
Higher-Order Dependency Parsing for Arc-Polynomial Score Functions via
Gradient-Based Methods and Genetic Algorithm

Anonymous ACL submission

Abstract

We present a novel method for higher-order001
dependency parsing which takes advantage of002
the general form of score functions written as003
arc-polynomials, a general framework which004
encompasses common higher-order score func-005
tions, and includes new ones. This method is006
based on non-linear optimization techniques,007
namely coordinate ascent and genetic search008
where we iteratively update a candidate parse.009
Updates are formulated as gradient-based op-010
erations, and are efficiently computed by auto-011
differentiation libraries. Experiments show that012
this method obtains results matching the recent013
state-of-the-art second order parsers on three014
standard datasets.015

1 Introduction016

The goal of modern graph-based dependency pars-017

ing is to find the most adequate parse structure018

for the given input sentence by computing a score019

for all possible candidate parses, and returning the020

highest-scoring one. Since the number of candi-021

dates is exponential in the sentence length, the scor-022

ing is performed implicitly: after computing scores023

for possible parts, the best structure, whose score024

is the sum of its various parts, is returned by a025

combinatorial algorithm based on either dynamic026

programming such as the Eisner algorithm (Eisner,027

1997) in the projective case, or duality gap such as028

the Chu-Liu-Edmonds algorithm (McDonald et al.,029

2005) in the non-projective case.030

Graph-based models where parts are restricted to031

single arcs are called first-order models, while mod-032

els where parts contain k-tuples of arcs are called033

kth-order models. For instance models with score034

for sibling and grand-parent relations are 2nd-order035

models because parts consist of 2 connected arcs.036

The connectivity is important since it helps build-037

ing efficient dynamic programming algorithms in038

the case of projective arborescences (Koo and039

Collins, 2010) or efficient approximations in the040

non-projective case based on lagrangian heuris- 041

tics (Koo et al., 2010; Martins et al., 2013) or belief 042

propagation (Smith and Eisner, 2008). The score 043

function of first-order models, being a sum of parts 044

which are simple arcs, is linear in arc variables, 045

while for second-order, being a sum of parts which 046

are pair of arcs, the score function is quadratic in 047

arc variables. More generally kth-order models 048

have a polynomial score function in arc variables, 049

with highest degree equal to k. 050

In this paper we explore the consequences of 051

treating score functions for higher-order depen- 052

dency parsing as polynomial functions. This frame- 053

work can recover most previously defined score 054

functions and gives a unified framework for graph- 055

based parsing. Moreover, it can express novel func- 056

tions since in this setting parts are made of possibly 057

disconnected tuples of arcs. We call the results 058

generalized higher-order models, as opposed to 059

previously connected higher-order models. 060

On the other hand, polynomial functions are dif- 061

ficult to manipulate. They are non-convex and so, 062

in addition to already known problems in higher- 063

order parsing such as the computation of the par- 064

tition function for probabilitic models, Maximum 065

A Posteriori (MAP) decoding is itself a challenge. 066

We develop an approximate parsing strategy based 067

on coordinate ascent (Bertsekas, 1999), where we 068

iteratively improve a candidate by flipping arcs. 069

We exploit the polynomial nature of the score func- 070

tion to derive an accurate and efficient procedure 071

to select arcs to be flipped. Since this method con- 072

verges to a local minimum, we show how to embed 073

it within a meta-heuristic based on a genetic anal- 074

ogy (Schmitt, 2001) to find better optima. 075

We can learn these models via two methods, 076

max-margin or probabilitic estimation. Max- 077

margin is straightforward because it only requires 078

MAP decoding but is quite fragile since it is sensi- 079

tive to approximation errors, which are inevitable 080

in our setting. We design a probabilistic loss for 081

1

our model where we approximate parse scores via082

a first-order Taylor expansion around the MAP so-083

lution. We find that this novel method is efficient084

and we show empirically that it can outperform085

previous higher-order models.086

In summary our contributions are the following:087

• a general framework for dependency pars-088

ing which encompasses previous higher-order089

score functions, and includes new ones;090

• a new method for higher-order dependency091

parsing based on non-linear optimization tech-092

niques (coordinate ascent and genetic algo-093

rithm) coupling gradient-based methods, and094

combinatorial routines;095

• an empirical validation of this method which096

obtains state-of-the-art results on standard097

datasets and is computationally efficient.098

2 Related Work099

Before the use of powerful neural feature extractors100

(e.g. BiLSTM or Transformers) dependency pars-101

ing with high-order relations was a clear improve-102

ment over first-order models. Koo and Collins103

(2010) considered efficient third order models for104

projective dependency parsing. In order to have105

efficient dynamic programming algorithms for de-106

coding, only a few limited predefined structures107

can be included to the model (e.g. dependency,108

sibling, grandchild, grand-sibling, tri-sibling).1109

Higher-order non-projective parsing is NP-hard110

but fast heuristics with good performance have111

been proposed based on dual decomposition for112

instance. However, efficient subsystems must be113

devised to efficiently process complex parts, either114

based on dynamic programming algorithms such115

as Viterbi (Koo et al., 2010) or on integer linear116

programming (Martins et al., 2013). In practice117

this restricts parts to connected subgraphs.2118

Since the wide adoption of deep feature extrac-119

tors, the situation is less clear. (Zhang et al., 2020)120

consider a second-order model with dependency121

and adjacent sibling, which can guarantee effi-122

cient decoding for projective arborescence with123

a batchified variant of Eisner algorithm (Eisner,124

1996, 1997). The results show that adjacent sibling125

is beneficial for the performance of parser compar-126

ing with arc-factored model. (Fonseca and Martins,127

1The term sibling often means adjacent sibling, where only
adjacent modifiers on the same side of the head are included.

2We note that Martins et al. (2013) used a 2-arc part called
adjacent modifiers which is not a connected subgraph. But
this was not generalized to 2-arc arbitrary subgraphs.

2020) claim that in the non-projective case, second- 128

order features help especially in long sentences. On 129

the other hand, (Falenska and Kuhn, 2019) showed 130

that in general the impact of consecutive sibling fea- 131

tures was not substantial, and (Zhang et al., 2021) 132

showed that the main benefit of these features could 133

be understood as variance reduction, and vanishes 134

when ensembles are used. 135

Closely related to our work, Wang and Tu (2020) 136

consider a second-order model with score for de- 137

pendencies, siblings and grandchildren where they 138

do not constrain siblings to be adjacent. Although 139

exact estimation is intractable in their setting, an 140

approximate estimation of probability of arbores- 141

cences can be calculated efficiently by a message- 142

passing algorithm. Their experiments seem to con- 143

firm that second-order relations are beneficial to the 144

parsing accuracy, even when trained by an approxi- 145

mate estimation of probability, namely Mean-Field 146

Variational Inference. Instead we approximate the 147

partition function using a first-order Taylor approx- 148

imation around the MAP solution. Partition ap- 149

proximations are usually performed via Bethe’s 150

free energy, see for instance (Martins et al., 2010; 151

Wiseman and Kim, 2019). 152

Dozat and Manning (2017) showed that head 153

selection was a good trade-off during the learning 154

phase, for first-order models. Our method applies 155

this principle to the higher-order case, leading to a 156

coordinate ascent method, well known in the opti- 157

mization literature (Bertsekas, 1999). In Machine 158

Learning and NLP, ascent methods are usually 159

performed in primal-dual algorithms, e.g. (Shalev- 160

Shwartz and Zhang, 2013) for SVMs. 161

We use genetic programming to escape local op- 162

tima when searching for the best parse. Although 163

this kind of metaheuristics has been used for other 164

tasks in NLP such as Word Sense Desambigua- 165

tion (Decadt et al., 2004) or summarization (Lit- 166

vak et al., 2010), and joint PCFG parsing and tag- 167

ging (Araujo, 2006), it is the first time it is applied 168

to dependency parsing to the best of our knowledge. 169

Since genetic algorithms can be seen as implement- 170

ing a Markov Chain (Schmitt, 2001) over candidate 171

solutions, our method resembles Markov-Chain 172

Monte-Carlo methods, e.g. Gibbs sampling, which 173

have already been investigated in parsing (Zhang 174

et al., 2014; Gao and Gormley, 2020). Our method 175

to choose the best arc to improve the current parse 176

is inspired by a recent method for sampling in dis- 177

crete distributions (Grathwohl et al., 2021) where 178

2

we replace sampling by MAP decoding.179

We rely on properties of polynomials to derive180

efficient routines for approximate head selection.181

Polynomial factors were discussed for higher-order182

parsing in (Qian and Liu, 2013).183

3 Notations184

We will denote a sentence of n words as x =185

x0, x1, . . . , xn, where xi is either the dummy root186

symbol when i = 0, or the ith word otherwise. For187

such a sentence x and h, d ∈ {0, 1, . . . , n}, (h, d)188

represents a direct arc form head xh to dependent189

xd. We note y a parse structure, with (h, d) ∈ y if190

(h, d) is an arc of the parse. For convenience, we191

will abuse notation and sometimes interpret a parse192

y either as a vector indexed by arcs or as a matrix:193

yhd =

{
1 if (h, d) is present in parse
0 otherwise

194

The set of all valid parses for sentence x is noted195

Yx. When x is unambiguous, we simplify Yx to Y .196

We note Cx as the set of all possible arcs for197

sentence x, i.e. the arcs of the complete graph over198

vertices in x, or C when unambiguous.199

We say that a non-empty set of arcs A =200

{(h1, d1), . . . (hk, dk)} is a factor set if ∀i, hi ̸= di201

and ∀i < j, di ̸= dj . The first condition asserts that202

an arc cannot be a self-loop while the second en-203

forces that each word has only one head in a factor204

set. The two constraints are natural and required205

for dependency parsing. We note the set of factor206

sets of cardinal k which can be constructed from207

arcs in A as Fk(A), the set of kth-order factors. In208

particular, we will just write Fk for Fk(C). We209

will abuse notations and write set difference F\{a}210

with a singleton simply by F\a. Given a logic for-211

mula f , 1[f] is the function returning 1 when f is212

true and 0 otherwise. Finally, lhd denotes the label213

for arc (h, d).214

4 Polynomial Score Functions for215

Dependency Parsing216

In this work, we consider a generalization of pre-217

vious score functions for graph-based dependency218

parsing where we explictly write the score function219

as a polynomial function where variables represent220

dependency arcs. With this formulation we can em-221

ulate previous score functions, for instance (Wang222

and Tu, 2020; Zhang et al., 2020), but also express223

new ones. We note that we consider only polyno-224

mials where, for each factor, a variable can be used225

at most once, in other words we deal with polyno- 226

mials without exponents: in order to reach the kth 227

degree, k different variables must be multiplied. 228

4.1 Score Function 229

We define Kth-order score functions as: 230

S(x, y) =
∑
k=1

∑
F∈(Fk(y)∩R)

sF

=
K∑
k=1

∑
F∈(Fk∩R)

sF

k∏
(h,d)∈F

yhd

(1) 231

where sF represents the score for the factor con- 232

structed from arcs in F , and R is set of authorized 233

factors (the restriction). Eq. (1) states that the score 234

of y for x, usually described as the sum of the fac- 235

tors of y, can be expressed as the sum of all factors 236

of the complete graph for which the constitutive 237

arcs are present in y. By making arc variables ex- 238

plicit we can use partial derivatives to efficiently 239

compute useful quantities. In the remainder, we 240

will omit R from scores for ease of notation. 241

With this general definition we can recover most 242

previous models for graph-based dependency pars- 243

ing. For instance, in (Wang and Tu, 2020), a sec- 244

ond order model (K = 2) is studied where only 245

sibling and grandchild relations are considered, 246

which can be expressed with the following R: for 247

F = {(h1, d1), (h2, d2)}, we enforce h1 = h2 or 248

d1 = h2. In (Zhang et al., 2020), another second- 249

order model, the restriction limits acceptation to 250

adjacent siblings: h1 = h2 and (h1, d1), (h2, d2) 251

are adjacent (no arc from h1, h2 to words between 252

d1, d2). 253

To demonstrate the generality of this approach, 254

we also consider a generalized third-order model. 255

The first-order and the second-order parts fol- 256

low Wang and Tu (2020), and for third-order fac- 257

tors F = {(h1, d1), (h2, d2), (h3, d3)}, we add re- 258

strictions d1 < d2 < d1+3 and d2 < d3 < d2+3. 259

Arcs in F are not always connected. Instead, we 260

only force the modifiers of arcs to be close, with a 261

maximum distance set to 2. To our knowledge, this 262

type of factors has never been used before. Since 263

the addition of cubic factors would naively require 264

computing O(n6) scores, it could be a computa- 265

tional bottleneck. We avoid it with tensor factoriza- 266

tion following Peng et al. (2017).3 We stress that 267

these third-order factors do not have any lingus- 268

tic justification, but are here to illustrate what our 269

3See Appendix C for details.

3

approach can model without designing a specific270

parsing algorithm. Indeed, we will see experimen-271

tally that this model does not generalize well.272

4.2 Score of One-Arc Modifications273

Parsing can be framed as finding the highest274

S(x, y), or S(y) when x is unambiguous:275

y∗ = argmax
y∈Y

S(y) (2)276

The solution is tractable for K = 1 (first-order277

models) but intractable for higher-order models278

without additional constraints, such as projectivity279

for parses and adjacent siblings in scores.280

We consider here a simpler problem: how much281

can the score increase if we change one arc of the282

current parse? The idea is that better parses may283

be obtained by choosing arcs to be flipped. Thus,284

even starting with a bad parse, we may approach285

the best parse by modifying one arc at a time.286

To solve this simpler problem, the naive method,287

i.e. calculating the score of every parse which dif-288

fers from the current parse by one arc, is unpracti-289

cal since it requires O(n2) computations of S (for290

each modifier and each head). Instead, we show291

that the score change of a one-arc modification can292

be calculated for Eq. (1) without recomputing S.293

Let us consider the current parse y and an arbitrary294

arc a = (h, d) ∈ C (possibly not in y). The partial295

derivative of the score wrt. ya is:4296

∂S(y)

∂ya
=

K∑
k=1

∑
F∈Fk

sF
∂
∏

a′∈F ya′

∂ya

=
K∑
k=1

∑
F∈Fk,
a∈F

sF1[F\a ∈ Fk−1(y)]

(3)297

In other words, the partial derivative wrt ya is298

equal to the sum of the scores of factors F that are299

constructed as the union of a factor of y and {a}.300

When a ∈ y, ∂S(y)
∂ya

can be seen as the restriction301

of S(y) to factors F ∈ Fk(y) where a ∈ F , or302

simply as the part of the score that involves a. And303

so we can write the score of y as:5304

S(y) =
∂S(y)

∂ya
+ S(y\a) (4)305

where the last term is the score of all factors in y306

that do not contain a.307
4See Appendix B.1 for the detailed derivation.
5See Appendix B.2 for the detailed derivation.

When a ̸∈ y, we can still decompose the score 308

into two parts but we must be careful to which 309

parse we refer to. We note a = (h′, d) while we 310

assume (h, d) ∈ y. Let us define y[h → h′, d] as 311

the parse which modifies y by swapping the head 312

index for d from h to h′ while the other heads re- 313

main unchanged, and y[→ h′, d] when the original 314

head is unimportant (used in Section 5.2). We 315

can rewrite the score function of y[h → h′, d] 316

with the previously defined partial derivative, and 317

take advantage of the score factorisation to express 318

S(y[h → h′, d]) directly from y:6 319

S(y[h → h′, d]) =
∂S(y)

∂yh′d
+ S(y\(h, d)) (5) 320

We now define the change of score induced by 321

swapping the head for d from h to h′, written as 322

D(y, h → h′, d), or D(y,→ h′, d) when h is unim- 323

portant. From the previous equations, we derive: 324

D(y, h → h′, d) = S(y[(h → h′, d)])− S(y)

=
∂S(y)

∂yh′d
− ∂S(y)

∂yhd
(6)

325

Thus, to perform a complete evaluation of 326

changes of score obtained by flipping one arc from 327

current solution y, we only need one evaluation of 328

the current solution (forward pass in the deep learn- 329

ing jargon) and then compute the partial derivatives 330

wrt all arcs in C. This can be done efficiently via 331

an auto-differentiation library (backpropagation).7 332

Finally, differences of derivatives at each position 333

d are computed. In the following section, we build 334

an inference algorithm based on this observation. 335

5 Inference as Candidate Improvement 336

5.1 Coordinate Ascent 337

The main idea of our method is, from an initial 338

parse y0, to change the current candidate by picking 339

a word and swapping its head to improve the score 340

function. This is repeated until no further improve- 341

ment is possible. This method is an instance of 342

6See Appendix B.3 for the detailed derivation.
7Without any restriction, the forward complexity is O(n2k)

(factors of k arcs, each identified by two word positions), but
restrictions help reducing this upper bound. Hence, computing
factor scores in the forward in our re-implementations of the
model of Wang and Tu (2020) has a O(n3) time complex-
ity since factors contain 2 arcs sharing one position index.
Backpropagation has the same complexity, see (Eisner, 2016).

4

coordinate ascent (Bertsekas, 1999) (Chap. 2.7), to343

maximize Eq. (1). When parses are arborescences,344

such as when working in A and P , this method345

must, at each step, not only pick an improving arc346

but also assert that the resulting parse has the re-347

quired tree structure. This adds complexity that we348

propose to avoid by working in G and inserting a349

final step of projection to recover a solution in the350

desired space (described in Section 6.2).351

Remark that dropping arborescence constraints352

reduces parsing to selecting one head per word,353

i.e. choose hd,∀d with yhd,d = 1, such as the354

combination of factors maximizes S(y).355

This is straightforward for first-order models,356

since it amounts to maximizing independent func-357

tions. However, this becomes intractable in higher-358

order models since factors overlap. Still, a local359

optimum can be obtained by coordinate ascent.360

Given a current solution yk, basic coordinate361

ascent finds a better next iterate yk+1 by cycling362

through word positions and improving the current363

solution locally by successive head selections.8364

5.2 Gradient-based Coordinate Ascent365

In order to implement an efficient version of co-366

ordinate ascent, we must avoid cycling through367

positions, because it is a source of inefficiency. For368

most words, the head is unambiguous and correctly369

predicted in the initial candidate, and the model370

should not spend time revisiting its choice but371

rather concentrate on promising positions, where372

head modifications could increase the score.373

We thus consider the following problem: at each374

step, find the pair (h, d) which provides the greatest375

positive change in the score function:376

(h∗, d∗) = argmax
h,d

D(y,→ h, d) (7)377

where D requires the computation of factor378

scores (forward pass) in y, the computation of the379

gradient of this score wrt arcs (by backpropaga-380

tion) and then the substraction of derivatives at381

each word position as described in Eq. (6).382

In summary our algorithm, from an initial parse383

y0, iteratively improves a current solution: at step384

k we solve Eq. (7) by computing the gradient of385

S(yk) over arc variables and then pick the arc (h, d)386

whose partial derivative increases the most to set387

yk+1 = yk[→ h, d].388

8See Appendix A.1 for a refresher.

5.3 Approximate First-Order Linearization 389

Coordinate ascent changes one arc at a time which 390

can still be slow. In practice, we found that a sim- 391

pler greedy method performed at the beginning of 392

the search, when high precision is not required, can 393

improve parsing time drastically. Given a current 394

solution yk, we linearize the score function via the 395

first-order Taylor approximation and apply head se- 396

lection to what is now an arc-factored model where 397

word positions can be processed independently and 398

in parallel. For each position d:9 399

h∗d ≈ argmax
h

∂S(yk)

∂ykhd
. 400

We then set yk+1
h∗
dd

= 1, ∀d > 0. This can change 401

|x| arcs at each step k, and the process is repeated 402

until S(yk+1) ≤ S(yk), which indicates that the 403

approximation has become detrimental, after which 404

we switch to coordinate ascent to provide more 405

accurate iterations. 406

5.4 Genetic Algorithm 407

Due to the non-convexity of function S, coordinate 408

ascent returns a local optimum, which may limit the 409

usefulness of higher-order parts. Thus, to ensure a 410

better approximation, we embed it into a genetic- 411

inspired local search (Mitchell, 1998). 412

Genetic Algorithm is an evolutionary algorithm 413

inspired by the process of natural selection. The 414

algorithm requires: a solution domain, here G, and 415

a fitness function, i.e. function S(y). Each step in 416

our genetic algorithm consists of four consecutive 417

processes: selection, crossover, mutation and self- 418

evolution, which are repeated until stabilization. 419

Selection For a group of parses y1, . . . , yw, es- 420

timate scores S(y1), . . . , S(yw). Select the k best 421

candidates (k < w) ys1, . . . , y
s
k. 422

Crossover Average candidates yc = 1
k

∑k
i=1 y

s
k. 423

Set ych,d as the probability of having (h, d) in an op- 424

timal parse and sample w−k new parses according 425

to yc. Note them yc1, . . . , y
c
w−k. 426

Mutation For every parse in yc1, . . . , y
c
w−k, 427

change heads randomly with probability p. Note 428

mutated parses as ym1 , . . . , ymw−k 429

Self-Evolution On parses ym1 , . . . , ymw−k, apply 430

coordinate ascent. Note the output as ye1, . . . , y
e
w−k. 431

Use these new parses and the k best parses returned 432

by selection for next iteration. 433

9See Appendix B.4 for the detailed derivation.

5

Selection and self-evolution pick arcs giving434

high scores while crossover and mutation can pro-435

vide the possibility to jump out of local optima. We436

iterate this process until the best parse is unchanged437

for t consecutive iterations.438

6 Learning and Decoding439

We follow Zhang et al. (2020) and Wang and Tu440

(2020), and learn arcs and labels in a multitask441

fashion with a shared BiLSTM feature extractor.442

Decoding is a 2-step process, where we first infer a443

parse structure, and second predict an arc labelling.444

Loss is the sum of label and arc losses:445

L = Llabel + Larc (8)446

We write (x∗, y∗, l∗) for the training input sen-447

tence and its corresponding parse and labeling.448

6.1 Hinge Loss and Argmax Decoding449

Like Kiperwasser and Goldberg (2016), we write450

hinge loss as follows:451

Larc = ReLU(maxy∈Y S(x∗, y)− S(x∗, y∗) + ∆(y, y∗))452

where ∆(y, y∗) is the Hamming distance.453

The inner maximization requires to solve an454

inference sub-problem, i.e. to find the cost-455

augmented highest-scoring parse:456

max
y∈Y

S(x∗, y) + ∆(y, y∗) (9)457

As Hamming distance is not differentiable, we pro-458

pose to reformulate it as:459

∆(y, y∗) =
∑
h,d

(1− yhd)y
∗
hd + (1− y∗hd)yhd460

linear wrt variables in y. Thus, Eq. (9) can be461

solved with the method proposed in Section 5, ex-462

actly like decoding where we use the coordinate463

ascent and genetic search to return the highest-464

scoring parse structure.465

6.2 Probabilistic Estimation466

In practice hinge loss may have two issues: each467

update is limited to two parses only, which makes468

learning slow, and the linear margin may lead469

to insufficient learning. We thus propose an ap-470

proximate probabilistic learning objective inspired471

by methods such as Mean-Field Variational Infer-472

ence (Wang and Tu, 2020). Instead, we can train473

our model as an arc-factored log-linear model:474

Larc = −
∑

(h,d)∈y∗

log p
(
(h, d)|x∗

)
475

where p
(
(h, d)|x∗

)
is the probability of arc (h, d). 476

We will compute this probability via a local 477

model, i.e. probabilities are the results of nor- 478

malizing scores at each position d. Scores are 479

obtained via an approximate linear model, as in 480

Section 5.3. In order to obtain good approximation 481

via the first-order Taylor expansion, we compute it 482

around the parse with maximum score, assuming 483

that all parses at a one-arc distance also have high 484

scores. Consequently, we use the same reasoning 485

as in Section 5.3 to derive a linear approximation 486

of the current model. Given parse ŷ, result of coor- 487

dinate ascent and genetic search, we set:10 488

p
(
(h, d)|x∗

)
=

p(ŷ[→ h, d])∑
h′ p(ŷ[→ h′, d])

≈ exp(shd)∑
h′ exp(sh′d)

(10) 489

where: 490

shd =
∂S(ŷ)

∂yhd
(11) 491

Inference with coordinate ascent and genetic al- 492

gorithm do not guarantee parses with a tree struc- 493

ture. But we can estimate the marginal proba- 494

bility of arcs from a solution y returned by co- 495

ordinate ascent by reusing Eq. (10). Then, the 496

Eisner algorithm (Eisner, 1996, 1997) or the Chu- 497

Liu-Edmonds algorithm (McDonald et al., 2005) 498

can be applied to have projective or non-projective 499

arborescences. We remark that this is similar to 500

Minimum Bayesian Risk (MBR) decoding (Smith 501

and Smith, 2007), the difference being that here 502

marginalization is estimated with nearest arbores- 503

cences instead of the complete parse forest. 504

6.3 Label Loss 505

Following Dozat and Manning (2017), we use the 506

negative log-likelihood: 507

Llabel(x
∗, y∗, l∗) = −

∑
(h,d)∈y∗

log p(l∗hd|x∗). 508

During decoding, we predict the most probable 509

arc labels on the parse structure ŷ obtained from 510

structure decoding. 511

10See detailed derivation in Appendix B.5.

6

bg ca cs de en es fr it nl no ro ru Avg.
CRF2O 90.77 91.29 91.54 80.46 87.32 90.86 87.96 91.91 88.62 91.02 86.90 93.33 89.33

Local2O 90.53 92.83 92.12 81.73 89.72 92.07 88.53 92.78 90.19 91.88 85.88 92.67 90.07

CA+ALE 90.79 93.14 91.92 84.45 89.89 92.60 90.14 93.57 89.89 93.85 86.42 93.81 90.87

3O+CA+ALE 90.80 93.09 91.91 84.42 89.75 92.50 90.02 93.53 90.13 93.78 86.38 93.86 90.85

GA+CA+ALE 90.70 93.17 91.90 84.19 89.77 92.50 89.88 93.68 90.13 93.81 86.33 93.88 90.83

+BERT

Local2O 91.13 93.34 92.07 81.67 90.43 92.45 89.26 93.50 90.99 91.66 86.09 92.66 90.44

CA+ALE 91.93 94.09 92.46 85.59 90.97 93.42 90.88 94.18 91.49 94.57 87.22 94.40 91.77

3O+CA+ALE 91.87 94.05 92.50 85.22 91.04 93.47 90.79 94.26 91.38 94.62 87.18 94.41 91.73

GA+CA+ALE 91.86 94.08 92.49 85.38 90.99 93.44 91.05 94.13 91.53 94.56 87.25 94.42 91.77

Table 1: LAS on UD 2.2 test data. CRF2O: (Zhang et al., 2020); Local2O: (Wang and Tu, 2020).

7 Experiments512

We evaluate our parsing method11 with the score513

function of Wang and Tu (2020) and our exten-514

sion with third-order factors (3O) with coordinate515

ascent (CA) and genetic algorithm (GA). We use516

two kinds of pretrained word vectors: static, such517

as glove and fasttext (Mikolov et al., 2018), and518

dynamic, marked as +BERT (Devlin et al., 2019).519

All experiments use higher-order scores.520

7.1 Data521

Two datasets are used for projective parsing: the522

English Penn Treebank (PTB) with Stanford De-523

pendencies (Marcus et al., 1993) and CoNLL09524

Chinese data (Hajič et al., 2009). We use standard525

train/dev/test splits and evaluate with UAS/LAS526

metrics. Punctuation is ignored on PTB for dev527

and test. For non-projective dependency parsing,528

Universal Dependencies (UD) v2.2 is used. Follow-529

ing Wang and Tu (2020), punctuation is ignored530

for all languages. For experiments with BERT (De-531

vlin et al., 2019), we use BERT-Large-Uncased for532

PTB, BERT-Base-Chinese for CoNLL09 Chinese533

and Base-Multilingual-Cased for UD.534

7.2 Hyper-Parameters535

To ensure fair comparison, and for budget reasons,536

we use the same setup (hyper-parameters and pre-537

trained embeddings) as Zhang et al. (2020).12538

POS-tags are used in experiments without539

BERT (Devlin et al., 2019).13 With BERT, the last540

4 layers are combined with scalar-mix and then541

concatenated to the original feature vectors.542

11Our prototype will be publicly available upon publication.
12See Appendix A.
13In (Zhang et al., 2020), POS-tags are used on UD but

not on PTB nor CoNLL09 Chinese. In (Wang and Tu, 2020),
POS-tags re used on all datasets.

Method PTB CoNLL09
UAS LAS UAS LAS

CA+hinge 95.69 93.89 91.25 89.52

GA+CA+hinge 95.71 93.87 91.52 89.80

CA+ALE 95.67 93.88 91.31 89.66

3O+CA+ALE 95.64 93.87 91.26 89.61

GA+CA+ALE 95.81 93.99 91.30 89.66

+BERT

CA+ALE 96.53 94.85 93.18 91.57

3O+CA+ALE 96.47 94.79 93.15 91.53

GA+CA+ALE 96.50 94.82 93.16 91.55

Table 2: Comparison on dev. CA: Coordinate Ascent;
3O: Third order model; GA: Genetic Algorithm; ALE:
Approximate Linearized Estimation; hinge: hinge loss

Initial candidates are sampled from the the first- 543

order part of Eq. (1). For genetic algorithm, due 544

to hardware memory limitations, the number of 545

candidates is set to 6. Each time, we take the 3 546

best candidates in selection, and the genetic loop is 547

terminated when the best parse remains unchanged 548

for 3 consecutive iterations. The mutation rate is 549

set to 0.2 on all datasets.14 550

All experiments are run 3 times with random 551

seed set to current time and averaged. We rerun 552

also the results of (Wang and Tu, 2020) on PTB 553

and CoNLL09 with the authors’ implementation15. 554

7.3 Results on PTB and CoNLL09 Chinese 555

Table 2 shows results of our different system with 556

and without BERT. For PTB without BERT we 557

see that training via coordinate ascent with hinge 558

loss of linear estimation give similar results, while 559

genetic algorithm gives a sensible improvement 560

14We tried mutation rates 0.1, 0.2, 0.3 and the best perfor-
mance is obtained on PTB dev with mutation rate 0.2.

15https://github.com/wangxinyu0922/
Second_Order_Parsing, Note that this implementation
also uses the hyper-parameters of Zhang et al. (2020)

7

https://github.com/wangxinyu0922/Second_Order_Parsing
https://github.com/wangxinyu0922/Second_Order_Parsing

Method PTB CoNLL09
UAS LAS UAS LAS

CRF2O∗ 96.14 94.49 89.63 86.52

Local2O 95.98 94.34 - -

Local2O† 95.90 94.25 91.60 89.93

CA+hinge 95.88 94.21 91.27 89.58

GA+CA+hinge 95.93 94.26 91.63 89.89

CA+ALE 95.96 94.33 91.62 89.96

3O+CA+ALE 95.85 94.27 91.59 89.96

GA+CA+ALE 95.95 94.34 91.65 90.02
+BERT

Local2O 96.91 95.34 - -

Local2O† 96.68 95.16 93.46 91.87

CA+ALE 96.68 95.20 93.48 91.91

3O+CA+ALR 96.65 95.13 93.47 91.87

GA+CA+ALE 96.67 95.20 93.42 91.83

Table 3: Comparison on test. *: POS not used. †: Rerun
with official implementation.

when combined with the probabilistic framework.561

We can see that our third-order factors do not im-562

prove scores. With BERT probabilistic models, nei-563

ther third-order nor genetic algorithm gives any im-564

provement. For CoNLL09 Chinese without BERT,565

performance on dev are similar across settings566

while genetic algorithm gives an clear boost for567

hinge loss. With BERT, as for PTB, the simple568

model performs best. We conclude that with third-569

order, as well as with genetic search, it is difficult to570

avoid overfitting when combined with a powerful571

feature extractor such as BERT and this will have572

to be addressed in future work.573

Table 3 gives test results and comparisons with574

two recent similiar systems. For PTB without575

BERT, the exact projective parser of (Zhang et al.,576

2020) has the best performance, which is in accor-577

dance with the reported results in (Wang and Tu,578

2020).16 In comparison with Wang and Tu (2020)579

(Local2O), although their system has more param-580

eters for PTB experiments,17 our coordinate ascent581

method with genetic algorithm plus linearization582

has achieved the same LAS performance. However,583

the same optimization method with hinge loss does584

not show good performances. For CoNLL09 Chi-585

nese without BERT, the genetic algorithm seems to586

help generalization compared to simple coordinate587

ascent, as showed by the improvement on test test.588

16Our best single run gives 94.44 LAS on PTB which is on
a par with their results.

17 Wang and Tu (2020) use a BiLSTM with 600 hidden
units while we follow Zhang et al. (2020) and use 400.

With BERT, on both corpora, simple coordinate 589

ascent gives best performance for our method, as 590

was foreseeable from dev results. 591

7.4 Results on UD 592

Table 1 shows LAS on UD test. The best average 593

performance is achieved with coordinate ascent and 594

genetic algorithm plus approximate linearization. 595

For all languages except nl and cs, our method with 596

or without genetic algorithm outperforms (Wang 597

and Tu, 2020) (Local2O) without BERT. 598

Method Train Test
Local2O 1133 706

CA 506 399

3O+CA 255 249

GA+CA 248 195

Table 4: Speed Comparison on PTB Train and Test
without BERT (sentences per second)

7.5 Speed Comparison 599

We compare the speed of train and test with Nvidia 600

Tesla V100 SXM2 16 Go on PTB. The result is 601

shown in Table 4. For coordinate ascent, training is 602

2.2 times slower than MFVI while test is 1.8 times 603

slower than MFVI18. 604

8 Conclusion 605

We presented a novel method for higher-order pars- 606

ing based on coordinate ascent. Our method relies 607

on the general form of arc-polynomial score func- 608

tions. Promising arcs are picked by evaluated by 609

gradient computations. This method is agnostic to 610

specific score functions and we showed how we 611

can recover previously defined functions and de- 612

sign new ones. Experimentally we showed that, 613

although this method returns local optima, it can 614

obtain state-of-the-art results. 615

Further research could investigate whether the 616

difference between the search space during learn- 617

ing and decoding is a cause of performance de- 618

crease. In particular the coordinate ascent could 619

be replaced by a structured optimization method 620

such as the Frank-Wolfe algorithm (see (Pedregosa 621

et al., 2020) for a recent variant) to obtain a local 622

optimum in a more restricted search space. 623

18The speed is measured with Eisner applied on all sen-
tences. It is about 2 times quicker with the faster decoding
strategy of Zhang et al. (2020) which consists in applying
Eisner only if the coordinate ascent solution does not return a
projective arborescence.

8

9 Ethical Considerations624

The corpora used in this work for training and eval-625

uating are standard corpora which consists of news626

article. While our method is still computationally627

intensive, we believe that the novel parsing method628

based on linearization is a promising avenue of re-629

search to decrease the computational requirements630

needed by higher-order parsers.631

References632

L. Araujo. 2006. Multiobjective genetic programming633
for natural language parsing and tagging. In Parallel634
Problem Solving from Nature-PPSN IX, pages 433–635
442.636

D.P. Bertsekas. 1999. Nonlinear Programming. Athena637
Scientific.638

Bart Decadt, Véronique Hoste, Walter Daelemans, and639
Antal van den Bosch. 2004. GAMBL, genetic al-640
gorithm optimization of memory-based WSD. In641
Proceedings of SENSEVAL-3, the Third International642
Workshop on the Evaluation of Systems for the Se-643
mantic Analysis of Text, pages 108–112, Barcelona,644
Spain. Association for Computational Linguistics.645

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and646
Kristina Toutanova. 2019. BERT: Pre-training of647
deep bidirectional transformers for language under-648
standing. In Proceedings of the 2019 Conference of649
the North American Chapter of the Association for650
Computational Linguistics: Human Language Tech-651
nologies, Volume 1 (Long and Short Papers), pages652
4171–4186, Minneapolis, Minnesota. Association for653
Computational Linguistics.654

Timothy Dozat and Christopher D. Manning. 2017.655
Deep biaffine attention for neural dependency pars-656
ing. In 5th International Conference on Learning657
Representations, ICLR 2017, Toulon, France, April658
24-26, 2017, Conference Track Proceedings. Open-659
Review.net.660

Jason Eisner. 1996. Efficient normal-form parsing for661
Combinatory Categorial Grammar. In 34th Annual662
Meeting of the Association for Computational Lin-663
guistics, pages 79–86, Santa Cruz, California, USA.664
Association for Computational Linguistics.665

Jason Eisner. 1997. Bilexical grammars and a cubic-666
time probabilistic parser. In Proceedings of the Fifth667
International Workshop on Parsing Technologies,668
pages 54–65, Boston/Cambridge, Massachusetts,669
USA. Association for Computational Linguistics.670

Jason Eisner. 2016. Inside-outside and forward-671
backward algorithms are just backprop (tutorial pa-672
per). In Proceedings of the Workshop on Structured673
Prediction for NLP, pages 1–17, Austin, TX. Associ-674
ation for Computational Linguistics.675

Agnieszka Falenska and Jonas Kuhn. 2019. The (non- 676
)utility of structural features in BiLSTM-based de- 677
pendency parsers. In Proceedings of the 57th Annual 678
Meeting of the Association for Computational Lin- 679
guistics, pages 117–128, Florence, Italy. Association 680
for Computational Linguistics. 681

Erick Fonseca and André F. T. Martins. 2020. Revisiting 682
higher-order dependency parsers. In Proceedings 683
of the 58th Annual Meeting of the Association for 684
Computational Linguistics, pages 8795–8800, Online. 685
Association for Computational Linguistics. 686

Sida Gao and Matthew R. Gormley. 2020. Training for 687
Gibbs sampling on conditional random fields with 688
neural scoring factors. In Proceedings of the 2020 689
Conference on Empirical Methods in Natural Lan- 690
guage Processing (EMNLP), pages 4999–5011, On- 691
line. Association for Computational Linguistics. 692

Will Grathwohl, Kevin Swersky, Milad Hashemi, David 693
Duvenaud, and Chris Maddison. 2021. Oops i took a 694
gradient: Scalable sampling for discrete distributions. 695
In Proceedings of the 38th International Conference 696
on Machine Learning, volume 139 of Proceedings 697
of Machine Learning Research, pages 3831–3841. 698
PMLR. 699

Jan Hajič, Massimiliano Ciaramita, Richard Johans- 700
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s 701
Màrquez, Adam Meyers, Joakim Nivre, Sebastian 702
Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu, 703
Nianwen Xue, and Yi Zhang. 2009. The CoNLL- 704
2009 shared task: Syntactic and semantic depen- 705
dencies in multiple languages. In Proceedings of 706
the Thirteenth Conference on Computational Natu- 707
ral Language Learning (CoNLL 2009): Shared Task, 708
pages 1–18, Boulder, Colorado. Association for Com- 709
putational Linguistics. 710

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple 711
and accurate dependency parsing using bidirectional 712
lstm feature representations. Transactions of the As- 713
sociation for Computational Linguistics, 4:313–327. 714

Terry Koo and Michael Collins. 2010. Efficient third- 715
order dependency parsers. In Proceedings of the 48th 716
Annual Meeting of the Association for Computational 717
Linguistics, pages 1–11, Uppsala, Sweden. Associa- 718
tion for Computational Linguistics. 719

Terry Koo, Alexander M. Rush, Michael Collins, 720
Tommi Jaakkola, and David Sontag. 2010. Dual 721
decomposition for parsing with non-projective head 722
automata. In Proceedings of the 2010 Conference on 723
Empirical Methods in Natural Language Processing, 724
pages 1288–1298, Cambridge, MA. Association for 725
Computational Linguistics. 726

Marina Litvak, Mark Last, and Menahem Friedman. 727
2010. A new approach to improving multilingual 728
summarization using a genetic algorithm. In Proceed- 729
ings of the 48th Annual Meeting of the Association for 730
Computational Linguistics, pages 927–936, Uppsala, 731
Sweden. Association for Computational Linguistics. 732

9

https://aclanthology.org/W04-0827
https://aclanthology.org/W04-0827
https://aclanthology.org/W04-0827
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.3115/981863.981874
https://doi.org/10.3115/981863.981874
https://doi.org/10.3115/981863.981874
https://www.aclweb.org/anthology/1997.iwpt-1.10
https://www.aclweb.org/anthology/1997.iwpt-1.10
https://www.aclweb.org/anthology/1997.iwpt-1.10
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/2020.acl-main.776
https://doi.org/10.18653/v1/2020.acl-main.776
https://doi.org/10.18653/v1/2020.acl-main.776
https://doi.org/10.18653/v1/2020.emnlp-main.406
https://doi.org/10.18653/v1/2020.emnlp-main.406
https://doi.org/10.18653/v1/2020.emnlp-main.406
https://doi.org/10.18653/v1/2020.emnlp-main.406
https://doi.org/10.18653/v1/2020.emnlp-main.406
https://proceedings.mlr.press/v139/grathwohl21a.html
https://proceedings.mlr.press/v139/grathwohl21a.html
https://proceedings.mlr.press/v139/grathwohl21a.html
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/P10-1001
https://www.aclweb.org/anthology/P10-1001
https://www.aclweb.org/anthology/P10-1001
https://www.aclweb.org/anthology/D10-1125
https://www.aclweb.org/anthology/D10-1125
https://www.aclweb.org/anthology/D10-1125
https://www.aclweb.org/anthology/D10-1125
https://www.aclweb.org/anthology/D10-1125
https://aclanthology.org/P10-1095
https://aclanthology.org/P10-1095
https://aclanthology.org/P10-1095

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann733
Marcinkiewicz. 1993. Building a large annotated cor-734
pus of English: The Penn Treebank. Computational735
Linguistics, 19(2):313–330.736

André Martins, Miguel Almeida, and Noah A. Smith.737
2013. Turning on the turbo: Fast third-order non-738
projective turbo parsers. In Proceedings of the 51st739
Annual Meeting of the Association for Computational740
Linguistics (Volume 2: Short Papers), pages 617–741
622, Sofia, Bulgaria. Association for Computational742
Linguistics.743

André Martins, Noah Smith, Eric Xing, Pedro Aguiar,744
and Mário Figueiredo. 2010. Turbo parsers: Depen-745
dency parsing by approximate variational inference.746
In Proceedings of the 2010 Conference on Empirical747
Methods in Natural Language Processing, pages 34–748
44, Cambridge, MA. Association for Computational749
Linguistics.750

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and751
Jan Hajič. 2005. Non-projective dependency pars-752
ing using spanning tree algorithms. In Proceed-753
ings of Human Language Technology Conference754
and Conference on Empirical Methods in Natural755
Language Processing, pages 523–530, Vancouver,756
British Columbia, Canada. Association for Computa-757
tional Linguistics.758

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,759
Christian Puhrsch, and Armand Joulin. 2018. Ad-760
vances in pre-training distributed word representa-761
tions. In Proceedings of the International Confer-762
ence on Language Resources and Evaluation (LREC763
2018).764

Melanie Mitchell. 1998. An introduction to genetic765
algorithms. MIT press.766

Fabian Pedregosa, Geoffrey Negiar, Armin Askari, and767
Martin Jaggi. 2020. Linearly convergent frank-wolfe768
with backtracking line-search. In International Con-769
ference on Artificial Intelligence and Statistics, pages770
1–10. PMLR.771

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.772
Deep multitask learning for semantic dependency773
parsing. In Proceedings of the 55th Annual Meeting774
of the Association for Computational Linguistics (Vol-775
ume 1: Long Papers), pages 2037–2048, Vancouver,776
Canada. Association for Computational Linguistics.777

Xian Qian and Yang Liu. 2013. Branch and bound algo-778
rithm for dependency parsing with non-local features.779
Transactions of the Association for Computational780
Linguistics, 1:37–48.781

Lothar M. Schmitt. 2001. Theory of genetic algorithms.782
Theoretical Computer Science, 259(1):1–61.783

Shai Shalev-Shwartz and Tong Zhang. 2013. Stochas-784
tic dual coordinate ascent methods for regularized785
loss minimization. Journal of Machine Learning786
Research, 14(2).787

David A. Smith and Jason Eisner. 2008. Dependency 788
parsing by belief propagation. In Proceedings of the 789
Conference on Empirical Methods in Natural Lan- 790
guage Processing (EMNLP), pages 145–156, Hon- 791
olulu. 792

David A. Smith and Noah A. Smith. 2007. Probabilistic 793
models of nonprojective dependency trees. In Pro- 794
ceedings of the 2007 Joint Conference on Empirical 795
Methods in Natural Language Processing and Com- 796
putational Natural Language Learning (EMNLP- 797
CoNLL), pages 132–140, Prague, Czech Republic. 798
Association for Computational Linguistics. 799

Xinyu Wang and Kewei Tu. 2020. Second-order neu- 800
ral dependency parsing with message passing and 801
end-to-end training. In Proceedings of the 1st Con- 802
ference of the Asia-Pacific Chapter of the Association 803
for Computational Linguistics and the 10th Interna- 804
tional Joint Conference on Natural Language Pro- 805
cessing, pages 93–99, Suzhou, China. Association 806
for Computational Linguistics. 807

Sam Wiseman and Yoon Kim. 2019. Amortized bethe 808
free energy minimization for learning mrfs. In Ad- 809
vances in Neural Information Processing Systems, 810
volume 32. Curran Associates, Inc. 811

Xudong Zhang, Joseph Le Roux, and Thierry Charnois. 812
2021. Strength in numbers: Averaging and clustering 813
effects in mixture of experts for graph-based depen- 814
dency parsing. In Proceedings of the 17th Interna- 815
tional Conference on Parsing Technologies and the 816
IWPT 2021 Shared Task on Parsing into Enhanced 817
Universal Dependencies (IWPT 2021), pages 106– 818
118, Online. Association for Computational Linguis- 819
tics. 820

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi- 821
cient second-order TreeCRF for neural dependency 822
parsing. In Proceedings of the 58th Annual Meet- 823
ing of the Association for Computational Linguistics, 824
pages 3295–3305, Online. Association for Computa- 825
tional Linguistics. 826

Yuan Zhang, Tao Lei, Regina Barzilay, Tommi Jaakkola, 827
and Amir Globerson. 2014. Steps to excellence: Sim- 828
ple inference with refined scoring of dependency 829
trees. In Proceedings of the 52nd Annual Meeting of 830
the Association for Computational Linguistics (Vol- 831
ume 1: Long Papers), pages 197–207, Baltimore, 832
Maryland. Association for Computational Linguis- 833
tics. 834

10

https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://aclanthology.org/P13-2109
https://aclanthology.org/P13-2109
https://aclanthology.org/P13-2109
https://aclanthology.org/D10-1004
https://aclanthology.org/D10-1004
https://aclanthology.org/D10-1004
https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/H05-1066
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.1162/tacl_a_00208
https://doi.org/10.1162/tacl_a_00208
https://doi.org/10.1162/tacl_a_00208
https://doi.org/https://doi.org/10.1016/S0304-3975(00)00406-0
http://cs.jhu.edu/~jason/papers/#smith-eisner-2008-bp
http://cs.jhu.edu/~jason/papers/#smith-eisner-2008-bp
http://cs.jhu.edu/~jason/papers/#smith-eisner-2008-bp
https://www.aclweb.org/anthology/D07-1014
https://www.aclweb.org/anthology/D07-1014
https://www.aclweb.org/anthology/D07-1014
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://proceedings.neurips.cc/paper/2019/file/dc554706afe4c72a60a25314cbaece80-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc554706afe4c72a60a25314cbaece80-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc554706afe4c72a60a25314cbaece80-Paper.pdf
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.3115/v1/P14-1019
https://doi.org/10.3115/v1/P14-1019
https://doi.org/10.3115/v1/P14-1019
https://doi.org/10.3115/v1/P14-1019
https://doi.org/10.3115/v1/P14-1019

A Hyper Parameters835

Param Value Param Value
WordEMB 100 WordEMB dropout 0.33

CharLSTM 50 CharLSTM dropout 0.00

PosEMB 100 PosEMB dropout 0.33

BERT Linear 100 BERT Linear dropout 0

BiLSTM 400 BiLSTM dropout 0.33

MLParc 500 LSTMarc dropout 0.33

MLPlabel 100 LSTMlabel dropout 0.33

MLPsib,gp,3O 100 MLParc dropout 0.33

Learning Rate 2e−4 β1, β2 0.90

Annealing 0.75
t

5000 Patience 100

Table 5: Hyper-parameters

Remark that when running experiments with836

UD, the WordEMB is reset to 300 because we use837

300 dimension fasttext embedding (Mikolov et al.,838

2018) following Zhang et al. (2020); Wang and Tu839

(2020).840

A.1 Coordinate Ascent841

To emphasize that this method works column by842

column we write:843

S(x, y) = S(y:,1, . . . , y:,|x|)844

where y:,d are column of y. 19845

Given a current solution yk, basic coordinate846

ascent finds a better next iterate yk+1 by cycling847

through columns and improving the current solu-848

tion locally by successive head selections:849

h∗d = argmaxh S(y
k+1
:,1 , . . . , yk+1

:,d−1, ξh, y
k
:,d+1 . . . , y

k
:,|x|)

(12)850

where ξh is the one-hot vector with 1 at position851

h. We set yk+1
:,d = ξh∗

d
and the process is repeated852

for every word (going back to the first one after a853

complete pass) until there is no change (yk+1 =854

yk).855

A.2 A Gradient-based Method For856

Coordinate Ascent857

A naive method to solve Eq. (12) requires n evalu-858

ations of S, one per possible head, which is ineffi-859

cient. However, from Section 4.2 and Eq. (6), we860

can rewrite Eq. (12) since it amounts to finding a861

better head at position d from current solution y:862

h∗d = argmax
h

D(y → h, d) (13)863

19In this setting these are one-hot vectors where y:,d[h] = 1
if (h, d) ∈ y.

Still, the gradient-based maximization presented 864

above requires n forward and backward passes 865

to determine the new heads for all words of the 866

sentence. In order to achieve faster convergence, 867

we want to avoid cycling through each word and 868

consider the following problem: at each step, find 869

the pair (h, d) which provides the greatest positive 870

change in the score function: 871

(h∗, d∗) = argmaxh,d S(y
k
:,1, . . . , y

k
:,d−1, ξh, y

k
:,d+1 . . . , y

k
:,|x|)

(14) 872

We set yk+1 = yk[→ h∗, d∗] while other columns 873

are unchanged. This is repeated until yk+1 = yk. 874

Again, a naive maximization requires O(n2) es- 875

timations of score for each step and brings in fact 876

no speed gain. However, as we have already seen, 877

Eq. (14) is simply equivalent to: 878

(h∗, d∗) = argmax
h,d

D(y,→ h, d) (15) 879

which again requires one forward and backward on 880

the current candidate’s score before substractions. 881

B Complete derivations 882

B.1 Partial Derivatives 883

We start with the definition: 884

∂S(y)

∂ya
=

K∑
k=1

∑
F∈Fk(C)

sF
∂
∏

a′∈F ya′

∂ya
885

case a ̸∈ F: we can see that if a ̸∈ F , then 886
∂
∏

a′∈F ya′
∂ya

= 0 since the expression in the nu- 887

merator does not contain variable ya. This means 888

that the inner sum can be safely restricted to factors 889

that contain a. 890

case a ∈ F: Now suppose that a ∈ F . Remark 891

that F is a factor from Fk(C), and thus is a factor 892

set of arcs and consequently all arcs in F are dif- 893

ferent. By applying the rule for product derivatives 894

we can rewrite the partial as: 895

∂
∏

a′∈F ya′

∂ya
=

∏
a′∈F\a

ya′ 896

Now that F is a factor of k arcs from Fk(C) that 897

contains a, we have: 898∏
a′∈F\a

ya′ = 1 ⇐⇒ ya′ = 1, ∀a′ ∈ F\a

⇐⇒ a′ ∈ y,∀a′ ∈ F\a
⇐⇒ F\a ∈ Fk−1(y)

899

where the last line hinges on the fact that if F is 900

factor set then F\a is also a factor set. 901

11

Conclusion: By plugging this into the definition902

we have:903

∂S(y)

∂ya
=

K∑
k=1

∑
F∈Fk(C),

a∈F

sF1[F\a ∈ Fk−1(y)]904

B.2 Substitution Scores 1905

We start from equation (1):906

S(y) =

K∑
k=1

∑
F∈(Fk(C)∩R)

sF

k∏
(h′,d′)∈F

yh′,d′907

Similarly, given arc (h, d) ∈ y we have:908

S(y\(h, d)) =
K∑
k=1

∑
F∈(Fk(C)∩R)

(h,d)̸∈F

sF

k∏
(h′,d′)∈F

yh′,d′909

The score difference is:910

S(y)− S(y\(h, d))

=

K∑
k=1

∑
F∈(Fk(C)∩R)

(h,d)∈F

sF

k∏
(h′,d′)∈F

yh′,d′

=

K∑
k=1

∑
F∈(Fk(C)∩R)

(h,d)∈F

sF1[F ∈ Fk(y)]

=

K∑
k=1

∑
F∈(Fk(C)∩R)

(h,d)∈F

sF1[F\(h, d) ∈ Fk−1(y)]

911

where the last line is correct since we assumed912

above that we have (h, d) ∈ y.913

By using equation (3), we have directly:914

S(y)− S(y\(h, d)) = ∂S(y)

∂yhd
915

which is916

S(y) =
∂S(y)

∂yhd
+ S(y\(h, d))917

B.3 Substitution Scores 2918

First, note that the sets of arcs y\(h, d) and y[h →919

h′, d]\(h′d) are the same. This is because y[h →920

h′, d] is constructed by substituting arc (h, d) ∈ y921

with arc (h′, d), while the other arcs are unchanged.922

Thus we have:923

S(y[h → h′, d]\(h′, d)) = S(y\(h, d))924

Second, we prove the following equivalence, for 925

factor a F ∈ Fk(y[h → h′, d]) such that (h′, d) ∈ 926

F : 927

F\(h′, d) ∈ Fk−1(y[h → h′, d])

⇐⇒ F\(h′, d) ∈ Fk−1(y)
928

Remark that, being a factor set, F = 929

{(h1, d1), (h2, d2), ..., (hk, dk)} is required to sat- 930

isfy: ∀i ̸= j, di ̸= dj . Thus F\(h′, d) has no arc 931

entering column d, and since y and y[h → h′, d] 932

only differ in column d, the equivalence holds. 933

Now, using this equivalence, let us rewrite the 934

derivative of a one-arc change from y. By using 935

equation (3), we have: 936

∂S(y[h → h′, d])

∂yh′d

=
K∑
k=1

∑
F∈(Fk(C)∩R),

(h′,d)∈F

sF1[F\(h′, d) ∈ Fk−1(y[h → h′, d])]

=
K∑
k=1

∑
F∈(Fk(C)∩R),

(h′,d)∈F

sF1[F\(h′, d) ∈ Fk−1(y)]

=
∂S(y)

∂yh′,d

937

To conclude, we will rewrite the score of a one- 938

arc modification as: 939

S(y[h → h′, d])

=
∂S(y[h → h′, d])

∂yh′d
+ S(y[h → h′, d]\(h′, d))

=
∂S(y)

∂yh′d
+ S(y\(h′, d))

940

The first equality is a direct usage of equation (4) 941

and the second equality comes from the previous 942

proofs. 943

B.4 First-order Linearization 944

We want to compute for all word positions d the 945

highest scoring head: 946

12

argmax
h′

S(y[h → h′, d])

≈ argmax
h′

S(y) + (y[h → h′, d]− y)⊤∇S(y)

= argmax
h′

S(y) +
∂S(y)

∂yh′d
− ∂S(y)

∂yhd

=argmax
h′

∂S(y)

∂yh′d

947

We go from first to second line by first-order Tay-948

lor approximation. Transition from second to third949

line is based on the fact that y[h → h′, d] differs950

from y by only two arcs, the addition of (h′, d) and951

the removal of (h, d) so the inner product can be952

expressed as a difference of two partial derivatives.953

We go from third to fourth line by noticing that954

only one term depends on h′ hence we can simplify955

the argmax.956

This is a linear function. This can be seen957

in the second line where S(y) and ∇S(y) are958

constant. So the only part involving variables is959

(y[h → h′, d] − y), a clearly linear expression in960

arc variables.961

B.5 Approximate Linearized Estimation962

ŷ is the highest-scoring parse and contains arc963

(g, d). We write shd = ∂S(ŷ)
∂yhd

for all arc (h, d).964

We recall from previous section that first-order965

Taylor approximation gives: S(y[g → h, d]) ≈966

S(ŷ) + shd − sgd.967

p
(
(h, d)|x∗

)
=

p(ŷ[g → h, d])∑
h′ p(ŷ[g → h′, d])

=
Z−1 exp(S(ŷ[g → h, d]))∑
h′ Z−1 exp(S(ŷ[g → h′, d]))

=
exp(S(ŷ[g → h, d]))∑
h′ exp(S(ŷ[g → h′, d]))

≈
exp(S(ŷ) + shd − sgd)∑
h′ exp(S(ŷ) + sh′d − sgd)

=
exp(S(ŷ)− sgd) exp(shd)

exp(S(ŷ)− sgd)
∑

h′ exp(sh′d)

=
exp(shd)∑
h′ exp(sh′d)

968

C Tensor Factorization for Third-Order 969

Models 970

For a third order model, a tensor W ∈ Rn6
971

should be used to calculate the score of F = 972

{(h1, d1), (h2, d2), (h3, d3)}: 973

sF = vTh3
vTh2

vTh1
Wvd1vd2vd3 974

with vhi
, vdi the feature vector of head and modifier 975

words. 976

To reduce the memory cost, we simulate the pre- 977

vious calculation with three tensors of biaffine and 978

one tensor of triaffine. The score can be calculated 979

as: 980

l1 = vh1 ◦W
(1)
biaffinevd1

l2 = vh2 ◦W
(2)
biaffinevd2

l3 = vh3 ◦W
(3)
biaffinevd3

sF = lT3 l
T
2 Wtriaffinel1

981

with W i
biaffine ∈ Rn2

the tensor of biaffine and 982

Wtriaffine ∈ Rn3
the tensor of triaffine, ◦ repre- 983

sents the Hadamard product (element-wise product 984

of vector). 985

13

	Introduction
	Related Work
	Notations
	Polynomial Score Functions for Dependency Parsing
	Score Function
	Score of One-Arc Modifications

	Inference as Candidate Improvement
	Coordinate Ascent
	Gradient-based Coordinate Ascent
	Approximate First-Order Linearization
	Genetic Algorithm

	Learning and Decoding
	Hinge Loss and Argmax Decoding
	Probabilistic Estimation
	Label Loss

	Experiments
	Data
	Hyper-Parameters
	Results on PTB and CoNLL09 Chinese
	Results on UD
	Speed Comparison

	Conclusion
	Ethical Considerations
	Hyper Parameters
	Coordinate Ascent
	A Gradient-based Method For Coordinate Ascent

	Complete derivations
	Partial Derivatives
	Substitution Scores 1
	Substitution Scores 2
	First-order Linearization
	Approximate Linearized Estimation

	Tensor Factorization for Third-Order Models

