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ABSTRACT

Universal MLIPs (uMLIPs) demonstrate broad applicability across diverse ma-
terial systems and have emerged as a powerful and transformative paradigm in
chemical and computational materials science. Equivariant uMLIPs achieve state-
of-the-art accuracy in a wide range of benchmarks by incorporating equivari-
ant inductive bias. However, the reliance on tensor products and high-degree
representations makes them computationally costly. This raises a fundamental
question: as quantum mechanical-based datasets continue to expand, can we
develop a more compact model to thoroughly exploit high-dimensional atomic
interactions? In this work, we present MatRIS (Materials Representation and
Interaction Simulation), an invariant uMLIP that introduces attention-based mod-
eling of three-body interactions. MatRIS leverages a novel separable attention
mechanism with linear complexity O(N), enabling both scalability and expres-
siveness. MatRIS delivers accuracy comparable to that of leading equivariant
models on a wide range of popular benchmarks (Matbench-Discovery, MatPES,
MDR phonon, Molecular dataset, etc). Taking Matbench-Discovery as an ex-
ample, MatRIS achieves an F1 score of up to 0.847 while improving training
efficiency by 13.0–13.5× at comparable accuracy. The work indicates that our
carefully designed invariant models can match or exceed the accuracy of equivari-
ant models at a fraction of the cost, shedding light on the development of accurate
and efficient uMLIPs.

1 INTRODUCTION

Quantum Mechanism (QM)-based calculations are the cornerstone of modern drug and material
research, providing highly accurate modeling of interatomic interactions. However, its prohibitive
computational cost makes large-scale simulations intractable (De Vivo et al., 2016; Jain et al., 2013b;
Merchant et al., 2023). Machine learning interatomic potentials (MLIPs) have emerged as a pow-
erful alternative, enabling accelerated, long-timescale molecular dynamics (MD) simulations while
retaining near-quantum-chemical accuracy. With the increase in QM-based reference data and model
innovations, MLIPs have demonstrated remarkable accuracy and generalization in property predic-
tion and materials discovery (Merchant et al., 2023; Barroso-Luque et al., 2024; Zhang et al., 2024;
Yang et al., 2024; Zhang et al., 2025; Fu et al., 2025; Wood et al., 2025).

Graph neural networks (GNNs) have been widely adopted for 3D molecular modeling, where atoms
are represented as nodes and interatomic interactions as edges (Qu & Krishnapriyan, 2024; Liao
& Smidt, 2023; Liao et al., 2024b). Through Message Passing (MP), node features are itera-
tively updated to capture local and global structural interactions. To enhance model expressive-
ness and generalization, many MLIPs incorporate domain-specific inductive biases (e.g., transla-
tion, rotation, permutation, reflection invariance, or equivariance). Depending on how these sym-
metries are encoded, MLIPs are broadly divided into invariant, equivariant and unconstrained ar-
chitectures (Duval et al., 2024; Jacobs et al., 2025). In invariant models, the structural descrip-
tor is encoded based on attributes such as interatomic distances, bond angles, and dihedral an-
gles (Gasteiger et al., 2022b;c; 2024; Deng et al., 2023; Zhang et al., 2025). In equivariant models,
higher-order equivariance is typically enforced through computationally intensive tensor products of
rotation order L (Batzner et al., 2022; Batatia et al., 2023; Liao & Smidt, 2023; Liao et al., 2024b).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Nequix
eSEN-30M
eqV2 S DeNS

DPA3
SevenNet
HIENet
MACE

Eqnorm

60 120 1800 240 360 420 660 720

S
M

L

13.0x
13.5x

0.65

0.69

0.73

0.77

0.81

0.85

Training time (GPU days)

F1
 sc

or
e 

(h
ig

he
r i

s b
et

te
r)

MatRIS

+8%

Figure 1: Trade-offs between training time and F1
score of uMLIPs. Training times for eSEN-30M
and eqV2 S DeNS are estimated on an Nvidia
A100 GPU. Nequix (Koker & Smidt, 2025) was
trained on JAX; all others on PyTorch. Larger
marks indicate models with more parameters.

Previous work demonstrates that equiv-
ariant models often deliver superior accu-
racy (Batzner et al., 2022). In contrast,
unconstrained models do not explicitly encode
symmetries; instead, the model learns them
from data or approximates them through data
augmentation or auxiliary losses, leading
to more flexible architectural design (Duval
et al., 2024; Neumann et al., 2024; Rhodes
et al., 2025). Meanwhile, the results in a
popular benchmark (Matbench-Discovery
leaderboard (Riebesell et al., 2025)) indicate
that equivariant GNNs achieve higher accuracy.
When the training data is MPTrj (Deng et al.,
2023), eSEN-30M-MP (Fu et al., 2025) and
eqV2 S DeNS (Barroso-Luque et al., 2024)
reach F1 scores of 0.831 and 0.815, with
energy errors of 0.033 and 0.036 meV/atom,
respectively. Despite the accuracy gains, the
heavy equivariant operations make equivariant
methods significantly more computationally
expensive and memory-intensive. Our investigation into the training cost of several mainstream
pretrained models is summarized in Figure 1. eSEN-30M-MP and eqV2 S DeNS show superior F1
score while requiring 705 and 228 GPU days, respectively. This high computational demand can
be caused by three main factors: 1) the intensive equivariant operations such as tensor products, 2)
the large number of model parameters, and 3) the prolonged training schedules (e.g., 100, 150, and
600 training epochs are reported for eSEN-30M-MP, eqV2 S DeNS, and SevenNet-l3i5 (Kim et al.,
2024), respectively).

Incorporating equivariance into the GNN MLIPs serves as an implicit form of data augmentation.
AlphaFold has shown that, with sufficient data, non-equivariant models can accurately predict pro-
tein secondary structures (Jumper et al., 2021; Abramson et al., 2024). In MLIPs, the rapid increase
in QM-based reference datasets (Barroso-Luque et al., 2024; Levine et al., 2025; Gharakhanyan
et al., 2025; Sriram et al., 2025) motivates us to ask: Is the equivarance indispensable as the QM-
based dataset continues to increase? Can we develop a more compact architecture to capture
the high-dimensional atomic interactions encoded in QM-based data sufficiently?

We have the following findings: 1) Recent studies (Yang et al., 2024; Zhang et al., 2024; 2025)
show that invariant models offer reliable property predictions and enable a wide range of scientific
applications while maintaining computational efficiency. 2) On a more compact architecture (an
architecture that can fully exploit QM-based data). Element types and pairwise interactions have
been shown to be insufficient for distinguishing graphs with different chemical properties (Xu et al.,
2019). Incorporating three-body interactions is needed to exploit the knowledge in QM-based data.
Self-attention mechanisms (Mazitov et al., 2025; Qu & Krishnapriyan, 2024) have proven to be a
promising method in improving model expressiveness, also benefiting in model scalability.

Building on these insights, we introduce an invariant MLIP: interatomic potential for Materials
Representation and Interaction Simulation (MatRIS). To the best of our knowledge, our model
is the first to explicitly leverage an O(N) attention mechanism to model three-body interactions.
MatRIS consists of graph generation, feature embedding, graph attention, refinement, and a readout
block. We provide the ablation study of these modules in this paper. Putting all these modules
together, MatRIS achieves state-of-the-art (SOTA) accuracy and efficiency across a wide range of
chemical applications. Additionally, the novel separable attention has lower complexity (O(N))
compared to full attention (O(N2)). Across diverse benchmarks, MatRIS achieves competitive
results. MatRIS-L achieves SOTA results on compliant Matbench-Discovery with an F1 of 0.847
and a root mean square displacement (RMSD) of 0.0717. Moreover, MatRIS-S and MatRIS-M
deliver accuracy comparable to eqV2 S DeNS and eSEN-30M-MP, respectively, while improving
training efficiency by 13.0× and 13.5×, respectively. These results demonstrate MatRIS’s strong
potential for applications in materials science and drug discovery.
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2 RELATED WORKS

Invariant MLIPs. Invariant MLIPs are models whose intermediate representations are invari-
ant under rotations and translations (Duval et al., 2024). This invariance is achieved by using
internal coordinates instead of Cartesian coordinates, with features such as interatomic distances,
bond angles, and dihedral angles remaining unchanged under rotations and translations of the sys-
tem (Schütt et al., 2017; Gasteiger et al., 2020; Novikov et al., 2020; Fan et al., 2022; Gasteiger et al.,
2022c; Chen & Ong, 2022; Deng et al., 2023; Zhang et al., 2025). Early invariant MLIPs, such as
SchNet (Schütt et al., 2017), CGCNN (Xie & Grossman, 2018), and PhysNet (Unke & Meuwly,
2019), employ relative distances between node pairs and encode local geometric information via
learnable radial basis functions. More recent MLIPs enhance representational expressiveness by
incorporating higher-order many-body scalar features. For example, the DimeNet (Gasteiger et al.,
2020; 2022a) series introduced directional message passing, allowing angular information to be
embedded in edge updates between atoms. The GemNet series (Gasteiger et al., 2022c; 2024)
further incorporates dihedral angles to improve performance. SphereNet (Liu et al., 2022) and
ComENet (Wang et al., 2022) proposed methods to efficiently extract four-body angles within local
neighborhoods, avoiding the need to iterate over all three-hop neighbors. DPA3 (Zhang et al., 2025)
builds upon the line graph series (LiGS), capturing higher-order interactions. Invariant MLIPs are
progressively increasing their representational expressiveness while maintaining inherent computa-
tional efficiency. Building upon these insights, we design MatRIS from an invariant perspective. We
further provide a detailed discussion in Appendix A, highlighting how MatRIS differs from other
MLIPs that incorporate three-body encodings or attention-based mechanisms.

Equivariant MLIPs. Equivariant MLIPs are models where intermediate representations are in-
variant (e.g., scalars) or equivariant (e.g., vectors or higher-order tensors) under rotations (Duval
et al., 2024). Current equivariant MLIPs can be divided into scalarization-based models (Schütt
et al., 2021; Du et al., 2023; Thölke & Fabritiis, 2022; Aykent & Xia, 2025) and high-degree steer-
able models (Zhou et al., 2024; Batzner et al., 2022; Batatia et al., 2023; Liao & Smidt, 2023).
Scalarization-based MLIPs model interatomic interactions in the Cartesian coordinate system while
restricting the set of operations on geometric features to preserve equivariance (Duval et al., 2024;
Wang et al., 2024; Yin et al., 2025). On the other hand, high-degree steerable equivariant MLIPs
use irreducible representations (irreps) to encode features, ensuring equivariance under 3D rotations.
Each irrep of degree L corresponds to a (2L + 1)-dimensional vector space (Batzner et al., 2022;
Batatia et al., 2023; Liao & Smidt, 2023). In equivariant GNN-based MLIPs, MP involves trans-
forming and combining these type-L vectors. To interact across degrees during MP, tensor products
(by using Clebsch–Gordan coefficients to combine) are employed. To avoid excessive computational
complexity, these models typically employ only low-degree equivariant representations (Park et al.,
2024; Liao et al., 2024b; Fu et al., 2025). Equivariant MLIPs continue to deliver SOTA accuracy
on various benchmarks (Tran et al., 2023; Riebesell et al., 2025), while remaining computationally
demanding.

Unconstrained MLIPs. Unconstrained MLIPs do not impose strict constraints on their interme-
diate representations. Instead, these models typically learn symmetries directly from the data or
incorporate additional loss terms to encourage symmetry learning (Duval et al., 2024; Rhodes et al.,
2025). For example, Qu & Krishnapriyan (2024); Neumann et al. (2024); Rhodes et al. (2025)
use data augmentation (applying random rotations to training samples) to learn rotational equiv-
ariance and have demonstrated promising results. In addition, Neumann et al. (2024) enhances
stability in MD simulations by removing net force and torque, while Rhodes et al. (2025) intro-
duces an ‘Equigrad’ loss to incentivize rotational invariance of energy. Unconstrained MLIPs have
inference efficiency comparable to invariant MLIPs and more flexible architectures. These models
demonstrate competitive accuracy in multiple benchmarks (Chanussot et al., 2021; Tran et al., 2023;
Riebesell et al., 2025). However, studies indicate that they may lead to errors in certain property
prediction tasks (Fu et al., 2023; Póta et al., 2025; Bigi et al., 2025).

3 MATRIS

In this section, we introduce the detailed architecture of MatRIS. The interaction between the atom
graph and the line graph is described in Section 3.1. The Graph Attention module is depicted in
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Section 3.2. In Section 3.3, we describe other key components of MatRIS. An overview of MatRIS
is shown in Figure 3, and the model formalizations are detailed in Appendix B.

3.1 LINE–ATOM GRAPH INTERACTION

To model three-body interactions, we explicitly construct a Line Graph. In the Atom Graph,
nodes represent atom types and edges represent pairwise interactions (bonds), whereas in the Line
Graph, nodes represent edges of the atom graph and edges represent three-body interactions (an-
gles) (Harary & Norman, 1960; Whitney, 1992).

Atom graph

2 1

3

Line graph

𝑒!"

𝑒"#

Figure 2: Conversion from an
Atom Graph to a Line Graph.

Specifically, given an Atom Graph Ga = (V a, Ea), where V a

is the set of atoms and Ea is the set of edges within a cutoff
distance racut, the corresponding Line Graph Gl = (V l, El) is
constructed as follows: ➀ Each node in V l corresponds to an
edge in Ea; ➁ An edge e ∈ El is added between two nodes
if their corresponding edges in Ea share a common atom, rep-
resenting the angular information formed by the three atoms
(i.e., the three-body interaction). The conversion from the
atom graph to the line graph is illustrated in Figure 2.

For graph information fusion, we first update the Line Graph
to obtain edge and angular features encoding three-body inter-
actions. The updated edge features are then propagated back
to the Atom Graph, allowing atomic features to incorporate higher-order information from the Line
Graph.

3.2 GRAPH ATTENTION

In this section, we introduce the design motivation and implementation of the Dim-wise Softmax
and Separable Attention mechanisms.

Dim-wise Softmax. Recent studies have shown that attention mechanisms play an important role
in improving both the accuracy and scalability of MLIPs (Liao & Smidt, 2023; Liao et al., 2024b;
Qu & Krishnapriyan, 2024). Existing approaches (Liao & Smidt, 2023; Wang et al., 2024; Shao
et al., 2024; Liao et al., 2024b) typically compute attention weights aid to weight the value vectors
V ∈ Rneighbors×D, where D denotes the hidden dimension. The weights aid depend on the fea-
tures of node i and its neighbors N (i), while the values V are obtained by applying a nonlinear
transformation to the fused edge and node features.

In these methods, the same attention weights are applied to all feature dimensions, implicitly as-
suming equal importance across dimensions. However, this assumption limits the model’s ability
to distinguish the independent contributions of different feature dimensions. Our proposed Dim-
wise Softmax computes attention scores independently for each feature dimension. Given an input
feature x ∈ Rneighbors×D and a neighbor list N , the Dim-wise Softmax is computed as follows:

αid = Dim-wise Softmax(xid,N (i)) =
exp(xid)∑

k∈N (i) exp(xkd)
(1)

where α ∈ Rneighbors×D is the attention weight matrix, xid denotes the d-th feature of node i, and
N (i) represents the set of neighboring nodes of node i. This approach preserves the independence
of feature dimensions while emphasizing the relative importance of different neighbors in each di-
mension, thereby enhancing the model’s ability to capture local structural information.

Separable Attention. In molecular systems, interatomic interactions are directional, and each
atom plays two roles: target node and source node. Most existing methods only aggregate informa-
tion from the source node to the target node (Liao & Smidt, 2023; Liao et al., 2024b; Wang et al.,
2024; Shao et al., 2024), which assumes symmetric information flow. However, this is not always
true in real physical systems. For example, in polar bonds, charged environments, or local defect
structures, the effect of the source node on the target node can differ from the effect of the target node
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on the source node (Bengtsson, 1999; Kühne & Khaliullin, 2013). To address this, we introduce two
independent sets of attention weights: source attention weights and target attention weights. The
first models how neighboring nodes affect the central node, while the second captures how the cen-
tral node influences its neighbors. In this way, the two roles of nodes are explicitly separated during
aggregation. The overall workflow is illustrated in Figure 3(b). Given the interaction eij between a
target node vi and a source node vj , we compute the attention weights as follows:

tij = Linear(eij) and taij = Dim-wise Softmax(tij ,N (i)) (2)

sij = Linear(eij) and saij = Dim-wise Softmax(sij ,N (j)) (3)

Here, N(i) and N(j) denote the indices of the target and source nodes, respectively. The final
attention outputs are obtained as the weighted sum of taij , saij , and e′ij . Here, e′ij is obtained by
concatenating eij , vi, and vj , followed by target and source feature fusion through a gMLP (see
Figure 3(d)). The two attention branches share the same computational flow and can therefore be
executed in parallel. We also implement optimized kernels to improve training efficiency.

Generality Analysis. As mentioned earlier, many MLIPs are either unconstrained or equivari-
ant. Unconstrained MLIPs are flexible, allowing Dim-wise Softmax and Separable Attention to be
applied directly. For equivariant MLIPs, symmetry must be preserved. To ensure this, Dim-wise
Softmax is computed on invariant features (e.g., L = 0), producing attention weights that are them-
selves invariant. These weights are then applied to equivariant features within each irrep channel,
without mixing components of different orders, ensuring that the features remain equivariant under
geometric transformations. Separable Attention extends this approach with two branches, comput-
ing attention equivariantly and aggregating information separately over the indices of the target and
source nodes.

3.3 OVERALL ARCHITECTURE

(a) MatRIS Architecture (b) Graph Attention (c) Refinement

(d) gMLP
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Figure 3: Overview of MatRIS. The model architecture (a) consists of feature embedding (e), graph
attention (b), refinement (c), and a readout block(f).

Graph Generation. Given a crystalline system G(Z,X,L), where Z ∈ Rnatoms denotes the
atomic numbers, X ∈ Rnatoms×3 represents the atomic coordinates, and L ∈ R3×3 refers to the
lattice. We first perform periodic repetition of the structure and then employ a radius-cutoff graph
construction to represent it. Inspired by CHGNet (Deng et al., 2023), we construct the atom graph
Ga (with atoms as nodes and bonds as edges) based on racut and the line graph Gl (with bonds as
nodes and angles as edges) based on rlcut for the crystal structure.
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Feature Embedding. Atomic numbers are initialized using trainable embeddings, while pairwise
distances are encoded via a learnable radial Bessel basis with envelope functions (Gasteiger et al.,
2022b). For bond angles, we employ a learnable Fourier basis expansion following Deng et al.
(2023). These input features are then passed through a linear layer to generate initial node, edge,
and three-body representations. This block is illustrated in Figure 3(e).

Refinement. The output of Graph Attention v′i and e′ij is concatenated and processed by a gMLP
operator (shown in Figure 3(c)). This representation is further refined by an Envelope func-
tion (Gasteiger et al., 2022b) (ensures smoothness). The refined signals are then aggregated over
neighboring interactions, enabling each edge to integrate local information. Finally, the output is
transformed by a MLP operator to produce the residual node features ∆vi and edge features ∆eij .

Readout Block. The Readout Block (Figure 3(f)) takes the node features vi from the last MP
layer. After the normalization layer, the features are passed through MLPs to predict node energies
and magnetic moments (M ). Atomic energies are summed to obtain total energy (E). To ensure the
reliability (Bigi et al., 2025), atomic forces (Fi) and stress (σ) are computed by Equation 4. V is
volume.

Fi = −
∂E

∂Xi
, σ =

1

V
∂E

∂ϵ
(4)

4 EXPERIMENTS

We evaluated MatRIS on Matbench-Discovery benchmark (Section 4.1), MatPES benchmark (Sec-
tion 4.2), MDR phonon benchmark (Section 4.3), Molecular zero-shot benchmark (Section 4.4).
The best results are in bold, and the second best are underlined. Moreover, we conducted ablation
studies on the network modules and training methods (Section 4.5). Finally, we analyzed the effi-
ciency of MatRIS (Section 4.6). In addition, the results of experiments on the Matbench-Discovery
benchmark (non-compliant), LAMBench benchmark (Peng et al., 2025), Zeolite benchmark (Yin
et al., 2025), DPA2 test sets (Zhang et al., 2024) and MD stability evaluation are provided in Ap-
pendix D. The training strategies are introduced in Appendix C, and the training hyperparameter
settings are detailed in Appendix E.

4.1 MATBENCH DISCOVERY

Table 1: MatRIS performance on the compliant Matbench-Discovery benchmark with results on
unique structure prototypes. ‘↑’/‘↓’ stands for higher/lower is better. All models accessed before
September 24, 2025.

Model Param. F1↑ DAF↑ Precision↑ Recall↑ Accuracy↑ MAE↓ R2↑ Ksrme↓ RMSD↓

CHGNet 0.41M 0.613 3.361 0.514 0.758 0.851 0.063 0.689 1.717 0.0949
MACE-MP-0 4.69M 0.669 3.777 0.577 0.796 0.878 0.057 0.697 0.647 0.0915
GRACE-2L 15.3M 0.691 4.163 0.636 0.757 0.896 0.052 0.741 0.525 0.0897

Allegro-MP-L 18.7M 0.751 4.516 0.690 0.823 0.915 0.044 0.778 0.504 0.0816
Nequix MP 0.71M 0.751 4.455 0.681 0.836 0.914 0.044 0.782 0.446 0.0853

SevenNet-l3i5 1.17M 0.760 4.629 0.708 0.821 0.920 0.044 0.776 0.550 0.0847
NequIP-MP-L 9.6M 0.761 4.704 0.719 0.809 0.921 0.043 0.791 0.452 0.0856
ORB v2 MPTrj 25.2M 0.765 4.702 0.719 0.817 0.922 0.045 0.756 1.725 0.1007

HIENet 7.51M 0.777 4.932 0.754 0.801 0.929 0.041 0.793 0.642 0.0795
Eqnorm MPTrj 1.31M 0.786 4.844 0.741 0.838 0.929 0.040 0.799 0.408 0.0837
DPA-3.1-MPTrj 4.81M 0.803 5.024 0.768 0.841 0.936 0.037 0.812 0.650 0.0801
eqV2 S DeNS 31.2M 0.815 5.042 0.771 0.864 0.941 0.036 0.788 1.676 0.0757

eSEN-30M-MP 30.1M 0.831 5.260 0.804 0.861 0.946 0.033 0.822 0.340 0.0752

MatRIS-S 4.3M 0.811 5.127 0.784 0.840 0.940 0.036 0.803 0.730 0.0766
MatRIS-M 6.3M 0.833 5.363 0.820 0.847 0.948 0.033 0.820 0.542 0.0742
MatRIS-L 10.4M 0.847 5.422 0.829 0.865 0.951 0.031 0.829 0.489 0.0717

Dataset and Setting. The Matbench-Discovery benchmark (Riebesell et al., 2025) is a well-
established benchmark for evaluating the ability of models in new material discovery. In this bench-
mark, all models are required to optimize the geometry and predict the formation energy of each
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of the 256k structures in the WBM test set (Wang et al., 2021). These results are then used to as-
sess thermodynamic stability at the ground state (0 K). In the “compliant” setting, all models are
required to use MPTrj (Deng et al., 2023) as the training dataset, whereas in the “non-compliant”
setting, this requirement is relaxed. More details on the hyperparameters can be found in Table 12.
Moreover, inspired by Zaidi et al. (2022) and Liao et al. (2024a), we apply denoising pretraining to
MatRIS-M and MatRIS-L. The specific details are described in Appendix E. Notably, this denoising
is also adopted in several other works (ORB v2 MPTrj (Neumann et al., 2024), eqV2 S DeNS, and
eSEN-30M-MP). Structures are relaxed using MatRIS and the FIRE (Bitzek et al., 2006) optimizer,
with convergence reached after 500 steps or when the maximum force falls below 0.05 eV/Å.

Results of the Compliant Benchmark We summarize the comparison with other models in Ta-
ble 1 (as of September 24, 2025). MatRIS-S/M achieves performance comparable to eqV2 S
DeNS/eSEN-30M-MP while using fewer parameters and lower computational costs (see Figure 1
for a comparison of training cost). These results demonstrate the effectiveness of MatRIS. More-
over, MatRIS-L achieves state-of-the-art (SOTA) performance across all metrics, with an F1 score
of 0.847. It also achieves an RMSD of 0.0717 when comparing relaxed structures to DFT reference
values.

4.2 MATCALC BENCHMARK

Table 2: Summary of model performance on the MatCalc benchmark. All results were obtained
using the MatCalc package and its associated dataset.

Model Param. Equilibrium Near-equilibrium

d↓ Ef↓ K↓ G↓ CV ↓ f/fDFT ↑
MatPES-trained models

M3GNet 0.66M 0.42 0.11 26 25 27 0.97
CHGNet 2.7M 0.43 0.082 24 21 23 0.91
TensorNet 0.84M 0.37 0.081 18 15 13 0.93
MatRIS 1.4M 0.54 0.068 15 13 16 0.96

MPTrj-trained models

CHGNet 2.7M 0.51 0.092 17.0 30.0 24.0 0.830
MACE-L 5.7M 0.43 – 25.3 22.5 11.6 0.829
SevenNet-l3i5 1.17M 0.55 0.057 13.2 170.2 8.03 0.922
eqV2 S DeNS 31.2M 0.25 0.033 27.2 29.1 25.9 0.964
eSEN-30M-MP 30.1M 0.34 0.039 18.8 77.3 4.66 0.986
MatRIS-M 6.3M 0.32 0.041 12.4 16.4 7.39 0.983

OAM-trained models

SevenNet-MF-ompa 25.7M 0.502 0.028 13.3 32.2 4.60 0.976
eqV2 M 31.2M 0.235 0.017 25.4 17.5 80.4 0.999
eSEN-30M-OAM 30.1M 0.299 0.089 11.9 14.8 4.35 0.996
MatRIS-10M-OAM 10.4M 0.316 0.025 10.6 13.3 3.97 0.985

Dataset and Settings. MatCalc benchmark (Kaplan et al., 2025) covers equilibrium properties (re-
laxed structure similarity d, formation energy Ef ), near-equilibrium properties (bulk modulus K,
shear modulus G, constant-volume heat capacity CV , force softening f/fDFT), and is constructed
from test data collected from the Materials Project (Jain et al., 2013a), Alexandria (Schmidt et al.,
2024), WBM high-energy states (Wang et al., 2021). We compare models trained on MatPES-
PBE (Kaplan et al., 2025), MPTrj and OAM, with the results reported in Table 2. The training
parameters are listed in Table 12. Specifically, when evaluating all MPTrj-trained models and
OAM-trained models, we used the default settings in MatCalc for all configurations to ensure
consistency across all models.

Results and Analysis. Table 2 summarizes the performance of models trained on the MatPES-
PBE, MPTrj and OAM datasets. For models trained on MatPES-PBE, MatRIS achieves the best
overall performance, clearly outperforming other models in predicting formation energy Ef .

For models trained on MPTrj, MatRIS attains SOTA or near-SOTA results on 83% of the evalu-
ated metrics. Notably, MatRIS remains robust on Near-equilibrium” tasks regardless of the training

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

dataset. Although the higher fraction of near-equilibrium structures in MPTrj amplifies PES “Soft-
ening” (f/fDFT ) (Deng et al., 2024; Kaplan et al., 2025), MatRIS maintains stable performance.
Comparisons with CHGNet further indicate that changing the training dataset does not result in
significant softening, underscoring the effectiveness of the architectural design.

The same trend is observed for models trained on OAM, where MatRIS-10M-OAM performs ro-
bustly across all metrics and achieves SOTA performance overall.

4.3 MDR PHONON BENCHMARK

Wave vector

Fr
eq

ue
nc

y 
(T

HZ
)

Si (mp-149) BeSe (mp-1541)

CsCl (mp-22865) GaAgS2 (mp-5432)

(a) MDR phonon benchmark (b) Phonon dispersion

Figure 4: (a) Summary of model performance on the MDR phonon benchmark. The evaluation
metrics include ωmax (K), S (J/K/mol), F (kJ/mol), and CV (J/K/mol), where the reported values
represent the MAE between the model predictions and the DFT results. (b) Predicted phonon dis-
persion obtained using MatRIS with a 0.01Å displacement. The DFT results are taken from the
phononDB dataset.

Dataset and Settings. The MDR phonon benchmark (Loew et al., 2025) is used to evaluate the
ability of MLIPs to predict phonon properties. It requires MLIPs to compute the maximum phonon
frequency (ωmax), entropy (S), free energy (F ), and heat capacity at constant volume (CV ) for
approximately 10,000 structures. To ensure a fair comparison, we follow the evaluation protocol
adopted in Loew et al. (2025). Specifically, we first optimize the structures using the FIRE optimizer
(max steps=500, fmax=0.005). Displacements are generated with a magnitude of 0.01 Å, and the
properties are computed at 300 K.

Results and Analysis. Results for both the MPTrj-trained and OAM-trained models are shown in
Figure 4(a). MatRIS achieves competitive results among the MPTrj-trained models. As the training
dataset grows, MatRIS-10M-OAM achieves SOTA accuracy on most metrics, with a particularly
significant improvement in the maximum phonon frequency (ωmax). It is worth noting that MatRIS-
10M-OMat achieves higher accuracy, with values of ωmax, S, F , and CV being 7.08, 7.12, 2.12,
and 1.91, respectively.

We also selected four representative structures from the phononDB dataset (Togo) for visualization,
as shown in Figure 4(b). We find that MatRIS-MP-L not only reproduces the highest frequencies
but also aligns well with the DFT results overall.

4.4 MOLECULAR ZERO-SHOT BENCHMARK

Dataset and Settings. AIMNet and DPA2-Drug were trained on the datasets from Anstine D
(2023) and Yang et al. (2025), respectively, while the other models were pre-trained on SPICE-

8
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Table 3: MatRIS performance on the Molecular zero-shot benchmark. Energy (E) is reported in
kcal/mol and Force (F) in kcal/mol/Å.

Model TorsionNet-500 MD22
(Ac-Ala3-NHMe) ANI-1x AIMD-Chig

E MAE E RMSE MAEBa NABHb
h E F E F E F

AIMNet2 0.38 0.55 0.58 82 - - - - - -
DPA2-Drug 0.24 0.35 0.36 18 - - - - - -
MACE-OFF-L 0.14 0.21 0.23 4 0.041 5.205 0.406 3.948 0.050 3.853
DPA3-L24 0.06 0.09 0.09 0 0.040 5.154 0.873 37.45 0.038 3.749

MatRIS-M 0.04 0.07 0.07 0 0.031 5.140 0.301 4.414 0.009 3.604
a The MAE of the torsional barrier height is defined as the energy difference between the minimum and maxi-
mum along the torsional rotation.
b The number of molecules with barrier height errors exceeding 1 kcal/mol.

MACE-OFF23 (Kovács et al., 2025), which contains 951,005 small-molecule configurations. The
energies and forces of all configurations were computed at the ωB97M-D3(BJ)/def2-TZVPPD level.
Following Peng et al. (2025), we selected the Ac-Ala3-NHMe from the MD22 (Chmiela et al., 2023),
ANI-1x (Smith et al., 2018), and AIMD-Chig (Wang et al., 2023) datasets, which contain 2,212,
8,861, and 19,800 configurations, respectively. The training parameters can be found at Table 12
in appendix. For the MD22, ANI-1x, and AIMD-Chig benchmarks, we corrected inconsistencies
caused by differences between DFT functionals.

Results and Analysis. We selected available molecular pre-trained models (MACE-OFF-
L (Kovács et al., 2025) and DPA3-L24 (Zhang et al., 2025)) for comparison, and the results are sum-
marized in Table 3. MatRIS-M performs well across four downstream datasets. On the TorsionNet-
500 test set, its energy prediction error is reduced by about 22.2%–33.3% compared to the current
SOTA model DPA3. In the remaining three datasets, MatRIS-M ranks first in five out of six metrics
and second in the remaining one, demonstrating that it effectively leverages the knowledge from the
pre-training dataset to achieve more reliable performance on downstream tasks.

4.5 ABLATION STUDY

We conduct ablation studies on various modules of MatRIS and their corresponding training meth-
ods. We train the MatRIS-S on MPTrj and evaluate it on 15,000 randomly sampled structures from
the WBM dataset, reporting performance using the MAE of formation energies.

Table 4: Ablation studies. Formation energy (Ef) MAE is in meV/atom, lower is better.

Index Dim-wise
softmax

Separable
attention

Learnable
envelope Ef (MAE)

1 ✓ ✓ ✓ 28.0
2 ✗ ✓ ✓ 28.4
3 ✗ ✗ ✓ 29.1
4 ✗ ✗ ✗ 31.3

(a) Effect of modules: dim-wise softmax, separable
attention and learnable envelope.

Index Denoising
pretraining

With
magmom

Graph-level
loss Ef (MAE)

1 ✓ ✓ ✓ 27.2
2 ✗ ✓ ✓ 28.0
3 ✗ ✗ ✓ 29.7
4 ✗ ✗ ✗ 30.2

(b) Effect of training methods: denoising pretraining,
magnetic moment prediction, and graph-level loss.

Module Ablation. We evaluated the impact of Dim-wise Softmax, Separable Attention, and
Learnable Envelope on model accuracy, as shown in Table 4(a). Specifically, replacing Dim-wise
Softmax with standard softmax (i.e., sharing the same weight across all feature dimensions) in-
creased MAE to 28.4 meV/atom (Index 2). Subsequently, restricting attention-based aggregation
to the source-to-target direction further increased MAE (Index 3). Finally, replacing the learnable
envelope function with a fixed one also degraded performance (Index 4).

Training Method Ablation. We further analyze the contributions of different training strategies
to model performance, as shown in Table 4(b). Pretraining with denoising (see Section C.3 in ap-
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pendix) effectively improves performance, as predicting noise helps mitigate over-smoothing (God-
win et al., 2022; Zaidi et al., 2022). Notably, predicting magmoms also enhances accuracy, since
magmoms help distinguish features in different chemical environments and, being a node-level task,
likely reduce over-smoothing during training (Deng et al., 2023). Finally, performing loss reduc-
tion at the graph level prevents the force loss from being biased by differences in system size (see
Section C.2 in appendix for more detail), further improving performance.

4.6 EFFICIENCY-ACCURACY ANALYSIS.
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Figure 5: Efficiency-accuracy comparison.

In this section, we compare the computational efficiency of MatRIS with several other mainstream
models. First, the inference time on different systems (excluding graph construction) is summarized
in Figure 5(a). MatRIS shows higher efficiency than eqV2 and eSEN, but lower than MACE-L, be-
cause MACE-L has only 2 layers while MatRIS-S and MatRIS-M have 4 and 6 layers, respectively.
We also evaluate the models in practical applications. We randomly select 500 structures from the
WBM dataset (Wang et al., 2021) and perform relaxations using ASE, recording the throughput and
energy MAE for each model. As shown in Figure 5(b), MatRIS achieves a good balance between
speed and accuracy, maintaining high precision while offering faster computation.

5 CONCLUSION AND FUTURE WORK

In this work, we review the characteristics of invariant, equivariant and unconstrained MLIPs in the
era of rapidly expanding QM-based datasets. Equivariant uMLIPs deliver superior accuracy while
their reliance on tensor products and high-degree representations leads to prohibitive computational
costs. Motivated by the question of whether strict equivariance remains indispensable, we introduce
MatRIS, an invariant uMLIP that leverages attention to model three-body interactions. Across mul-
tiple benchmarks, MatRIS attains SOTA results, opening a new path toward accurate and efficient
MLIPs.

In future work, we will scale MatRIS to even larger QM-based datasets to further validate its ex-
pressiveness. We aim to develop a reliable distillation strategy to develop student MLIPs. We also
plan to expand MatRIS to incorporate long-range electrostatics, thereby enhancing its applicability
to more complex downstream tasks.
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APPENDIX

A Additional related works

A.1 Explicit three-body modeling in MLIPs

A.2 Attention-based MLIPs

B Details of MatRIS

C Training strategies

C.1 Load-balance strategy

C.2 Loss-balance strategy

C.3 Details of denoising pretraining

D Additional evaluation

D.1 Matbench-Discovery benchmark (non-compliant)

D.2 LAMBench benchmark

D.3 Zeolite benchmark

D.4 DPA2 test sets

D.5 MD stability evaluation

E Training details and hyper-parameters

A ADDITIONAL RELATED WORKS

A.1 EXPLICIT THREE-BODY MODELING IN MLIPS

Three-body information is important for predicting various material properties (Choudhary & De-
Cost, 2021; Choudhary et al., 2023; Zhang et al., 2025). Several MLIPs explicitly model three-
body interactions, including the ALIGNN series (Choudhary & DeCost, 2021; Choudhary et al.,
2023), DimeNet series (Gasteiger et al., 2020; 2022a), GemNet series (Gasteiger et al., 2022c;
2024), M3GNet series (Chen & Ong, 2022; Yang et al., 2024), and DPA3 (Zhang et al., 2025),
where three-body features are updated within the interaction block and then used to refine edge and
node features. MatRIS also explicitly models three-body interactions, but differs in its update and
aggregation strategy:

1. In MatRIS, three-body features are updated using an attention mechanism with O(N) com-
plexity, which improves model accuracy while maintaining computational efficiency (see
Table 4(a), Index 1 and 3).

2. During message aggregation, a learnable envelope function is used to smooth the three-
body contributions, instead of using a simple distance-based attenuation. This design yields
better performance (see Table 4(a), Index 3 and 4).

Beyond the above distinctions, MatRIS also achieves SOTA or near-SOTA performance across mul-
tiple benchmarks. Notably, on Matbench-Discovery (Riebesell et al., 2025), MatRIS-M attains accu-
racy comparable to eSEN-30M-MP but with significantly fewer parameters and substantially lower
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training cost. This demonstrates the effectiveness of combining three-body interaction modeling
with attention mechanisms for materials modeling.

A.2 ATTENTION-BASED MLIPS

Full Attention MLIPs. In potential energy surface modeling, full-attention methods have been
widely used, with representative models including DPA2 (Zhang et al., 2024), PET (Pozdnyakov &
Ceriotti, 2023), and EScAIP (Qu & Krishnapriyan, 2024). In these models, all features are concate-
nated into a message tensor of shape [natoms, neighbors, D], where D is the hidden dimension, and
updated using a full attention mechanism (Vaswani et al., 2023). This mechanism can fully leverage
information from neighboring atoms and enable feature interactions. However, due to the O(N2)
computational cost of full attention, the computation quickly becomes expensive as the system size
grows. To maintain efficiency, these MLIPs typically consider only two-body interactions.

In contrast, MatRIS employs an attention mechanism with O(N) complexity to capture both two-
body and three-body interactions. This allows MatRIS to incorporate more geometric information
and enhance the model’s expressive power while maintaining computational efficiency.

Linear-Complexity Attention MLIPs. Although there exist many MLIPs with attention mecha-
nisms of O(N) complexity, such as Equiformer (Liao & Smidt, 2023), ViSNet (Wang et al., 2024),
FreeCG (Shao et al., 2024), and MGT (Anselmi et al., 2024), we note that these architectures still
differ from MatRIS in several technical aspects.

First, Equiformer is a high-degree steerable equivariant MLIP that employs multi-layer perceptron
attention (Liao & Smidt, 2023; Brody et al., 2022) for feature encoding, with O(N) complexity,
and can support vectors of any degree L. However, unlike MatRIS, its attention mechanism is not
directly used to encode three-body interactions and only considers the source-to-target direction.

ViSNet and FreeCG belong to equivariant MLIPs. Their attention mechanisms can capture up to
four-body interactions and also have O(N) complexity. Nevertheless, their technical approaches
differ fundamentally from that of MatRIS: ViSNet and FreeCG implicitly extract and refine three-
or four-body features, without directly employing attention to encode and update such features. In
contrast, MatRIS explicitly extracts three-body features and utilizes attention mechanisms to encode
and update them.

It is also worth noting that MGT employs attention and explicitly extracts three-body features. Nev-
ertheless, its attention mechanism operates on node and edge feature updates, and relies on the
ALIGNN module (Choudhary & DeCost, 2021) to further refine three-body features. Similar to
ViSNet and FreeCG, MGT leverages attention to refine three-body features rather than directly en-
code them.

In contrast to all the above attention-based models, MatRIS introduces a separable attention mecha-
nism that explicitly models three-body interactions. Its key innovations include:

1. Dimension-wise: the attention weights vary across feature dimensions, distinguishing the
relative importance of different dimensions.

2. Separable: it considers both source-to-target and target-to-source directions, generating
separate attention weights for each direction.

3. Explicit and efficient modeling: due to its O(N) complexity, MatRIS can efficiently
and explicitly encode and update three-body features, thereby significantly enhancing the
model’s expressive power.

B DETAILS OF MATRIS

For completeness, in this section we present the details of MatRIS. Given a material graph G =
(Z,X,L), the atomic numbers are denoted as Z ∈ Rnatoms×1, the atomic positions as X ∈ Rnatoms×3,
and the lattice as L ∈ R3×3. In Graph Generation (see Figure 6), we first perform periodic
repetition, and then construct the Atom Graph Ga and the Line Graph Gl based on radial cutoffs
racut and rlcut, respectively. We typically set rlcut < racut for computational efficiency.
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Figure 6: The detail of Graph Generation.

In Feature Embedding, the atomic types zi are expanded using a learnable embedding matrix
A ∈ Rmax element×D (see Equation 5). Following Gasteiger et al. (2022b), the pairwise distances raij
of Ga are expanded with Bessel basis functions, and smoothed with a envelope function(µ(rij)) to
ensure that pairwise interactions decay smoothly to zero at the cutoff radius, as shown in Equation 6.
For the initialization of three-body interactions θijk, we follow Deng et al. (2023) and employ the
computationally simpler Fourier basis instead of spherical harmonics (we also tested spherical har-
monics but observed no change in accuracy), as shown in Equation 7. Finally, all initialized features
undergo nonlinear transformations and are projected into a higher-dimensional space.

v0i = W (ziA) + b (5)

e0ij = µ(raij) ·
√

2

ra

sin (nπra r
a
ij)

raij
(6)

a0ijk,m =


1√
π
cos[mθijk], m ∈ [0,Mmax/2],

1√
π
sin[(m−Mmax/2)θijk], m ∈ [Mmax/2 + 1,Mmax].

(7)

In the Graph Attention module, we consider the n-th layer, which contains the Atom Graph Ga

with features vni and enij , and the Line Graph Gl with features enij and θnijk. The two graphs share the
edge features enij . To fuse information between the graphs, we first update Gl and then incorporate
its output into Ga to aid atomic feature updates (see Equation 8). Specifically, enij and θnijk are input

to the ‘Line Graph Attention’ module, producing e
′(n)
ij,l and θ

′(n)
ijk . The updated edge feature e

′(n)
ij

encodes three-body interactions and is combined with vni as input to the ‘Atom Graph Attention‘
module, yielding v

′(n)
i and e

′(n)
ij .

e
′(n)
ij,l , θ

′(n)
ij ← Line Graph Attention(enij , θ

n
ij)

v
′(n)
i , e

′(n)
ij ← Atom Graph Attention(vni , e

′(n)
ij,l )

(8)

Notably, in Ga, atoms are treated as nodes and pairwise distances as edges, whereas in Gl, pairwise
distances are treated as nodes and three-body interactions as edges. Therefore, the computation of
the Line Graph Attention and Atom Graph Attention follows the same computaion, differing only
in their inputs. Here, we take the update of Ga as an example and present the detailed operations of
the Graph Attention module.

Given the input of the current attention layer, vi and eij (for simplicity, we denote vni and e
′(n)ij, l

as vi and eij), we first generate the fusion feature:

e′ij = gMLP(vi||vj ||eij) (9)

Meanwhile, eij undergoes two nonlinear transformations. It is then passed through Dim-wise Soft-
max to get the attention weights for the source and target nodes, saij and taij . These weights are
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then element-wise multiplied with e′ij and fused to produce the output of the attention layer, v′i, as
shown in the equation:

tvi =
∑

k∈N (i)

(
takj ⊙ e′kj

)
, svi =

∑
k∈N (j)

(
sakj ⊙ e′kj

)
v′i = gMLP

(
tvi∥svi

) (10)

After the Attention layer, we employ a Refinement layer to further enhance the geometric encod-
ings. In this module, we also apply a learnable envelope function to smooth the potential energy
surface. As before, we first update Gl and then Ga. Taking the update of Ga as an example, the
inputs are v′i and e′ij , and we fuse the features from the attention layer:

m
(n)
ij = gMLP(v′i||v′j ||e′ij) (11)

The fusion feature m
(n)
ij is transformed nonlinearly to yield the edge update ∆eij . For the node

update ∆vi, we first apply the learnable envelope function (Equation 12), then aggregate, and finally
apply a nonlinear transformation.

µ
(n)
ij = Linear(e0ij) (12)

∆vi = MLP(
∑

k∈N (i)

(µ
(n)
ij ⊙m

(n)
ij ))

∆eij = MLP(m(n)
ij )

(13)

In the Readout block, the final atom features v(N)
i are used to directly predict the total energy (E)

and magnetic moments (M ):
E =

∑
i

MLP(vNi ) + ref(zi)

M = MLP(vNi )

(14)

Here, ref(zi) is obtained by performing a least-squares fit to the dataset energies. The atomic forces
Fi and stress (σ) are obtained via automatic differentiation of the energy with respect to the atomic
Cartesian coordinates Xi and the lattice strain tensor (ε).

Fi = −
∂E

∂Xi
, σ =

1

V

∂E

∂ϵ
(15)

C TRAINING STRATEGIES

C.1 LOAD-BALANCE STRATEGY

In most atomic datasets, the sizes of structures typically follow a long-tailed distribution (Deng
et al., 2023; Barroso-Luque et al., 2024). Figure 7(a) visualizes the distributions of atom and edge
counts in the MPTrj dataset (cutoff radius 6.0). In distributed training, allocating samples with a
fixed batch size may cause two issues: (1) a GPU may receive only large samples, leading to out-of-
memory (OOM) and limiting the maximum batch size; (2) assuming memory allows, some GPUs
may have higher computational loads while others have lower loads, causing idle time and extra
synchronization overhead. To address this, we adopt a load balancing strategy:

1. Shuffle the entire dataset to ensure randomness, then split it into multiple chunks.
2. Within each chunk, sort samples in descending order of size.
3. Using a greedy algorithm, assign samples sequentially to GPUs, prioritizing the GPU with

the largest remaining capacity. If all GPUs are “full” or the chunk has no remaining sam-
ples, a batch is generated.

As shown in Figure 7(b), with load balancing, the cumulative speedup reaches 1.35–1.75×, indi-
cating that synchronization overhead due to load imbalance is significant during each training step.
Building on this, the global batch size can be increased (denoted as “Batch expansion”), resulting in
a cumulative speedup of 2.05–2.63×.
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Figure 7: (a)Number of atoms and edges in MPTrj dataset. (b)Training speedup achieved by load
balancing.

C.2 LOSS-BALANCE STRATEGY

Besides load imbalance during training, the loss computation can also be imbalanced. This is es-
pecially clear for the force and magmom loss(e.g., node-level tasks). For example, the MSE loss
(forces only) is defined as:

Lf =
1

3NB

NB∑
i=1

∣∣∣f pred
i − fDFT

i

∣∣∣2 (16)

where NB denotes the total number of atoms in this global batch.

This reduction method causes the losses of large samples to dominate during training, effectively
making the model prioritize large samples and resulting in a loss imbalance. To address this, we
adopt a graph-level loss reduction strategy (referred to as Graph-level loss). Specifically, when
computing node-level losses such as force or magmom, we first reduce the loss within each graph,
and then perform a second reduction across the global batch, thereby mitigating the loss imbalance.
Ablation studies in Table 4(b) demonstrate the effectiveness of this method. The corresponding
formula is as follows:

Lf =
1

B

B∑
b=1

(
1

Nb

Nb∑
i=1

∥∥∥f pred
i − fDFT

i

∥∥∥2) (17)

where B is the number of graphs in this global batch, Nb is the number of atoms in the b-th graph.

C.3 DETAILS OF DENOISING PRETRAINING

Step1: 
Atom selection

Step2: 
𝑭 projection

Step3: 
𝝈𝒕 sampling

𝝈𝒕𝝐

MatRIS

Step4: 
Noise prediction

𝑭 (projected) & 𝒕
embedding

𝑭
Gaussian 
noise(𝜖)

Figure 8: The workflow of denoising pretraining on MatRIS.

In this section, we present the denoising strategy used in our work. Several studies, such as Noisy
Node (Godwin et al., 2022) and DeNS (Liao et al., 2024a), have demonstrated that denoising can
mitigate the over-smoothing of GNNs and improve generalization. However, these methods have
restricted applicability. For example, Noisy Node must be applied to equilibrium structures, while
DeNS extends it to non-equilibrium states but is limited to equivariant neural networks. In practice,
most mainstream atomic datasets are not fully in equilibrium (Deng et al., 2023; Schmidt et al.,

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

2024; Barroso-Luque et al., 2024), and MLIPs are not necessarily equivariant GNNs. The training
of MatRIS faces this scenario. For non-equivariant GNNs on non-equilibrium structures, a key
challenge in applying denoising is how to encode forces. Inspired by Liao et al. (2024a), we project
forces onto edges to scalarize the vectors. The denoising workflow is illustrated in Figure 8.

1. Given a corruption probability, we randomly select atoms to corrupt.

2. For each corrupted atom, we project its force onto the relative position edges by computing
inner products, resulting in a scalarized force feature F (projected).

3. We sample a random timestep t and obtain the noise standard deviation σt from a linear
schedule. We then add noise as σtϵ, where ϵ is standard Gaussian noise.

4. The noisy structure, the projected force F (projected), and the timestep t are used as inputs
to the MatRIS model, which directly predicts the added Gaussian noise.

After completing the denoising training, we fine-tune the model based on these weights.

D ADDITIONAL EVALUATION

D.1 MATBENCH-DISCOVERY BENCHMARK (NON-COMPLIANT)

We report the performance of non-compliant MatRIS-10M-OAM models, all of which were ac-
cessed before September 24, 2025. In this benchmark, the training data for each model is not
restricted. We follow the setup used by most models, with pretraining on the OMat24 (Barroso-
Luque et al., 2024) dataset and joint fine-tuning with sAlex (Schmidt et al., 2024; Barroso-Luque
et al., 2024) and MPTrj (Deng et al., 2023). Results on the full, unique, and 10k most stable splits
are shown in Table 5, Table 6, and Table 7, respectively. Although MatRIS-10M-OAM has fewer
parameters than most models, it still delivers competitive performance across all splits.

Table 5: MatRIS performance on the non-compliant Matbench-Discovery benchmark with results
on full test set.

Model Param. F1↑ DAF↑ Precision↑ Recall↑ Accuracy↑ MAE↓ R2↑ RMSD↓

GRACE-2L-OAM-L 26.4M 0.862 5.093 0.874 0.851 0.953 0.022 0.856 0.064
DPA3-3M-FT 3.27M 0.864 4.912 0.843 0.887 0.952 0.022 0.862 0.069

Nequip-OAM-L 9.6M 0.870 5.060 0.868 0.872 0.955 0.022 0.858 0.065
Allegro-OAM-L 9.7M 0.873 4.876 0.837 0.912 0.954 0.021 0.861 0.065

AlphaNet-v1-OMA 4.65M 0.883 5.000 0.858 0.910 0.959 0.023 0.827 0.079
SevenNet-MF-ompa 25.7M 0.884 5.082 0.872 0.895 0.960 0.021 0.861 0.064

ORB v3 25.5M 0.887 5.159 0.885 0.888 0.961 0.023 0.820 0.075
eqV2 M 86.6M 0.896 5.243 0.900 0.893 0.965 0.020 0.842 0.069

eSEN-30M-OAM 30.2M 0.902 5.281 0.906 0.899 0.967 0.018 0.860 0.061

MatRIS-10M-OAM 10.4M 0.903 5.275 0.905 0.901 0.967 0.019 0.864 0.060

D.2 LAMBENCH BENCHMARK

We evaluated the performance of MatRIS-10M-OAM on LAMBench benchmark (Peng et al., 2025),
which mainly tests the generalizability of MLIPs. The benchmark covers test domains including
molecules, inorganic materials, and catalysis, and includes tasks such as force field prediction and
property calculation.

We first performed the force field prediction task, in which the model is evaluated on datasets from
the molecules, inorganic materials, and catalysis domains, predicting energies, forces, and virials.
For fair comparison, we selected MLIPs trained on OMat+sAlex+MPTrj as reference. The results
are reported in Table 8. Overall, MatRIS-10M-OAM achieves the best accuracy, and for molecules
and inorganic materials, it generally outperforms other models in force prediction.
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Table 6: MatRIS performance on the non-compliant Matbench-Discovery benchmark with results
on unique structure prototypes.

Model Param. F1↑ DAF↑ Precision↑ Recall↑ Accuracy↑ MAE↓ R2↑ Ksrme↓ RMSD↓

GRACE-2L-OAM-L 26.4M 0.883 5.840 0.893 0.874 0.964 0.022 0.862 0.169 0.064
DPA3-3M-FT 3.27M 0.884 5.667 0.866 0.903 0.963 0.023 0.869 0.469 0.069

Nequip-OAM-L 9.6M 0.893 5.832 0.890 0.895 0.967 0.022 0.865 0.166 0.065
Allegro-OAM-L 9.7M 0.895 5.674 0.867 0.923 0.966 0.022 0.868 0.319 0.065

AlphaNet-v1-OMA 4.65M 0.901 5.747 0.879 0.924 0.968 0.024 0.831 0.644 0.079
SevenNet-MF-ompa 25.7M 0.901 5.825 0.890 0.911 0.969 0.021 0.867 0.317 0.064

ORB v3 25.5M 0.905 5.912 0.904 0.907 0.971 0.024 0.821 0.210 0.075
eqV2 M 86.6M 0.917 6.047 0.924 0.910 0.975 0.020 0.848 1.771 0.069

eSEN-30M-OAM 30.2M 0.925 6.069 0.928 0.923 0.977 0.018 0.866 0.170 0.061

MatRIS-10M-OAM 10.4M 0.921 6.039 0.923 0.918 0.976 0.019 0.871 0.218 0.060

Table 7: MatRIS performance on the non-compliant Matbench-Discovery benchmark with results
on 10k most stable.

Model Param. F1↑ DAF↑ Precision↑ Recall↑ Accuracy↑ MAE↓ R2↑ RMSD↓

GRACE-2L-OAM-L 26.4M 0.980 6.280 0.960 1.000 0.960 0.025 0.835 0.064
DPA3-3M-FT 3.27M 0.987 6.369 0.987 1.000 0.987 0.019 0.901 0.069

Nequip-OAM-L 9.6M 0.985 6.344 0.985 1.000 0.985 0.021 0.854 0.065
Allegro-OAM-L 9.7M 0.987 6.371 0.974 1.000 0.974 0.018 0.908 0.065

AlphaNet-v1-OMA 4.65M 0.965 6.312 0.980 1.000 0.980 0.020 0.882 0.079
SevenNet-MF-ompa 25.7M 0.970 6.346 0.985 1.000 0.985 0.019 0.888 0.064

ORB v3 25.5M 0.964 6.307 0.964 1.000 0.964 0.021 0.860 0.075
eqV2 M 86.6M 0.988 6.382 0.976 1.000 0.976 0.015 0.904 0.069

eSEN-30M-OAM 30.2M 0.971 6.350 0.971 1.000 0.971 0.016 0.901 0.061

MatRIS-10M-OAM 10.4M 0.986 6.366 0.973 1.000 0.973 0.015 0.904 0.060

In addition, we also evaluated the performance on property calculation tasks, which include reac-
tion barrier prediction (OC20-NEB task), elastic constant prediction (Elastic Properties task), and
molecular conformer energy prediction (Wiggle150 task). The results are reported in Table 9. In
the OC20-NEB task, MatRIS-10M-OAM achieves competitive results, but we observe that its pre-
dictions for reaction barriers (Ea) and reaction energies (d) are worse than those of other models,
while its success rate remains relatively high. We speculate that this is because MatRIS uses MAE
to compute energy loss during training, without placing extra weight on outlier data points, which
amplifies their effect in this task; even so, the success rate is not significantly affected. In the elastic
and Wiggle150 tasks, MatRIS-10M-OAM achieves the best performance.

Overall, the cross-domain evaluation on LAMBench shows that MatRIS-10M-OAM performs con-
sistently well across both force field prediction and property calculation tasks, achieving either the
best or highly competitive results, demonstrating strong generalizability and application potential.

D.3 ZEOLITE BENCHMARK

The Zeolite Dataset (Yin et al., 2025) comprises 16 zeolite structures relevant to catalysis, ad-
sorption, and separation applications. For each type, atomic trajectories were generated via AIMD
simulations at 2000 K using VASP. We adopt the pre-partitioned training, validation, and test sets,
containing 48,000, 16,000, and 16,000 structures per zeolite, respectively. The model’s prediction
targets are the total energies and atomic forces of the systems. The results are shown in Table 10;
MatRIS achieves SOTA performance overall.

D.4 DPA2 TEST SET

We evaluate the performance of the MatRIS model on the DPA2 dataset (Zhang et al., 2024) to assess
its ability to handle small-scale datasets. This composite dataset integrates 18 domain-specific sub-
sets (e.g., Alloy, Drug, H2O, OC2M) and is generated using various DFT software packages (e.g.,
VASP, Gaussian, ABACUS), with the training data for each subset ranging from 6K to 2,000K. We
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Table 8: Summary of model performance on LAMbench (Force Field Prediction). Energy (E) RMSE
is in meV/atom, Force (F) RMSE in meV/Å, Virial (V) RMSE in meV/atom.

GRACE-2L-OAM SevenNet-MF-ompa ORBv3-mpa MatRIS-10M-OAM

E F V E F V E F V E F V

Molecules

AIMD-Chig (Wang et al., 2023) 3.1 239.8 - 3.4 247.9 - 2.4 200.2 - 2.6 200.0 -
ANI-1x (Smith et al., 2018) 32.1 365.5 - 26.1 337.7 - 20.0 247.9 - 22.1 246.1 -
MD22 (Chmiela et al., 2023) 3.5 235.9 - 4.7 238.1 - 2.8 163.9 - 2.4 161.5 -

Catalysis

Vandermause et al. (2022) 5.5 99.4 60.6 12.7 100.8 39.1 6.8 92.6 51.2 13.8 110.9 47.8
Zhang et al. (2019) 251.6 723.0 - 392.2 937.5 - 464.9 1169.4 - 609.2 963.4 -
Fernández-Villanueva et al. (2024) 3.3 131.8 - 3.0 95.6 - 2.0 86.4 - 1.8 79.0 -

Inorganic materials

Lopanitsyna et al. (2023) 55.4 294.7 200.1 55.4 268.8 226.9 56.4 324.2 198.2 61.0 257.2 212.9
Lopanitsyna et al. (2023) 70.1 309.7 243.1 69.8 265.3 235.8 71.0 330.6 242.4 75.6 261.2 251.6
Batzner et al. (2022) 0.8 111.5 - 0.7 107.9 - 0.6 103.7 - 0.6 103.4 -
Torres et al. (2019) 3.2 161.2 - 2.8 167.9 - 2.8 141.9 - 2.6 148.5 -
Gao et al. (2025) 17.8 135.7 164.1 17.7 104.8 161.1 20.4 167.4 141.4 14.9 83.9 150.1
Sours & Kulkarni (2023) 6.5 162.8 - 6.5 173.6 - 6.5 182.7 - 6.5 176.1 -

Table 9: Summary of model performance on LAMbench (Property Calculation). Metrics are lower-
is-better unless otherwise noted.

Model OC20-NEB (Wander et al., 2024) Elastic Properties Wiggle150 (Brew et al., 2025)

MAE Ea
(eV)

MAE d
(eV)

Transfer
(%) ↑

Desorption
(%) ↑

Dissociation
(%) ↑

Shear Modulus
MAE (GPa)

Bulk Modulus
MAE (GPa)

MAE
(kcal/mol)

RMSE
(kcal/mol)

GRACE-2L-OAM 1.6 0.7 65.1 90.5 72.2 9.1 7.5 12.1 14.0
SevenNet-MF-ompa 2.1 1.3 66.9 92.9 68.3 9.5 7.5 11.0 12.8

ORBv3-mpa 2.3 1.5 61.7 87.4 72.2 9.7 7.6 11.9 12.9

MatRIS-10M-OAM 4.0 3.6 64.6 90.6 69.0 8.8 6.4 9.5 10.6

evaluate MatRIS-M using the same training configurations and maintain consistency with the train-
ing and test sets as in Zhang et al. (2024) to ensure comparability. More detailed hyper-parameters
are reported in Table 12.

All results are summarized in Table 11, with benchmark data for other models taken from Zhang
et al. (2024; 2025). Overall, MatRIS-M achieves better accuracy in both energy and force predic-
tions, demonstrating its robustness across diverse domains. Notably, however, eqV2 and GemNet-
OC exhibit lower force errors than MatRIS in certain systems. This advantage likely stems from
their non-conservative force prediction, where energy and forces are fitted separately at the expense
of physical consistency.

D.5 MD STABILITY EVALUATION

We assessed the stability of MatRIS by examining energy conservation in MD simulations under the
NVE ensemble (microcanonical ensemble), using energy drift and thermostatted stability as eval-
uation metrics. The test data were taken from LAMBench (Peng et al., 2025), including organic
molecules and inorganic material systems, which are out-of-distribution for MatRIS-M trained on
MPTrj dataset. For each system, atomic velocities were first randomly initialized at 300 K using the
Maxwell-Boltzmann distribution. Subsequently, MD simulations were performed in the NVE en-
semble for 80 ps with a 1 fs time step. Figure 9 shows the results of the MD simulations. MatRIS-M
is able to conserve energy over long simulations, with both the total energy and the kinetic temper-
ature fluctuating around their initial values, and no large drifts are observed.

E TRAINING DETAILS AND HYPER-PARAMETERS

We summarize the hyperparameters of the models across different datasets and versions in Table 12.
For the MPTrj dataset, we experimented with models of different sizes by varying the number of
layers (S, M, and L correspond to 4, 6, and 10 layers, respectively). The learning rate follows a
cosine annealing schedule, decaying to the minimum value at the last epoch. In distributed training,
we implemented a load balancing scheme to reduce synchronization overhead (see Section C.1), so
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Table 10: MatRIS performance on Zeolite dataset. Energy(E) MAE is in meV, force(F) MAE is in
meV/Å.

Deep Pot AlphaNet DPA3-L24 MatRIS-M

Type E F E F E F E F
ABWopt 90 90 12 19 13.7 19.1 3.4 6.8
BCTopt 110 50 6.8 12 6.8 12.0 3.0 4.9
BPHopt 210 60 29 16 28.6 16.5 39.2 8.3
CANopt 150 90 18 15 17.3 15.1 10.2 6.5
EDIopt 40 50 8.7 13.5 10.8 15.1 3.6 6.2
FERopt 290 130 43 28 41.6 25.4 30.6 11.9
GISopt 60 50 11 11 12.1 11.8 6.2 5.8
JBWopt 150 70 10 13 9.7 12.4 4.0 5.9
LOSopt 110 70 21 12 21.0 13.1 17.9 6.5
LTAopt 150 64 19 12 21.3 13.5 20.5 7.0
LTJopt 70 110 15 11 13.4 11.2 14.4 6.7
NATopt 210 110 16 15 17.2 15.6 8.0 7.4
PARopt 90 70 18 24 21.4 24.2 9.5 6.8
PHIopt 60 120 20 14 19.6 14.4 15.9 7.5
SODopt 200 110 9.5 12 11.0 13.4 4.4 5.7
THOopt 160 60 17 15 20.2 16.9 7.5 8.0

Table 11: MatRIS performance on DPA2 test sets from Zhang et al. (2024). Energy (E) RMSE
is in meV/atom, force (F) RMSE is in meV/Å. ‘OOM’ indicates an Out-Of-Memory error. ‘NC’
indicates that the model employs a non-conservative force prediction.

GemNet-OCNC NequIP MACE eqV2NC DPA3-L24 MatRIS-M

Dataset Size E F E F E F E F E F E F

Alloy 71K 14.3 85.1 44.0 175.6 16.2 190.2 8.5 62.7 7.1 99.2 5.8 96.2
Cathode-P 59K 1.5 17.9 14.3 69.8 2.6 37.8 1.1 14.9 0.6 18.6 0.3 11.9
Cluster-P 139K 47.7 69.6 75.1 216.6 41.3 189.7 34.6 104.4 29.3 118.3 12.8 113.9

Drug 1380K 40.5 93.6 21.6 187.2 - - 29.8 807.4 5.5 54.2 1.4 39.7
FerroEle-P 7K 1.5 17.9 1.1 23.0 2.3 31.7 1.1 13.0 0.3 13.4 0.2 10.9

OC2M 2000K 25.0 129.1 97.4 226.1 - - 6.7 45.2 9.0 128.0 5.9 77.9
SSE-PBE-P 15K 2.7 8.2 1.6 41.1 1.8 29.9 OOM OOM 0.5 19.8 0.3 11.4
SemiCond 137K 8.0 94.4 20.5 180.7 12.7 182.8 3.9 40.8 3.4 108.3 2.7 95.0
H2O-PD 46K OOM OOM 0.9 27.1 79.9 29.7 OOM OOM 0.4 13.7 0.3 10.7

Ag∪Au-PBE 17K 106.0 8.0 42.3 43.8 369.1 34.5 23.4 4.4 1.1 10.9 2.5 10.7
Al∪Mg∪Cu 24K 5.9 9.4 38.0 48.3 7.7 42.9 1.9 5.7 2.0 13.0 1.2 15.9

Cu 15K 6.1 5.8 6.2 16.7 38.8 13.6 1.7 3.8 1.7 7.2 0.5 6.1
Sn 6K 8.4 33.7 18.2 62.2 - - 5.2 19.6 2.9 49.8 2.3 45.9
Ti 10K 44.5 87.9 27.6 137.4 8.3 94.2 19.1 48.6 4.1 91.7 3.3 80.2
V 15K 17.9 79.3 8.8 91.6 14.2 140.4 5.6 47.4 2.8 71.8 1.9 62.9
W 42K 79.1 81.2 20.8 160.4 15.6 181.2 46.8 51.3 2.5 83.3 1.9 66.3

C12H26 34K 125.8 518.7 121.4 715.6 81.9 802.3 123.1 907.4 42.4 541.6 19.5 287.6
HfO2 28K 1.2 16.1 1.5 58.8 2.3 14.7 1.0 9.1 1.4 28.9 0.3 14.6

the number of samples per GPU may vary; the table reports the average global batch size. Notably,
the loss reduction in distributed training is performed using a graph-level scheme to avoid bias
toward larger systems (see Section C.2). Additionally, for the Matbench-Discovery benchmark, we
pre-trained the MatRIS-M and L models with a denoising process to enhance generalization, with
details in Section C.3.
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(a) C3N2H5 (b) H7C4NO (c) NdPd3

Figure 9: NVE MD simulations of three systems using MatRIS-M. The top row shows the energy
drift, and the bottom row shows the time series for the kinetic temperature.

Table 12: Hyper-parameters for MatRIS variants reported in this paper. In MatRIS-OAM, values
outside parentheses denote the OMat configuration, those in parentheses the sAlex+MPTrj fine-
tuning configuration, and values without parentheses are shared.

Hyper-parameters MPTrj-S MPTrj-M MPTrj-L MatRIS-OAM SPICE-M MatPES-1.4M Others

Number of MatRIS layers 4 6 10 10 6 3 6
Dimension of atom features 128 128 128 128 128 64 128
Dimension of edge features 128 128 128 128 128 64 128

Dimension of three-body features 128 128 128 128 128 64 128
Radial basis function Bessel Bessel Bessel Bessel Bessel Bessel Bessel

Number of radial basis functions 7 7 7 7 7 7 7
Pairwise cutoff 6.0 6.0 6.0 6.0 6.0 6.0 6.0

Three-body cutoff 4.0 4.5 4.5 4.5 4.0 4.0 4.0
Global batch size (avg) 512 512 320 512(320) 128 64 1/256

Optimizer AdamW AdamW AdamW AdamW AdamW Adam AdamW
Weight decay 1e-2 1e-2 1e-2 1e-3 1e-3 0.0 1e-3

Maximum Learning rate 5e-4 3e-4 3e-4 3e-4(1e-4) 3e-4 3e-4 3e-4
Minimum Learning rate 5e-6 3e-6 3e-6 3e-6(1e-6) 3e-6 3e-6 3e-6
Learning rate scheduling CosLR CosLR CosLR CosLR CosLR CosLR CosLR

Number of epochs 30 40 100 4(8) 200 30 100
Loss function Huber(δ=0.01) Huber(δ=0.01) MAE / L2MAE MAE / L2MAE Huber(δ=0.01) MAE Huber(δ=0.01)

Gradient clipping norm 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Energy loss prefactor 5 5 5 5 5 5 5
Force loss prefactor 5 5 5 5 5 5 5
Stress loss prefactor 0.1 0.1 0.1 0.1 - 0.1 0.1

Magmom loss prefactor 0.1 0.1 0.1 0.1 - 0.1 -

Denoising Settings

Corruption probability - 100% 100% - - - -
Maximum number of steps - 1000 1000 - - - -

Maximum sigma - 1.0 1.0 - - - -
Minimum sigma - 0.0 0.0 - - - -
Noise Schedule - Linear Linear - - - -

Number of epochs - 20 20 - - - -
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