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ABSTRACT

The large pre-trained BERT has achieved remarkable performance on Natural
Language Processing (NLP) tasks but is also computation and memory expen-
sive. As one of the powerful compression approaches, binarization extremely
reduces the computation and memory consumption by utilizing 1-bit parame-
ters and bitwise operations. Unfortunately, the full binarization of BERT (i.e.,
1-bit weight, embedding, and activation) usually suffer a significant performance
drop, and there is rare study addressing this problem. In this paper, with the
theoretical justification and empirical analysis, we identify that the severe perfor-
mance drop can be mainly attributed to the information degradation and optimiza-
tion direction mismatch respectively in the forward and backward propagation,
and propose BiBERT, an accurate fully binarized BERT, to eliminate the per-
formance bottlenecks. Specifically, BiBERT introduces an efficient Bi-Attention
structure for maximizing representation information statistically and a Direction-
Matching Distillation (DMD) scheme to optimize the full binarized BERT accu-
rately. Extensive experiments show that BiBERT outperforms both the straight-
forward baseline and existing state-of-the-art quantized BERTs with ultra-low bit
activations by convincing margins on the NLP benchmark. As the first fully bina-
rized BERT, our method yields impressive 56.3× and 31.2× saving on FLOPs and
model size, demonstrating the vast advantages and potential of the fully binarized
BERT model in real-world resource-constrained scenarios.

1 INTRODUCTION
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Figure 1: Accuracy vs.
FLOPs & size. Our
BiBERT enjoys most
computation and storage
savings while surpassing
SOTA quantized BERTs
on GLUE benchmark
with low bit activation.

Recently, the pre-trained language models have shown great power in
various natural language processing (NLP) tasks (Wang et al., 2018a;
Qin et al., 2019; Rajpurkar et al., 2016). In particular, BERT (De-
vlin et al., 2018) significantly improves the state-of-the-art performance,
while the massive parameters hinder their widespread deployment on
edge devices in the real world. Therefore, model compression has been
actively studied to alleviate resource constraint issues, including quan-
tization (Shen et al., 2020; Zafrir et al., 2019), distillation (Jiao et al.,
2020; Xu et al., 2020), pruning (McCarley et al., 2019; Gordon et al.,
2020), parameter sharing (Lan et al., 2020), etc. Among them, quan-
tization emerges as an efficient way to obtain the compact model by
compressing the model parameters to lower bit-width representation,
such as Q-BERT (Shen et al., 2020), Q8BERT (Zafrir et al., 2019), and
GOBO (Zadeh et al., 2020). However, the representation limitation and optimization difficulties
come as a consequence of applying discrete quantization, triggering severe performance drop in
quantized BERT. Fortunately, distillation becomes a common remedy in quantization as an auxil-
iary optimization approach to tackle the performance drop, which encourages the quantized BERT
to mimic the full-precision model to exploit knowledge in teacher’s representation (Bai et al., 2020).

As the quantization scheme with the most aggressive bit-width (Zhou et al., 2016; Wang et al.,
2018b; Xu et al., 2021), full binarization of BERT (i.e., 1-bit weight, word embedding, and ac-
∗ equal contribution � corresponding author
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Figure 2: Overview of our BiBERT, applying Bi-Attention structure for maximizing representation
information and Direction-Matching Distillation (DMD) scheme for accurate optimization.

tivation) further allows the model to utilize extremely compact 1-bit parameters and efficient bit-
wise operations, which can largely promote the applications of BERT on edge devices in the real
world (Wang et al., 2021; Liu et al., 2018). However, although the BERT quantization equipped
with distillation has been studied, it is still a significant challenge to binarize BERT to extremely
1-bit, especially for its activation. Compared with the weight and word embedding in BERT, the
binarization of activation brings the most severe drop, and the model even crashes in NLP tasks. So
far, previous studies have pushed down the weight and word embedding to be binarized (Bai et al.,
2020), but none of them have ever achieved to binarize BERT with 1-bit activation accurately.

Therefore, we first build a fully binarized BERT baseline, a straightforward yet effective solution
based on common techniques. Our study finds that the performance drop of BERT with binarized
1-bit weight, activation, and embedding (called fully binarized BERT) comes from the informa-
tion degradation of the attention mechanism in the forward propagation and the optimization direc-
tion mismatch of distillation in the backward propagation. First, the attention mechanism makes
BERT focus selectively on parts of the input and ignore the irrelevant content (Vaswani et al., 2017;
Chorowski et al., 2015; Wu et al., 2016). While our analysis shows that direct binarization leads
to the almost complete degradation of the information of attention weight (Figure 4), which results
in the invalidation of the selection ability for attention mechanism. Second, the distillation for the
fully binarized BERT baseline utilizes the attention score, the direct binding product of two bina-
rized activations. However, we show that it causes severe optimization direction mismatch since the
non-neglectable error between the defacto and expected optimization direction (Figure 5).

This paper provides empirical observations and theoretical formulations of the above-mentioned
phenomena, and proposes a BiBERT to turn the full-precision BERT into the strong fully binarized
model (see the overview in Figure 2). To tackle the information degradation of attention mechanism,
we introduce an efficient Bi-Attention structure based on information theory. Bi-Attention applies
binarized representations with maximized information entropy, allowing the binarized model to re-
store the perception of input contents. Moreover, we developed the Direction-Matching Distillation
(DMD) scheme to eliminate the direction mismatch in distillation. DMD takes appropriate activation
and utilizes knowledge from constructed similarity matrices in distillation to optimize accurately.

Our BiBERT, for the first time, presents a promising route towards the accurate fully binarized BERT
(with 1-bit weight, embedding, and activation). The extensive experiments on the GLUE (Wang
et al., 2018a) benchmark show that our BiBERT outperforms existing quantized BERT models with
ultra-lower bit activation by convincing margins. For example, the average accuracy of BiBERT ex-
ceeds 1-1-1 bit-width BinaryBERT (1-bit weight, 1-bit embedding and 1-bit quantization) by 20.4%
accuracy on average, and even better than 2-8-8 bit-width Q2BERT by 13.3%. Besides, we highlight
that our BiBERT gives impressive 56.3× and 31.2× saving on FLOPs and model size, respectively,
which shows the vast advantages and potential of the fully binarized BERT model in terms of fast
inference and flexible deployment in real-world resource-constrained scenarios (Figure 1). Our code
is released at https://github.com/htqin/BiBERT.

2 BUILDING A FULLY BINARIZED BERT BASELINE

First of all, we build a baseline to study the fully binarized BERT since it has never been proposed
in previous works. A straightforward solution is to binarize the representation in BERT architecture
in the forward propagation and apply distillation to the optimization in the backward propagation.
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2.1 BINARIZED BERT ARCHITECTURE

We give a brief introduction to the architecture of binarized BERT. In general, the forward and
backward propagation of sign function in binarized network can be formulated as:

Forward: sign(x) =

{
1 if x ≥ 0

−1 otherwise
, Backward:

∂C

∂x
=

{
∂C

∂ sign(x) if |x| ≤ 1

0 otherwise
, (1)

where C is the cost function for the minibatch. sign function is applied in the forward propagation
while the straight-through estimator (STE) (Bengio et al., 2013) is used to obtain the derivative in
the backward propagation. As for the weight of binarized linear layers, the common practice is to
redistribute the weight to zero-mean for retaining representation information (Rastegari et al., 2016;
Qin et al., 2020) and applies scaling factors to minimize quantization errors (Rastegari et al., 2016).
The activation is binarized by the sign without re-scaling for computational efficiency. Thus, the
computation can be expressed as

bi-linear(X) = αw(sign(X)⊗ sign(W − µ(W))), αw =
1

n
‖W‖`1, (2)

where W and X denote full-precision weight and activation, µ(·) denotes the mean value, αw is the
scaling factors for weight, and ⊗ denotes the matrix multiplication with bitwise xnor and bitcount
as presented in Appendix A.4.

The input data first passes through a binarized embedding layer before being fed into the trans-
former blocks (Zhang et al., 2020; Bai et al., 2020). And each transformer block consists of two
main components: Multi-Head Attention (MHA) module and Feed-Forward Network (FFN). The
computation of MHA depends on queries Q, keys K and values V, which are derived from hidden
states H ∈ RN×D. N represents the length of the sequence, and D represents the dimension of
features. For a specific transformer layer, the computation in an attention head can be expressed as

Q = bi-linearQ(H), K = bi-linearK(H), V = bi-linearV (H), (3)

where bi-linearQ,bi-linearK ,bi-linearV represent three different binarized linear layers for
Q,K,V respectively. Then we compute the attention score A as follow:

A =
1√
D

(
BQ ⊗BK

>
)
, BQ = sign(Q), BK = sign(K), (4)

where BQ and BK are the binarized query and key, respectively. Note that the obtained attention
weight is then truncated by attention mask, and each row in A can be regarded as a k-dim vector,
where k is the number of unmasked elements. Then we binarize the attention weights Bs

A as

Bs
A = sign(softmax(A)). (5)

We follow original BERT architecture to carry on the rest of MHA and FFN in the binarized network.

2.2 DISTILLATION FOR BINARIZED BERT

Distillation is a common and essential optimization approach to alleviate the performance drop of
quantized BERT under ultra-low bit-width settings, which can be unobstructedly applied for any
architectures to utilize the knowledge of a full-precision teacher model (Jiao et al., 2020; Bai et al.,
2020; Zhang et al., 2020; Wang et al., 2020). The usual practice is to distill the attention score ATl,
MHA output MTl, and hidden states HTl in a layerwise manner from the full-precision teacher
network, and transfer to the binarized student counterparts, i.e., Al, Ml, Hl (l = 1, ..., L, where L
represents the number of transformer layers), respectively. We use the mean squared errors (MSE)
as loss function to measure the difference between student and teacher networks for corresponding
features:

`att =

L∑
l=1

MSE(Al,ATl), `mha =

L∑
l=1

MSE(Ml,MTl), `hid =

L∑
l=1

MSE(Hl,HTl). (6)

Then the prediction-layer distillation loss is conducted by minimizing the soft cross-entropy (SCE)
between teacher logits yT and student logits y. The objective function is expressed as

`distill = `att + `mha + `hid + `pred, `pred = SCE (y,yT ) . (7)
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Figure 3: Analysis of bottlenecks from architecture and optimization perspectives. We report the
accuracy of binarized BERT on SST-2 and QQP tasks about (a) replace full-precision structure, (b)
exclude one distillation knowledge.

3 THE RISE OF BIBERT

Although we can build a fully binarized BERT baseline and its training pipeline with common
techniques, the performance is still of major concern. Our study shows that the baseline suffers
an immense information degradation of attention mechanism in the forward propagation and severe
optimization direction mismatch in the backward propagation. To solve these problems, in this
section, we propose the BiBERT with theoretical and experimental justifications.

3.1 BOTTLENECKS OF FULLY BINARIZED BERT BASELINE

Intuitively, in the fully binarized BERT baseline, the information representation capability largely
depends on structures of architecture, such as attention, which is severely limited due to the binarized
parameters, and the discrete binarization also makes the optimization more difficult. This means the
bottlenecks of the fully binarized BERT baseline come from architecture and optimization for the
forward and backward propagation, respectively.

From the architecture perspective, we observe the accuracy drop caused by binarizing single
structure by replacing it with a full-precision counterpart as Figure 3(a) shows. We find that binariz-
ing MHA brings the most significant drop of accuracy among all parts of the BERT, up to 11.49%
(full-precision 89.09% vs. binarized 77.60%) and 11.72% on SST-2 and QQP, respectively. While
binarizing FFN and pooler layers brings less harm to the accuracy. Binarization of intermediate or
output layer only brings 2.19% and 5.52% drop on SST-2, and binarization of pooler layer only
causes 0.82%. Same results can be seen on QQP. Thus, improving the attention structure is the
highest priority to solve the accuracy drop of binarized BERT.

From the optimization perspective, we eliminate each distillation term to demonstrate the benefits
it brings in Figure 3(b). The results show that for most distillation terms, solely removing them in
the distillation will harm the performance, e.g., removing the distillation of hidden states leads to
0.11% and 1.62% drop on SST-2 and QQP, and removing that of MHA outputs decrease the model
accuracy to 73.24% (4.36% drop) on SST-2. However, when the distillation loss of attention score
is removed, the performance increases 0.81% and 1.10% on SST-2 and QQP respectively. These
observations inspire us to rethink the distillation of fully binarized BERT. It requires a new design
that could utilize the full-precision teacher’s knowledge better.

Based on the above experimental observations, we find that (1) the existing attention structure should
NOT be directly applied in fully binarized BERT and (2) the distillation for the attention score in
fully binarized BERT is actually harmful, which is contrary to the practice of many existing works.
Thus in this paper, we first present the theoretical derivation of these two phenomena and then
propose a well-designed attention structure and a novel distillation scheme for fully binarized BERT.

3.2 BI-ATTENTION

To address the information degradation of binarized representations in the forward propagation, we
propose an efficient Bi-Attention structure based on information theory, which statistically maxi-
mizes the entropy of representation and revives the attention mechanism in the fully binarized BERT.

3.2.1 INFORMATION DEGRADATION IN ATTENTION STRUCTURE

Since the representations (weight, activation, and embedding) with extremely compressed bit-width
in fully binarized BERT have limited capabilities, the ideal binarized representation should preserve
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(a) Full-precision (c) BiBERT (Ours)(b) Fully binarized BERT baseline

Figure 4: Attention-head view for (a) full-precision BERT, (b) fully binarized BERT baseline,
and (c) BiBERT for same input. BiBERT with Bi-Attention shows similar behavior with the full-
precision model, while baseline suffers indistinguishable attention for information degradation. The
visualization tools is adapted from (Vig, 2019).

the given full-precision counterparts as much as possible, which means the mutual information be-
tween binarized and full-precision representations should be maximized. When the deterministic
sign function is applied to binarize BERT, the goal is equivalent to maximizing the information
entropyH(B) of binarized representation B (Messerschmitt, 1971), which is defined as

H(B) = −
∑
B

p(B) log p(B), (8)

whereB ∈ {−1, 1} is the random variable sampled from B with probability mass function p. There-
fore, the information entropy of binarized representation should be maximized to better preserve the
full-precision counterparts and let the attention mechanism function well. The application of zero-
mean pre-binarized weight in binarized linear layers is a representative practice that maximizes the
information of binarized weight and activation (as in Section 2.1). The related discussion and proof
is shown in Appendix A.1.

As for the attention structure in full-precision BERT, the normalized attention weight obtained by
softmax is essential. But direct application of binarization function causes a complete information
loss to binarized attention weight. Specifically, since the softmax(A) is regarded as following a
probability distribution, the elements of Bs

A are all quantized to 1 (Figure 4(b)) and the information
entropyH(Bs

A) degenerates to 0. A common measure to alleviate this information degradation is to
shift the distribution of input tensors before applying the sign function, which is formulated as

B̂s
A = sign (softmax(A)− τ) , (9)

where the shift parameter τ , also regarded as the threshold of binarization, is expected to maximize
the entropy of the binarized B̂s

A and is fixed during the inference.

Theorem 1. Given A ∈ Rk with Gaussian distribution and the variable B̂s
A generated by

B̂A
w = sign(softmax(A) − τ), the threshold τ , which maximizes the information entropy H(B̂s

A),
is negatively correlated to the number of elements k.

However, Theorem 1 shows that it is hard to statistically determine τ to maximize the information
entropy of binarized counterparts for the attention weight masked by the changeable length of atten-
tion mask. This fact means that common measure for maximizing information (as in binarized linear
layers) fails in the binarized attention structure. The proof of Theorem 1 is shown in Appendix A.2.

Moreover, the attention weight obtained by the sign function is binarized to {−1, 1}, while the
original attention weight has a normalized value range [0, 1]. The negative value of attention weight
in the binarized architecture is contrary to the intuition of the existing attention mechanism and is
also empirically proved to be harmful to the attention structure in Appendix C.2.

3.2.2 BI-ATTENTION FOR MAXIMUM INFORMATION ENTROPY

To mitigate the information degradation caused by binarization in the attention mechanism, we
introduce an efficient Bi-Attention structure for fully binarized BERT, which maximizes information
entropy of binarized representations statistically and applies bitwise operations for fast inference.

We first maximize the information entropy H(B̂s
A). The analysis in Section 3.2.1 shows that it is

hard to statistically obtain a fixed mean-shift τ for softmax(A) that maximizes the entropy of the
binarized parameters. Fortunately, since both softmax and sign functions are order-preserving, there
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is a threshold φ(τ,A) to maximize Entropy sign(A− φ(τ,A)), which is equivalent to maximizing
the information entropy of B̂s

A in Eq. (9) (as the Proposition 2 proved in the Appendix A.6).
Theorem 2. When the binarized query BQ = sign(Q) ∈ {−1, 1}N×D and key BK = sign(K) ∈
{−1, 1}N×D are entropy maximized in binarized attention, the probability mass function of each
element Aij , i, j ∈ [1, N ] sampled from attention score A = BQ ⊗ BK

> can be represented as
pA(2i−D) = 0.5DCiD, i ∈ [0, D], which approximates the Gaussian distribution N (0, D).

Theorem 2 shows that the distribution of A approximates the Gaussian distribution N (0, D) and is
distributed symmetrically, we can thus trivially get that φ(τ,A) = 0. The detailed proof is given
in Appendix A.3. Therefore, simply binarizing the attention score A can maximize the information
entropy of binarized representation.

Then, to revive the attention mechanism to capture crucial elements, here we are inspired by hard
attention (Xu et al., 2015) to binarize the attention weight into the Boolean value, while our design
is driven by information entropy maximization. In Bi-Attention, we use bool function to binarize
the attention score A, which is defined as

bool(x) =

{
1, if x ≥ 0

0, otherwise
,

∂ bool(x)

∂x
=

{
1, if |x| ≤ 1

0, otherwise.
(10)

By applying bool(·) function, the elements in attention weight with lower value are binarized to
0, and thus the obtained entropy-maximized attention weight can filter the crucial part of elements.
And the proposed Bi-Attention structure is finally expressed as

BA = bool (A) = bool

(
1√
D

(
BQ ⊗BK

>
))

, (11)

Bi-Attention(BQ,BK,BV) = BA �BV, (12)
where BV is the binarized value obtained by sign(V), BA is the binarized attention weight, and
� is a well-designed Bitwise-Affine Matrix Multiplication (BAMM) operator composed by ⊗ and
bitshift to align training and inference representations and perform efficient bitwise calculation.
The detailed of BAMM is illustrated as Figure 7 in Appendix A.4.

In a nutshell, in our Bi-Attention structure, the information entropy of binarized attention weight is
maximized (as Figure 4(c) shows) to alleviate its immense information degradation and revive the
attention mechanism. Bi-Attention also achieves greater efficiency since the softmax is excluded.

3.3 DIRECTION-MATCHING DISTILLATION

To address the direction mismatch occurred in fully binarized BERT baseline in the backward propa-
gation, we further propose a Direction-Matching Distillation (DMD) scheme with apposite distilled
activations and the well-constructed similarity matrices to effectively utilize knowledge from the
teacher, which optimizes the fully binarized BERT more accurately.

3.3.1 DIRECTION MISMATCH

As an optimization technique based on element-level comparison of activation, distillation allows the
binarized BERT to mimic the full-precision teacher model about intermediate activation. However,
we find that the distillation causes direction mismatch for optimization in the fully binarized BERT
baseline (Section 3.1), leading to insufficient optimization and even harmful effects.

Eq. (6) shows that, the distillation for attention score A in a specific layer can be expressed as
MSE(A,AT ), where A and AT are attention scores in binarized student BERT and full-precision
teacher BERT, respectively. Since the attention score in fully binarized BERT is obtained by multi-
plying binarized query BQ and key BK, the loss `att can be expressed as:

`att = MSE

(
1√
D
BQ ⊗BK

>,
1√
D
QT ×K>T

)
. (13)

Theorem 3. Given the variables X and XT followN (0, σ1),N (0, σ2) respectively, the proportion
of optimization direction error is defined as perrorQ-bit = p(sign(X−XT ) 6= sign(quantizeQ(X)−
XT )), where quantizeQ denotes the Q-bit symmetric quantization. As Q reduces from 8 to 1,
perrorQ-bit becomes larger.
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Theorem 4 shows that the distillation for binarized activation based
on the numerical comparison with full-precision activation causes the
most severe optimization direction error among all bit-widths. For
example, for activation following the assumption of standard normal
distribution, the error probability caused by 1-bit binarization is ap-
proximately 4.4× that of 4-bit quantization (14.4% vs. 3.3%). The
sudden increase in the probability of optimization direction mismatch
makes it a critical issue in the fully binarized BERT while neglected
in the previous BERT quantization studies. The proof and discussion
of Theorem 4 is found in Appendix A.5.

Since the attention score is obtained by direct multiplication of two
binarized activations (binarized query BQ and key BQ) , its distil-
lation is also misled by the direction mismatch. In Figure 5(a), the
direction mismatch in the distillation of attention score is common
and severe, even causes up to higher degree optimization on the mis-
match direction (mismatch 0.64 vs. match 0.45 on average). The
phenomenon in Figure 5 reveals that the element-wise gradient direc-
tion error for binarized activation found in Theorem 4 accumulates
in the distillation of the attention score and eventually causes a sig-
nificant mismatch between the direction of overall optimization and
that of the distillation loss. Hence, the direction mismatch hinders the
accurate optimization of the fully binarized BERT.

Second, the activation scales in the fully binarized student and full-precision teacher BERT are
significantly different, e.g., A in fully binarized BERT approximately follows the fixed distribution
N (0, D) while that of AT in full-precision teacher is flexible. Applying the discrete binarization
function also makes numerical changes of activation more significant. These problems for activation
also hinder effective distillation for the fully binarized BERT.

3.3.2 DIRECTION-MATCHING DISTILLATION FOR ACCURATE OPTIMIZATION

To solve the optimization direction mismatch in the distillation of the BERT full binarization, we
propose the Direction-Matching Distillation (DMD) method in BiBERT.

We first reselect the distilled activations for DMD. As discussed in Section 3.3.1, severe direction
mismatch is mainly caused by the distillation of the direct binding product of two binarized acti-
vations. Thus, we distill the upstream query Q and key K instead of attention score in our DMD
for distillation to utilize its knowledge while alleviating direction mismatch. Moreover, inspired
by an observation in Section 3.1 that the distillation of MHA output is of great help for improving
performance, we also distill the value V to further cover all the inputs of MHA.

Then, we construct similarity pattern matrices for distilling activation, which can be expressed as

PQ =
Q×Q>

‖Q×Q>‖
, PK =

K×K>

‖K×K>‖
, PV =

V ×V>

‖V ×V>‖
, (14)

where ‖ · ‖ denotes `2 normalization. Previous work shows that matrices constructed in this way are
regarded as the specific patterns reflecting the semantic comprehension of network (Tung & Mori,
2019; Martinez et al., 2020). We further find that matrices are also scale-normalized and stable
numerically since they focus more on endogenous relative relationships and thus are suitable for
distillation between binarized and full-precision networks. The corresponding PQT ,PKT ,PVT

are constructed in the same way by the teacher’s activation. The distillation loss is expressed as:

`distill = `DMD + `hid + `pred, `DMD =
∑
l∈[1,L]

∑
F∈FDMD

‖PFl −PFTl‖, (15)

where L denotes the number of transformer layers, FDMD = {Q,K,V}. The loss term `hid is
constructed as the `2 normalization form, and `pred is still constructed as in Eq. (7).

Our DMD scheme first provides the matching optimization direction (Figure 5(b)) by reselecting
appropriate distilled parameters and then constructs similarity matrices to eliminate scale differences
and numerical instability, thereby improves fully binarized BERT by accurate optimization.
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4 EXPERIMENTS

In this section, we conduct extensive experiments to validate the effectiveness of our proposed BiB-
ERT for efficient learning on the multiple architectures and the GLUE (Wang et al., 2018a) bench-
mark with diverse NLP tasks. We first conduct an ablation study on four tasks (SST-2, MRPC,
RTE, and QQP) for BiBERT on BERTBASE (12 hidden layers) architecture (Devlin et al., 2019) to
showcase the benefits of the Bi-Attention structure and DMD scheme separately. Then we compare
BiBERT with the state-of-the-art (SOTA) quantized BERTs in terms of accuracy on BERTBASE. Our
designs stand out among fully binarized BERTs and even outperform some quantized models with
more bit-width parameters. We also evaluate our BiBERT on TinyBERT6L (6 hidden layers) and
TinyBERT4L (4 hidden layers) (Jiao et al., 2020), and BiBERT on these compact architectures even
outperforms existing methods on BERTBASE. In terms of efficiency, our BiBERT achieves an im-
pressive 56.3× and 31.2× saving on FLOPs and model size. The detailed experimental setup and
implementations are given in Appendix B.

4.1 ABLATION STUDY Table 1: Ablation study.
Quant #Bits DASST-2MRPCRTEQQP

Full Precision 32-32-32 – 93.2 86.3 72.2 91.4

Baseline 1-1-1 % 77.6 70.2 54.1 73.2
Bi-Attention 1-1-1 % 82.1 70.5 55.6 74.9
DMD 1-1-1 % 79.9 70.5 55.2 75.3
BiBERT (ours) 1-1-1 % 88.7 72.5 57.4 84.8

Baseline 1-1-1 ! 84.0 71.4 50.9 -
Bi-Attention 1-1-1 ! 85.6 73.2 53.1 -
DMD 1-1-1 ! 85.3 72.5 56.3 -
BiBERT (ours) 1-1-1 ! 90.9 78.8 61.0 -

As shown in Table 1, the fully binarized BERT baseline suffers
a severe performance drop on SST-2, MRPC, RTE and QQP
tasks. Bi-Attention and DMD can improve the performance
when used alone, and the two techniques further boost the per-
formance considerably when combined together. To conclude,
the two techniques can promote each other to improve BiB-
ERT and close the performance gap between fully binarized
BERT and full-precision counterpart.

4.2 COMPARISON WITH SOTA METHODS

We compare our BiBERT with the SOTA BERT quantization methods under ultra-low bit-width in
terms of accuracy and efficiency, to fully demonstrate the advantages of our design.

Accuracy Performance. In Table 2 and Table 3, we show experiments on the BERTBASE (as de-
fault), TinyBERT6L, and TinyBERT4L architectures and the GLUE benchmark with or without data
augmentation. Since the MNLI and QQP have large data volume and it brings little benefits for the
performance to apply data augmentation, we do not apply augmentation for these two tasks, thus
they are excluded in Table 3. Results show that BiBERT outperforms other methods on the devel-
opment set of GLUE benchmark, including TernaryBERT, BinaryBERT, Q-BERT, and Q2BERT.

Table 2 shows the results on the GLUE benchmark without data augmentation. Our BiBERT sur-
passes existing methods on BERTBASE architecture by a wide margin in the average accuracy, and
first achieves convergence under ultra-low bit activation on some tasks, such as CoLA, MRPC,
and RTE. While under ultra-low bit activation, the accuracy of TernaryBERT and BinaryBERT de-
creases severely which also does not improve under the 2-2-2 setting (about 4× FLOPs and 2×
storage usage increase). On some specific tasks like MRPC, higher bit-widths and consumption did
not even make TernaryBERT and BinaryBERT converge. In addition, BiBERT surpasses the fully
binarized baseline50% and BinaryBERT50% (maximizing the information entropy by the 50% quan-
tile threshold) and other strengthened baselines, we present detailed discussion in Appendix C.1.
With data augmentation, BiBERT achieves comparable performances with full-precision BERT on
several tasks, e.g., 90.9% accuracy (drop only 2.2%) on SST-2 (Table 3). These results indicate that
BiBERT makes full use of the limited representation capabilities by the well-designed structure and
training scheme. We noticed that BiBERT lags behind Q-BERT (2-8-8) and TernaryBERT (2-2-2)
on MNLI and STS-B (with DA) while surpassing them on other tasks, indicating the fully binarized
BERT may have greater improvement potential in these tasks. BiBERT is also evaluated on compact
TinyBERT6L and TinyBERT4L architectures, with about 2.0× and 18.8× fewer FLOPs, respectively.
The results show that BiBERT on these compact architectures still outperforms existing quantization
methods on BERTBASE, such as TernaryBERT and BinaryBERT. It forcefully demonstrates that the
targeted designs of BiBERT enable fully binarized BERTs to run on various architectures.

“#Bits” (W-E-A) is the bit number for weights, word embedding, and activations. “DA” is short for data
augmentation. “Avg.” denotes the average results.
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Table 2: Comparison of BERT quantization methods without data augmentation.
Quant #Bits Size (MB) FLOPs (G) MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.
Full Precision 32-32-32 418 22.5 84.9/85.5 91.4 92.1 93.2 59.7 90.1 86.3 72.2 83.9
Q-BERT 2-8-8 43.0 6.5 76.6/77.0 – – 84.6 – – 68.3 52.7 –
Q2BERT 2-8-8 43.0 6.5 47.2/47.3 67.0 61.3 80.6 0 4.4 68.4 52.7 47.7
TernaryBERT 2-2-8 28.0 6.4 83.3/83.3 90.1 – – 50.7 – 87.5 68.2 –
BinaryBERT 1-1-4 16.5 1.5 83.9/84.2 91.2 90.9 92.3 44.4 87.2 83.3 65.3 79.9
TernaryBERT 2-2-2 28.0 1.5 40.3/40.0 63.1 50.0 80.7 0 12.4 68.3 54.5 45.5
BinaryBERT 1-1-2 16.5 0.8 62.7/63.9 79.9 52.6 82.5 14.6 6.5 68.3 52.7 53.7
TernaryBERT 2-2-1 28.0 0.8 32.7/33.0 74.1 59.3 53.1 0 7.1 68.3 53.4 42.3
Baseline 1-1-1 13.4 0.4 45.8/47.0 73.2 66.4 77.6 11.7 7.6 70.2 54.1 50.4
Baseline50% 1-1-1 13.4 0.4 47.7/49.1 74.1 67.9 80.0 14.0 11.5 69.8 54.5 52.1
BinaryBERT 1-1-1 16.5 0.4 35.6/35.3 66.2 51.5 53.2 0 6.1 68.3 52.7 41.0
BinaryBERT50% 1-1-1 13.4 0.4 39.2/40.0 66.7 59.5 54.1 4.3 6.8 68.3 53.4 43.5
BiBERT (ours) 1-1-1 13.4 0.4 66.1/67.5 84.8 72.6 88.7 25.4 33.6 72.5 57.4 63.2
Full Precision 6L 32-32-32 257 11.3 84.6/83.2 71.6 90.4 93.1 51.1 83.7 87.3 70.0 79.4
BiBERT6L (ours) 1-1-1 6.8 0.2 63.6/63.7 83.3 73.6 87.9 24.8 33.7 72.2 55.9 62.1
Full Precision 4L 32-32-32 55.6 1.2 82.5/81.8 71.3 87.7 92.6 44.1 80.4 86.4 66.6 77.0
BiBERT4L (ours) 1-1-1 4.4 0.03 55.3/56.1 78.2 71.2 85.4 14.9 31.5 72.2 54.2 57.7

Table 3: Comparison of BERT quantization methods with data augmentation.
Quant #Bits Size (MB) FLOPs (G) QNLI SST-2 CoLA STS-B MRPC RTE Avg.

Full Precision 32-32-32 418 22.5 92.1 93.2 59.7 90.1 86.3 72.2 82.3
TernaryBERT 2-2-8 28.0 6.4 90.0 92.9 47.8 84.3 82.6 68.4 77.8
BinaryBERT 1-1-4 16.5 1.5 91.4 93.7 53.3 88.6 86.0 71.5 80.8
TernaryBERT 2-2-2 28.0 1.5 50.0 87.5 20.6 72.5 72.0 47.2 58.3
BinaryBERT 1-1-2 16.5 0.8 51.0 89.6 33.0 11.4 71.0 55.9 52.0
TernaryBERT 2-2-1 28.0 0.8 50.9 80.3 6.5 10.3 71.5 53.4 45.5
Baseline 1-1-1 13.4 0.4 69.2 84.0 23.3 14.4 71.4 50.9 52.2
BinaryBERT 1-1-1 16.5 0.4 66.1 78.3 7.3 22.1 69.3 57.7 50.1
BiBERT (ours) 1-1-1 13.4 0.4 76.0 90.9 37.8 56.7 78.8 61.0 67.0
Full Precision 6L 32-32-32 257 11.3 90.4 93.1 51.1 83.7 87.3 70.0 79.2
BiBERT6L (ours) 1-1-1 6.8 0.2 76.0 90.7 35.6 62.7 77.9 57.4 66.7
Full Precision 4L 32-32-32 55.6 1.2 87.7 92.6 44.1 80.4 86.4 66.6 76.2
BiBERT4L (ours) 1-1-1 4.4 0.03 73.2 88.3 20.0 42.5 74.0 56.7 59.1

Efficiency Performance. As shown in Table 2 and Table 3 above, our BiBERT achieves an im-
pressive 56.3× FLOPs and 31.2× model size saving over the full-precision BERT. Furthermore,
benefiting from simple yet effective Bi-Attention structure which casts the expensive softmax op-
eration into a well-engineered bit operation BAMM, our BiBERT surpasses other quantized BERTs
in computation and storage saving while enjoying the best accuracy.

4.3 MORE ANALYSIS
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Figure 6: Analysis.

Information Performance. To show the improvement of informa-
tion performance by applying Bi-Attention, we compare the informa-
tion entropy of binarized representations for baseline and BiBERT. As
shown in Figure 6(a), we take the first heads in layer 0 of each model,
and the same phenomenon exists in all heads and layers. During the
training process, the information entropy of attention weight in BiB-
ERT fluctuates in a small range and is almost maximized, however,
that of baseline is completely degraded to 0.

Training Curves. We plot training loss curves of fully binarized
BERT baseline and BiBERT on SST-2 without data augmentation in
Figure 6(b). Compared with the baseline model, our method has a
faster convergence rate and achieves higher accuracy, suggesting ours
advantages in terms of accurate optimization.

5 CONCLUSION

We propose BiBERT towards the accurate fully binarized BERT. We first reveal the bottlenecks of
the fully binarized BERT baseline and build a theoretical foundation for the impact of full bina-
rization. Then we propose Bi-Attention and DMD in BiBERT to improve performance. BiBERT
outperforms existing SOTA BERT quantization methods with ultra-low bit activation, giving an im-
pressive 56.3× FLOPs and 31.2× model size saving. Our work gives an insightful analysis and
effective solution about the crucial issues in BERT full binarization, which blazes a promising path
for the extreme compression of BERT. We hope our work can provide directions for future research.
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APPENDIX FOR BIBERT

A MAIN PROOFS AND DISCUSSION

A.1 DISCUSSION OF BINARIZED LINEAR LAYER

Proposition 1. When a random variable X follows a zero-mean Gaussian distribution, the infor-
mation entropyH(B) is maximized, where BX = sign(X).

Since the value of Bw depends on the sign of W and the distribution of W is almost symmetric (He
& Fan, 2019; Banner et al., 2018), the balanced operation can maximize the information entropy
of binarized Bw on the whole. The balanced binarized weights with the zero-mean attribute can
be obtained by subtracting the mean of full-precision weights. As Proposition 1 shown, under the
binomial distribution assumption and symmetric assumption of W, when the binarized weight is
balanced, the information entropy of Bw takes the maximum value, which means the binarized
values should be evenly distributed.

Moreover, when the weight is zero-mean, the entropy of output Z (seen as the activation in the next
binarized linear layer) in the network can also be maximized. Supposing quantized activations Bx

have mean E[Bx] = µ1, the mean of Z can be calculated by

E[Z] = Bw ⊗ E[Bx] = Bw ⊗ µ1. (16)

Since the zero-mean weight is applied in each layer, we have Qw ⊗ 1 = 0, and the mean of output
is zero. Therefore, the information entropy of activations in each layer can be maximized according
to Proposition 1. Therefore, a simple redistribution for the full-precision counterpart of binarized
weights can simultaneously maximize the information entropy of binarized weights and activations.

The proof of Proposition 1 is presented as below:

Proof. According to the definition of information entropy, we have

H(BX) =−
∑
b∈BX

pBX (b) log pBX (b) (17)

=− pBX (−1) log pBX (−1)− pBX (1) log pBX (1) (18)
=− pBX (−1) log pBX (−1)− (1− pBX (−1) log (1− pBX (−1))) . (19)

Then we can get the derivative ofH(BX) with respect to pBX (−1)

dH(BX)

d pBX (−1)
=−

(
log pBX (−1) +

pBX (−1)

pBX (−1) ln 2

)
+
(

log (1− pBX (−1)) +
1− pBX (−1)

(1− pBX (−1)) ln 2

)
(20)

=− log pBX (−1) + log (1− pBX (−1))− 1

ln 2
+

1

ln 2
(21)

= log
(1− pB(−1)

pB(−1)

)
. (22)

When we let d H(BX)
d pBX (−1) = 0 to maximize the H(BX), we have pBX (−1) = 0.5. Since the de-

terministic sign function with the zero threshold is applied as the quantizer, the probability mass
function of BX is represented as

pBX (b) =

{∫ 0

−∞ fY (y) dy, if b = −1∫∞
0

fY (y) dy, if b = 1,
(23)
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where fX(x) is the probability density function of variable X . Since X ∼ N (0, σ), the fX(x) is
defined as

fX(x) =
1

σ
√

2π
e−

x2

2σ2 . (24)

When the information entropyH(BX) is maximized, we have

∫ 0

−∞
fX(x) dx = 0.5. (25)

A.2 PROOF OF THE THEOREM 1

Theorem 1. Given A ∈ Rk with Gaussian distribution and the variable B̂s
A generated by

B̂A
w = sign(softmax(A) − τ), the threshold τ , which maximizes the information entropy H(B̂s

A),
is negatively correlated to the number of elements k.

Proof. Given the A = {A1, A2, ..., Ak} ∈ Rk, each Ai obeys Gaussian distribution N (µ, σ).
Without loss of generality, we consider the threshold of the first variable A1, which can maximize
the information entropy. Such threshold τK satisfies

∫ ∞
−∞

...

∫ ∞
−∞︸ ︷︷ ︸

K−1

∫ ∞
−∞

K∏
i=1

pAi(ai)[softmaxK(a1) ≤ τK ] dai = 0.5, (26)

where [·] denotes the Iverson bracket that is defined as

[P ] =

{
1 if P is true;
0 otherwise,

(27)

and the softmax function is

softmaxk(Ai) =
eAi∑k
j=1 e

Aj
. (28)

pAi(ai) presents the probability that the i-th element is equal to ai. Since the softmaxk
function is order-preserving, there exists exactly one threshold τ(A2, A3, ..., Ak; τk) such that
eτ(A2,A3,...,Ak;τk)/(eτ(A2,A3,...,Ak;τk) +

∑K
j=2 e

aj ) = τk.

In other words, we can convert the after-softmax threshold τk to a before-softmax threshold
τ(A2, A3, ..., Ak; τk) for A1. Then the Eq. (26) can be express as

∫ ∞
−∞

...

∫ ∞
−∞︸ ︷︷ ︸

k−1

∫ τs(k)

−∞

k∏
i=1

pAi(ai) dai = 0.5. (29)

When we takes the {k + 1}-th variable Ak+1 into consider. Since the
∑k
i=2 e

Ai <
∑k+1
i=2 e

Ai

is always satisfied, τ(A2, A3, ..., Ak, Ak+1; τk) > τ(A2, A3, ..., Ak; τk) is also always satisfied.
Consider the function F (x), which is defined below:
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F (x) =

∫ ∞
−∞

...

∫ ∞
−∞︸ ︷︷ ︸

k−1

∫ x

−∞

k∏
i=1

pAi(ai) dai (30)

F (x) is a strictly monotone increasing function, which means F (τ(A2, A3, ..., Ak, Ak+1; τk)) >
F (τ(A2, A3, ..., Ak; τk)).

Then we have

∫ ∞
−∞

∫ ∞
−∞

...

∫ ∞
−∞︸ ︷︷ ︸

k

∫ τ(A2,A3,...,Ak,Ak+1;τk)

−∞

k+1∏
i=1

pAi(ai) dai. (31)

>

∫ ∞
−∞

...

∫ ∞
−∞︸ ︷︷ ︸

k−1

∫ ∞
−∞

∫ τ(A2,A3,...,Ak;τk)

−∞

k+1∏
i=1

pAi(ai) dai (32)

=

∫ ∞
−∞

...

∫ ∞
−∞︸ ︷︷ ︸

k−1

∫ τ(A2,A3,...,Ak;τk)

−∞

k∏
i=1

pAi(ai) dai (33)

=0.5. (34)

Since the information entropy of sign(softmaxK+1(A1 − τK+1)) is maximized, we have

∫ ∞
−∞

∫ ∞
−∞

...

∫ ∞
−∞︸ ︷︷ ︸

k

∫ τ(A2,A3,...,Ak,Ak+1;τk+1)

−∞

k+1∏
i=1

pAi(ai) dai = 0.5, (35)

thus,

∫ ∞
−∞

∫ ∞
−∞

...

∫ ∞
−∞︸ ︷︷ ︸

k

∫ τ(A2,A3,...,Ak,Ak+1;τk+1)

−∞

k+1∏
i=1

pAi(ai) dai (36)

<

∫ ∞
−∞

∫ ∞
−∞

...

∫ ∞
−∞︸ ︷︷ ︸

k

∫ τ(A2,A3,...,Ak,Ak+1;τk)

−∞

k+1∏
i=1

pAi(ai) dai. (37)

Then we can get τk+1 < τk. Therefore, the threshold τ which maximizes the information entropy
H(B̂s

A) is negatively correlated to the number of elements k.

A.3 PROOF OF THE THEOREM 2

Theorem 2. When the binarized query BQ = sign(Q) ∈ {−1, 1}N×D and key BK = sign(K) ∈
{−1, 1}N×D are entropy maximized in binarized attention, the probability mass function of each
element Aij , i, j ∈ [1, N ] sampled from attention score A = BQ ⊗ BK

> can be represented as
pA(2i−D) = 0.5DCiD, i ∈ [0, D], which approximates the Gaussian distribution N (0, D).
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Proof. First, we prove that the distribution of Aij can be approximated as a normal distribution.
Considering the definition of A, Aij can be expressed as

Aij =

D∑
l=1

BQ,il ×BK,jl,

where BQ,il represents the j-th element of i-th vector of BQ and BK,il represents the j-th element
of i-th vector of BK. The value of the element BQ,il ×BK,jl can be expressed as

BQ,il ×BK,jl =

{
1, if BQ,il YBK,jl = 1

−1, if BQ,il YBK,jl = −1.
(38)

TheBQ,il×BK,jl only can take from two values and its value can be considered as the result of one
Bernoulli trial. Thus for the random variable Aij sampled from the output tensor A, the probability
mass function, pA can be expressed as

pA(2i−D) = CiD p
i
e(1− pe)D−i, (39)

where pe denotes the probability that the element BQ,il × BK,jl takes 1. According to the De
Moivre–Laplace theorem (Walker & Helen, 1985), the normal distribution N (µ, σ2) can be used as
an approximation of the binomial distribution under certain conditions, and the pA(2i −D) can be
approximated as

pA(2i−D) = CiD p
i
e(1− pe)D−i '

1√
2πDpe(1− pe)

e−
(i−Dpe)2

2Dpe(1−pe) , (40)

and then, we can get the mean µ = 0 and variance σ =
√
D of the approximated distribution N .

Now we give proof of this below.

According to Proposition 1, bothBQ,il andBK,il have equal probability to be 1 or−1, which means
pe = 0.5. Then we can rewrite the equation as

pA(2i−D) = 0.5DCiD, i ∈ {0, 1, 2, ..., D}. (41)

Then we move to calculate the mean and standard variation of this distribution. The mean of this
distribution is defined as

µ(pA) =
∑

(2i−D)0.5DCiD, i ∈ {0, 1, 2, ..., D}. (42)

By the virtue of binomial coefficient, we have

(2i−D)0.5DCiD + (2(D − i)−D)0.5DCD−iD = 0.5D((2i−D)CiD + (D − 2i)CD−iD ) (43)

= 0.5D((2i−D)CiD + (D − 2i)CiD) (44)
= 0. (45)

Besides, when D is an even number, we have (2i−D)0.5DCiD = 0, i = D
2 . These equations prove

the symmetry of function (2i−D)0.5DCiD. Finally, we have

µ(pA) =
∑

(2i−D)0.5DCiD, i ∈ {0, 1, 2, ..., D} (46)

=
∑

((2i−D)0.5DCiD + (2(D − i)−D)0.5DCD−iD ), i ∈ {0, 1, 2, ..., D
2
} (47)

= 0. (48)
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The standard variation of pA is defined as

σ(pA) =

√(∑
|2i−D|20.5DCiD

)
(49)

=
√∑

(4i2 − 4iD +D2) 0.5DCiD (50)

=

√
0.5D

(
4
∑

i2CiD − 4D
∑

iCiD +D2
∑

CiD

)
. (51)

To calculate the standard variation of pZ , we use Binomial Theorem and have several identical
equations:

∑
CiD = (1 + 1)D = 2D (52)∑
iCiD = D(1 + 1)D−1 = D2D−1 (53)∑
i2CiD = D(D + 1)(1 + 1)D−2 = D(D + 1)D2D−2. (54)

These identical equations help simplify Eq. (51):

σ(pA) =

√
0.5D

(
4
∑

i2CiD − 4D
∑

iCiD +D2
∑

CiD

)
(55)

=

√
0.5D(4D(D + 1)2D−2 − 4D22D−1 +D22D) (56)

=

√
0.5D((D2 +D)2D − 2D22D +D22D) (57)

=

√
0.5D(D2D) (58)

=
√
D. (59)

Now we proved that, the distribution of output is approximate normal distribution N (0, D).

A.4 BAMM OPERATION IN BI-ATTENTION

In the Bi-Attention structure, we apply the bool function to obtain the binarized attention weights
B with values of 0 and 1, which maximizes the information entropy while restoring the perception
of attention mechanism for the input. However, we noticed that in the actual hardware deployment,
the 1-bit matrix stored in the hardware is unified into the same form (with binary values of 1 and -1)
and is supported by most existing hardware.

Therefore, we propose a new bitwise operation � to support the computation between the binarized
attention weight bool(A) and the binarized value BV during inference, which is defined as

bool(A)�BV =
(
BA
′ ⊗BV + BA

′ ⊗ 1
)
� 1 (60)

where BA
′ ∈ {−1, 1}N×D is the representation of bool(A) on hardware that BA

′
ij = −1 where

bool(A)ij = 0, 1 ∈ {1}N×D is an all ones matrix, and⊗ and� is the bitwise matrix multiplication
and bit-shift operation. The � can also be simulated as the common full-precision multiplication as
the ⊗ during training.

We show the calculation process of the proposed � operation in Figure 7, which also concludes the
process of ⊗.
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Figure 7: The calculation process of proposed � and ⊗ in Bi-Attention

A.5 PROOF AND DISCUSSION OF THE THEOREM 3

Theorem 4. Given the variables X and XT followN (0, σ1),N (0, σ2) respectively, the proportion
of optimization direction error is defined as perrorQ-bit = p(sign(X−XT ) 6= sign(quantizeQ(X)−
XT )), where quantizeQ denotes the Q-bit symmetric quantization. As Q reduces from 8 to 1,
perrorQ-bit becomes larger.

Proof. Given the random variables X ∼ N (0, σ1) and XT ∼ N (0, σ2), the Q-bit symmetric
quantization function quantizeQ is expressed as (take X as an example)

quantizeQ(X) =


−L, if x < −L,
b (2

Q−1)X
2L + 0.5c 2L

2Q−1 , if − L ≤ X ≤ L,
L, if x > L,

(61)

where the b·c denotes the round down function, and the range [−L,L] is divided into 2Q − 1 inter.
The optimization direction error occurs when sign(X − X̂) = sign(quantizeQ(X) − XT ), i.e.,
X > XT and quantizeQ(X) < XT or X < XT and quantizeQ(X) > XT .

(1) When −L < X < L, b (2
Q−1)X
2L c 2L

2Q−1 < quantizeQ(X) < b (2
Q−1)X
2L + 1c 2L

2Q−1 .

a) If XT < b (2
Q−1)X
2L c 2L

2Q−1 , since b (2
Q−1)X
2L c 2L

2Q−1 < X , we have XT < X . And since

b (2
Q−1)X
2L c 2L

2Q−1 < quantizeQ(X), XT < quantizeQ(X). Thus, the optimization direction is
always right in this case.

b) If XT > b (2
Q−1)X
2L + 1c 2L

2Q−1 , since b (2
Q−1)X
2L + 1c 2L

2Q−1 > X , we have XT > X . And

since b (2
Q−1)X
2L c 2L

2Q−1 > quantizeQ(X), XT > quantizeQ(X). Thus, the optimization direction
is always right in this case.

c) If b (2
Q−1)X
2L c 2L

2Q−1 ≤ XT ≤ b (2
Q−1)X
2L + 1c 2L

2Q−1 , first, the probability of X >

XT and quantizeQ(X) < XT can be calculated as:
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Table 4: Simulation of error proportion under the Q-bit

Bits (Q) 1 2 3 4 5 6 7 8
Proportion (%) 14.36% 6.42% 4.35% 3.30% 2.76% 2.56% 2.51% 2.49%

perror1Q =

∫ L

−L

∫ X

b (2
Q−1)X
2L +0.5c 2L

2Q−1

fX,XT (X,XT ) (62)

[
b (2

Q − 1)X

2L
+ 0.5c < X

]
dXT dX, (63)

where fX,XT (·, ·) is the probability density function of the joint probability distribution for
{X,XT }, and [·] denotes the Iverson bracket as defined in Eq. (26).

Then we get the probability of X < XT and quantizeQ(X) > XT as

perror2Q =

∫ L

−L

∫ b (2Q−1)X
2L +0.5c 2L

2Q−1

X

fX,XT (X,XT ) (64)[
b (2

Q − 1)X

2L
+ 0.5c > X

]
dXT dX. (65)

Since fX,XT (X,XT ) ≥ 0 is constant established, perror1Q and perror2Q increases as Q becomes
smaller.

(2) When X > L, quantizeQ(X) = L. XT > X > L = quantizeQ(X) is constant established
when XT > X , and when XT < X , the probability of XT > quantizeQ(X) = L is also constant
based on the given distribution of XT . Thus, the optimization direction is always right in this case.

(3) When X < −L, quantizeQ(X) = −L. XT < X < −L = quantizeQ(X) is constant
established when XT < X , and when XT > X , the probability of XT > quantizeQ(X) = −L is
also constant based on the given distribution of XT . Thus, the optimization direction is always right
in this case.

Although we have obtained the correlation between quantization bit-width and error of direction
under symmetric quantization, it is difficult to directly give an analytical representation of the error
proportion of Gaussian distribution input under Q-bit quantization. Therefore, we use the Monte
Carlo algorithm to simulate the probability of directional error caused by Q-bit by the error propor-
tion of the pre-quantized data X ∈ R10000, where each element in X is sampled from the standard
normal distribution. When the quantization range is [−1, 1], the results are shown in Table 4. This
result experimentally proved our theorem, and shows that the probability of direction mismatch
increases rapidly in 1-bit quantization.

A.6 PROOF AND DISCUSSION OF THE EQUIVALENCE

Considering the order-preserving characteristic of both sign and softmax, only the largest n ele-
ments (the value of n is related to the variable k for specific matrix A in Theorem 1) are binarized
to 1 while others are binarized to −1. Therefore, when sign(softmax(A) − τ) is optimized to
have the maximized information entropy, there exists a corresponding threshold φ(τ,A) that maxi-
mizes the information entropy of sign(A− φ(τ,A)). In addition, the conclusion of Theorem 2 that
A ∼ N (0, D) suggests that a fixed threshold φ(τ,A) = 0 maximizes the information entropy of
the binarized attention weight.
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Proposition 2. When the elements in tensor A are assumed as independent and identically dis-
tributed, there exists a φ(τ,A)) making the entropy maximization of sign(A− φ(τ,A)) be equiva-
lent to that of sign(softmax(A)− τ).

Proof. As shown in Eq. (8), the information entropy of B̂A
w = sign(softmax(A) − τ) can be

expressed as:

H(B̂A
w) = −

(∫ ∞
τ

f(as)das
)

log

(∫ ∞
τ

f(as)das
)
−
(∫ τ

−∞
f(as)das

)
log

(∫ τ

−∞
f(as)das

)
,

(66)

where as = softmaxA(a) and a ∈ A. Since softmax function is strictly order-preserving, there
exists a φ(τ,A) makes ∀a > τ , as > φ(τ,A), and it thereby makes following equations established:

∫ ∞
τ

f(as)das =

∫ ∞
φ(τ,A)

g(a)da,

∫ τ

−∞
f(as)das =

∫ φ(τ,A)

∞
g(a)da, (67)

where f and g are the probability density functions of variable as and a. And the information
entropy H(B̂A

w) = H(B̂A), where BA = sign(A − φ(τ,A)). Therefore, when τ is optimized to
maximize information, the information of BA is also maximized under the threshold φ(τ,A).

B EXPERIMENTAL SETUP

B.1 DATASET AND METRICS

We evaluate our method on the General Language Understanding Evaluation (Wang et al., 2018a)
(GLUE) benchmark which consists of nine basic language tasks. And we use the standard metrics
for each GLUE task to measure the advantage of our method. We use Spearman Correlation for
STS-B, Mathews Correlation Coefficient for CoLA and classification accuracy for the rest tasks.
As for MNLI task, we report the accuracy on both in-domain evaluation MNLI-match (MNLI-m)
and cross-domain evaluation MNLI-mismatch (MNLI-mm). But we exclude WNLI task as previous
studies do for its relatively small data volume and unstable behavior. We also theoretically calculate
the FLOPs at inference and also report the model size to give a comprehensive comparison on speed
and storage.

We also provide a coarse estimation of model size and floating-point operations (FLOPs) at inference
follow (Bai et al., 2020; Zhou et al., 2016; Liu et al., 2018). The matrix multiplication between an
m-bit number and an n-bit number requires mn/64 FLOPs for a CPU with instruction size of 64-
bit. Also, every 64 weight and embedding parameters are packed and stored together with a single
instruction, so the model is significantly compact.

B.2 IMPLEMENTATION

Backbone. We follow (Bai et al., 2020) to take full-precision well-trained DynaBERT (Hou et al.,
2020) as the teacher model to self-supervise the training of the binarized DynaBERT. The number of
transformer layers is 12, the hidden state size is 768 and the number of heads in MHA is 12, which
is a typical setting of BERT-base. Unlike (Bai et al., 2020), we do not pre-train an intermediate
model as the initialization, but directly binarize the model from the full-precision one. We use naive
sign function to binarize parameters in the forward propagation and STE in the back-propagating,
and also use MSE loss to distill the teacher model as described in Sec. 2.2 as the baseline binarized
BERT model.

Binarized Layers. We follow the previous work to binarize the word embedding layer, MHA and
FFN in transformer layers, but leave full-precision classifier, position embedding layer, and token
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type embedding layer (Bai et al., 2020). That is because a common practice for BERT is to trivially
cast the regression tasks to multiclass classification tasks, such as STS-B with 5 classes and MNLI
with 3 classes. Therefore, the answers for above two tasks cannot be encoded by just 1-bit.

Settings. We use the Adam as our optimizer, and adopt data augmentation on GLUE tasks except
MNLI and QQP for the little benefit but it is time-consuming. It is noteworthy that we take more
training epochs for every quantization method on each tasks to have a sufficient training, which is
50 for CoLA, 20 for MRPC, STS-B and RTE, 10 for SST-2 and QNLI, 5 for MNLI and QQP.

Other Quantized BERTs. We implement TernaryBERT under 2-2-1 and 2-2-2 settings, and Bina-
ryBERT under 1-1-1 and 1-1-2 settings for the compraisonal experiments.

For BinaryBERT (Bai et al., 2020), except 4-bit and 8-bit activa-
tion settings mentioned in their paper, the official code (https://
github.com/huawei-noah/Pretrained-Language-Model/blob/
1dbaf58f17b8eea873d76aa388a6b0534b9ccdec/BinaryBERT/) provides the
implementations for 1-bit or 2-bit activation settings, which are Binary-Weight-Network (BWN)
and Ternary-Weight-Network (TWN), respectively, and we completely follow the released code.

Specifically, we apply Binary-Weight-Network (BWN) and Ternary-Weight-Network (TWN) meth-
ods to activation under 1-bit and 2-bit input settings (1-1-1 and 1-1-2), respectively. The formula-
tions and implementations are presented in (Bai et al., 2020) and official codes, respectively:

BWN:

âbi = Q
(
abi
)

= β · sign
(
abi
)
, β =

1

n

∥∥ab∥∥
1
, (68)

TWN:

âti = Q
(
ati
)

=

{
β · sign (ati) |ati| ≥ ∆

0 |ati| < ∆
, (69)

where sign(·) is the sign function, ∆ = 0.7
n ‖w

t‖1 and α = 1
|I|
∑
i∈I |wti | with I = {i | ŵti 6= 0}.

For TernaryBERT, since there is no recommended setting under 1-bit and 2-bit input in its official
code, we use the same implementation as BinaryBERT to quantize activation (BWN for 1-bit and
TWN for 2-bit) for fair comparison.

In addition, compared with TernaryBERT and BinaryBERT, under the 1-bit input setting, our BiB-
ERT applies a simple sign function to binarize activation, while the former two apply real-time
calculated scaling factors. Therefore, under the same 1-1-1 setting, our BiBERT achieved better
results with a smaller amount of computation.

C ADDITION EXPERIMENTS

C.1 COMPARISON AND DISCUSSION OF THE BASELINE

C.1.1 REASONS OF BUILDING THE ORIGINAL BASELINE

When we built the fully binarized BERT baseline, we considered the following reasons and chose
the original baseline settings shown in the paper:

(1) Additional inference computation should be avoided to the greatest extent compared with the
BERTs obtained by direct full binarization. We discard the scaling factor for activation in the bi-
linear unit since it requires real-time updating during inference and increases floating-point oper-
ations. In the attention structure, we directly binarize the activation without re-scaling or mean-
shifting.

(2) Since there is no previous work to fully binarize BERT, the existing representative binarization
techniques are chosen to build the baseline. The binarization function with a fixed 0 threshold is
applied to the original definition of the binarized neural network (Rastegari et al., 2016) and is
used by default in most binarization works (Qin et al., 2020; Liu et al., 2018), we thereby initially
apply this function when building the fully binarized BERT baseline. Besides, it also helps to more
objectively evaluate the benefits of maximizing information entropy in the attention structure.
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Table 5: Comparison of strengthened baselines and methods without data augmentation.

Solution Quant #Bits∆FLOPs (G) MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

Original Baseline 1-1-1 0 45.8/47.0 73.2 66.4 77.6 11.7 7.6 70.2 54.1 50.4
BinaryBERT 1-1-1 0 35.6/35.3 63.1 51.5 53.2 0 6.1 68.3 52.7 40.6

Solution 1 Baselineasym 1-1-1 0.074 (15%) 45.1/46.3 72.9 64.3 72.8 4.6 9.8 68.3 53.1 48.6

Solution 2 Baselineµ 1-1-1 0.076 (16%) 48.2/49.5 73.8 68.7 81.9 16.9 11.5 70.0 54.9 52.8

Solution 3 Baseline50% 1-1-1 0.076 (16%) 47.7/49.1 74.1 67.9 80.0 14.0 11.5 69.8 54.5 52.1
BinaryBERT50% 1-1-1 0.076 (16%) 39.2/40.0 66.7 59.5 54.1 4.3 6.8 68.3 53.4 43.5

Ours BiBERT 1-1-1 0 67.3/68.6 84.8 72.6 88.7 25.4 33.6 72.5 57.4 63.5

Therefore, the fully binarized baseline under the current BERT architecture applies the representa-
tive techniques and almost without additional floating-point computation.

C.1.2 SOLUTIONS OF ATTENTION WEIGHT

Causing by the application of softmax, the attention possibilities in the attention structure follow
the probability distribution and (attention weight) are all one after binarization. In fact, we were
aware of the problem when building the fully binarized baseline, and built two solutions by existing
quantization techniques.

The first solution tried is to degenerate the asymmetric quantization function (usually applied to 2-8
bit quantization (Bai et al., 2020; Zhang et al., 2020)) to the 1-bit case, since the method is originally
designed to deal with the imbalance of value distribution in quantization:

Solution 1 (Baselineaysm):

Q(x) =

{
max(x), x ≥ 0.5(max(x) + min(x)),

min(x), otherwise,
x ∈ x. (70)

The other solution is to simply use the mean of the elements as the threshold (Rastegari et al., 2016;
Qin et al., 2020):

Solution 2 (Baselineµ):
Q(x) = bool(x− τ), τ = µ(x) (71)

where µ(·) denotes the mean value.

We also thank the reviewers for providing the Solution 3, which is to use the threshold limiting the
zero attention weight to a certain percentage (such as 50%):

Solution 3 (Baseline50%):

Q(x) = bool(x− τ), τ = Q50%(x) (72)

where Q50%(·) denotes the quantile of 50% percentage (median).

The above three solutions are all able to alleviate the problem of fixed all one attention weight. We
present the results of these solutions in Table A1.1 and further discuss them in detail.

(1) Discussion of Solution 1

As shown in Eq. (70), since the dynamically threshold (0.5(max(x) + min(x))) is applied in this
quantizer, the elements of attention weight are quantized to max(x) and min(x) instead of a same
value. However, the asymmetrical binarized values obtained by this quantizer make the binarized
BERT hard to apply bitwise operations and lose the efficiency advantage brought by binarization
(0.074G additional FLOPs), so that this practice is not used in existing binarization works. And
as the results show, the accuracy of the binarized BERT is also worse than the existing baseline
(Baseline 50.4% vs. Baselineasym 48.6% on average, Row 2 and 4 in Table 5).

(2) Discussion of Solution 2
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Table 6: Ablation results with 10%9̃0% zero attention weight on STS-B.

Percentage 10% 30% 50% 70% 90%

Entropy 0.47 0.88 1.00 0.88 0.47

Accuracy (%) 8.5 8.6 11.5 10.8 10.0

As the effect of this solution on the weight parameter (Rastegari et al., 2016; Qin et al., 2020), it can
ensure diversity of binarized attention weight elements instead of all 1 (min(x) ≤ τ ≤ max(x)).
But the premise of this practice is the Gaussian (symmetric) distribution of floating-point parameters
before binarization (Qin et al., 2020), while the attention score follows an asymmetric probability
distribution, causing the values of binarized activation to imbalanced. Therefore, the improvement
of this practice in terms of accuracy is also limited (as shown in Row 2 and 5 in Table 5), and this
solution also increases 0.076G computational FLOPs compared to the original baseline.

(3) Discussion of Solution 3

The fixed 50% percentage of zero binarized attention weights suggested by the reviewer are good
baseline settings that help to further clarify the entropy maximization motivation of the Bi-Attention
in BiBERT. As shown in Table 5 (Row 6 and 7), the results of baseline and BinaryBERT under
this setting are significantly improved by 1.7% and 2.9% on average compare the original results
(Row 2 and 3), respectively. And from the perspective of information entropy, a 50% percentage
of zero attention weights can also ensure maximum information. We present the detailed ablation
results (10%-90% zero attention weight) on STS-B in Table 6, which show the model maximizing
information entropy achieves the best results.

Though forcing a certain ratio of zero attention weights improves the baseline, there exists short-
comings for fully binarized BERTs. First, the calculation of quantile thresholds relies on real-
time computation or sorting, which increases computation of the fully binarized BERT in inference
(about 0.076G (16%) additional FLOPs). Moreover, the practice of 50% quantile threshold should
be regarded as the solution to a more stringent optimization problem (rather than the optimization
problem in Eq. (9) of the paper) since it further constrains and maximizes the entropy of each ten-
sor of binarized attention weight instead of optimizing the overall distribution. Thus, the quantile
threshold is more restrictive for the binarized attention weights and limits their representation capa-
bility, causing the results of obtained fully binarized BERTs lower than those of models applying
Bi-Attention.

C.1.3 CONCLUSION

Although the above three solutions improve accuracy to a certain extent, they only bring limited
improvements while destroying the advantages of the fully binarized network on computational
efficiency. As analyzed in our paper, the existing attention structure is not suitable for directly fully
binarizing BERT, which is also the reason we specially designed the Bi-Attention structure for the
fully binarized BERT. However, considering the reason that the fixed all one attention weight causes
itself and related distillation to fail, and also to more comprehensively compare with our method,
we present the results of these solutions (as strengthened baselines).

C.2 VARIANTS OF BINARIZED ATTENTION MECHANISM

In binarization literature, function sign is widely used to quantize a real number x ∈ R into y ∈
{−1, 1}. However, directly applying sign on attention weight is against the constraint that attention
weight should be in [0, 1]. Inspired by this fact, we define function bool to map x into {0, 1}. We
empirically evaluate these two binarization methods on several GLUE tasks in Table 7.

Table 7 shows the performance of four different binarized attention mechanisms. All the experiments
use the DMD method and do not use data augmentation. From these results, we can conclude that
the traditional binarization method sign is not suitable to binarize attention weight since it can not
selectively neglect the unrelated parts. This operation not only obstacles the optimization process
but also degrades the representation ability of the whole attention mechanism. It strongly shows the

22



Published as a conference paper at ICLR 2022

Table 7: Comparison of Variants of Binarized Attention Mechanism

Maximizing Entropy Binarization Method SST-2 RTE CoLA

1 % sign 78.9 52.7 6.9
2 % bool 77.6 54.1 11.7
3 ! sign 80.7 52.7 7.3
4 ! bool 88.7 57.4 25.4

necessity of using a binarization operator that can focus selectively on parts of the input and ignore
the others.

D VISUALIZATIONS

In Figure 8, we provide a coarse but bird-view of attention patterns across layers and heads in
different model for same inputs on SST-2 task, including the full-precision, fully binarized BERT
baseline and our BiBERT. As can be seen in the figure, full-precision model always elicits certain
tendency towards different contents, and each head captures a unique pattern with bias. However,
the attention perception is totally lost when fully binarized the BERT model with baseline methods.
The attention weight is identical regardless of inputs, and exactly degrades to a fully connection.

As for our BiBERT, it delivers various attention patterns among layers and heads. We concede that
some patterns seem to be completely different from the full-precision ones, some are even blank.
But we venture to attributes the phenomenon to the special design of our Bi-Attention structure.
We ensure the overall probability of attention weights to have a information entropy maximized
distribution, but the function and quality of each head is special after an adaptive training. It results
in a selective attention according to the inputs, therefore we revive the perception of the model, and
make it be able to elicit more diverse activation patterns.
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(a) Full-precision

(b) Fully binarized BERT baseline

(c) BiBERT (Ours)

Figure 8: Attention pattern for full-precision model, fully binarized BERT baseline and our BiBERT
on SST-2 task. Includes all heads in layers 0-3. The visualization tools is adapted from (Vig, 2019)
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