrained models do not explicitly encode 8 0811 %o

symmetries; irlstead2 the model learns them g 077 | [*¥*

from data or approximates them through data g !

augmentation or auxiliary losses, leading < 73 @Nequix @ MACE
to more flexible architectural design (Duval < eSEN-30M @ HIENet
et all 2024; Neumann et al.| [2024; Rhodes f 0.69 .:q:;;[’e”s.s;‘g“”“
et al.| [2025). Meanwhile, the results in a - ® *,\;atms

popular  benchmark (Matbench-Discovery 0.65 /) I
leaderboard (Riebesell et al., 2025)) indicate 0 60 120 180 240 360 420 660 720
that equivariant GNNs achieve higher accuracy. Training time (GPU days)

When the training data is MPTrj (D tall S
202?)1 egéﬁ{?gﬁ_ﬁ; l(sFu ot ?ﬂ( 26855 :ln q Figure 1: Trade-offs between training time and F1
eqV2 'S DeNS (Barroso-Luque of all P02 4y score of uMLIPs. Training times for eSEN-30M

h Fl £ 0.831 and 0.815, with and eqV2 S DeNS are estimated on an Nvidia
reac seores © an W A100 GPU. Nequix (Koker & Smidt, 2025) was
trained on JAX; all others on PyTorch. Larger
marks indicate models with more parameters.

energy errors of 0.033 and 0.036 meV/atom,
respectively. Despite the accuracy gains, the
heavy equivariant operations make equivariant
methods significantly more computationally
expensive and memory-intensive. Our investigation into the training cost of several mainstream
pretrained models is summarized in Figure[I] eSEN-30M-MP and eqV2 S DeNS show superior F1
score while requiring 705 and 228 GPU days, respectively. This high computational demand can
be caused by three main factors: 1) the intensive equivariant operations such as tensor products, 2)
the large number of model parameters, and 3) the prolonged training schedules (e.g., 100, 150, and
600 training epochs are reported for eSSEN-30M-MP, eqV2 S DeNS, and SevenNet-13i5 (Kim et al.,
2024), respectively).

Incorporating equivariance into the GNN MLIPs serves as an implicit form of data augmentation.
AlphaFold has shown that, with sufficient data, non-equivariant models can accurately predict pro-
tein secondary structures (Jumper et al.,|2021;|Abramson et al.,[2024)). In MLIPs, the rapid increase
in QM-based reference datasets (Barroso-Luque et al., 2024; |Levine et al., |2025; |Gharakhanyan
et al.,[2025; Sriram et al., | 2025) motivates us to ask: Is the equivarance indispensable as the QM-
based dataset continues to increase? Can we develop a more compact architecture to capture
the high-dimensional atomic interactions encoded in QM-based data sufficiently?

We have the following findings: 1) Recent studies (Yang et al.| [2024; Zhang et al.l [2024; 2025)
show that invariant models offer reliable property predictions and enable a wide range of scientific
applications while maintaining computational efficiency. 2) On a more compact architecture (an
architecture that can fully exploit QM-based data). Element types and pairwise interactions have
been shown to be insufficient for distinguishing graphs with different chemical properties (Xu et al.}
2019). Incorporating three-body interactions is needed to exploit the knowledge in QM-based data.
Self-attention mechanisms (Mazitov et al., 2025} |Qu & Krishnapriyan, 2024) have proven to be a
promising method in improving model expressiveness, also benefiting in model scalability.

Building on these insights, we introduce an invariant MLIP: interatomic potential for Materials
Representation and Interaction Simulation (MatRIS). To the best of our knowledge, our model
is the first to explicitly leverage an O(N) attention mechanism to model three-body interactions.
MatRIS consists of graph generation, feature embedding, graph attention, refinement, and a readout
block. We provide the ablation study of these modules in this paper. Putting all these modules
together, MatRIS achieves state-of-the-art (SOTA) accuracy and efficiency across a wide range of
chemical applications. Additionally, the novel separable attention has lower complexity (O(N))
compared to full attention (O(N?)). Across diverse benchmarks, MatRIS achieves competitive
results. MatRIS-L achieves SOTA results on compliant Matbench-Discovery with an F1 of 0.847
and a root mean square displacement (RMSD) of 0.0717. Moreover, MatRIS-S and MatRIS-M
deliver accuracy comparable to eqV2 S DeNS and eSEN-30M-MP, respectively, while improving
training efficiency by 13.0x and 13.5Xx, respectively. These results demonstrate MatRIS’s strong
potential for applications in materials science and drug discovery.
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2 RELATED WORKS

Invariant MLIPs. Invariant MLIPs are models whose intermediate representations are invari-
ant under rotations and translations (Duval et al} [2024). This invariance is achieved by using
internal coordinates instead of Cartesian coordinates, with features such as interatomic distances,
bond angles, and dihedral angles remaining unchanged under rotations and translations of the sys-
tem (Schiitt et al.| 2017; Gasteiger et al.l 2020} Novikov et all 2020} [Fan et al.| 2022} |Gasteiger et al.|
2022¢; |Chen & Ong| [2022; Deng et al., 2023}, [Zhang et al., 2025). Early invariant MLIPs, such as
SchNet (Schiitt et all, [2017), CGCNN (Xie & Grossman, 2018)), and PhysNet
[2019), employ relative distances between node pairs and encode local geometric information via
learnable radial basis functions. More recent MLIPs enhance representational expressiveness by
incorporating higher-order many-body scalar features. For example, the DimeNet
series introduced directional message passing, allowing angular information to be
embedded in edge updates between atoms. The GemNet series (Gasteiger et al 2022c} 2024)
further incorporates dihedral angles to improve performance. SphereNet (Liu et al. 2022) and
ComENet proposed methods to efficiently extract four-body angles within local
neighborhoods, avoiding the need to iterate over all three-hop neighbors. DPA3 (Zhang et al.| [2025))
builds upon the line graph series (LiGS), capturing higher-order interactions. Invariant MLIPs are
progressively increasing their representational expressiveness while maintaining inherent computa-
tional efficiency. Building upon these insights, we design MatRIS from an invariant perspective. We
further provide a detailed discussion in Appendix [A] highlighting how MatRIS differs from other
MLIPs that incorporate three-body encodings or attention-based mechanisms.

Equivariant MLIPs. Equivariant MLIPs are models where intermediate representations are in-
variant (e.g., scalars) or equivariant (e.g., vectors or higher-order tensors) under rotations (Duval
et al| [2024). Current equivariant MLIPs can be divided into scalarization-based models (Schiitt
et al., 2021; [Du et al.| 2023} [Tholke & Fabritiis| 2022} [Aykent & Xial [2025) and high-degree steer-
able models (Zhou et all, 2024} [Batzner et al., 2022} Batatia et al., 2023 [Ciao & Smidt, [2023).
Scalarization-based MLIPs model interatomic interactions in the Cartesian coordinate system while
restricting the set of operations on geometric features to preserve equivariance (Duval et al., 2024}
[Wang et all, 2024} [Yin et al [2025). On the other hand, high-degree steerable equivariant MLIPs
use irreducible representations (irreps) to encode features, ensuring equivariance under 3D rotations.
Each irrep of degree L corresponds to a (2L + 1)-dimensional vector space (Batzner et al., 2022}
[Batatia et all, 2023} [Liao & Smidt, [2023). In equivariant GNN-based MLIPs, MP involves trans-
forming and combining these type-L vectors. To interact across degrees during MP, tensor products
(by using Clebsch—Gordan coefficients to combine) are employed. To avoid excessive computational
complexity, these models typically employ only low-degree equivariant representations
[2024; [Liao et al., [2024b; [Fu et al| 2025). Equivariant MLIPs continue to deliver SOTA accuracy
on various benchmarks (Tran et al.} 2023}, Riebesell et al., [2023)), while remaining computationally
demanding.

Unconstrained MLIPs. Unconstrained MLIPs do not impose strict constraints on their interme-
diate representations. Instead, these models typically learn symmetries directly from the data or
incorporate additional loss terms to encourage symmetry learning (Duval et al.} [2024}; Rhodes et al.}
[2025). For example, Qu & Krishnapriyan| (2024); Neumann et al.| (2024); Rhodes et al.| (2025)
use data augmentation (applying random rotations to training samples) to learn rotational equiv-
ariance and have demonstrated promising results. In addition, [Neumann et al| (2024) enhances
stability in MD simulations by removing net force and torque, while |[Rhodes et al.| (2025)) intro-
duces an ‘Equigrad’ loss to incentivize rotational invariance of energy. Unconstrained MLIPs have
inference efficiency comparable to invariant MLIPs and more flexible architectures. These models
demonstrate competitive accuracy in multiple benchmarks (Chanussot et al.} 2021} Tran et al.,[2023}
Riebesell et all, 2025). However, studies indicate that they may lead to errors in certain property
prediction tasks (Fu et al.} 2023} [Péta et al.| 2023} [Bigi et al.} [2023).

3  MATRIS

In this section, we introduce the detailed architecture of MatRIS. The interaction between the atom
graph and the line graph is described in Section [3.1] The Graph Attention module is depicted in
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Section[3.2] In Section [3.3] we describe other key components of MatRIS. An overview of MatRIS
is shown in Figure 3] and the model formalizations are detailed in Appendix

3.1 LINE—-ATOM GRAPH INTERACTION

To model three-body interactions, we explicitly construct a Line Graph. In the Atom Graph,
nodes represent atom types and edges represent pairwise interactions (bonds), whereas in the Line
Graph, nodes represent edges of the atom graph and edges represent three-body interactions (an-
gles) (Harary & Norman, [1960; Whitney, |1992).

Specifically, given an Atom Graph G* = (V*, E%), where V¢

is the set of atoms and E is the set of edges within a cutoff ~ Atom graph Line graph

distance r¢,,, the corresponding Line Graph G! = (V!, E)is " Fo-omoooes 0
constructed as follows: ® Each node in V! corresponds to an | {/ e NG PN
edge in E%; @ An edge ¢ € E' is added between two nodes 1 @ —_="__ Lol i
if their corresponding edges in £ share a common atom, rep- |/ ! ! !
resenting the angular information formed by the three atoms | o "7 "Jey3 |
(i.e., the three-body interaction). The conversion from the R 1 (R .

atom graph to the line graph is illustrated in Figure 2] Figure 2: Conversion from an

For graph information fusion, we first update the Line Graph Atom Graph to a Line Graph.

to obtain edge and angular features encoding three-body inter-

actions. The updated edge features are then propagated back

to the Atom Graph, allowing atomic features to incorporate higher-order information from the Line
Graph.

3.2 GRAPH ATTENTION

In this section, we introduce the design motivation and implementation of the Dim-wise Softmax
and Separable Attention mechanisms.

Dim-wise Softmax. Recent studies have shown that attention mechanisms play an important role
in improving both the accuracy and scalability of MLIPs (Liao & Smidt, |2023}; [Liao et al., [2024b;,
Qu & Krishnapriyan, [2024). Existing approaches (Liao & Smidt, [2023; |Wang et al.| 2024} [Shao
et al., 2024; [Liao et al.| 2024b)) typically compute attention weights a;4 to weight the value vectors
V€ RmeighbosxD “where D denotes the hidden dimension. The weights a;q depend on the fea-
tures of node 7 and its neighbors N (i), while the values V are obtained by applying a nonlinear
transformation to the fused edge and node features.

In these methods, the same attention weights are applied to all feature dimensions, implicitly as-
suming equal importance across dimensions. However, this assumption limits the model’s ability
to distinguish the independent contributions of different feature dimensions. Our proposed Dim-
wise Softmax computes attention scores independently for each feature dimension. Given an input
feature z € R0 D and a neighbor list AV, the Dim-wise Softmax is computed as follows:

a;q = Dim-wise Softmax (z;4, N (i)) = exp(Tia)
2 ken (i) EXP(Tkd)

(D

where o € Rreighborsx D g the attention weight matrix, 2;4 denotes the d-th feature of node i, and
N (7) represents the set of neighboring nodes of node . This approach preserves the independence
of feature dimensions while emphasizing the relative importance of different neighbors in each di-
mension, thereby enhancing the model’s ability to capture local structural information.

Separable Attention. In molecular systems, interatomic interactions are directional, and each
atom plays two roles: target node and source node. Most existing methods only aggregate informa-
tion from the source node to the target node (Liao & Smidt, 2023} [Liao et al., |2024b; |Wang et al.,
2024; Shao et al [2024), which assumes symmetric information flow. However, this is not always
true in real physical systems. For example, in polar bonds, charged environments, or local defect
structures, the effect of the source node on the target node can differ from the effect of the target node
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on the source node (Bengtsson, |1999; [Kiihne & Khaliullin[2013). To address this, we introduce two
independent sets of attention weights: source attention weights and target attention weights. The
first models how neighboring nodes affect the central node, while the second captures how the cen-
tral node influences its neighbors. In this way, the two roles of nodes are explicitly separated during
aggregation. The overall workflow is illustrated in Figure Ekb). Given the interaction e;; between a
target node v; and a source node v;, we compute the attention weights as follows:

t;; = Linear(e;;) and ta;; = Dim-wise Softmax(;;, /N (7)) ()

si; = Linear(e;;) and sa;; = Dim-wise Softmax(s;;, N (j)) 3)

Here, N(i) and N(j) denote the indices of the target and source nodes, respectively. The final
attention outputs are obtained as the weighted sum of ta;;, sa;;, and eg .. Here, e;» is obtained by
concatenating e;;, v;, and v;, followed by target and source feature fusion through a gMLP (see
Figure 3[d)). The two attention branches share the same computational flow and can therefore be
executed in parallel. We also implement optimized kernels to improve training efficiency.

Generality Analysis. As mentioned earlier, many MLIPs are either unconstrained or equivari-
ant. Unconstrained MLIPs are flexible, allowing Dim-wise Softmax and Separable Attention to be
applied directly. For equivariant MLIPs, symmetry must be preserved. To ensure this, Dim-wise
Softmax is computed on invariant features (e.g., L = 0), producing attention weights that are them-
selves invariant. These weights are then applied to equivariant features within each irrep channel,
without mixing components of different orders, ensuring that the features remain equivariant under
geometric transformations. Separable Attention extends this approach with two branches, comput-
ing attention equivariantly and aggregating information separately over the indices of the target and
source nodes.

3.3 OVERALL ARCHITECTURE

(a) MatRIS Architecture (b) Graph Attention (c) Refinement (e) Feature Embedding
G(ZX,L)

[nn.Emb] [ Bessel ] [Fourier]

67]

[ Graph Generation ]

Feature Embedding

[Llnear] [Llnear Concat ]

gMLP

[Linlear1 {Linear} [Lin[ear}

v L2 ¥

(f) Readout Block

[ Line Graph Attention ] i

[ Atom Graph Attention ] i

a
N~

Line Graph Refinement

Atom Graph Refinement

Readout Block
E,FS, M

Figure 3: Overview of MatRIS. The model architecture (a) consists of feature embedding (e), graph
attention (b), refinement (c), and a readout block(f).

Graph Generation. Given a crystalline system G(Z, X, L), where Z € R"™°™ denotes the
atomic numbers, X € [Rnatomsx3 represents the atomic coordinates, and L € R3*3 refers to the
lattice. We first perform periodic repetition of the structure and then employ a radius-cutoff graph
construction to represent it. Inspired by CHGNet (Deng et al., [2023), we construct the atom graph
G (with atoms as nodes and bonds as edges) based on r¢,, and the line graph G* (with bonds as

nodes and angles as edges) based on r.,,, for the crystal structure



Under review as a conference paper at ICLR 2026

Feature Embedding. Atomic numbers are initialized using trainable embeddings, while pairwise
distances are encoded via a learnable radial Bessel basis with envelope functions (Gasteiger et al.,
2022b). For bond angles, we employ a learnable Fourier basis expansion following Deng et al.
(2023). These input features are then passed through a linear layer to generate initial node, edge,
and three-body representations. This block is illustrated in Figure [3[e).

Refinement. The output of Graph Attention v} and €} ; 18 concatenated and processed by a gMLP
operator (shown in Figure [3[(c)). This representation is further refined by an Envelope func-
tion (Gasteiger et al.| [2022b)) (ensures smoothness). The refined signals are then aggregated over
neighboring interactions, enabling each edge to integrate local information. Finally, the output is
transformed by a MLP operator to produce the residual node features Av; and edge features Ae;;.

Readout Block. The Readout Block (Figure Ekf)) takes the node features v; from the last MP
layer. After the normalization layer, the features are passed through MLPs to predict node energies
and magnetic moments (M). Atomic energies are summed to obtain total energy (F). To ensure the
reliability (Bigi et all [2025), atomic forces (F;) and stress (o) are computed by Equation [ V is

volume.
oF 1 0F

F4:_7 _
CTTaX, 7 TV be

“4)

4 EXPERIMENTS

We evaluated MatRIS on Matbench-Discovery benchmark (Section {.T), MatPES benchmark (Sec-
tion .2), MDR phonon benchmark (Section .3), Molecular zero-shot benchmark (Section {.4).
The best results are in bold, and the second best are underlined. Moreover, we conducted ablation
studies on the network modules and training methods (Section .5). Finally, we analyzed the effi-
ciency of MatRIS (Section.6). In addition, the results of experiments on the Matbench-Discovery
benchmark (non-compliant), LAMBench benchmark (Peng et al.l 2025), Zeolite benchmark (Yin
et al., [2025), DPA?2 test sets (Zhang et al.| |2024) and MD stability evaluation are provided in Ap-
pendix [D| The training strategies are introduced in Appendix [C] and the training hyperparameter
settings are detailed in Appendix

4.1 MATBENCH DISCOVERY

Table 1: MatRIS performance on the compliant Matbench-Discovery benchmark with results on
unique structure prototypes. ‘1°/‘]’ stands for higher/lower is better. All models accessed before
September 24, 2025.

Model Param. | F1t DAF{ Precisiont Recallt Accuracy? | MAE| R2? | Kymel | RMSD)
CHGNet 0.41M | 0.613  3.361 0.514 0.758 0.851 0.063 0.689 | 1.717 | 0.0949
MACE-MP-0  4.69M | 0.669 3.777 0.577 0.796 0.878 0.057 0.697 | 0.647 | 0.0915
GRACE-2L 153M | 0.691 4.163 0.636 0.757 0.896 0.052 0.741 | 0.525 | 0.0897
Allegro-MP-L  18.7M | 0.751 4.516 0.690 0.823 0.915 0.044 0.778 | 0.504 | 0.0816
Nequix MP 0.71M | 0.751  4.455 0.681 0.836 0.914 0.044 0.782 | 0.446 | 0.0853
SevenNet-13i5  1.17M | 0.760  4.629 0.708 0.821 0.920 0.044 0.776 | 0.550 | 0.0847
NequIlP-MP-L ~ 9.6M | 0.761 4.704 0.719 0.809 0.921 0.043  0.791 | 0.452 | 0.0856
ORB v2MPTrj 252M | 0.765 4.702 0.719 0.817 0.922 0.045 0.756 | 1.725 | 0.1007
HIENet 7.51M | 0.777 4.932 0.754 0.801 0.929 0.041 0.793 | 0.642 | 0.0795
Eqnorm MPTrj  1.31M | 0.786  4.844 0.741 0.838 0.929 0.040 0.799 | 0.408 | 0.0837
DPA-3.1-MPTrj 4.81M | 0.803 5.024 0.768 0.841 0.936 0.037 0.812 | 0.650 | 0.0801
eqV2SDeNS  31.2M | 0.815 5.042 0.771 0.864 0.941 0.036 0.788 | 1.676 | 0.0757
eSEN-30M-MP  30.IM | 0.831 5.260 0.804 0.861 0.946 0.033 0.822 | 0.340 | 0.0752
MatRIS-S 43M | 0.811 5.127 0.784 0.840 0.940 0.036  0.803 | 0.730 | 0.0766
MatRIS-M 63M | 0.833 5.363 0.820 0.847 0.948 0.033 0.820 | 0.542 | 0.0742
MatRIS-L 104M | 0.847 5.422 0.829 0.865 0.951 0.031 0.829 | 0.489 | 0.0717

Dataset and Setting. The Matbench-Discovery benchmark (Riebesell et al. 2025) is a well-
established benchmark for evaluating the ability of models in new material discovery. In this bench-
mark, all models are required to optimize the geometry and predict the formation energy of each
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of the 256k structures in the WBM test set (Wang et al., [2021)). These results are then used to as-
sess thermodynamic stability at the ground state (0 K). In the “compliant” setting, all models are
required to use MPTrj (Deng et al., 2023)) as the training dataset, whereas in the “non-compliant”
setting, this requirement is relaxed. More details on the hyperparameters can be found in Table [T2]
Moreover, inspired by [Zaidi et al.| (2022) and |[Liao et al.| (2024a), we apply denoising pretraining to
MatRIS-M and MatRIS-L. The specific details are described in Appendix [E] Notably, this denoising
is also adopted in several other works (ORB v2 MPTrj (Neumann et al.||2024), eqV2 S DeNS, and
eSEN-30M-MP). Structures are relaxed using MatRIS and the FIRE (Bitzek et al., 2006) optimizer,
with convergence reached after 500 steps or when the maximum force falls below 0.05 eV/A.

Results of the Compliant Benchmark We summarize the comparison with other models in Ta-
ble [T] (as of September 24, 2025). MatRIS-S/M achieves performance comparable to eqV2 S
DeNS/eSEN-30M-MP while using fewer parameters and lower computational costs (see Figure
for a comparison of training cost). These results demonstrate the effectiveness of MatRIS. More-
over, MatRIS-L achieves state-of-the-art (SOTA) performance across all metrics, with an F1 score
of 0.847. It also achieves an RMSD of 0.0717 when comparing relaxed structures to DFT reference
values.

4.2 MATCALC BENCHMARK

Table 2: Summary of model performance on the MatCalc benchmark. All results were obtained
using the Mat Calc package and its associated dataset.

Model Param | Equilibrium Near-equilibrium

| di Efl KL GL ¢Vl f/forrt

MatPES-trained models

M3GNet 0.66M | 0.42 0.11 26 25 27 0.97

CHGNet 27M | 043  0.082 24 21 23 0.91

TensorNet 0.84M | 0.37 0.081 18 15 13 0.93

MatRIS 1.4M | 0.54  0.068 15 13 16 0.96

MPTrj-trained models

CHGNet 27M | 051 0.092 17.0 30.0 24.0 0.830
MACE-L 57M | 043 - 253 225 11.6 0.829
SevenNet-13i5 1.L17M | 0.55 0.057 132 1702 8.03 0.922
eqV2 S DeNS 312M | 025  0.033 272 29.1 259 0.964
eSEN-30M-MP 30.IM | 034 0.039 188 773 4.66 0.986
MatRIS-M 63M | 032 0041 124 164 7.39 0.983
OAM-trained models

SevenNet-MF-ompa 257M | 0.502 0.028 133 322 4.60 0.976
eqV2 M 31.2M | 0.235 0.017 254 175 80.4 0.999
eSEN-30M-OAM 30.IM | 0.299 0.089 119 14.8 4.35 0.996
MatRIS-10M-OAM 104M | 0316 0.025 10.6 133 3.97 0.985

Dataset and Settings. MatCalc benchmark (Kaplan et al., 2025) covers equilibrium properties (re-
laxed structure similarity d, formation energy F f), near-equilibrium properties (bulk modulus K,
shear modulus G, constant-volume heat capacity C'V, force softening f/fprr), and is constructed
from test data collected from the Materials Project (Jain et al., [2013al), Alexandria (Schmidt et al.,
2024), WBM high-energy states (Wang et al., |2021). We compare models trained on MatPES-
PBE (Kaplan et al.| 2025), MPTrj and OAM, with the results reported in Table @} The training
parameters are listed in Table Specifically, when evaluating all MPTrj-trained models and
OAM-trained models, we used the default settings in MatCalc for all configurations to ensure
consistency across all models.

Results and Analysis. Table 2| summarizes the performance of models trained on the MatPES-
PBE, MPTrj and OAM datasets. For models trained on MatPES-PBE, MatRIS achieves the best
overall performance, clearly outperforming other models in predicting formation energy E f.

For models trained on MPTrj, MatRIS attains SOTA or near-SOTA results on 83% of the evalu-
ated metrics. Notably, MatRIS remains robust on Near-equilibrium” tasks regardless of the training
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dataset. Although the higher fraction of near-equilibrium structures in MPTrj amplifies PES “Soft-
ening” (f/fprr) (Deng et all 2024; Kaplan et al., [2025), MatRIS maintains stable performance.
Comparisons with CHGNet further indicate that changing the training dataset does not result in
significant softening, underscoring the effectiveness of the architectural design.

The same trend is observed for models trained on OAM, where MatRIS-10M-OAM performs ro-
bustly across all metrics and achieves SOTA performance overall.

4.3 MDR PHONON BENCHMARK

(a) MDR phonon benchmark (b) Phonon dispersion
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Figure 4: (a) Summary of model performance on the MDR phonon benchmark. The evaluation
metrics include wy,q, (K), S (J/K/mol), F' (kJ/mol), and Cy (J/K/mol), where the reported values
represent the MAE between the model predictions and the DFT results. (b) Predicted phonon dis-
persion obtained using MatRIS with a 0.01A displacement. The DFT results are taken from the
phononDB dataset.

Dataset and Settings. The MDR phonon benchmark (Loew et al.| 2023)) is used to evaluate the
ability of MLIPs to predict phonon properties. It requires MLIPs to compute the maximum phonon
frequency (wWimaz), entropy (5), free energy (F), and heat capacity at constant volume (Cy) for
approximately 10,000 structures. To ensure a fair comparison, we follow the evaluation protocol
adopted inLoew et al.|(2025). Specifically, we first optimize the structures using the FIRE optimizer
(max steps=500, fmax=0.005). Displacements are generated with a magnitude of 0.01 A, and the
properties are computed at 300 K.

Results and Analysis. Results for both the MPTrj-trained and OAM-trained models are shown in
Figure[d|(a). MatRIS achieves competitive results among the MPTrj-trained models. As the training
dataset grows, MatRIS-10M-OAM achieves SOTA accuracy on most metrics, with a particularly
significant improvement in the maximum phonon frequency (wWyq.)- It is worth noting that MatRIS-
10M-OMat achieves higher accuracy, with values of w4z, S, F, and Cy being 7.08, 7.12, 2.12,
and 1.91, respectively.

We also selected four representative structures from the phononDB dataset (Togol) for visualization,
as shown in Figure ffb). We find that MatRIS-MP-L not only reproduces the highest frequencies
but also aligns well with the DFT results overall.

4.4 MOLECULAR ZERO-SHOT BENCHMARK

Dataset and Settings. AIMNet and DPA2-Drug were trained on the datasets from
(2023)) and |Yang et al.[ (2025), respectively, while the other models were pre-trained on SPICE-
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Table 3: MatRIS performance on the Molecular zero-shot benchmark. Energy (E) is reported in
kcal/mol and Force (F) in kcal/mol/A.

. MD22 .
Model TorsionNet-500 (Ac-Ala3-NHMe) ANI-1x AIMD-Chig

| EMAE ERMSE MAEB® NABH) | E F | E F | E F
AIMNet2 0.38 0.55 0.58 82 - - - - - -
DPA2-Drug 0.24 035 0.36 18 - - - - - -
MACE-OFF-L | 0.14 0.21 0.23 4 0.041 5205 | 0406 3.948 | 0.050 3.853
DPA3-L24 0.06 0.09 0.09 0 0.040  5.154 | 0.873 37.45 | 0.038 3.749
MaRISM | 0.04 0.07 0.07 0 | 0031 5140 | 0.301 4414 | 0.009 3.604

% The MAE of the torsional barrier height is defined as the energy difference between the minimum and maxi-
mum along the torsional rotation.
® The number of molecules with barrier height errors exceeding 1 kcal/mol.

MACE-OFF23 (Kovacs et al., [2025)), which contains 951,005 small-molecule configurations. The
energies and forces of all configurations were computed at the wB97M-D3(BJ)/def2-TZVPPD level.
Following[Peng et al.|(2025)), we selected the Ac-Ala3-NHMe from the MD22 (Chmiela et al.,[2023),
ANI-1x (Smith et al., 2018), and AIMD-Chig (Wang et al., [2023)) datasets, which contain 2,212,
8,861, and 19,800 configurations, respectively. The training parameters can be found at Table
in appendix. For the MD22, ANI-1x, and AIMD-Chig benchmarks, we corrected inconsistencies
caused by differences between DFT functionals.

Results and Analysis. We selected available molecular pre-trained models (MACE-OFF-
L (Kovacs et al.,2025) and DPA3-L.24 (Zhang et al.}|2025)) for comparison, and the results are sum-
marized in Table [3| MatRIS-M performs well across four downstream datasets. On the TorsionNet-
500 test set, its energy prediction error is reduced by about 22.2%-33.3% compared to the current
SOTA model DPA3. In the remaining three datasets, MatRIS-M ranks first in five out of six metrics
and second in the remaining one, demonstrating that it effectively leverages the knowledge from the
pre-training dataset to achieve more reliable performance on downstream tasks.

4.5 ABLATION STUDY

We conduct ablation studies on various modules of MatRIS and their corresponding training meth-
ods. We train the MatRIS-S on MPTrj and evaluate it on 15,000 randomly sampled structures from
the WBM dataset, reporting performance using the MAE of formation energies.

Table 4: Ablation studies. Formation energy (Ef) MAE is in meV/atom, lower is better.

Dim-wise Separable Learnable Denoising With Graph-level
Index softmax attention  envelope Ef (MAE) Index pretraining magmom loss Ef (MAE)
1 v v v 28.0 1 v v v 27.2
2 X v v 28.4 2 X v v 28.0
3 X X v 29.1 3 X X v 29.7
4 X X X 31.3 4 X X X 30.2

(b) Effect of training methods: denoising pretraining,
magnetic moment prediction, and graph-level loss.

(a) Effect of modules: dim-wise softmax, separable
attention and learnable envelope.

Module Ablation. We evaluated the impact of Dim-wise Softmax, Separable Attention, and
Learnable Envelope on model accuracy, as shown in Table [ffa). Specifically, replacing Dim-wise
Softmax with standard softmax (i.e., sharing the same weight across all feature dimensions) in-
creased MAE to 28.4 meV/atom (Index 2). Subsequently, restricting attention-based aggregation
to the source-to-target direction further increased MAE (Index 3). Finally, replacing the learnable
envelope function with a fixed one also degraded performance (Index 4).

Training Method Ablation. We further analyze the contributions of different training strategies
to model performance, as shown in Table @fb). Pretraining with denoising (see Section [C.3]in ap-
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pendix) effectively improves performance, as predicting noise helps mitigate over-smoothing (God-
win et al., [2022; [Zaidi et al., 2022). Notably, predicting magmoms also enhances accuracy, since
magmoms help distinguish features in different chemical environments and, being a node-level task,
likely reduce over-smoothing during training (Deng et al., [2023). Finally, performing loss reduc-
tion at the graph level prevents the force loss from being biased by differences in system size (see
Section [C.2]in appendix for more detail), further improving performance.

4.6 EFFICIENCY-ACCURACY ANALYSIS.

(a) System scaling test (b) Relaxation test
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Figure 5: Efficiency-accuracy comparison.

In this section, we compare the computational efficiency of MatRIS with several other mainstream
models. First, the inference time on different systems (excluding graph construction) is summarized
in Figure [5(a). MatRIS shows higher efficiency than eqV2 and eSEN, but lower than MACE-L, be-
cause MACE-L has only 2 layers while MatRIS-S and MatRIS-M have 4 and 6 layers, respectively.
We also evaluate the models in practical applications. We randomly select 500 structures from the
WBM dataset (Wang et al.,2021)) and perform relaxations using ASE, recording the throughput and
energy MAE for each model. As shown in Figure [5(b), MatRIS achieves a good balance between
speed and accuracy, maintaining high precision while offering faster computation.

5 CONCLUSION AND FUTURE WORK

In this work, we review the characteristics of invariant, equivariant and unconstrained MLIPs in the
era of rapidly expanding QM-based datasets. Equivariant uMLIPs deliver superior accuracy while
their reliance on tensor products and high-degree representations leads to prohibitive computational
costs. Motivated by the question of whether strict equivariance remains indispensable, we introduce
MatRIS, an invariant uMLIP that leverages attention to model three-body interactions. Across mul-
tiple benchmarks, MatRIS attains SOTA results, opening a new path toward accurate and efficient
MLIPs.

In future work, we will scale MatRIS to even larger QM-based datasets to further validate its ex-
pressiveness. We aim to develop a reliable distillation strategy to develop student MLIPs. We also
plan to expand MatRIS to incorporate long-range electrostatics, thereby enhancing its applicability
to more complex downstream tasks.

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, Sebastian W. Boden-
stein, David A. Evans, Chia-Chun Hung, Michael O’Neill, David Reiman, Kathryn Tunyasuvu-
nakool, Zachary Wu, Akvilé Zemgulyté, Eirini Arvaniti, Charles Beattie, Ottavia Bertolli, Alex
Bridgland, Alexey Cherepanov, Miles Congreve, Alexander I. Cowen-Rivers, Andrew Cowie,
Michael Figurnov, Fabian B. Fuchs, Hannah Gladman, Rishub Jain, Yousuf A. Khan, Caro-
line M. R. Low, Kuba Perlin, Anna Potapenko, Pascal Savy, Sukhdeep Singh, Adrian Stecula,

10



Under review as a conference paper at ICLR 2026

Ashok Thillaisundaram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong, Michal Zielinski,
Augustin Zl’dek, Victor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, and John M.
Jumper. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature,
630(8016):493-500, June 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-07487-w. URL
https://doi.org/10.1038/s41586-024-07487—w.

Marco Anselmi, Greg Slabaugh, Rachel Crespo-Otero, and Devis Di Tommaso. Molecular
graph transformer: stepping beyond alignn into long-range interactions. Digital Discovery, 3:
1048-1057, 2024. doi: 10.1039/D4DDO00014E. URL http://dx.doi.org/10.1039/
D4DDO0014E.

Isayev O Anstine D, Zubatyuk R. A neural network potential to meet your neutral, charged, organic,
and elemental-organic needs. 2023. doi: 10.26434/chemrxiv-2023-296¢h.

Sarp Aykent and Tian Xia. Gotennet: Rethinking efficient 3d equivariant graph neural networks.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=5wxCQDtbMol

Luis Barroso-Luque, Muhammed Shuaibi, Xiang Fu, Brandon M Wood, Misko Dzamba, Meng
Gao, Ammar Rizvi, C Lawrence Zitnick, and Zachary W Ulissi. Open materials 2024 (omat24)
inorganic materials dataset and models. arXiv preprint arXiv:2410.12771, 2024.

Ilyes Batatia, David Péter Kovacs, Gregor N. C. Simm, Christoph Ortner, and Gabor Csanyi. Mace:
Higher order equivariant message passing neural networks for fast and accurate force fields, 2023.
URLhttps://arxiv.org/abs/2206.07697.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Korn-
bluth, Nicola Molinari, Tess E. Smidt, and Boris Kozinsky. E(3)-equivariant graph neural net-
works for data-efficient and accurate interatomic potentials. Nature Communications, 13(1), May
2022. ISSN 2041-1723. doi: 10.1038/s41467-022-29939-5. URL http://dx.doi.org/
10.1038/s41467-022-29939-5.

Lennart Bengtsson. Dipole correction for surface supercell calculations. Phys. Rev. B, 59:12301—
12304, May 1999. doi: 10.1103/PhysRevB.59.12301. URL https://link.aps.org/doi/
10.1103/PhysRevB.59.12301}

Filippo Bigi, Marcel F. Langer, and Michele Ceriotti. The dark side of the forces: assessing non-
conservative force models for atomistic machine learning. In Forty-second International Confer-
ence on Machine Learning, 2025.

Erik Bitzek, Pekka Koskinen, Franz Gihler, Michael Moseler, and Peter Gumbsch. Structural relax-
ation made simple. Phys. Rev. Lett., 97:170201, Oct 2006. doi: 10.1103/PhysRevLett.97.170201.
URLhttps://link.aps.org/doi/10.1103/PhysRevLett.97.170201.

Rebecca R. Brew, Ian A. Nelson, Meruyert Binayeva, Amlan S. Nayak, Wyatt J. Simmons, Joseph J.
Gair, and Corin C. Wagen. Wiggle150: Benchmarking Density Functionals and Neural Network
Potentials on Highly Strained Conformers. Journal of Chemical Theory and Computation, 21
(8):3922-3929, April 2025. ISSN 1549-9618. doi: 10.1021/acs.jctc.5c00015. URL https:
//doi.org/10.1021/acs.jctc.5c00015. Publisher: American Chemical Society.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks?, 2022. URL
https://arxiv.org/abs/2105.14491l

Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Morgane
Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati, Anuroop Sri-
ram, Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick, and Zachary Ulissi.
Open catalyst 2020 (0c20) dataset and community challenges. ACS Catalysis, 11(10):6059-6072,
May 2021. ISSN 2155-5435. doi: 10.1021/acscatal.0c04525. URL http://dx.doi.org/
10.1021/acscatal.0c04525.

Chi Chen and Shyue Ping Ong. A universal graph deep learning interatomic potential for the periodic
table. Nature Computational Science, 2(11):718-728, November 2022. ISSN 2662-8457. URL
https://doi.org/10.1038/s43588-022-00349-3.

11


https://doi.org/10.1038/s41586-024-07487-w
http://dx.doi.org/10.1039/D4DD00014E
http://dx.doi.org/10.1039/D4DD00014E
https://openreview.net/forum?id=5wxCQDtbMo
https://openreview.net/forum?id=5wxCQDtbMo
https://arxiv.org/abs/2206.07697
http://dx.doi.org/10.1038/s41467-022-29939-5
http://dx.doi.org/10.1038/s41467-022-29939-5
https://link.aps.org/doi/10.1103/PhysRevB.59.12301
https://link.aps.org/doi/10.1103/PhysRevB.59.12301
https://link.aps.org/doi/10.1103/PhysRevLett.97.170201
https://doi.org/10.1021/acs.jctc.5c00015
https://doi.org/10.1021/acs.jctc.5c00015
https://arxiv.org/abs/2105.14491
http://dx.doi.org/10.1021/acscatal.0c04525
http://dx.doi.org/10.1021/acscatal.0c04525
https://doi.org/10.1038/s43588-022-00349-3

Under review as a conference paper at ICLR 2026

Stefan Chmiela, Valentin Vassilev-Galindo, Oliver T. Unke, Adil Kabylda, Huziel E. Sauceda,
Alexandre Tkatchenko, and Klaus-Robert Miiller. Accurate global machine learning force
fields for molecules with hundreds of atoms.  Science Advances, 9(2):eadf0873, 2023.
doi: 10.1126/sciadv.adf0873. URL https://www.science.org/doi/abs/10.1126/
sciadv.adf0873.

Kamal Choudhary and Brian DeCost. Atomistic Line Graph Neural Network for improved ma-
terials property predictions. npj Computational Materials, 7(1):185, November 2021. ISSN
2057-3960. doi: 10.1038/s41524-021-00650-1. URL https://doi.org/10.1038/
s41524-021-00650-1.

Kamal Choudhary, Brian DeCost, Lily Major, Keith Butler, Jeyan Thiyagalingam, and Francesca
Tavazza. Unified graph neural network force-field for the periodic table: solid state applications.
Digital Discovery, 2(2):346-355, 2023. ISSN 2635-098X. doi: 10.1039/d2dd00096b. URL
http://dx.doi.org/10.1039/D2DD00096B.

Marco De Vivo, Matteo Masetti, Giovanni Bottegoni, and Andrea Cavalli. Role of Molecular Dy-
namics and Related Methods in Drug Discovery. Journal of Medicinal Chemistry, 59(9):4035-
4061, 2016.

Bowen Deng, Peichen Zhong, KyuJung Jun, Janosh Riebesell, Kevin Han, Christopher J. Bartel,
and Gerbrand Ceder. Chgnet as a pretrained universal neural network potential for charge-
informed atomistic modelling. Nature Machine Intelligence, pp. 1-11, 2023. doi: 10.1038/
s42256-023-00716-3.

Bowen Deng, Yunyeong Choi, Peichen Zhong, Janosh Riebesell, Shashwat Anand, Zhuohan Li,
KyuJung Jun, Kristin A. Persson, and Gerbrand Ceder. Overcoming systematic softening in uni-
versal machine learning interatomic potentials by fine-tuning, 2024. URL https://arxiv.
org/abs/2405.07105.

Weitao Du, Yuanqi Du, Limei Wang, Dieqiao Feng, Guifeng Wang, Shuiwang Ji, Carla Gomes, and
Zhi-Ming Ma. A new perspective on building efficient and expressive 3d equivariant graph neural
networks, 2023. URL https://arxiv.org/abs/2304.04757.

Alexandre Duval, Simon V. Mathis, Chaitanya K. Joshi, Victor Schmidt, Santiago Miret,
Fragkiskos D. Malliaros, Taco Cohen, Pietro Lid, Yoshua Bengio, and Michael Bronstein. A
hitchhiker’s guide to geometric gnns for 3d atomic systems, 2024. URL https://arxiv.
org/abs/2312.07511.

Zheyong Fan, Yanzhou Wang, Penghua Ying, Keke Song, Junjie Wang, Yong Wang, Zezhu Zeng,
Ke Xu, Eric Lindgren, J Magnus Rahm, et al. Gpumd: A package for constructing accurate
machine-learned potentials and performing highly efficient atomistic simulations. The Journal of
Chemical Physics, 157(11), 2022.

Estefania Ferndndez-Villanueva, Pablo G. Lustemberg, Minjie Zhao, Jose Soriano Rodriguez, Patri-
cia Concepcién, and M. Verénica Ganduglia-Pirovano. Water and Cu+ Synergy in Selective CO2
Hydrogenation to Methanol over Cu-MgO-Al1203 Catalysts. Journal of the American Chemical
Society, 146(3):2024-2032, January 2024. ISSN 0002-7863. doi: 10.1021/jacs.3c10685. URL
https://doi.org/10.1021/jacs.3c10685. Publisher: American Chemical Society.

Xiang Fu, Zhenghao Wu, Wujie Wang, Tian Xie, Sinan Keten, Rafael Gomez-Bombarelli, and
Tommi Jaakkola. Forces are not enough: Benchmark and critical evaluation for machine learn-
ing force fields with molecular simulations, 2023. URL https://arxiv.org/abs/2210.
07237

Xiang Fu, Brandon M. Wood, Luis Barroso-Luque, Daniel S. Levine, Meng Gao, Misko Dzamba,
and C. Lawrence Zitnick. Learning smooth and expressive interatomic potentials for physical
property prediction, 2025.

Yuxiang Gao, Fenglin Deng, Ri He, and Zhicheng Zhong. Spontaneous curvature in two-
dimensional van der Waals heterostructures. Nature Communications, 16(1):717, January 2025.
ISSN 2041-1723. doi: 10.1038/s41467-025-56055-x. URL https://doi.org/10.1038/
s41467-025-56055-x%.

12


https://www.science.org/doi/abs/10.1126/sciadv.adf0873
https://www.science.org/doi/abs/10.1126/sciadv.adf0873
https://doi.org/10.1038/s41524-021-00650-1
https://doi.org/10.1038/s41524-021-00650-1
http://dx.doi.org/10.1039/D2DD00096B
https://arxiv.org/abs/2405.07105
https://arxiv.org/abs/2405.07105
https://arxiv.org/abs/2304.04757
https://arxiv.org/abs/2312.07511
https://arxiv.org/abs/2312.07511
https://doi.org/10.1021/jacs.3c10685
https://arxiv.org/abs/2210.07237
https://arxiv.org/abs/2210.07237
https://doi.org/10.1038/s41467-025-56055-x
https://doi.org/10.1038/s41467-025-56055-x

Under review as a conference paper at ICLR 2026

Johannes Gasteiger, Janek Grof3, and Stephan Giinnemann. Directional message passing for molec-
ular graphs. In International Conference on Learning Representations (ICLR), 2020.

Johannes Gasteiger, Shankari Giri, Johannes T. Margraf, and Stephan Giinnemann. Fast and
uncertainty-aware directional message passing for non-equilibrium molecules, 2022a. URL
https://arxiv.org/abs/2011.14115!.

Johannes Gasteiger, Janek Grof3, and Stephan Giinnemann. Directional message passing for molec-
ular graphs, 2022b.

Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram, Stephan Giinnemann, Zachary Ulissi,
C. Lawrence Zitnick, and Abhishek Das. Gemnet-oc: Developing graph neural networks for
large and diverse molecular simulation datasets, 2022c. URL https://arxiv.org/abs/
2204.027782.

Johannes Gasteiger, Florian Becker, and Stephan Giinnemann. Gemnet: Universal directional graph
neural networks for molecules, 2024.

Vahe Gharakhanyan, Luis Barroso-Luque, Yi Yang, Muhammed Shuaibi, Kyle Michel, Daniel S.
Levine, Misko Dzamba, Xiang Fu, Meng Gao, Xingyu Liu, Haoran Ni, Keian Noori, Brandon M.
Wood, Matt Uyttendaele, Arman Boromand, C. Lawrence Zitnick, Noa Marom, Zachary W.
Ulissi, and Anuroop Sriram. Open molecular crystals 2025 (omc25) dataset and models, 2025.
URL https://arxiv.org/abs/2508.02651.

Jonathan Godwin, Michael Schaarschmidt, Alexander Gaunt, Alvaro Sanchez-Gonzalez, Yulia
Rubanova, Petar Velickovié, James Kirkpatrick, and Peter Battaglia. Simple gnn regularisation for
3d molecular property prediction beyond, 2022. URL https://arxiv.org/abs/2106.
07971.

Frank Harary and Robert Z. Norman. Some properties of line digraphs. Rendiconti del Circolo
Matematico di Palermo, 9(2):161-168, May 1960. ISSN 1973-4409. doi: 10.1007/BF02854581.
URLhttps://doi.org/10.1007/BF02854581.

Ryan Jacobs, Dane Morgan, Siamak Attarian, Jun Meng, Chen Shen, Zhenghao Wu, Clare Yijia
Xie, Julia H. Yang, Nongnuch Artrith, Ben Blaiszik, Gerbrand Ceder, Kamal Choudhary, Gabor
Csanyi, Ekin Dogus Cubuk, Bowen Deng, Ralf Drautz, Xiang Fu, Jonathan Godwin, Vasant
Honavar, Olexandr Isayev, Anders Johansson, Boris Kozinsky, Stefano Martiniani, Shyue Ping
Ong, Igor Poltavsky, KJ Schmidt, So Takamoto, Aidan P. Thompson, Julia Westermayr, and
Brandon M. Wood. A practical guide to machine learning interatomic potentials — status and
future. Current Opinion in Solid State and Materials Science, 35:101214, March 2025. ISSN
1359-0286. doi: 10.1016/j.cossms.2025.101214. URL http://dx.doi.org/10.1016/73.
cossms.2025.101214.

Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin A. Persson.
Commentary: The materials project: A materials genome approach to accelerating materials in-
novation. APL Materials, 1(1):011002, 07 2013a. ISSN 2166-532X. doi: 10.1063/1.4812323.
URL https://doi.org/10.1063/1.4812323.

Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, et al. Commentary: The ma-

terials project: A materials genome approach to accelerating materials innovation. APL materials,
1(1), 2013b.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Zl’dek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Se-
bastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with AlphaFold.
Nature, 596(7873):583-589, August 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03819-2.
URL https://doi.org/10.1038/s41586-021-03819-2.

13


https://arxiv.org/abs/2011.14115
https://arxiv.org/abs/2204.02782
https://arxiv.org/abs/2204.02782
https://arxiv.org/abs/2508.02651
https://arxiv.org/abs/2106.07971
https://arxiv.org/abs/2106.07971
https://doi.org/10.1007/BF02854581
http://dx.doi.org/10.1016/j.cossms.2025.101214
http://dx.doi.org/10.1016/j.cossms.2025.101214
https://doi.org/10.1063/1.4812323
https://doi.org/10.1038/s41586-021-03819-2

Under review as a conference paper at ICLR 2026

Aaron D. Kaplan, Runze Liu, Ji Qi, Tsz Wai Ko, Bowen Deng, Janosh Riebesell, Gerbrand Ceder,
Kristin A. Persson, and Shyue Ping Ong. A foundational potential energy surface dataset for
materials, 2025. URL https://arxiv.org/abs/2503.04070.

Jaesun Kim, Jisu Kim, Jachoon Kim, Jiho Lee, Yutack Park, Youngho Kang, and Seungwu Han.
Data-efficient multi-fidelity training for high-fidelity machine learning interatomic potentials,
2024. URL https://arxiv.org/abs/2409.07947.

Teddy Koker and Tess Smidt. Training a foundation model for materials on a budget, 2025. URL
https://arxiv.org/abs/2508.16067.

David Péter Kovics, J. Harry Moore, Nicholas J. Browning, Ilyes Batatia, Joshua T. Horton, Yixuan
Pu, Venkat Kapil, William C. Witt, loan-Bogdan Magdiu, Daniel J. Cole, and Géabor Csanyi.
Mace-off: Transferable short range machine learning force fields for organic molecules, 2025.
URLhttps://arxiv.org/abs/2312.15211.

Thomas D. Kiihne and Rustam Z. Khaliullin. Electronic signature of the instantaneous asymme-
try in the first coordination shell of liquid water. Nature Communications, 4(1):1450, February
2013. ISSN 2041-1723. doi: 10.1038/ncomms2459. URL https://doi.org/10.1038/
ncomms2459.

Daniel S. Levine, Muhammed Shuaibi, Evan Walter Clark Spotte-Smith, Michael G. Taylor,
Muhammad R. Hasyim, Kyle Michel, Ilyes Batatia, Gdbor Csdnyi, Misko Dzamba, Peter East-
man, Nathan C. Frey, Xiang Fu, Vahe Gharakhanyan, Aditi S. Krishnapriyan, Joshua A. Rackers,
Sanjeev Raja, Ammar Rizvi, Andrew S. Rosen, Zachary Ulissi, Santiago Vargas, C. Lawrence
Zitnick, Samuel M. Blau, and Brandon M. Wood. The open molecules 2025 (omol25) dataset,
evaluations, and models, 2025. URL https://arxiv.org/abs/2505.08762.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
graphs, 2023. URL https://arxiv.org/abs/2206.11990.

Yi-Lun Liao, Tess Smidt, Muhammed Shuaibi, and Abhishek Das. Generalizing denoising to non-
equilibrium structures improves equivariant force fields, 2024a. URL https://arxiv.org/
abs/2403.09549.

Yi-Lun Liao, Brandon Wood, Abhishek Das, and Tess Smidt. Equiformerv2: Improved equivariant
transformer for scaling to higher-degree representations, 2024b.

Yi Liu, Limei Wang, Meng Liu, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical message
passing for 3d graph networks, 2022. URL https://arxiv.org/abs/2102.05013.

Antoine Loew, Dewen Sun, Hai-Chen Wang, Silvana Botti, and Miguel A. L. Marques. Universal
machine learning interatomic potentials are ready for phonons, 2025. URL https://arxiv.
org/abs/2412.16551.

Nataliya Lopanitsyna, Guillaume Fraux, Maximilian A. Springer, Sandip De, and Michele Ceri-
otti. Modeling high-entropy transition-metal alloys with alchemical compression, 2023. URL
https://arxiv.org/abs/2212.13254l

Arslan Mazitov, Filippo Bigi, Matthias Kellner, Paolo Pegolo, Davide Tisi, Guillaume Fraux, Sergey
Pozdnyakov, Philip Loche, and Michele Ceriotti. Pet-mad, a lightweight universal interatomic
potential for advanced materials modeling, 2025. URL https://arxiv.org/abs/2503.
14118.

Amil Merchant, Simon Batzner, Samuel S. Schoenholz, Muratahan Aykol, Gowoon Cheon, and
Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nature, 624(7990):80-85,
2023.

Mark Neumann, James Gin, Benjamin Rhodes, Steven Bennett, Zhiyi Li, Hitarth Choubisa, Arthur

Hussey, and Jonathan Godwin. Orb: A fast, scalable neural network potential, 2024. URL
https://arxiv.org/abs/2410.22570.

14


https://arxiv.org/abs/2503.04070
https://arxiv.org/abs/2409.07947
https://arxiv.org/abs/2508.16067
https://arxiv.org/abs/2312.15211
https://doi.org/10.1038/ncomms2459
https://doi.org/10.1038/ncomms2459
https://arxiv.org/abs/2505.08762
https://arxiv.org/abs/2206.11990
https://arxiv.org/abs/2403.09549
https://arxiv.org/abs/2403.09549
https://arxiv.org/abs/2102.05013
https://arxiv.org/abs/2412.16551
https://arxiv.org/abs/2412.16551
https://arxiv.org/abs/2212.13254
https://arxiv.org/abs/2503.14118
https://arxiv.org/abs/2503.14118
https://arxiv.org/abs/2410.22570

Under review as a conference paper at ICLR 2026

Ivan S Novikov, Konstantin Gubaev, Evgeny V Podryabinkin, and Alexander V Shapeev. The mlip
package: moment tensor potentials with mpi and active learning. Machine Learning: Science
and Technology, 2(2):025002, dec 2020. doi: 10.1088/2632-2153/abc9fe. URL https://dx.
doi.org/10.1088/2632-2153/abc9fe.

Yutack Park, Jaesun Kim, Seungwoo Hwang, and Seungwu Han. Scalable parallel algorithm
for graph neural network interatomic potentials in molecular dynamics simulations. Journal
of Chemical Theory and Computation, 20(11):4857-4868, May 2024. ISSN 1549-9626. doi:
10.1021/acs.jctc.4c00190. URL http://dx.doi.org/10.1021/acs.jctc.4c00190.

Anyang Peng, Chun Cai, Mingyu Guo, Duo Zhang, Chengqian Zhang, Wanrun Jiang, Yinan Wang,
Antoine Loew, Chengkun Wu, Weinan E, Linfeng Zhang, and Han Wang. Lambench: A bench-
mark for large atomistic models, 2025. URL https://arxiv.org/abs/2504.19578.

Sergey N. Pozdnyakov and Michele Ceriotti. Smooth, exact rotational symmetrization for deep
learning on point clouds. In Proceedings of the 37th International Conference on Neural Infor-
mation Processing Systems, NIPS *23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Baldzs Péta, Paramvir Ahlawat, Gabor Csanyi, and Michele Simoncelli. Thermal conductivity pre-
dictions with foundation atomistic models, 2025. URL https://arxiv.org/abs/2408.
00755

Eric Qu and Aditi S. Krishnapriyan. The importance of being scalable: Improving the speed and
accuracy of neural network interatomic potentials across chemical domains, 2024. URL https:
//arxiv.orqg/abs/2410.241609.

Benjamin Rhodes, Sander Vandenhaute, Vaidotas §imkus, James Gin, Jonathan Godwin, Tim
Duignan, and Mark Neumann. Orb-v3: atomistic simulation at scale, 2025. URL https:
//arxiv.org/abs/2504.06231.

Janosh Riebesell, Rhys E. A. Goodall, Philipp Benner, Yuan Chiang, Bowen Deng, Gerbrand Ceder,
Mark Asta, Alpha A. Lee, Anubhav Jain, and Kristin A. Persson. A framework to evaluate
machine learning crystal stability predictions. Nature Machine Intelligence, 7(6):836-847, 2025.

Jonathan Schmidt, Tiago F.T. Cerqueira, Aldo H. Romero, Antoine Loew, Fabian Jiger, Hai-Chen
Wang, Silvana Botti, and Miguel A.L. Marques. Improving machine-learning models in materials
science through large datasets. Materials Today Physics, 48:101560, 2024. ISSN 2542-5293. doi:
https://doi.org/10.1016/j.mtphys.2024.101560.

Kristof T. Schiitt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Miiller. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions, 2017. URL https://arxiv.org/abs/1706.08566/

Kristof T. Schiitt, Oliver T. Unke, and Michael Gastegger. Equivariant message passing for the
prediction of tensorial properties and molecular spectra, 2021. URL https://arxiv.org/
abs/2102.03150.

Shihao Shao, Haoran Geng, Zun Wang, and Qinghua Cui. Freecg: Free the design space of clebsch-
gordan transform for machine learning force fields, 2024. URL https://arxiv.org/abs/
2407.02263.

Justin S. Smith, Ben Nebgen, Nicholas Lubbers, Olexandr Isayev, and Adrian E. Roitberg. Less is
more: Sampling chemical space with active learning. The Journal of Chemical Physics, 148(24):
241733, 05 2018. ISSN 0021-9606. doi: 10.1063/1.5023802. URL https://doi.org/10.
1063/1.5023802!

Tyler G. Sours and Ambarish R. Kulkarni. Predicting Structural Properties of Pure Silica Zeolites
Using Deep Neural Network Potentials. The Journal of Physical Chemistry C, 127(3):1455-1463,
January 2023. ISSN 1932-7447. doi: 10.1021/acs.jpcc.2c08429. URL https://doi.org/
10.1021/acs. jpcc.2c08429, Publisher: American Chemical Society.

15


https://dx.doi.org/10.1088/2632-2153/abc9fe
https://dx.doi.org/10.1088/2632-2153/abc9fe
http://dx.doi.org/10.1021/acs.jctc.4c00190
https://arxiv.org/abs/2504.19578
https://arxiv.org/abs/2408.00755
https://arxiv.org/abs/2408.00755
https://arxiv.org/abs/2410.24169
https://arxiv.org/abs/2410.24169
https://arxiv.org/abs/2504.06231
https://arxiv.org/abs/2504.06231
https://arxiv.org/abs/1706.08566
https://arxiv.org/abs/2102.03150
https://arxiv.org/abs/2102.03150
https://arxiv.org/abs/2407.02263
https://arxiv.org/abs/2407.02263
https://doi.org/10.1063/1.5023802
https://doi.org/10.1063/1.5023802
https://doi.org/10.1021/acs.jpcc.2c08429
https://doi.org/10.1021/acs.jpcc.2c08429

Under review as a conference paper at ICLR 2026

Anuroop Sriram, Logan M. Brabson, Xiaohan Yu, Sihoon Choi, Kareem Abdelmaqgsoud, Elias
Moubarak, Pim de Haan, Sindy Lowe, Johann Brehmer, John R. Kitchin, Max Welling,
C. Lawrence Zitnick, Zachary Ulissi, Andrew J. Medford, and David S. Sholl. The open dac
2025 dataset for sorbent discovery in direct air capture, 2025. URL https://arxiv.org/
abs/2508.03162l

Philipp Tholke and Gianni De Fabritiis. Torchmd-net: Equivariant transformers for neural network
based molecular potentials, 2022. URL https://arxiv.org/abs/2202.02541,

Atsushi Togo. Phonon database. URL https://doi.org/10.48505/nims.4197.

A. Torres, F. J. Luque, J. Tortajada, and M. E. Arroyo-de Dompablo. Analysis of Minerals as Elec-
trode Materials for Ca-based Rechargeable Batteries. Scientific Reports, 9(1):9644, July 2019.
ISSN 2045-2322. doi: 10.1038/s41598-019-46002-4. URL https://doi.org/10.1038/
s41598-019-46002-4.

Richard Tran, Janice Lan, Muhammed Shuaibi, Brandon M. Wood, Siddharth Goyal, Abhishek Das,
Javier Heras-Domingo, Adeesh Kolluru, Ammar Rizvi, Nima Shoghi, Anuroop Sriram, Félix
Therrien, Jehad Abed, Oleksandr Voznyy, Edward H. Sargent, Zachary Ulissi, and C. Lawrence
Zitnick. The open catalyst 2022 (oc22) dataset and challenges for oxide electrocatalysts. ACS
Catalysis, 13(5):3066-3084, February 2023. ISSN 2155-5435. doi: 10.1021/acscatal.2c05426.
URLhttp://dx.doi.org/10.1021/acscatal.2c05426!.

Oliver T. Unke and Markus Meuwly. Physnet: A neural network for predicting energies, forces,
dipole moments, and partial charges. Journal of Chemical Theory and Computation, 15(6):
3678-3693, May 2019. ISSN 1549-9626. doi: 10.1021/acs.jctc.9b00181. URL http:
//dx.doi.org/10.1021/acs. jctc.9000181l

Jonathan Vandermause, Yu Xie, Jin Soo Lim, Cameron J. Owen, and Boris Kozinsky. Ac-
tive learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of
H/Pt. Nature Communications, 13(1):5183, September 2022. ISSN 2041-1723. doi: 10.1038/
s41467-022-32294-0. URL https://doi.org/10.1038/s41467-022-32294-0.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Brook Wander, Muhammed Shuaibi, John R. Kitchin, Zachary W. Ulissi, and C. Lawrence Zit-
nick. Cattsunami: Accelerating transition state energy calculations with pre-trained graph neural
networks, 2024. URL https://arxiv.org/abs/2405.02078.

Hai-Chen Wang, Silvana Botti, and Miguel A. L. Marques. Predicting stable crystalline com-
pounds using chemical similarity. npj Computational Materials, 7(1):12, January 2021. ISSN
2057-3960. doi: 10.1038/s41524-020-00481-6. URL https://doi.org/10.1038/
s41524-020-00481-6.

Limei Wang, Yi Liu, Yuchao Lin, Haoran Liu, and Shuiwang Ji. Comenet: Towards complete and
efficient message passing for 3d molecular graphs, 2022. URL https://arxiv.org/abs/
2206.08515.

Tong Wang, Xinheng He, Mingyu Li, Bin Shao, and Tie-Yan Liu. AIMD-Chig: Exploring the
conformational space of a 166-atom protein Chignolin with ab initio molecular dynamics. Scien-
tific Data, 10(1):549, August 2023. ISSN 2052-4463. doi: 10.1038/s41597-023-02465-9. URL
https://doi.org/10.1038/s41597-023-02465-09.

Yusong Wang, Tong Wang, Shaoning Li, Xinheng He, Mingyu Li, Zun Wang, Nanning Zheng,
Bin Shao, and Tie-Yan Liu. Enhancing geometric representations for molecules with equivariant
vector-scalar interactive message passing. Nature Communications, 15(1):313, January 2024.
ISSN 2041-1723. doi: 10.1038/s41467-023-43720-2. URL https://doi.org/10.1038/
s41467-023-43720-2.

Hassler Whitney. Congruent Graphs and the Connectivity of Graphs, pp. 61-79. Birkhduser
Boston, Boston, MA, 1992. doi: 10.1007/978-1-4612-2972-8_ 4. URL https://doi.org/
10.1007/978-1-4612-2972-8_4.

16


https://arxiv.org/abs/2508.03162
https://arxiv.org/abs/2508.03162
https://arxiv.org/abs/2202.02541
https://doi.org/10.48505/nims.4197
https://doi.org/10.1038/s41598-019-46002-4
https://doi.org/10.1038/s41598-019-46002-4
http://dx.doi.org/10.1021/acscatal.2c05426
http://dx.doi.org/10.1021/acs.jctc.9b00181
http://dx.doi.org/10.1021/acs.jctc.9b00181
https://doi.org/10.1038/s41467-022-32294-0
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2405.02078
https://doi.org/10.1038/s41524-020-00481-6
https://doi.org/10.1038/s41524-020-00481-6
https://arxiv.org/abs/2206.08515
https://arxiv.org/abs/2206.08515
https://doi.org/10.1038/s41597-023-02465-9
https://doi.org/10.1038/s41467-023-43720-2
https://doi.org/10.1038/s41467-023-43720-2
https://doi.org/10.1007/978-1-4612-2972-8_4
https://doi.org/10.1007/978-1-4612-2972-8_4

Under review as a conference paper at ICLR 2026

Brandon M. Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-
Luque, Kareem Abdelmagsoud, Vahe Gharakhanyan, John R. Kitchin, Daniel S. Levine, Kyle
Michel, Anuroop Sriram, Taco Cohen, Abhishek Das, Ammar Rizvi, Sushree Jagriti Sahoo,
Zachary W. Ulissi, and C. Lawrence Zitnick. Uma: A family of universal models for atoms,
2025.

Tian Xie and Jeffrey C. Grossman. Crystal graph convolutional neural networks for an accurate
and interpretable prediction of material properties. Physical Review Letters, 120(14), April 2018.
ISSN 1079-7114. doi: 10.1103/physrevlett.120.145301. URL http://dx.doi.org/10.
1103/PhysRevLett.120.145301.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks?, 2019. URL https://arxiv.org/abs/1810.00826.

Han Yang, Chenxi Hu, Yichi Zhou, Xixian Liu, Yu Shi, Jielan Li, Guanzhi Li, Zekun Chen,
Shuizhou Chen, Claudio Zeni, Matthew Horton, Robert Pinsler, Andrew Fowler, Daniel Ziigner,
Tian Xie, Jake Smith, Lixin Sun, Qian Wang, Lingyu Kong, Chang Liu, Hongxia Hao, and Ziheng
Lu. Mattersim: A deep learning atomistic model across elements, temperatures and pressures,
2024.

M. Yang, D. Zhang, X. Wang, B. Li, L. Zhang, W. E, T. Zhu, and H. Wang. Ab initio accuracy
neural network potential for drug-like molecules. 2025. doi: 10.34133/research.0837.

Bangchen Yin, Jiaao Wang, Weitao Du, Pengbo Wang, Penghua Ying, Haojun Jia, Zisheng Zhang,
Yuangi Du, Carla P. Gomes, Chenru Duan, Graeme Henkelman, and Hai Xiao. Alphanet: Scal-
ing up local-frame-based atomistic interatomic potential, 2025. URL https://arxiv.org/
abs/2501.07155.

Sheheryar Zaidi, Michael Schaarschmidt, James Martens, Hyunjik Kim, Yee Whye Teh, Alvaro
Sanchez-Gonzalez, Peter Battaglia, Razvan Pascanu, and Jonathan Godwin. Pre-training via de-
noising for molecular property prediction, 2022. URL https://arxiv.org/abs/2206.
00133.

Duo Zhang, Xinzijian Liu, Xiangyu Zhang, Chenggian Zhang, Chun Cai, Hangrui Bi, Yiming Du,
Xuejian Qin, Anyang Peng, Jiameng Huang, Bowen Li, Yifan Shan, Jinzhe Zeng, Yuzhi Zhang,
Siyuan Liu, Yifan Li, Junhan Chang, Xinyan Wang, Shuo Zhou, Jianchuan Liu, Xiaoshan Luo,
Zhenyu Wang, Wanrun Jiang, Jing Wu, Yudi Yang, Jiyuan Yang, Manyi Yang, Fu-Qiang Gong,
Linshuang Zhang, Mengchao Shi, Fu-Zhi Dai, Darrin M. York, Shi Liu, Tong Zhu, Zhicheng
Zhong, Jian Lv, Jun Cheng, Weile Jia, Mohan Chen, Guolin Ke, Weinan E, Linfeng Zhang, and
Han Wang. DPA-2: a large atomic model as a multi-task learner. npj Computational Materials,
10(1):293, 2024.

Duo Zhang, Anyang Peng, Chun Cai, Wentao Li, Yuanchang Zhou, Jinzhe Zeng, Mingyu Guo,
Chenggian Zhang, Bowen Li, Hong Jiang, Tong Zhu, Weile Jia, Linfeng Zhang, and Han Wang.
A graph neural network for the era of large atomistic models, 2025.

Yaolong Zhang, Xueyao Zhou, and Bin Jiang. Bridging the Gap between Direct Dynamics and Glob-
ally Accurate Reactive Potential Energy Surfaces Using Neural Networks. The Journal of Phys-
ical Chemistry Letters, 10(6):1185-1191, March 2019. doi: 10.1021/acs.jpclett.9b00085. URL
https://doi.org/10.1021/acs. jpclett.9000085. Publisher: American Chemical
Society.

Yuan Zhou, Qiuyue Wang, Yuxuan Cai, and Huan Yang. Allegro: Open the black box of
commercial-level video generation model, 2024. URL https://arxiv.org/abs/2410.
15458

17


http://dx.doi.org/10.1103/PhysRevLett.120.145301
http://dx.doi.org/10.1103/PhysRevLett.120.145301
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/2501.07155
https://arxiv.org/abs/2501.07155
https://arxiv.org/abs/2206.00133
https://arxiv.org/abs/2206.00133
https://doi.org/10.1021/acs.jpclett.9b00085
https://arxiv.org/abs/2410.15458
https://arxiv.org/abs/2410.15458

Under review as a conference paper at ICLR 2026

APPENDIX
[Al Additional related works
[A] Explicit three-body modeling in MLIPs
Attention-based MLIPs
Details of MatRIS
Training strategies
Load-balance strategy
Loss-balance strategy
Details of denoising pretraining
Additional evaluation
[D.11 Matbench-Discovery benchmark (non-compliant)
LAMBench benchmark
Zeolite benchmark
DPA2 test sets

MD stability evaluation

[El Training details and hyper-parameters

A  ADDITIONAL RELATED WORKS

A.1 EXPLICIT THREE-BODY MODELING IN MLIPs

Three-body information is important for predicting various material properties (Choudhary & De-|
[Cost, 2021} [Choudhary et al, 2023} [Zhang et al. [2025)). Several MLIPs explicitly model three-
body interactions, including the ALIGNN series (Choudhary & DeCostl, 2021} [Choudhary et al.
2023), DimeNet series (Gasteiger et al. [2022a), GemNet series (Gasteiger et al., [2022c}
2024), M3GNet series (Chen & Ong, [2022} [Yang et al 2024), and DPA3 (Zhang et al.} [2025),
where three-body features are updated within the interaction block and then used to refine edge and
node features. MatRIS also explicitly models three-body interactions, but differs in its update and
aggregation strategy:

1. In MatRIS, three-body features are updated using an attention mechanism with O(N') com-
plexity, which improves model accuracy while maintaining computational efficiency (see
Table @), Index 1 and 3).

2. During message aggregation, a learnable envelope function is used to smooth the three-
body contributions, instead of using a simple distance-based attenuation. This design yields
better performance (see Table F_f[a), Index 3 and 4).

Beyond the above distinctions, MatRIS also achieves SOTA or near-SOTA performance across mul-
tiple benchmarks. Notably, on Matbench-Discovery (Riebesell et al.|[2025]), MatRIS-M attains accu-
racy comparable to eSEN-30M-MP but with significantly fewer parameters and substantially lower
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training cost. This demonstrates the effectiveness of combining three-body interaction modeling
with attention mechanisms for materials modeling.

A.2 ATTENTION-BASED MLIPS

Full Attention MLIPs. In potential energy surface modeling, full-attention methods have been
widely used, with representative models including DPA2 (Zhang et all,[2024), PET
2023)), and EScAIP (Qu & Krishnapriyan| 2024). In these models, all features are concate-
nated into a message tensor of shape [natoms, neighbors, D], where D is the hidden dimension, and
updated using a full attention mechanism (Vaswani et al.,[2023)). This mechanism can fully leverage
information from neighboring atoms and enable feature interactions. However, due to the O(N?)
computational cost of full attention, the computation quickly becomes expensive as the system size
grows. To maintain efficiency, these MLIPs typically consider only two-body interactions.

In contrast, MatRIS employs an attention mechanism with O(/N') complexity to capture both two-
body and three-body interactions. This allows MatRIS to incorporate more geometric information
and enhance the model’s expressive power while maintaining computational efficiency.

Linear-Complexity Attention MLIPs. Although there exist many MLIPs with attention mecha-

nisms of O(V) complexity, such as Equiformer (Liao & Smidt, 2023), ViSNet (Wang et al.l 2024),
FreeCG 2024), and MGT (Anselmi et al., 2024), we note that these architectures still

differ from MatRIS in several technical aspects.

First, Equiformer is a high-degree steerable equivariant MLIP that employs multi-layer perceptron
attention (Liao & Smidt, 2023 Brody et al., 2022) for feature encoding, with O(N) complexity,
and can support vectors of any degree L. However, unlike MatRIS, its attention mechanism is not
directly used to encode three-body interactions and only considers the source-to-target direction.

ViSNet and FreeCG belong to equivariant MLIPs. Their attention mechanisms can capture up to
four-body interactions and also have O(N) complexity. Nevertheless, their technical approaches
differ fundamentally from that of MatRIS: ViSNet and FreeCG implicitly extract and refine three-
or four-body features, without directly employing attention to encode and update such features. In
contrast, MatRIS explicitly extracts three-body features and utilizes attention mechanisms to encode
and update them.

It is also worth noting that MGT employs attention and explicitly extracts three-body features. Nev-
ertheless, its attention mechanism operates on node and edge feature updates, and relies on the
ALIGNN module (Choudhary & DeCost, [2021)) to further refine three-body features. Similar to
ViSNet and FreeCG, MGT leverages attention to refine three-body features rather than directly en-
code them.

In contrast to all the above attention-based models, MatRIS introduces a separable attention mecha-
nism that explicitly models three-body interactions. Its key innovations include:

1. Dimension-wise: the attention weights vary across feature dimensions, distinguishing the
relative importance of different dimensions.

2. Separable: it considers both source-to-target and target-to-source directions, generating
separate attention weights for each direction.

3. Explicit and efficient modeling: due to its O(N) complexity, MatRIS can efficiently
and explicitly encode and update three-body features, thereby significantly enhancing the
model’s expressive power.

B DETAILS OF MATRIS

For completeness, in this section we present the details of MatRIS. Given a material graph G =
(Z,X, L), the atomic numbers are denoted as Z € R™°msX1 the atomic positions as X € Rnatomsx3,
and the lattice as L € R**3. In Graph Generation (see Figure EI), we first perform periodic
repetition, and then construct the Atom Graph G and the Line Graph G' based on radial cutoffs
re,, and v’ respectively. We typically set 7’ , < r%, for computational efficiency.
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Figure 6: The detail of Graph Generation.

In Feature Embedding, the atomic types z; are expanded using a learnable embedding matrix
A € Rmax-clementx D (see Equation . Following (Gasteiger et al.[(2022b), the pairwise distances 7
of G are expanded with Bessel basis functions, and smoothed with a envelope function(y(r;;)) to
ensure that pairwise interactions decay smoothly to zero at the cutoff radius, as shown in Equation|[6]
For the initialization of three-body interactions 6;;;, we follow Deng et al.| (2023)) and employ the
computationally simpler Fourier basis instead of spherical harmonics (we also tested spherical har-
monics but observed no change in accuracy), as shown in Equation 7] Finally, all initialized features
undergo nonlinear transformations and are projected into a higher-dimensional space.

v =W (zA) +b (5)
" 2 sin (27rg)
ehy = mriy) ) e (©)
a ij
~ cos{mb ] € (0. Moz /2
—= COS|Th ijkls m ) max )
agjk,m = \/177— (7)

ﬁ sin[(m — Mimaz/2)0ijk), ™M € [Mimaz/2 + 1, Moz

In the Graph Attention module, we consider the n-th layer, which contains the Atom Graph G
with features v;" and ¢7’;, and the Line Graph G" with features e;; and 0?]- ;.- The two graphs share the
edge features e. To fuse information between the graphs, we first update G' and then incorporate
its output into d“ to aid atomic feature updates (see Equation . Specifically, e}; and 6]’ are input

to the ‘Line Graph Attention’ module, producing e;%) and 9152) The updated edge feature e;gn)

encodes three-body interactions and is combined with v}' as input to the ‘Atom Graph Attention*

'(n) (n)

module, yielding v, and e; j

6;;3)7 9;-;-”) < Line Graph Attention(e;;, 07%)

v, ™, e;g»") + Atom Graph Attention(v}", e;g.f’l))

(®)

Notably, in G*, atoms are treated as nodes and pairwise distances as edges, whereas in G, pairwise
distances are treated as nodes and three-body interactions as edges. Therefore, the computation of
the Line Graph Attention and Atom Graph Attention follows the same computaion, differing only
in their inputs. Here, we take the update of G* as an example and present the detailed operations of
the Graph Attention module.

Given the input of the current attention layer, v; and e;; (for simplicity, we denote v;* and e () 7,1
as v; and eij), we first generate the fusion feature:

ei; = gMLP(vi||v;lei;) )
Meanwhile, e;; undergoes two nonlinear transformations. It is then passed through Dim-wise Soft-

max to get the attention weights for the source and target nodes, sa;; and ta;;. These weights are
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then element-wise multiplied with e} ; and fused to produce the output of the attention layer, v}, as
shown in the equation:

= 3 G ody). w3 (g od)

keN (i) kEN () (10)
v; = gMLP (tv;|sv;)

After the Attention layer, we employ a Refinement layer to further enhance the geometric encod-
ings. In this module, we also apply a learnable envelope function to smooth the potential energy
surface. As before, we first update G! and then G®. Taking the update of G as an example, the

inputs are v; and e;;, and we fuse the features from the attention layer:

mi;) = gMLP(uf||of |e};) an
The fusion feature ml(-m is transformed nonlinearly to yield the edge update Ae;;. For the node
update Av;, we first apply the learnable envelope function (Equation[T2), then aggregate, and finally
apply a nonlinear transformation.

,ul(.?) = Linear(e?j) (12)
Av; =MLP( Y () ©mi})))
keN (i) (13)
Ae;; = MLP(m{"”)

(N)

)

In the Readout block, the final atom features v
and magnetic moments (M):

are used to directly predict the total energy (E)

E =Y MLP(v\) + ref(z;)
i (14)

M = MLP(v})
Here, ref(z;) is obtained by performing a least-squares fit to the dataset energies. The atomic forces

F; and stress (o) are obtained via automatic differentiation of the energy with respect to the atomic
Cartesian coordinates X; and the lattice strain tensor (¢).

oE 10FE

C TRAINING STRATEGIES

C.1 LOAD-BALANCE STRATEGY

In most atomic datasets, the sizes of structures typically follow a long-tailed distribution (Deng
et al.| [2023; [Barroso-Luque et al., [2024). Figure EKa) visualizes the distributions of atom and edge
counts in the MPTrj dataset (cutoff radius 6.0). In distributed training, allocating samples with a
fixed batch size may cause two issues: (1) a GPU may receive only large samples, leading to out-of-
memory (OOM) and limiting the maximum batch size; (2) assuming memory allows, some GPUs
may have higher computational loads while others have lower loads, causing idle time and extra
synchronization overhead. To address this, we adopt a load balancing strategy:

1. Shuffle the entire dataset to ensure randomness, then split it into multiple chunks.
2. Within each chunk, sort samples in descending order of size.

3. Using a greedy algorithm, assign samples sequentially to GPUs, prioritizing the GPU with
the largest remaining capacity. If all GPUs are “full” or the chunk has no remaining sam-
ples, a batch is generated.

As shown in Figure b), with load balancing, the cumulative speedup reaches 1.35-1.75 x, indi-
cating that synchronization overhead due to load imbalance is significant during each training step.
Building on this, the global batch size can be increased (denoted as “Batch expansion”), resulting in
a cumulative speedup of 2.05-2.63 x.
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Figure 7: (a)Number of atoms and edges in MPTrj dataset. (b)Training speedup achieved by load
balancing.

C.2 LOSS-BALANCE STRATEGY

Besides load imbalance during training, the loss computation can also be imbalanced. This is es-
pecially clear for the force and magmom loss(e.g., node-level tasks). For example, the MSE loss
(forces only) is defined as:

1 &

2
= pred DFT‘ 16
3Np = Ji fi (16)

Ly

where Ny denotes the total number of atoms in this global batch.

This reduction method causes the losses of large samples to dominate during training, effectively
making the model prioritize large samples and resulting in a loss imbalance. To address this, we
adopt a graph-level loss reduction strategy (referred to as Graph-level loss). Specifically, when
computing node-level losses such as force or magmom, we first reduce the loss within each graph,
and then perform a second reduction across the global batch, thereby mitigating the loss imbalance.
Ablation studies in Table [4[b) demonstrate the effectiveness of this method. The corresponding

formula is as follows:
15 Ny
Ly=—=3(— ’
P>

where B is the number of graphs in this global batch, Ny, is the number of atoms in the b-th graph.

g — oy (a7

C.3 DETAILS OF DENOISING PRETRAINING

Stepl: Step2: Step3: Step4:
Atom selection F projection o, sampling Noise prediction

F(projected) & t
embedding Gaussian
:,‘; .\‘:/‘. ::> MatRIS @ noise(e)
] QU\O

Figure 8: The workflow of denoising pretraining on MatRIS.

In this section, we present the denoising strategy used in our work. Several studies, such as Noisy
Node (Godwin et all, 2022) and DeNS (Liao et al.| [2024a), have demonstrated that denoising can
mitigate the over-smoothing of GNNs and improve generalization. However, these methods have
restricted applicability. For example, Noisy Node must be applied to equilibrium structures, while
DeNS extends it to non-equilibrium states but is limited to equivariant neural networks. In practice,
most mainstream atomic datasets are not fully in equilibrium (Deng et al.| 2023}, [Schmidt et all}
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[2024}, Barroso-Luque et al.,[2024), and MLIPs are not necessarily equivariant GNNs. The training
of MatRIS faces this scenario. For non-equivariant GNNs on non-equilibrium structures, a key

challenge in applying denoising is how to encode forces. Inspired by (20244, we project
forces onto edges to scalarize the vectors. The denoising workflow is illustrated in Figure[§]

1. Given a corruption probability, we randomly select atoms to corrupt.

2. For each corrupted atom, we project its force onto the relative position edges by computing
inner products, resulting in a scalarized force feature F'(projected).

3. We sample a random timestep ¢ and obtain the noise standard deviation o, from a linear
schedule. We then add noise as o€, where ¢ is standard Gaussian noise.

4. The noisy structure, the projected force F'(projected), and the timestep ¢ are used as inputs
to the MatRIS model, which directly predicts the added Gaussian noise.

After completing the denoising training, we fine-tune the model based on these weights.

D ADDITIONAL EVALUATION

D.1 MATBENCH-DISCOVERY BENCHMARK (NON-COMPLIANT)

We report the performance of non-compliant MatRIS-10M-OAM models, all of which were ac-
cessed before September 24, 2025. In this benchmark, the training data for each model is not
restricted. We follow the setup used by most models, with pretraining on the OMat24 (Barroso-
Luque et al dataset and joint fine-tuning with sAlex (Schmidt et al., 2024} [Barroso-Luque

et al., [2024) and MPTrj 2023). Results on the full, unique, and 10k most stable splits
are shown in Table [5] Table 6] and Table [/} respectively. Although MatRIS-10M-OAM has fewer

parameters than most models, it still delivers competitive performance across all splits.

Table 5: MatRIS performance on the non-compliant Matbench-Discovery benchmark with results
on full test set.

Model Param. | FI1T DAF{ PrecisionT Recallf Accuracy ‘ MAE| R27 ‘RMSD¢

GRACE-2L-OAM-L  264M | 0.862 5.093 0.874 0.851 0.953 0.022 0.856 | 0.064
DPA3-3M-FT 3.27M | 0.864 4.912 0.843 0.887 0.952 0.022 0.862 | 0.069
Nequip-OAM-L 9.6M | 0.870 5.060 0.868 0.872 0.955 0.022  0.858 0.065
Allegro-OAM-L 9.7M | 0.873  4.876 0.837 0.912 0.954 0.021  0.861 0.065
AlphaNet-vI-OMA  4.65M | 0.883  5.000 0.858 0.910 0.959 0.023  0.827 | 0.079
SevenNet-MF-ompa  25.7M | 0.884 5.082 0.872 0.895 0.960 0.021  0.861 0.064
ORB v3 25.5M | 0.887 5.159 0.885 0.888 0.961 0.023  0.820 | 0.075
eqV2 M 86.6M | 0.896 5.243 0.900 0.893 0.965 0.020 0.842 | 0.069
eSEN-30M-OAM 30.2M | 0.902 5.281 0.906 0.899 0.967 0.018 0.860 | 0.061

MatRIS-10M-OAM  10.4M | 0.903 5.275 0.905 0.901 0.967 ‘0.019 0.864‘ 0.060

D.2 LAMBENCH BENCHMARK

We evaluated the performance of MatRIS-10M-OAM on LAMBench benchmark 2025),
which mainly tests the generalizability of MLIPs. The benchmark covers test domains including
molecules, inorganic materials, and catalysis, and includes tasks such as force field prediction and
property calculation.

We first performed the force field prediction task, in which the model is evaluated on datasets from
the molecules, inorganic materials, and catalysis domains, predicting energies, forces, and virials.
For fair comparison, we selected MLIPs trained on OMat+sAlex+MPTrj as reference. The results
are reported in Table[§] Overall, MatRIS-10M-OAM achieves the best accuracy, and for molecules
and inorganic materials, it generally outperforms other models in force prediction.
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Table 6: MatRIS performance on the non-compliant Matbench-Discovery benchmark with results
on unique structure prototypes.

Model Param. ‘ F1T DAF{ PrecisionT Recallf Accuracy? ‘ MAE| R2t ‘ Kormeld ‘ RMSD|

GRACE-2L-OAM-L  26.4M | 0.883  5.840 0.893 0.874 0.964 0.022  0.862 | 0.169 0.064
DPA3-3M-FT 3.27M | 0.884 5.667 0.866 0.903 0.963 0.023  0.869 | 0.469 0.069
Nequip-OAM-L 9.6M | 0.893 5.832 0.890 0.895 0.967 0.022  0.865 | 0.166 0.065
Allegro-OAM-L 9.7M | 0.895 5.674 0.867 0.923 0.966 0.022  0.868 | 0.319 0.065
AlphaNet-vI-OMA  4.65M | 0.901 5.747 0.879 0.924 0.968 0.024  0.831 0.644 0.079

SevenNet-MF-ompa  25.7M | 0.901  5.825 0.890 0911 0.969 0.021  0.867 | 0.317 0.064
ORB v3 25.5M | 0.905 5912 0.904 0.907 0.971 0.024 0.821 | 0.210 0.075
eqV2 M 86.6M | 0.917 6.047 0.924 0.910 0.975 0.020 0.848 | 1.771 0.069

eSEN-30M-OAM 30.2M | 0.925  6.069 0.928 0.923 0.977 0.018 0.866 | 0.170 0.061
MatRIS-10M-OAM  10.4M ‘0.921 6.039 0.923 0.918 0.976 ‘ 0.019 0.871‘ 0.218 ‘ 0.060

Table 7: MatRIS performance on the non-compliant Matbench-Discovery benchmark with results
on 10k most stable.

Model Param. ‘ F11  DAF{ Precisionf Recallf Accuracy? ‘ MAE| R27 ‘RMSDL

GRACE-2L-OAM-L  264M | 0.980 6.280 0.960 1.000 0.960 0.025 0.835 0.064
DPA3-3M-FT 3.27M | 0987 6.369 0.987 1.000 0.987 0.019  0.901 0.069
Nequip-OAM-L 9.6M | 0985 6.344 0.985 1.000 0.985 0.021  0.854 | 0.065
Allegro-OAM-L 9.7M | 0.987 6.371 0.974 1.000 0.974 0.018  0.908 | 0.065
AlphaNet-vI-OMA  4.65M | 0.965 6.312 0.980 1.000 0.980 0.020  0.882 0.079
SevenNet-MF-ompa  25.7M | 0.970 6.346 0.985 1.000 0.985 0.019  0.888 | 0.064

ORB v3 25.5M | 0.964 6.307 0.964 1.000 0.964 0.021  0.860 | 0.075
eqV2 M 86.6M | 0.988 6.382 0.976 1.000 0.976 0.015 0.904 | 0.069
eSEN-30M-OAM 302M | 0971  6.350 0.971 1.000 0.971 0.016  0.901 0.061

MatRIS-10M-OAM  10.4M

0.986 6366  0.973 1.000 0.973 | 0.015 0.904 | 0.060

In addition, we also evaluated the performance on property calculation tasks, which include reac-
tion barrier prediction (OC20-NEB task), elastic constant prediction (Elastic Properties task), and
molecular conformer energy prediction (Wiggle150 task). The results are reported in Table 9} In
the OC20-NEB task, MatRIS-10M-OAM achieves competitive results, but we observe that its pre-
dictions for reaction barriers (Ea) and reaction energies (d) are worse than those of other models,
while its success rate remains relatively high. We speculate that this is because MatRIS uses MAE
to compute energy loss during training, without placing extra weight on outlier data points, which
amplifies their effect in this task; even so, the success rate is not significantly affected. In the elastic
and Wiggle150 tasks, MatRIS-10M-OAM achieves the best performance.

Overall, the cross-domain evaluation on LAMBench shows that MatRIS-10M-OAM performs con-
sistently well across both force field prediction and property calculation tasks, achieving either the
best or highly competitive results, demonstrating strong generalizability and application potential.

D.3 ZEOLITE BENCHMARK

The Zeolite Dataset comprises 16 zeolite structures relevant to catalysis, ad-
sorption, and separation applications. For each type, atomic trajectories were generated via AIMD
simulations at 2000 K using VASP. We adopt the pre-partitioned training, validation, and test sets,
containing 48,000, 16,000, and 16,000 structures per zeolite, respectively. The model’s prediction
targets are the total energies and atomic forces of the systems. The results are shown in Table [T0
MatRIS achieves SOTA performance overall.

D.4 DPA2 TEST SET

We evaluate the performance of the MatRIS model on the DPA2 dataset (Zhang et al.}[2024)) to assess
its ability to handle small-scale datasets. This composite dataset integrates 18 domain-specific sub-
sets (e.g., Alloy, Drug, HoO, OC2M) and is generated using various DFT software packages (e.g.,
VASP, Gaussian, ABACUS), with the training data for each subset ranging from 6K to 2,000K. We
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Table 8: Summary of model performance on LAMbench (Force Field Prediction). Energy (E) RMSE
is in meV/atom, Force (F) RMSE in meV/A, Virial (V) RMSE in meV/atom.

| GRACE-2L-OAM | SevenNet-MF-ompa | ORBv3-mpa | MatRIS-10M-OAM
| E F V | E F V | E F V| E F V
Molecules \
3.1 239.8 - 34 2479 - 24 200.2 - 2.6 200.0 -
32.1 365.5 - 26.1 337.7 - 20.0 2479 - 22.1  246.1 -
35 2359 - 4.7 238.1 - 2.8 163.9 - 2. 161.5 -
Catalysis |
Vandermause et al. [(2022 5.5 994 60.6 12.7 100.8  39.1 6.8 92.6 51.2 13.8 1109 478
ang et al. 251.6 723.0 - 3922 9375 - 4649 11694 - 609.2 9634 -
ernandez- Villanueva et al.|(2024 33 131.8 - 3.0 95.6 - 2.0 86.4 - 1.8 79.0 -
Inorganic materials |
Lopanitsyna et al. (2023 554 2947 200.1 554 268.8 2269 | 564 3242 1982 | 61.0 257.2 2129
Lopanitsyna et al. 3 70.1  309.7 243.1 69.8 2653 2358 | 71.0 330.6 2424 | 75.6 261.2 251.6
Batzner et al. |(20! 0.8 111.5 - 0.7 107.9 - 0.6 103.7 - 0.6 103.4 -
orres et al. 32 161.2 - 2.8 167.9 - 2.8 141.9 - 2.6 148.5 -
a0 et al. 17.8 1357 164.1 17.7 1048 161.1 20.4 1674 1414 | 149 83.9 150.1
ours ulkarni|(2023 6.5 162.8 - 6.. 173.6 - 6.5 182.7 - 6.5 176.1 -

Table 9: Summary of model performance on LAMbench (Property Calculation). Metrics are lower-
is-better unless otherwise noted.

Model | OC20-NEB (Wander et al.l 2024 | Elastic Properties | Wiggle150 ﬁ%rew et aLI 2025|
MAE_Ea MAE.d Transfer Desorption Dissociation | Shear Modulus ~ Bulk Modulus MAE RMSE
(eV) (eV) (%) + (%) 1 (%) 1 MAE (GPa) MAE (GPa) | (kcal/mol) (kcal/mol)
GRACE-2L-OAM 1.6 0.7 65.1 90.5 72.2 9.1 15 12.1 14.0
SevenNet-MF-ompa 2.1 13 66.9 92.9 68.3 9.5 7.5 11.0 12.8
ORBv3-mpa 2.3 1.5 61.7 874 72.2 9.7 7.6 119 12.9
MatRIS-10M-OAM ‘ 4.0 3.6 64.6 90.6 69.0 ‘ 8.8 6.4 ‘ 9.5 10.6

evaluate MatRIS-M using the same training configurations and maintain consistency with the train-
ing and test sets as in|Zhang et al.|(2024) to ensure comparability. More detailed hyper-parameters
are reported in Table

All results are summarized in Table [T} with benchmark data for other models taken from
et al]| (2024} 2025). Overall, MatRIS-M achieves better accuracy in both energy and force predic-
tions, demonstrating its robustness across diverse domains. Notably, however, eqV2 and GemNet-
OC exhibit lower force errors than MatRIS in certain systems. This advantage likely stems from
their non-conservative force prediction, where energy and forces are fitted separately at the expense
of physical consistency.

D.5 MD STABILITY EVALUATION

We assessed the stability of MatRIS by examining energy conservation in MD simulations under the
NVE ensemble (microcanonical ensemble), using energy drift and thermostatted stability as eval-
uation metrics. The test data were taken from LAMBench 2025), including organic
molecules and inorganic material systems, which are out-of-distribution for MatRIS-M trained on
MPTrj dataset. For each system, atomic velocities were first randomly initialized at 300 K using the
Maxwell-Boltzmann distribution. Subsequently, MD simulations were performed in the NVE en-
semble for 80 ps with a 1 fs time step. Figure[Q]shows the results of the MD simulations. MatRIS-M
is able to conserve energy over long simulations, with both the total energy and the kinetic temper-
ature fluctuating around their initial values, and no large drifts are observed.

E TRAINING DETAILS AND HYPER-PARAMETERS

We summarize the hyperparameters of the models across different datasets and versions in Table[T2}
For the MPTrj dataset, we experimented with models of different sizes by varying the number of
layers (S, M, and L correspond to 4, 6, and 10 layers, respectively). The learning rate follows a
cosine annealing schedule, decaying to the minimum value at the last epoch. In distributed training,
we implemented a load balancing scheme to reduce synchronization overhead (see Section[C.I)), so
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Table 10: MatRIS performance on Zeolite dataset. Energy(E) MAE is in meV, force(F) MAE is in

meV/A.
| DeepPot | AlphaNet | DPA3-L24 | MatRIS-M
Type | E F |E F | E F | E F

ABWopt | 90 90 | 12 19 | 137 19.1 | 34 6.8
BCTopt | 110 50 | 6.8 12 6.8 12.0 | 3.0 4.9
BPHopt | 210 60 | 29 16 | 28.6 165 | 392 8.3
CANopt | 150 90 18 15 | 17.3 15.1 | 10.2 6.5
EDIopt 40 50 | 87 13.5| 10.8 15.1 | 3.6 6.2
FERopt | 290 130 | 43 28 | 41.6 254 | 30.6 11.9
GISopt 60 50 | 11 11 | 121 11.8 | 6.2 5.8
JBWopt | 150 70 10 13 97 124 | 4.0 5.9
LOSopt | 110 70 | 21 12 | 21.0 13.1 | 179 6.5
LTAopt | 150 64 | 19 12 | 213 135|205 7.0
LTJopt 70 110 | 15 11 | 134 112 | 144 6.7
NATopt | 210 110 | 16 15 172 156 | 8.0 7.4
PARopt | 90 70 | 18 24 | 214 242 | 95 6.8
PHIopt 60 120 | 20 14 | 19.6 144 | 159 175
SODopt | 200 110 | 9.5 12 | 11.0 134 | 44 5.7
THOopt | 160 60 | 17 15 | 202 169 | 7.5 8.0

Table 11: MatRIS performance on DPA2 test sets from [Zhang et al. (2024). Energy (E) RMSE
is in meV/atom, force (F) RMSE is in meV/A. ‘OOM’ indicates an Out-Of-Memory error. ‘NC’
indicates that the model employs a non-conservative force prediction.

| GemNet-OCNC | NequlP | MACE | eqv2"C | DPA3-L24 | MatRIS-M

Dataset Size | E F | E F | E F | E F | E F | E F
Alloy 71K | 143 851 | 440 1756 162 1902 | 85 627 | 71 992 | 58 962
CathodeP 59K | 1.5 179 | 143 698 | 26 378 | 1.1 149 | 06 186 | 03 119
Cluster-P 139K | 47.7 696 | 75.1 2166 | 41.3 1897 | 346 1044 | 293 1183 | 128 1139
Drug 1380K | 405 936 | 216 1872 | - . 298 8074 | 55 542 | 1.4 397
FerroEleP 7K 15 179 | 1.1 230 | 23 317 | 11 130 | 03 134 | 02 109
oC2M 2000K | 250 129.1 | 97.4 2261 | - , 67 452 | 90 1280 | 59 779
SSE-PBE-P  I5K | 27 8.2 16 411 | 1.8 299 |OOM OOM | 0.5 198 | 03 114
SemiCond 137K | 80 944 | 205 1807 | 127 1828 | 39 408 | 34 1083 | 27 950
H20-PD 46K | OOM OOM | 09 271 | 799 297 |OOM OOM | 04 137 | 03 107
AgUAUWPBE 17K | 1060 8.0 | 423 438 |369.1 345 | 234 44 | 11 109 | 25 107
AlUMgUCu 24K | 59 94 | 380 483 | 7.7 429 | 1.9 57 |20 130 | 1.2 159
Cu 15K | 6.1 58 | 62 167 | 388 136 | 17 38 | 17 72 | 05 6.1
Sn 6K 84 337 | 182 622 - - 52 196 | 29 498 | 23 459

Ti 10K | 445 879 | 276 1374 | 83 942 | 191 486 | 41 917 | 33 802

v 15K | 179 793 | 88 916 | 142 1404 | 56 474 | 28 718 | 1.9 629

W 4K | 791 812 | 208 1604 | 156 1812 | 468 513 | 2.5 833 | 1.9 663
CI2H26 34K | 1258 5187 | 1214 7156 | 819 8023 | 123.1 907.4 | 424 541.6 | 19.5 287.6
HfO2 28K 12 16.1 15 588 | 23 147 | 1.0 91 | 14 289 | 03 146

the number of samples per GPU may vary; the table reports the average global batch size. Notably,
the loss reduction in distributed training is performed using a graph-level scheme to avoid bias
toward larger systems (see Section[C.2). Additionally, for the Matbench-Discovery benchmark, we
pre-trained the MatRIS-M and L models with a denoising process to enhance generalization, with
details in Section[C.3]
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Figure 9: NVE MD simulations of three systems using MatRIS-M. The top row shows the energy
drift, and the bottom row shows the time series for the kinetic temperature.

Table 12: Hyper-parameters for MatRIS variants reported in this paper. In MatRIS-OAM, values
outside parentheses denote the OMat configuration, those in parentheses the sAlex+MPTrj fine-

tuning configuration, and values without parentheses are shared.

Hyper-parameters ‘ MPTrj-S MPTtj-M MPTrj-L MatRIS-OAM SPICE-M MatPES-1.4M Others
Number of MatRIS layers 4 6 10 10 6 3 6
Dimension of atom features 128 128 128 128 128 64 128
Dimension of edge features 128 128 128 128 128 64 128
Dimension of three-body features 128 128 128 128 128 64 128
Radial basis function Bessel Bessel Bessel Bessel Bessel Bessel Bessel
Number of radial basis functions 7 7 7 7 7 7 7
Pairwise cutoff 6.0 6.0 6.0 6.0 6.0 6.0 6.0
Three-body cutoff 4.0 4.5 45 4.5 4.0 4.0 4.0
Global batch size (avg) 512 512 320 512(320) 128 64 1256
Optimizer AdamW AdamW AdamW AdamW AdamW Adam AdamW
Weight decay le-2 le-2 le-2 le-3 le-3 0.0 le-3
Maximum Learning rate Se-4 3e-4 3e-4 3e-4(le-4) 3e-4 3e-4 3e-4
Minimum Learning rate 5e-6 3e-6 3e-6 3e-6(le-6) 3e-6 3e-6 3e-6
Learning rate scheduling CosLR CosLR CosLR CosLR CosLR CosLR CosLR
Number of epochs 30 40 100 4(8) 200 30 100
Loss function Huber(6=0.01) Huber(6=0.01) MAE/L2MAE MAE/L2MAE Huber(6=0.01) MAE Huber(6=0.01)
Gradient clipping norm 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Energy loss prefactor 5 5 5 5 5 5 5
Force loss prefactor 5 5 5 5 5 5 5
Stress loss prefactor 0.1 0.1 0.1 0.1 - 0.1 0.1
Magmom loss prefactor 0.1 0.1 0.1 0.1 - 0.1 -
Denoising Settings
Corruption probability - 100% 100% - - - -
Maximum number of steps - 1000 1000 - - - -
Maximum sigma - 1.0 1.0 - - - -
Minimum sigma - 0.0 0.0 - - - -
Noise Schedule - Linear Linear - - - -
Number of epochs - 20 20 - - - -
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