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ABSTRACT

Dataset condensation can be used to reduce the computational cost of training
multiple models on a large dataset by condensing the training dataset into a small
synthetic set. State-of-the-art approaches rely on matching model gradients between
the real and synthetic data. However, there is no theoretical guarantee on the
generalizability of the condensed data: data condensation often generalizes poorly
across hyperparameters/architectures in practice. In this paper, we consider a
different condensation objective specifically geared toward hyperparameter search.
We aim to generate a synthetic validation dataset so that the validation-performance
rankings of models, with different hyperparameters, on the condensed and original
datasets are comparable. We propose a novel hyperparameter-calibrated dataset
condensation (HCDC) algorithm, which obtains the synthetic validation dataset
by matching the hyperparameter gradients computed via implicit differentiation
and efficient inverse Hessian approximation. Experiments demonstrate that the
proposed framework effectively maintains the validation-performance rankings of
models and speeds up hyperparameter/architecture search for tasks on both images
and graphs.

1 INTRODUCTION

Deep learning has achieved great success in various fields, such as computer vision and graph
related tasks. However, the computational cost of training state-of-the-art neural networks is rapidly
increasing due to growing model and dataset sizes. Moreover, designing deep learning models usually
requires training numerous models on the same data to obtain the optimal hyperparameters and
architecture (Elsken et al., 2019), posing significant computational challenges. Thus, reducing the
computational cost of repeatedly training on the same dataset is crucial. We address this problem
from a data-efficiency perspective and consider the following question: how can one reduce the
training data size for faster hyperparameter search/optimization with minimal performance loss?

Recently, dataset distillation/condensation (Wang et al., 2018) is proposed as an effective way to
reduce sample size. This approach involves producing a small synthetic dataset to replace the original
larger one, so that the test performance of the model trained on the synthetic set is comparable to
that trained on the original. Despite the state-of-the-art performance achieved by recent dataset
condensation methods when used to train a single pre-specified model, it remains challenging to
utilize such methods effectively for hyperparameter search. Current dataset condensation methods
perform poorly when applied to neural architecture search (NAS) (Elsken et al., 2019) and when used
to train deep networks beyond the pre-specified architecture (Cui et al., 2022). Moreover, there is
little or even a negative correlation between the performance of models trained on the synthetic vs. the
full dataset, across architectures: often, one architecture achieves higher validation accuracy when
trained on the original data relative to a second architecture, but obtains lower validation accuracy
than the second when trained on the synthetic data. Since architecture performance ranking is not
preserved when the original data is condensed, current data condensation methods are inadequate
for NAS. This issue stems from the fact that existing condensation methods are designed on top of a
single pre-specified model, and thus the condensed data may overfit this model.

We ask: is it possible to preserve the architecture/hyperparameter search outcome when the original
data is replaced by the condensed data?
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Figure 1: Hyperparameter Calibrated Dataset Condensation (HCDC) aims to find a small validation dataset
such that the validation-performance rankings of the models with different hyperparameters are comparable to
the large original dataset’s. Our method realizes this goal

(
Eq. (HC)

)
by learning the synthetic validation set

to match the hypergradients w.r.t the hyperparameters
(
Eq. (HCDC) in the “Loss” box

)
. Our contribution is

depicted within the big black dashed box: the algorithm flow is indicated through the red dashed arrows. The
synthetic training set is predetermined by any standard dataset condensation (SDC) methods (e.g., Eq. (SDC)).
The synthetic training and validation datasets obtained can later be used for hyperparameter search using only a
fraction of the original computational load. A more detailed diagram is depicted in Fig. 5 in Appendix A.

To answer this question, we reformulate the dataset condensation problem using a hyperparameter
optimization (HPO) framework (Feurer & Hutter, 2019), with the goal of preserving architec-
ture/hyperparameter search outcomes over multiple architectures/hyperparameters, just as standard
dataset condensation preserves generalization performance results for a single pre-specified architec-
ture. This is illustrated in Fig. 1’s “Goal” box. However, solving the resulting nested optimization
problem is tremendously difficult. Therefore, we consider an alternative objective and show that
architecture performance ranking preservation is equivalent to aligning the hyperparameter gradients
(or hypergradients for short), of this objective, in the context of dataset condensation. This is illus-
trated as the “Loss” box in Fig. 1. Thus, we propose hyperparameter calibrated dataset condensation
(HCDC), a novel condensation method that preserves hyperparameter performance rankings by
aligning the hypergradients computed using the condensed data to those computed using the original
dataset, see Fig. 1.

Our implementation of HCDC is efficient and scales linearly with respect to the size of hyperpa-
rameter search space. Moreover, hypergradients are efficiently computed with constant memory
overhead, using the implicit function theorem (IFT) and the Neumann series approximation of an
inverse Hessian (Lorraine et al., 2020). We also specifically consider how to apply HCDC to the
practical architecture search spaces for image and graph datasets.

Experiments demonstrate that our proposed HCDC algorithm drastically increases the correlation
between the architecture rankings of models trained on the condensed dataset and those trained on
the original dataset, for both image and graph data. Additionally, the test performance of the highest
ranked architecture determined by the condensed dataset is comparable to that of the true optimal
architecture determined by the original dataset. Thus, HCDC can enable faster hyperparameter
search and obtain high performance accuracy by choosing the highest ranked hyperparameters, while
the other condensation and coreset methods cannot. We also demonstrate that condensed datasets
obtained with HCDC are compatible with off-the-shelf architecture search algorithms with or without
parameter sharing.

We summarize our contributions as follows: (1) We study the data condensation problem for hy-
perparameter search and show that performance ranking preservation is equivalent to hypergradient
alignment in this context. (2) We propose HCDC, which synthesizes condensed data by aligning
the hypergradients of the objectives associated with the condensed and original datasets for faster
hyperparameter search. (3) We present experiments, for which HCDC drastically reduces the search
time and complexity of off-the-shelf NAS algorithms, for both image and graph data, while preserving
the search outcome with high accuracy.

2 STANDARD DATASET CONDENSATION

Consider a classification problem where the original dataset T train = {(xi, yi)}ni=1 consists of n
(input, label) pairs sampled from the original data distribution PD. To simplify notation, we replace
T train with T when the context is clear. The classification task goal is to train a function fθ (e.g., a
deep neural network), with parameter θ, to correctly predict labels y from inputs x. Obtaining fθ

2



Under review as a conference paper at ICLR 2024

involves optimizing an empirical loss objective determined by T train:

θT = argmin
θ
Ltrain
T (θ, λ), where Ltrain

T (θ, λ) :=
1

|T train|
∑

(x,y)∈T train

l(fθ(x), y, λ), (1)

where λ denotes the model hyperparameter (e.g., the neural network architecture that characterizes
fθ), and l(·, ·, ·) is a task-specific loss function that depends on λ.

Dataset condensation involves generating a small set of c≪ n synthesized samples S = {x′i, y′i}ci=1,
with which to replace the original training dataset T . Using the condensed dataset S , one can obtain
fθ with parameter θ = θS = argminθ Ltrain

S (θ, λ), where Ltrain
S = 1

|S|
∑

(x,y)∈S l(fθ(x), y, λ).
The goal is for the generalization performance of the model fθS obtained using the condensed data to
approximate that of fθT , i.e., E(x,y)∼PD [l(fθT (x), y, λ)] ≈ E(x,y)∼PD [l(fθS (x), y, λ)].

Next, we review the bi-level optimization formulation of the standard dataset condensation
(SDC) (Wang et al., 2018) and one of its efficient solutions using gradient matching (Zhao et al.,
2020).

SDC’s objective. By posing the optimal parameters θS(S) as a function of the condensed dataset
S, SDC can be formulated as a bi-level optimization problem as follows,

S∗ = argmin
S
Ltrain
T (θS(S), λ), s.t. θS(S) := argmin

θ
Ltrain
S (θ, λ). (SDC)

In other words, the optimization problem in Eq. (SDC) aims to find the optimal synthetic dataset
S such that the model θS(S) trained on it minimizes the training loss over the original data T train.
However, directly solving the optimization problem in Eq. (SDC) is difficult since it involves a
nested-loop optimization and solving the inner loop for θS(S) at each iteration requires unrolling the
recursive computation graph for S over multiple optimization steps for θ (Domke, 2012), which is
computationally expensive.

SDC in a gradient matching formulation. Zhao et al. (2020) alleviate this computational issue by
introducing a gradient matching (GM) formulation. Firstly, they formulate the condensation objective
as not only achieves comparable generalization performance to θT but also converges to a similar
solution in the parameter space, i.e., θS(S, θ0) ≈ θT (θ0), where θ0 indicates the initialization. The
resulting formulation is still a bilevel optimization but can be simplified via several approximations.

(1) θS(S, θ0) is approximated by the output of a series of gradient-descent updates, θS(S, θ0) ≈
θSt+1 ← θSt − η∇θLtrain

S (θSt , λ). In addition, Zhao et al. (2020) propose to match θSt+1 with
incompletely optimized θTt+1 at each iteration t. Consequently, the dataset condensation objective is
now S∗ = argminS Eθ0∼Pθ0

[
∑T−1

t=0 D(θSt , θ
T
t )].

(2) If we assume θSt can always track θTt (i.e., θSt ≈ θTt ) from the initialization θ0 up to iteration
t, then we can replace D(θSt+1, θ

T
t+1) by D(∇θLtrain

S (θSt , λ),∇θLtrain
T (θTt , λ)). The final objective

for the GM formulation is,

min
S

Eθ0∼Pθ0

[ T−1∑
t=0

D
(
∇θLtrain

S (θSt , λ),∇θLtrain
T (θSt , λ)

)]
. (2)

Challenge of varying hyperparameter λ. In the formulation of the SDC, the condensed data
S is learned with a fixed hyperparameter λ, e.g., a pre-specified neural network architecture. As
a result, the condensed data trained with SDC’s objective performs poorly on hyperparameter
search (Cui et al., 2022), which requires the performance of models under varying hyperparameters
to behave consistently on the original and condensed dataset. In the following, we tackle this issue by
reformulating the dataset condensation problem under the hyperparameter optimization framework.

3 HYPERPARAMETER CALIBRATED DATASET CONDENSATION

In this section, we would like to develop a condensation method specifically for preserving the
outcome of hyperparameter optimization (HPO) on the condensed dataset across different architec-
tures/hyperparameters for faster hyperparameter search. This requires dealing with varying choices of
hyperparameters so that the relative performances of different hyperparameters on the condensed and
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original datasets are consistent. We first formulate the data condensation for hyperparameter search
in the HPO framework below and then propose the hyperparameter calibrated dataset condensation
framework in Section 4 by using the equivalence relationship between preserving the performance
ranking and the hypergradient alignment.

HPO’s objective. Given T = T train
⋃
T val

⋃
T test, HPO aims to find the optimal hyperparame-

ter λT that minimizes the validation loss of the model optimized on the training dataset T train with
hyperparameter λT , i.e.,

λT = argmin
λ∈Λ
L∗
T (λ), where L∗

T (λ) := Lval
T (θT (λ), λ) and θT (λ) := argmin

θ
Ltrain
T (θ, λ).

(HPO)
Here Lval

T (θ, λ) := 1
|T val|

∑
(x,y)∈T val l(fθ(x), y, λ). HPO is a bi-level optimization where both the

optimal parameter θT (λ) and the optimized validation loss L∗
T (λ) are viewed as a function of the

hyperparameter λ.

Dataset condensation for HPO. We would like to synthesize a condensed training dataset Strain
and a condensed validation dataset Sval to replace the original T train and T val for hyperparameter
search. Denote the synthetic dataset as S = Strain

⋃
Sval. Similar to Eq. (HPO), the optimal

hyperparameter λS is defined for a given dataset S. Naively, one can formulate such a problem
as finding the condensed dataset S to minimize the validation loss on the original dataset T val as
follows, which is an optimization problem similar to the standard dataset condensation in Eq. (SDC):

S∗ = argmin
S
L∗
T
(
λS(S)

)
s.t. λS(S) := argmin

λ∈Λ
L∗
S(λ), (3)

where the optimized validation losses L∗
T (·) and L∗

S(·) are defined following Eq. (HPO).

However, two challenges exist for such a formulation. Challenge (1): Eq. (3) is a nested optimization
(for dataset condensation) over another nested optimization (for HPO), which is computationally
expensive. Challenge (2): the search space Λ of the hyperparameters can be complicated. In contrast
to parameter optimization, where the search space is usually assumed to be the continuous and
unbounded Euclidean space, the search space of the hyperparameters can be compositions of discrete
and continuous spaces. Having such discrete components in the search space poses challenges for
gradient-based optimization methods.

To address Challenge (1), we propose an alternative objective based on the alignment of hypergra-
dients that can be computed efficiently in Section 4. For Challenge (2), we construct the extended
search space in Section 5.

4 HYPERPARAMETER CALIBRATION VIA HYPERGRADIENT ALIGNMENT

In this section, we introduce Hyperparameter-Calibrated Dataset Condensation (HCDC), a novel
condensation method designed to align hyperparameter gradients – referred to as hypergradients –
thus preserving the validation performance ranking of various hyperparameters.

Hyperparameter calibration. To tackle the computational challenges inherent in hyperparameter
optimization (HPO) as expressed in Eq. (3), we propose an efficient yet sufficient alternative. Rather
than directly solving the HPO problem, we aim to identify a condensed dataset that maintains the
outcomes of HPO on the hyperparameter set Λ. We refer to this process as hyperparameter calibration,
formally defined as follows.
Definition 1 (Hyperparameter Calibration). Given original dataset T , generic model fλθ , and
hyperparameter search space Λ, we say a condensed dataset S is hyperparameter calibrated, if for
any λ1 ̸= λ2 ∈ Λ, it holds that,(

L∗
T (λ1)− L∗

T (λ2)
)(
L∗
S(λ1)− L∗

S(λ2)
)
> 0 (HC)

In other words, changes of the optimized validation loss on T and S always have the same sign,
between any pairs of hyperparameters λ1 ̸= λ2.

It is evident that if hyperparameter calibration (HC) is satisfied, the outcomes of HPO on both the
original and condensed datasets will be identical. Consequently, our objective shifts to ensuring
hyperparameter calibration across all pairs of hyperparameters.
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HCDC: hypergradient alignment objective for dataset condensation. To move forward, we
make the assumption that there exists a continuous extension of the search space. Specifically, the
(potentially discrete) search space Λ can be extended to a compact and connected set Λ̃ ⊃ Λ. Within
this extended set, we define a continuation of the generic model fλθ such that fλθ is differentiable
anywhere in Λ̃. In Section 5, we will elaborate on how to construct such an extended search space Λ̃.

To establish a new objective for hyperparameter calibration, consider the case when λ1 is in the
neighborhood of λ2, denoted as λ1 ∈ Br(λ2) for some r > 0. In this situation, the change in
validation loss can be approximated up to first-order by the hypergradients, as follows: L∗

T (λ1)−
L∗
T (λ2) ≈ ⟨∇λL∗

T (λ2),∆λ⟩. Here, ∆λ = λ1 − λ2 with r ≥ ∥∆λ∥2 → 0+. Analogously, for
the synthetic dataset we have: L∗

S(λ1)− L∗
S(λ2) ≈ ⟨∇λL∗

S(λ2),∆λ⟩. Hence, the hyperparameter
calibration condition simplifies to ⟨∇λL∗

T (λ2),∆λ⟩ · ⟨∇λL∗
S(λ2),∆λ⟩ > 0. Further simplification

leads to∇λL∗
T (λ) ∥ ∇λL∗

S(λ), indicating alignment of the two hypergradient vectors. We formally
define this hypergradient alignment and establish its equivalence to hyperparameter calibration.
Definition 2 (Hypergradient Alignment). We say hypergradients are aligned in an extended search
space Λ̃, if for any λ ∈ Λ̃, it holds that ∇λL∗

T (λ) ∥ ∇λL∗
S(λ), i.e., Dc(∇λL∗

T (λ),∇λL∗
S(λ)) = 0,

where Dc(·, ·) = 1− cos(·, ·) represents the cosine distance.
Theorem 1 (Equivalence between Hypergradient Alignment and Hyperparameter Calibration).
Hypergradient alignment (Definition 2) is equivalent to hyperparameter calibration (Definition 1) on
a connected and compact set, e.g., the extended search space Λ̃.

The implication is straightforward: if hyperparameter calibration holds in Λ̃, it also holds in Λ. Ac-
cording to Theorem 1, achieving hypergradient alignment in Λ̃ is sufficient to ensure hyperparameter
calibration in Λ. Therefore, the integrity of the HPO outcome over Λ is maintained.

Consequently, the essence of our hyperparameter calibrated dataset condensation (HCDC) is to
align/match the hypergradients calculated on both the original and condensed datasets within the
extended search space Λ̃:

S∗ = argmin
S

∑
λ∈Λ̃

Dc

(
∇λLval

T
(
θT (λ), λ

)
,∇λLval

S
(
θS(λ), λ

))
, (HCDC)

where the cosine distance Dc(·, ·) = 1− cos(·, ·) is used without loss of generality.

5 IMPLEMENTATIONS OF HCDC

In this section, we focus on implementing the hyperparameter calibrated dataset condensation
(HCDC) algorithm. We address two primary challenges: (1) efficient approximate computation of
hyperparameter gradients, often called hypergradients, using implicit differentiation techniques; and
(2) the efficient formation of the extended search space Λ̃. The complete pseudocode for HCDC will
be provided at the end of this section.

5.1 EFFICIENT EVALUATION OF HYPERGRADIENTS

The efficient computation of hypergradients is well-addressed in existing literature (see Section 6). In
our HCDC implementation, we utilize the implicit function theorem (IFT) and the Neumann series
approximation for inverse Hessians, as proposed by Lorraine et al. (2020).

Computing hypergradients via IFT. The hypergradients are the gradients of the optimized
validation loss L∗

T (λ) = Lval
T (θT (λ), λ) with respect to the hyperparameters λ; see Appendix E for

further details. The implicit function theorem (IFT) provides an efficient approximation to compute
the hypergradients∇λL∗

T (λ) and∇λL∗
S(λ).

∇λL∗
T (λ)≈−

[∂2Ltrain
T (θ, λ)

∂λ∂θT
][∂2Ltrain

T (θ, λ)

∂θ∂θT
]−1∇θLval

T (θ, λ) +∇λLval
T (θ, λ), (IFT)

where we consider the direct gradient ∇λLval
T (θ, λ) is 0, since in most cases the hyperparameter λ

only affects the validation loss Lval
T (θ, λ) through the model function fθ,λ. The first term consists of

the mixed partials
[∂2Ltrain

T (θ,λ)
∂λ∂θT

]
, the inverse Hessian

[∂2Ltrain
T (θ,λ)
∂θ∂θT

]−1
, and the validation gradients

∇θLval
T (θ, λ). While the other parts can be calculated efficiently through a single back-propagation,
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approximating the inverse Hessian is required. Lorraine et al. (2020) propose a stable, tractable, and
efficient Neumann series approximation of the inverse Hessian as follows:[∂2Ltrain

T (θ,λ)
∂θ∂θT

]−1
= limi→∞

∑i
j=0

[
I − ∂2Ltrain

T (θ,λ)
∂θ∂θT

]j
,

which requires only constant memory. When combined with Eq. (IFT), the approximated hypergradi-
ents can be evaluated by employing efficient vector-Jacobian products (Lorraine et al., 2020).

Optimizing hypergradient alignment loss in Eq. (HCDC). To optimize the objective defined in
HCDC (Eq. (HCDC)), we learn the synthetic validation set Sval from scratch. This is crucial as the
hypergradients with respect to the validation losses in Eq. (HCDC), are significantly influenced by the
synthetic validation examples, which are free learnable parameters during the condensation process.
In contrast, we maintain the synthetic training set Strain as fixed. For generating Strain, we employ
the standard dataset condensation (SDC) algorithm, as described in Eq. (2). To optimize the synthetic
validation set Sval with respect to the hyper-gradient loss in Eq. (HCDC), we compute the gradients
of ∇θLval

S (θ, λ) and ∇λLval
S (θ, λ) w.r.t. Sval. This is handled using an additional back-propagation

step, akin to the one in SDC that calculates the gradients of∇θLtrain
S (θ, λ) w.r.t Strain.

5.2 EFFICIENT DESIGN OF EXTENDED SEARCH SPACE

HCDC’s objective (Eq. (HCDC)) necessitates the alignment of hypergradients across all hyperpa-
rameters λ’s in an extended space Λ̃. This space is a compact and connected superset of the original
search space Λ. For practical implementation, we evaluate the hypergradient matching loss using a
subset of λ values randomly sampled from Λ̃. To enhance HCDC’s efficiency within a predefined
search space λ, our goal is to minimally extend this space to Λ̃ for sampling.

In the case of continuous hyperparameters, Λ is generally both compact and connected, rending Λ̃
identical to Λ. For discrete search spaces Λ consisting of p candidate hyperparameters, we propose
a linear-complexity construction for Λ̃ (in which the linearity is in terms of p). Specifically, for
each i ∈ [p], we formulate an “i-th HPO trajectory”, a representative path that originates from
λSi,0 = λi ∈ Λ and evolves via the update rule λSi,t+1 ← λSi,t − η∇λL∗

S(λ
S
i,t), see Appendix H for

details and Fig. 8 for illustration. We assume that all p trajectories converge to the same or equivalent
optima λS , thus forming “connected” paths. Consequently, the extended search space Λ̃ comprises
these p connected trajectories, allowing us to evaluate the hypergradient matching loss along each
trajectory {λSi,t}Tt=0 during the iterative update of λ.
5.3 PSEUDOCODE

We conclude this section by outlining the HCDC algorithm in Algorithm 1, assuming a dis-
crete and finite hyperparameter search space Λ. In Line 7, we calculate the hypergradients
∇λL∗

S(λ) using Eq. (IFT). For computing the gradient ∇SvalD
(
∇λL∗

T (λ),∇λL∗
S(λ)

)
in Line 8,

we note that only ∇λL∗
S(λ) is depends on Sval. Employing Eq. (IFT), we find that ∇λL∗

S(λ) =

−
[∂2Ltrain

S (θ,λ)
∂λ∂θS

][∂2Ltrain
S (θ,λ)
∂θ∂θS

]−1∇θLval
S (θ, λ). Note that there are no direct gradients, as λ influ-

ences the loss solely through the model fλθ . Therefore, to obtain∇SvalD
(
∇λL∗

T (λ),∇λL∗
S(λ)

)
, we

simply need to compute the gradient∇Sval∇θLval
S (θ, λ) through standard back-propagation methods,

since only the validation loss term∇θLval
S (θ, λ) depends on Sval.

Algorithm 1: Hyperparameter Calibrated Dataset Condensation (HCDC)
Input: Original dataset T , a set of NN architectures fθ , hyperparameter search space

λ ∈ Λ = {λ1, . . . , λp}, predetermined condensed training data Strain learned by standard dataset
condensation (e.g., Eq. (2)), randomly initialized synthetic examples Sval of C classes.

1 for repeat k = 0, . . . ,K − 1 do
2 foreach hyperparameters λ = λ1, . . . , λp in Λ do
3 Initialize model parameters θ ← θ0 ∼ Pθ0
4 for epoch t = 0, . . . , Tθ − 1 do
5 Update model parameters θ ← θ − ηθ∇θLtrain

S (θ, λ)
6 if t mod Tλ = 0 then
7 Update hyperparameters λ← λ− ηλ∇λL∗

S(λ)
8 Update the synthetic validation set Sval ← Sval − ηS∇SvalD

(
∇λL∗

T (λ),∇λL∗
S(λ)

)
9 return Condensed validation set Sval.

For a detailed complexity analysis of Algorithm 1 and further discussions, refer to Appendix I.

6



Under review as a conference paper at ICLR 2024

6 RELATED WORK

The traditional way to simplify a dataset is coreset selection (Toneva et al., 2018; Paul et al., 2021),
where critical training data samples are chosen based on heuristics like diversity (Aljundi et al., 2019),
distance to the dataset cluster centers (Rebuffi et al., 2017; Chen et al., 2010) and forgetfulness (Toneva
et al., 2018). However, the performance of coreset selection methods is limited by the assumption of
the existence of representative samples in the original data, which may not hold in practice.

To overcome this limitation, dataset distillation/condensation (Wang et al., 2018) has been proposed
as a more effective way to reduce sample size. Dataset condensation (or dataset distillation) is first
proposed in (Wang et al., 2018) as a learning-to-learn problem by formulating the network parameters
as a function of synthetic data and learning them through the network parameters to minimize the
training loss over the original data. This approach involves producing a small synthetic dataset to
replace the original larger one, so that the test/generalization performance of the model trained on the
synthetic set is comparable to that trained on the original. However, the nested-loop optimization
precludes it from scaling up to large-scale in-the-wild datasets. Zhao et al. (2020) alleviate this issue
by enforcing the gradients of the synthetic samples w.r.t. the network weights to approach those of the
original data, which successfully alleviates the expensive unrolling of the computational graph. Based
on the meta-learning formulation in (Wang et al., 2018), Bohdal et al. (2020) and Nguyen et al. (2020;
2021) propose to simplify the inner-loop optimization of a classification model by training with ridge
regression which has a closed-form solution, while Such et al. (2020) model the synthetic data using
a generative network. To improve the data efficiency of synthetic samples in the gradient-matching
algorithm, Zhao & Bilen (2021a) apply differentiable Siamese augmentation, and Kim et al. (2022)
introduce efficient synthetic-data parametrization.

Implicit differentiation methods apply the implicit function theorem (IFT) (Eq. (IFT)) to nested-
optimization problems (Wang et al., 2019). Lorraine et al. (2020) approximated the inverse Hessian
by Neumann series, which is a stable alternative to conjugate gradients (Shaban et al., 2019) and
scales IFT to large networks with constant memory.

Differentiable NAS methods, e.g., DARTS (Liu et al., 2018) explore the possibility of transforming
the discrete neural architecture space into a continuously differentiable form and further uses gradient
optimization to search the neural architecture. SNAS (Xie et al., 2018) points out that DARTS suffers
from the unbounded bias issue towards its objective, and it remodels the NAS and leverages the
Gumbel-softmax trick (Jang et al., 2017; Maddison et al., 2017) to learn the architecture parameter.

In addition, we summarize more dataset condensation and coreset selection methods as well as graph
reduction methods in Appendix B.

Table 1: The Spearman’s rank correlation of architecture’s performance (Corr.) and the test performance of the
best architecture selected on the condensed dataset (Perf.) on two image datasets. Grid search is applied to find
the best architecture.

Coresets Standard Condensation Ours Oracle
Dataset

Random K-Center Herding DC DSA DM KIP TM HCDC Optimal

Corr. −0.12± 0.07 0.19± 0.12 −0.05± 0.08 −0.21± 0.15 −0.33± 0.09 −0.10± 0.15 −0.27± 0.15 −0.07± 0.04 0.74± 0.21 —
CIFAR-10

Perf. (%) 91.3± 0.2 91.4± 0.3 90.2± 0.9 89.2± 3.3 73.5± 7.2 92.2± 0.4 91.8± 0.2 75.2± 4.3 92.9± 0.7 93.5

Corr. −0.05± 0.03 −0.07± 0.05 0.08± 0.11 −0.13± 0.02 −0.28± 0.05 −0.15± 0.07 −0.08± 0.04 −0.09± 0.03 0.63± 0.13 —
CIFAR-100

Perf. (%) 71.1± 1.4 69.5± 2.8 67.9± 1.8 64.9± 2.2 59.0± 4.1 70.1± 0.6 68.8± 0.6 51.3± 6.1 72.4± 1.7 72.9

7 EXPERIMENTS

In this section, we validate the effectiveness of hyperparameter calibrated dataset condensation
(HCDC) when applied to speed up architecture/hyperparameter search on two types of data: images
and graphs. For an ordered list of architectures, we calculate Spearman’s rank correlation coefficient
−1 ≤ Corr. ≤ 1, between the rankings of their validation performance on the original and condensed
datasets. This correlation coefficient (denoted by Corr.) indicates how similar the performance
ranking on the condensed dataset is to that on the original dataset. We also report the test accuracy
(referred to as Perf.) evaluated on the original dataset of the architectures selected on the condensed
dataset. If the test performance is close to the true optimal performance among all architectures, we
say the architecture search outcome is preserved with high accuracy. See Appendix G and Appendix J
for more discussions on implementation and experimental setups.
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Table 2: Spearman’s rank correlation of convolution filters in GNNs (Corr.) and the test performance of the best
convolution filter selected on the condensed graph (Pref.) on four graph datasets. Continuous hyperparameter
optimization (Lorraine et al., 2020) is applied to find the best convolution filter, while Spearman’s rank correlation
coefficients are evaluated on 80 sampled hyperparameter configurations. n is the total number of nodes in the
original graph, and ctrain is the number of training nodes in the condensed graph.

Dataset Ratio Random GCond-X GCond HCDC Whole Graph
(ctrain/n) Corr. Perf. (%) Corr. Perf. (%) Corr. Perf. (%) Corr. Perf. (%) Perf. (%)

Cora
0.9% 0.29± .08 81.2± 1.1 0.16± .07 79.5± 0.7 0.61± .03 81.9± 1.6 0.80± .03 83.0± 0.2

83.8± 0.41.8% 0.40± .04 81.9± 0.5 0.21± .07 80.3± 0.4 0.76± .06 83.2± 0.9 0.85± .03 83.4± 0.2
3.6% 0.51± .04 82.2± 0.6 0.23± .04 80.9± 0.6 0.81± .04 83.2± 1.1 0.90± .01 83.4± 0.3

Citeseer
1.3% 0.38± .11 71.9± 0.8 0.15± .07 70.7± 0.9 0.68± .03 71.3± 1.2 0.79± .01 73.1± 0.2

73.7± 0.62.6% 0.56± .06 72.2± 0.4 0.29± .05 70.8± 0.5 0.79± .05 71.5± 0.7 0.83± .02 73.3± 0.5
5.2% 0.71± .05 73.0± 0.3 0.35± .08 70.2± 0.4 0.83± .03 71.1± 0.8 0.89± .02 73.4± 0.4

Ogbn-arxiv
0.1% 0.59± .08 70.1± 1.7 0.39± .06 69.8± 1.4 0.59± .07 70.3± 1.4 0.77± .04 71.9± 0.8

73.2± 0.80.25% 0.63± .05 70.3± 1.3 0.44± .03 70.1± 0.7 0.64± .05 70.5± 1.0 0.83± .03 72.4± 1.0
0.5% 0.68± .07 70.9± 1.0 0.47± .05 70.0± 0.7 0.67± .05 71.1± 0.6 0.88± .03 72.6± 0.6

Reddit
0.1% 0.42± .09 92.1± 1.6 0.39± .04 90.9± 0.8 0.53± .06 90.9± 1.7 0.79± .03 92.1± 0.9

94.1± 0.70.25% 0.50± .06 92.7± 1.3 0.41± .05 90.9± 0.5 0.61± .04 91.2± 1.2 0.83± .01 92.9± 0.7
0.5% 0.58± .06 92.8± 0.7 0.42± .03 91.5± 0.6 0.66± .02 92.1± 0.9 0.87± .01 93.1± 0.5

Table 3: The search time and test performance of the best architecture find by NAS methods on the condensed
datasets. We consider two NAS algorithms: (1) the differentiable NAS algorithm DARTS-PT and (2) REIN-
FORCE without parameter-sharing.

NAS Algorithm Random DC HCDC Original
Time (sec) Perf. (%) Time (sec) Perf. (%) Time (sec) Perf. (%) Time (sec) Perf. (%)

DARTS-PT 37.1 89.4 ± 0.3 39.2 85.2 ± 1.9 35.5 91.9 ± 0.4 229 92.7 ± 0.6
REINFORCE 166 88.1 ± 1.8 105 80.1 ± 6.5 119 92.3 ± 1.1 1492 93.0 ± 0.9

Random

K-Center

Herding

DC

DSA

DM

KIP

TM

HCDC (Ours)

Optimal

−0.12

+0.19

−0.05

−0.21

−0.33

−0.10

−0.27

−0.07

+0.74

+1.00

Better performance

Algorithm Correlation

Figure 2: Visualization of the performance rank-
ings of architectures (subsampled from the search
space) evaluated on different condensed datasets.
Colors indicate the performance ranking on the
original dataset, while lighter shades refer to bet-
ter performance. Spearman’s rank correlations are
shown on the right.

Preserving architecture performance ranking on
images. We follow the practice of (Cui et al.,
2022) and construct the search space by sampling
100 networks from NAS-Bench-201 (Dong & Yang,
2020), which contains the ground-truth performance
of 15,625 networks. All models are trained on
CIFAR-10 or CIFAR-100 for 50 epochs under five
random seeds and ranked according to their average
accuracy on a held-out validation set of 10K images.
As a common practice in NAS (Liu et al., 2018),
we reduce the number of repeated blocks in all ar-
chitecture from 15 to 3 during the search phase, as
deep models are hard to train on the small condensed
datasets. We consider three coreset baselines, includ-
ing uniform random sampling, K-Center (Farahani
& Hekmatfar, 2009), and Herding (Welling, 2009)
coresets, as well as five standard condensation base-
lines, including dataset condensation (DC) (Zhao
et al., 2020), differentiable siamese augmentation
(DSA) (Zhao & Bilen, 2021a), distribution matching
(DM) (Zhao & Bilen, 2021b), Kernel Inducing Point (KIP) (Nguyen et al., 2020; 2021), and Training
Trajectory Matching (TM) (Cazenavette et al., 2022). For the coreset and condensation baselines,
we randomly split the condensed dataset to obtain the condensed validation data while keeping the
train-validation split ratio. We subsample or compress the original dataset to 50 images per class
for all baselines. As shown in Table 1, our HCDC is much better at preserving the performance
ranking of architectures compared to all other coreset and condensation methods. At the same time,
HCDC also consistently attains better-selected architectures’ performance, which implies the HCDC
condensed datasets are reliable proxies of the original datasets for architecture search.

Speeding up architecture search on images. We then combine HCDC with some off-the-shelf
NAS algorithms to demonstrate the efficiency gain when evaluated on the proxy condensed dataset.
We consider two NAS algorithms: DARTS-PT (Wang et al., 2020), which is a parameter-sharing
based differentiable NAS algorithm, and REINFORCE (Williams, 1992), which is a reinforcement
learning algorithm without parameter sharing. In Table 3, we see all coreset/condensation baselines
can bring significant speed-ups to the NAS algorithms since the models are trained on the small
proxy datasets. Same as under the grid search setup, the test performance of the selected architecture
on the HCDC condensed dataset is consistently higher. Here a small search space of 100 sampled
architectures is used as in Table 3 and we expect even higher efficiency gain on larger search spaces.
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Plane     Car     Bird      Cat      Deer     Dog     Frog   Horse    Ship    Truck

Figure 3: Visualization of some example con-
densed validation set images using our HCDC al-
gorithm on CIFAR-10.

In Fig. 2, we directly visualize the performance rank-
ings of architectures on different condensed datasets.
Each color slice indicates one architecture and and
are re-ordered with the ranking from the condensation
algorithm. rows that are more similar to the ’optimal’
gradient indicate that the algorithm is ranking the ar-
chitectures similarly to the optimial ranking. The best
architectures with the HCDC algorithm are among
the best in the original dataset.

Finding the best convolution filter on graphs. We now consider the search space of graph
neural networks’ (GNN) convolution filters, which is intrinsically continuous (i.e., defined by a few
continuous hyperparameters which parameterize the convolution filter, see Section 5 for details). Our
goal is to speed up the selection of the best-suited convolution filter design on large graphs. We
consider 2-layer message-passing GNNs whose convolution matrix is a truncated sum of powers of
the graph Laplacian; see Appendix J. Four node classification graph benchmarks are used, including
two small graphs (Cora and Citeseer) and two large graphs (Ogbn-arxiv and Reddit) with more than
100K nodes. To compute the Spearman’s rank correlations, we sample 80 hyperparameter setups from
the search space and compare their performance rankings. We test HCDC against three baselines: (1)
Random: random uniform sampling of nodes and find their induced subgraph, (2) GCond-X: graph
condensation (Jin et al., 2021) but fix the synthetic adjacency to the identity matrix, (3) GCond: graph
condensation which also learns the adjacency. The whole graph performance is oracle and shows
the best possible test performance when the convolution filter is optimized on the original datasets
using hypergradient-based method (Lorraine et al., 2020). In Table 2, we see HCDC consistently
outperforms the other approaches, and the test performance of selected architecture is close to the
ground-truth optimal.

Figure 4: Speed-up of graph NAS’s search pro-
cess, when evaluated on the small proxy dataset
condensed by HCDC.

Speeding up off-the-shelf graph architecture
search algorithms. Finally, we demonstrate HCDC
can speed up off-the-shelf graph architecture search
methods. We use graph NAS (Gao et al., 2019) on
Ogbn-arxiv with a compression ratio of ctrain/n =
0.5%, where n is the size of the original graph, and
ctrain is the number of training nodes in the con-
densed graph. The search space of GNN architectures
is the same as in (Gao et al., 2019), where various
attention and aggregation functions are incorporated.
We plot the best test performance of searched archi-
tecture versus the search time in Fig. 4. We see that
when evaluated on the dataset condensed by HCDC,
the search algorithm finds the better architectures
much faster. This efficiency gain provided by the small proxy dataset is orthogonal to the design of
search strategies and should be applied to any type of data, including graph and images.

8 CONCLUSION

We propose a hyperparameter calibration formulation for dataset condensation to preserve the
outcome of hyperparameter optimization, which is then solved by aligning the hyperparameter
gradients. We demonstrate both theoretically and experimentally that HCDC can effectively preserve
the validation performance rankings of architectures and accelerate the hyperparameter/architecture
search on images and graphs. The overall performance of HCDC can be affected by (1) how the
differentiable NAS model used for condensation generalizes to unseen architectures, (2) where we
align hypergradients in the search space, (3) how we learn the synthetic training set, (4) how we
parameterize the synthetic dataset, and we leave the exploration of these design choices to future
work. We hope our work opens up a promising avenue for speeding up hyperparameter/architecture
search by dataset compression.
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