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ABSTRACT

To cope with uncertain changes of the external world, intelligent systems must
continually learn from complex, evolving environments and respond in real time.
This ability, collectively known as general continual learning (GCL), encapsulates
practical challenges such as online datastreams and blurry task boundaries. Al-
though leveraging pretrained models (PTMs) has greatly advanced conventional
continual learning (CL), these methods remain limited in reconciling the diverse
and temporally mixed information along a single pass, resulting in sub-optimal
GCL performance. Inspired by meta-plasticity and reconstructive memory in neu-
roscience, we introduce here an innovative approach named Meta Post-Refinement
(MePo) for PTMs-based GCL. This approach constructs pseudo task sequences
from pretraining data and develops a bi-level meta-learning paradigm to refine the
pretrained backbone, which serves as a prolonged pretraining phase but greatly
facilitates rapid adaptation of representation learning to downstream GCL tasks.
MePo further initializes a meta covariance matrix as the reference geometry of
pretrained representation space, enabling GCL to exploit second-order statistics for
robust output alignment. MePo serves as a plug-in strategy that achieves significant
performance gains across a variety of GCL benchmarks and pretrained checkpoints
in a rehearsal-free manner (e.g., 15.10%, 13.36%, and 12.56% on CIFAR-100,
ImageNet-R, and CUB-200 under Sup-21/ 1K).[1_-]

1 INTRODUCTION

Human learning is characterized by the remarkable adaptability to accumulate knowledge from
complex, evolving environments and to respond in real time. While numerous efforts in continual
learning (CL) (Wang et al., [2024; [Van de Ven & Tolias|, [2019) aim to construct Al models in a
similar way, conventional settings have focused on offline learning of sequential tasks with disjoint
task boundaries, which are out of touch with real-world scenarios. In this regard, the concept of
general continual learning (GCL) (Buzzega et al.| 2020; De Lange et al.,|2021) has been proposed
to cover a variety of practical challenges, particularly those with online datastreams and blurry task
boundaries (Moon et al., 2023 |Kang et al.,|2025)), making it increasingly difficult for Al models to
rapidly capture and effectively balance successive information. Most existing methods that attempt
GCL from scratch rely on replaying old training samples (Aljundi et al.| 2019; Buzzega et al., 2020;
Koh et al.,|2021; Bang et al., 2021} [Yan et al.| [2024)), which incurs additional memory costs and
privacy risks. Without leveraging prior knowledge, these methods exhibit inferior learning efficacy,
limited generalization capabilities, and severe catastrophic forgetting (Kang et al., 2025).

Recent advances in CL have shifted toward employing pretrained models (PTMs) and parameter-
efficient tuning (PET) techniques for representation learning (Wang et al., 2022bjaj; [Wu et al.| 2025),
and recover old task distributions in representation space for output alignment (Zhang et al., [2023;
McDonnell et al.;2024), which obtain superior performance in conventional CL settings in a rehearsal-
free manner. Despite the promise, these methods still face significant challenges in GCL: mainstream
PET techniques (e.g., visual prompt tuning (Yoo et al., 2023; Ma et al., [2023))) often fall short in
capturing the nuances of online datastreams, while common strategies of approximating old task
distributions rely on disjoint task boundaries. State-of-the-art GCL methods (Kang et al.,2025; |Moon
et al., [2023)) perform contrastive regularization or initial session adaptation of prompt parameters,

'Our code is included in Supplementary Materials for examination, and will be released upon acceptance.
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Figure 1: The proposed MePo framework for rehearsal-free general continual learning.

along with logit masking for balancing the output layerE] However, these methods fall short in fully
addressing the two GCL challenges, especially under self-supervised PTMs that are more realistic
yet often underfitted in their representations (see our empirical results in Sec. [2.2).

Compared to Al models, the biological brain enjoys strong GCL-like capabilities by imposing meta-
plasticity (Abraham) 2008} |Abraham & Bear}, |1996;|Sun et al.| |2025) underlying the brain networks
that retain substantial “pre-trained knowledge”, positioning them in a critical state of neurodynamics
for rapid adaptation. Up on meta-plasticity, the neural representations of incoming memories are
continually encoded into and reconstructed from a shared representation space that enables real-time
generalization, known as the reconstructive memory theory (Lei et al., [2022; 2024} Richards &
Frankland, |2017). Inspired by such biological mechanisms, we propose an innovative approach
named Meta Post-Refinement (MePo) for PTMs-based GCL (Fig. [I). MePo constructs pseudo tasks
sequences from subsets of pretraining data, and develops a bi-level meta-learning paradigm to refine
the pretrained backbone in a data-driven manner. This serves as a prolonged pretraining phase of
one-time cost, but greatly facilitates rapid adaptation of representation learning to downstream GCL
tasks without additional overhead. MePo further initializes a meta covariance matrix as the reference
geometry of pretrained representation space, to which the features of incoming training samples are
continually aligned and reconstructed, ensuring accurate and balanced predictions.

Unlike prior PTMs-based CL/GCL methods that rely solely on upstream pretraining or down-
stream adaptation, MePo extends the upstream pretraining with an additional post-refinement using
pretraining data. To our knowledge, this is the first attempt that prepares PTMs for CL/GCL in
advance, enabled by meta-learned pseudo task sequences for effective backbone refinement and
meta-covariance for stable output alignment. We perform extensive experiments to validate the
proposed framework. MePo serves as a plug-in strategy that significantly improves recent strong
PTMs-based CL and GCL methods across a variety of GCL benchmarks and pretrained checkpoints
in a rehearsal-free manner (e.g., 15.10%, 13.36%, and 12.56% on CIFAR-100, ImageNet-R, and
CUB-200 under Sup-21/1K), while ensuring resource efficiency during the GCL phase. Compre-
hensive ablation studies and visualization results confirm its adaptive benefits in both representation
learning and output alignment.

2 FORMULATION AND PRELIMINARY ANALYSIS

In this section, we first describe the problem setup of GCL, and then analyze the practical challenges
of adapting state-of-the-art PTMs-based CL methods to GCL.

2.1 PROBLEM SETUP

Let’s consider a neural network model comprising a backbone fy(-) parameterized by 6 and an output
layer h.,(-) parameterized by . The model needs to learn sequential tasks ¢ € {1, ..., T'} from their
respective training sets D1, ..., Dp. Each D; consists of multiple data-label pairs (¢, y;), where the
input data ; € A} and its ground-truth label y; € ), have respective spaces. For classification tasks,
we further denote |);| as the number of classes observed in task ¢. The objective of CL is to learn a

’Due to the space limit, we present a comprehensive summary of related work in Appendix
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Figure 2: Empirical analysis of PTMs-based methods under different experimental setups. We
compare (a) Offline CL vs General CL, (b) Offline CL vs Online CL, and (c) Online CL vs General
CL. “-Rep”, without logit masking. “-Out”, without representation learning.

mapping function from X' = Uthl Xito) = Uthl V4, so as to predict the label § = hy (fo(x)) of
any unseen test data x belonging to the previous tasks.

In conventional CL settings, the task-wise input spaces (for DIL) or output spaces (for TIL and CIL,
where TIL requires the test-time oracle of task identities) are often assumed to be disjoint. Specifically,
VZ,] S {1, ,T},Z 7& j, Y, = yj7 X; N Xj = () for DIL. VZ,] € {1, ey T},Z 7& j, yin yj = () for
TIL and CIL. Also, each D; is learned in an offline CL manner, i.e., the model learns all data-label
pairs (x¢,y:) € D; over multiple epochs till convergence. In contrast, online CL and GCL often
assumes all tasks to be learned with a one-pass online datastream, i.e., only one epoch, which poses
the challenge of rapid adaptation. Meanwhile, GCL involves blurry task boundaries that the label
spaces are different but may overlapped across tasks, making it difficult to balance the task-wise
knowledge:

where P(-) denotes the overlapping probability. GCL also includes other practical challenges such
as “no test-time oracle” and “constant memory” (De Lange et al, 2021} Buzzega et al., [2020),
which are not explicitly formulated for clarity. Si-Blurry (Moon et al. 2023) is a recent GCL
setting that incorporates the above challenges. It divides classes of the overall label space ) into
disjoint classes of J’* and blurry classes of Y2, where Y = YP U VB and YP N Y8 = (). The
disjoint class ratio m = |YP|/|)| regulates the proportion of disjoint classes. Y© and Y7 are
assigned to sequential tasks in a non-uniform manner, i.e., {YP}—1. 7 and {YP}i—1.. 1 where
JJiD N ij = (Z),P(yf N yJB #0) >0,Vi,j € {1,...,T}and i # j. The training samples of Y
are all introduced when learning task ¢, while the training samples of )P are assigned to sequential
tasks with a blurry sample ratio n. Therefore, m and n control the task sequence of Si-Blurry. This
formulation has proven to satisfy Eq. (I) as a realization of GCL (Kang et al, [2025).

2.2 EMPIRICAL ANALYSIS OF PTMS-BASED METHODS

Although recent PTMs-based methods have made significant progress with strong supervised PTMs,
their designs in both representation learning and output alignment remain sub-optimal in addressing
the GCL challenges, especially under self-supervised PTMs that are more realistic yet often underfitted
in their representations. Here we provide an in-depth empirical investigation of mainstream PTMs-
based CL and GCL methods, with 5-task ImageNet-R as the benchmark (Fig.[2) with details in Sec. 1]
We compare three groups of settings to dissect the distinct impact of online datastreams and blurry
task boundaries: offline CL vs GCL, offline CL vs online CL, and online CL vs GCL. We consider
three representative pretrained checkpoints: Sup-21K (supervised pretraining on ImageNet-21K), Sup-
21/1K (self-supervised pretraining on ImageNet-21K and supervised finetuning on ImageNet-1K),
and iBOT-21K (self-supervised pretraining on ImageNet-21K).

Overall, PTMs-based CL methods such as L2P (Wang et al., [2022b)) and DualPrompt (Wang et al.,
2022a) perform well in the offline setting, but their performance markedly drops once moved to GCL
(Fig.[2h). These methods rely on repeatedly refining prompts, a process that becomes substantially
less effective under single-pass online updates (Fig. [2b), explaining the majority of their degradation
when transitioning from offline CL to GCL (Fig. Ph—c). By contrast, PTMs-based GCL methods such
as MVP (Moon et al.,[2023) and MISA (Kang et al.,|2025)) show more stable behavior across the three
settings, particularly when strong supervised PTMs are used. However, their robustness diminishes
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notably when shifting to the more challenging self-supervised PTMs, where feature separability is
weaker and adaptation under online CL and GCL constraints becomes harder (Fig. Zh).

We further dissect the designs of PTMs-based GCL methods for representation learning (“-Rep”)
and output alignment (“-Out”). MVP devises a contrastive loss for visual prompt tuning, but
is less effective in addressing online datastreams under Sup-21/1K and iBOT-21K (MVP-Rep,
Fig.[2b). While its learnable logit mask performs even better with blurry task boundaries, the baseline
performance is extremely low (MVP-Out, Fig.[2t). On the other hand, MISA achieves state-of-the-art
GCL performance through the initialization of prompt parameters (MISA-Rep, Fig. 2b) and non-
parametric logit mask (MISA-Out, Fig. [Zt). However, MISA-Rep fails to improve the representation
learning of its baseline method under Sup-21/1K and iBOT-21K (compared to DualPrompt, Fig. 2p),
and MISA-Out suffers clear performance degradation with blurry task boundaries (-2.03%, -4.59%,
and -5.47% on Sup-21K, Sup-21/1K, and iBOT-21K, respectively, Fig.2t). These observations
motivate us to explore more effective strategies for representation learning from online datastreams
and output alignment from blurry task boundaries, as described in the following section.

3 META POST-REFINEMENT

In this section, we present an innovative approach named Meta Post-Refinement (MePo) for PTMs-
based GCL (Fig.[I). Our approach involves a meta-learning framework with subsets of pretraining
data, which facilitates rapid adaptation of pretrained representations to GCL (Meta Rep) and
initializes a meta covariance matrix for robust output alignment (Meta Cov). We include a pseudo-
code in Appendix Alg.[T}

3.1 MEPO FOR REPRESENTATION LEARNING

Due to the discrepancy between the pretraining and
GCL objectives, mainstream PET techniques often p  Sampleforeachk k)
struggle to capture the nuances of online datastreams. e mete
Initialization of prompt parameters (Kang et al.l[2025)
has been shown to be an effective strategy, but is ’
still limited by their tuning capacity and catastrophic 2
forgetting, resulting in sub-optimal performance es- ! ! ,
. . e . Task 2 -~ - - Task 7
pecially under the more realistic self-supervised / (o) ===
PTMs (Sec. [2.2). Inspired by meta-plasticity (Abraj 0 o k1)
ham| [2008}; [Abraham & Bear|[1996) underlying the " T
brain networks, which retain substantial “pre-trained
knowledge” positioned in a critical state of neuro-
dynamics for rapid adaptation, we propose a MePo  g(x—1) g(k)  Meta-Update Direction ~ 4{k=1)
framework to improve the adaptability of the entire
backbone parameters 6 to downstream GCL tasks.
Our framework constructs pseudo task sequences
from pretraining data and develops a bi-level meta-learning paradigm: an inner loop simulates
sequentially arriving tasks and an outer loop optimizes meta-level generalization (see Fig.[I)), thereby
obtaining GCL-tailored representations in a data-driven manner.
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Figure 3: MePo representation learning.

Pseudo Task Sequence. The bi-level meta-learning paradigm allows for data-driven inductive bias
through the specialized design of its learning objective and task sampling (Finn et al.|[2017;|Javed &
Whitel 2019)). In our case, the objective is to ensure rapid adaptation of pretrained representations to
the online datastream in GCL. Since the true task sequence D1, ..., Dr is not available during the

pretraining stage, we propose to construct pseudo task sequences Dy, . . ., Dy from the pretraining

dataset Dy. Specifically, in each meta-epoch k& € {1,..., K}, we randomly sample a subset Dgﬁa €

Dypre consisting of classes ¢ € Crpera With N, training samples per class. Then, D,(nlga is partitioned

meta
(k)

into a meta-training set Dseq and a meta-validation set ’Dj((ﬁr)“

according to a training-validation split
ratio y of the class-wise training samples. The pseudo task sequences ﬁgk), ey ZA)gc/) are constructed

by randomly splitting the class set Ciera in a similar way as described in Sec. 2} Then, we formulate
the bi-level optimization as §(*) = arg ming £(, D% ), s.t., # = InnerLoop (1), D&Y,

joint
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Inner Loop: Sequential Training. Given the pseudo task sequence sampled at each meta-epoch
k € {1,..., K}, we update both § and ¢ by learning sequentially arriving tasks ¢t € {1,...,7"}
with the task-specific loss:

Li(0,9) =E, ) pm[Lcelhy(fo(x)), y)l, ()

1)

where Lcg is the cross-entropy loss for classification tasks. We further denote 9&; as the backbone

parameters updated from the meta-epoch k — 1 after learning task ¢ — 1, where () represents the
original pretrained backbone parameters (the task identity is omitted if the pseudo task sequence has
not yet been introduced). Similarly, we denote v);_; as the output layer parameters after learning task
t — 1. With learning rates 1y and 7, the entire model is sequentially optimized as

o = 0 T L, (07 ), 3)
Ve = Y1 — 77¢Vw£t(9t(ﬁl)7¢t—1)- 4)

Outer Loop: Joint Training. After performing the inner loop, we refine the backbone parameters

G(kal) by joint training of all tasks with the held-out meta-validation set Dj(olfr)n, which encourages the

pretrained representations to overcome potential bias caused by sequential training:
A(k—1 k—1
G(T/ ) = H(T, ) Weva]E(w,y)Nng’;{ [Lce(hy,, (f9<Tk;1>(w))7y)}- ®)
(k—1)

With éT, obtained from the bi-level learning paradigm, we follow the previous work (Nichol &
Schulman| |2018)) to accumulate parameter updates through a first-order approximation:

60 = 601 Ly (61 — 0%), (©)

where Nera € [0, 1] denotes the meta-learning rate. This update encourages the pretrained backbone
to evolve towards representations that are appropriate for learning a potentially new task sequence in
GCL (see Fig.[3). The entire parameter updates persist for K meta-epochs, culminating in the refined
backbone parameters 8* for output alignment, as described below.

Mechanism of Meta Rep. Meta-learning methods such as MAML (Finn et al., 2017) aim to learn an
initialization that enables rapid adaptation. Reptile (Nichol et al., 2018) further demonstrates that this
can be achieved through a first-order approximation to the second-order meta-gradient. Following
this theoretical principle, MePo Rep constructs pseudo sequential tasks from pretraining data so that
the inner loop simulates CL-style sequential updates. The outer loop then meta-refines the backbone
to remain stable after these updates, yielding a CL-tailored initialization that is resilient to sequential
drift yet retains plasticity that standard finetuning cannot provide (see detailed proof in Sec. [D).

3.2 MEPO FOR OUTPUT ALIGNMENT

() Unbalanced
With 0%, we strive to further rectify the potential @) More separable

bias of the output layer. Recent PTMs-based GCL A
methods (Moon et al.} 2023} [Kang et al., [2025)) of- Postaligned Feature f;
ten involve logit masking of classes observed in each Sa'anced
.. . . ess separable
batch, yet limited by the over simplified represen-
tation modeling (i.e., the output layer amounts to
preserving class-wise prototypes) and severely im-
balanced classes in GCL. Advanced PTMs-based CL
methods (McDonnell et al.| [2024; Zhang et al., 2023}
Wang et al., |2023) have identified that the second-
order statistics (i.e., the feature covariance) are crit-
ical for preserving the geometry of representation
space to obtain well-balanced predictions, but are Figure 4: MePo feature alignment.
difficult to estimate all at once in GCL. Inspired by
the reconstructive memory theory (Lei et al., 20225 |2024; |Richards & Frankland, [2017) in neuro-
science, where the neural representations of incoming memories are continually encoded into and
reconstructed from a previously established representation space, we propose to initialize a meta
covariance matrix from pretraining data, serving as a reference geometry for robust output alignment.

Combined Feature fians.
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Meta Covariance Matrix. To approximate the second-order statistics of pretrained representations,
we randomly sample a reference group of class-specific subsets Dyer = { D} eccs € Dpre CONsisting
of classes ¢ € Cret With N, training samples per class. We then obtain the class-wise feature mean:

1 C
pe =7 D for (i), (i¢) € Dy (7)
¢ i=1

Next, we obtain the covariance matrix initialized with D, as a reference geometry of pretrained
representation space, which is subsequently used in GCL to perform output alignment:

‘Crel' ‘

ST ®)

e = ————
pre ‘Cref| -1 —1

where i = i CLI E‘cc'“i‘ 1. denotes the global feature mean.

Feature Alignment. During the GCL phase, training samples are introduced in small batches of
imbalanced classes. To balance their contributions, we first calculate batch-wise feature covariance
from the feature vector f; = fp+ 1 ap(;) of each training sample (x;,y;) € D;, where Af denotes
the tunable parameters for representation learning in GCL (usually implemented via PET techniques).

Given a batch of training samples alongside features 5 = {f; }Z 1» we estimate the batch-wise feature
mean and covariance:
|B] |B]

1
|B| Zfzv cur = |B| _1 Z(f f)(f - f) (9)

i=1

To rectify the potential bias of imbalanced classes in GCL, we propose to align batch-wise feature
distributions (i.e., Xy,) to the reference geometry of pretrained representation space (i.€., Xy ) for
subsequent use in prediction. Here we align X, and 2. via the Cholesky decomposition (Benoit,
1924} |Watkins| 2004; Press} |1992)), an efficient and numerically stable strategy to decompose a positive
definite matrix (e.g., the covariance matrix) into the product of a lower triangular matrix and its
transpose. We calculate the lower triangular matrices of current feature statistics L, by decomposmg
Yo = LcurLCur and of pretrained feature statistics Ly by decomposing X = LpreLpre We then
align each feature vector f; to the pretrained representation space:

fi=fiA, A=L3'L,., (10)
which ensures B, ¢ 5[f;£] = AT S0 A = Zpe.

The pre-aligned feature f; and the post-aligned feature f; exhibit distinct properties (see Fig. :
f; collected from the finetuned representation space of fy«ag(-) tends to be more separable yet

imbalanced, while f; aligned to the pretrained representation space of fy-(-) tend to be more balanced
yet crowded. We take advantages of both via a weighted combination:

firansi = ofs + (1 — )f;, (11
where « € [0, 1] is a hyperparameter that controls the balance of stability and plasticity.

Finally, we employ the combined feature fi,s ; to update the tunable backbone parameters A¢ and
the output layer parameters v during the GCL phase:

exp(hw(ftransi)(c))
‘CCE(h (fram i yl — yz( °) logp(C) pEC) - 5
o cezyt > kev, exp (P (Firans, i) *))

where the superscript (c) denotes the vector component corresponding to class c.

(12)

Mechanism of Meta Cov. Meta Cov addresses the challenge that feature covariance in PTMs-based
CL drifts severely under small, noisy, and imbalanced online batches, leading to distorted representa-
tion geometry and increased task interference. To stabilize this process, Meta Cov introduces a meta
covariance matrix X, computed from large-scale, balanced pretraining data, serving as a reliable
reference geometry. By aligning X.,,,» toward X,,.. through a Cholesky transformation, Meta Cov
constrains feature updates to a stable manifold, preventing collapse or expansion and improving the
overall stability—plasticity balance.
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Table 1: Overall performance of different methods in GCL. All results are averaged over five runs (+
standard deviation) with different task sequences.

PTM Method CIFAR-100 ImageNet-R CUB-200
Aavc(h) Avast (1) Aavc(?) ALast (1) Aavc(h) Avast (1)
Seq FT 19.7143.39 10.4244.92 7.5143.94 2.2940.85 3.4740.41 1.4940.42
Linear Probe 49-69i6.09 23.07;&7,33 29~24i1.26 16.87:&3,14 28‘96i2,46 17~33i3.08
Seq FT (SL) 64.9047.18 62.064+1.89 47.2041.47 39.6042.43 56.1644.32 56.5043.08
CODA-P 78.8143.38 80.30+41.58 50.1142 14 46.17+2.00 64.9643 30 59.2843 14
"DeepL2P T 78121061  77.7311.00  42.3910.23 38.161137 60.95171 22 56314253
sup-21K .- Y/ MePoOury) 83631061 8398109  S8Iliis  SS3yias | 64924147 6330415
DualPrompt 66.3644.42 58.0944.40 38.634+2.19 30.7140.82 55.734+2.77 47.084+4.94
w/ MePo (Ours) 71.37 +4.07 66.48 1 5 52 44.651 2 .09 36.76+1.21 58.36.+2.59 52161374
TMVP U 768.1344.314  60.5640.57  41.5041.15 34.1413.095 56.7812s8s  50.2513.53
w/ MePo (Ours) 721814 50 68.4511 59 46.35+1.31 38.21+3.66 58.73+3.31 52.22+2.80
TMISA 7 80.3512.30  80.7511.24  51.5242.00 45.0811.43 65.4013.01  60.2011.82
w/ MePo (Ours) 82.30+2 .83 83.99, 35 54.86 2. 20 49.1811 33 68.1313 17 64.7511 00
Deep L2P 69.1541 66 68.574+1.38 42.7440.83 39.224914  39.2041.69 46.7611 .87
w/ MePo (OLII‘S) 78.75:{1.18 77.52:&1,03 62.71:&1409 58-91i0.08 48-36i1.88 50.88:&2,85
" DualPrompt  64.844262  67.224851 49521292 47.1443.30 43.9612.00 41.2047.61
Sup-21/1K .-V MePo Qurs) 67184445 5795i3.69 54754166 4M75i07a 47004519 38244939
MVP 65.2643.87 53.66+5.61 51.2641. 47 41.4144 81 45.1243 08 37.9549.32
w/ MePo (Ours) 70.25i4.23 62.05;&2,39 61.28:&1,21 50.82i3,70 49'72i3.53 42.81;&5,74
CMISA 62914706 67.9947.41  50.8741.60  47.754257 42761233 44.0511.04
w/ MePo (Ours) 78.01i3‘09 76-73i1.06 64.23i1,30 58.20i0,51 55'31i4,52 56.58i2_33
Deep L2P 64.48i1,23 66.71:&1.27 33.68:&2,73 36.24:&1,83 16.22i0,g5 27.14;&0,75
w/ MePo (Ours) 758311 .23 76.40 10 94 55.30+0.50 523841 .87 40.904 1 44 46.50+2 90
" DualPrompt  63.091236  61.2018.76  41.3312.11  35.5813.214  24.561005 21.3216.38
i{BOT21K ... W/ MePo (Ours) 65764356 59214s.15 48064320  37.6942.10 38194374 310341155
MVP 64.0143 27 50.00411.45 43.8941.88 34.1944 56 29.5943.28 27.8548.89
w/ MePo (Ours) 66.88-+ 4 56 57.19+2 63 53.7541.38 42.5513.08 40.99+3.45 34.66+8.40
T MISA 7 65.30402.08  67.4316.75 40944100  36.1611.58 18.621336  23.6612.21

w/MePo (Ours)  75.8043.77 76024115 5700125  49.864100 49331350  45.6815 50

4 EXPERIMENT

In this section, we will first describe the experimental setups of GCL with Si-Blurry, and then present
the experimental results with an in-depth analysis.

4.1 EXPERIMENTAL SETUP

Benchmarks. We employ three representative datasets, CIFAR-100 (Krizhevsky et al.,2009) (general
dataset, 100-class small-scale images), ImageNet-R (Hendrycks et al.l 2021) (general dataset, 200-
class large-scale images), and CUB-200 (Wah et al.;[2011) (fine-grained dataset, 200-class large-scale
images), to construct the evaluation benchmarks. We follow the official implementation of Si-
Blurry (Moon et al., 2023}, [Kang et al.,[2025)), with the disjoint class ratio m = 50% and the blurry
sample ratio n = 10%, and split all classes into 5 learning phases. Following the previous evaluation
protocols (Moon et al] 2023 [Kang et al.| [2025)), we report the average any-time accuracy Aauc and
the average last accuracy Ay .5 as the main metrics. We adopt a ViT-B/16 backbone with Sup-21K,
Sup-21/1K, and iBOT-21K checkpoints. The implementation details are included in Appendix [B]

Baselines. We consider a variety of representative baselines, categorized into three groups: (1)
Simple lower-bound methods such as sequential fine-tuning (Seq FT) of the entire model, Seq FT
with slow learner (SL) (Zhang et al., [2023) that selectively reduces the backbone learning rate, and
linear probing of the fixed backbone. (2) PTMs-based CL methods such as L2P (Wang et al., 2022b)),
DualPrompt (Wang et al.| [2022a)), and CODA-P (Smith et al., 2023)). Here we follow the previous
work (Smith et al., [2023) to re-implement L2P (Wang et al., 2022b) by replacing its prompt tuning
with prefix tuning, denoted as Deep L2P, for comparison fairness and the ease of combination with
MePo. (3) PTMs-based GCL methods such as MVP (Moon et al.| 2023) and MISA (Kang et al.|
2025). All PTMs-based methods employ prefix tuning with prompt length 5, inserted into layers 1-5.
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Table 3: Ablation study of representation (Meta Rep) and covariance (Meta Cov) in MePo. All results
are averaged over five runs (% standard deviation) with different task sequences.

PTM Meta Meta ImageNet-R (MVP) ImageNet-R (MISA) CUB-200 (MVP) CUB-200 (MISA)
R COV faue®  Avaa®) Aavc()  Avaw(D  Asve@®) A Asve(®)  Ava(?)
X X 41504115 34.1443.95 51.5242.09 45.08+1.43 56.7812.88 50.2543.53 65401301 60.20471 82
supaik Y K 4632u120 38064577 52354300 45.81ir0s 586740 51654a20 6483uzsn 59.5Tirs
XV 40514100 33.994411 53.5942.06 47.904165 55.8213.64 51491570 68.0313.05 653011 52
v v 46.3511.31 38211366 54861220 49181138 587341331 52224580 68131317 64.75+1.00
X X  51.2641.47 41.414481 50.874+1.69 47.75+£2.87 45.1243 08 37.954+9 32 42.764+2.33 44.05+1.94
Sup-21/1K v X 57.504+1.18 46.7544.85 56.71+1.08 50.29+2.04 47.26+3.38 39.6548.00 44.68+2.46 43.88+2.72
X 4 55.83+1.62 45.8345.07 57.66+0.96 52.30+0.58 47.69+3.05 40.5148.67 49.60+£3.31 47.21+1.72
v 4 61.2841.21 50821370 64.23+1.30 58.20+0.51 49.7243 53 42811674 5531+4.52 56.58+2.33
X X  43.89+1.88 34.194456 40.941122 36.1641.58 29.5943.28 27.8545.89 18.6243.36 23.6612.21
iBOT-21K v X 52.67+1.41 41914395 50.2147 93 43.52471.39 40.614341 34.1749.00 39.444593 40.38+1.79
XV  AT4444.76 37.0245.00 44.2441.00 38.084115 31751343 30.3510.12 20.6513.00 22.9240.75
v v 53.754+1.38 42551308 57004252 49864122 4099345 34.6645 40 49331359 456841559

4.2 EXPERIMENTAL RESULT

Overall Performance. We first evaluate the overall performance in Table[I] MISA is the state-of-the-
art GCL method that outperforms other PTMs-based CL and GCL methods under strong supervised
PTMs (Sup-21K) and general datasets (CIFAR-100 and ImageNet-R). However, the performance of
all baselines tend to decay severely under weakly supervised and self-supervised PTMs (Sup-21/1K
and iBOT-21K) and fine-grained dataset (CUB-200), both of which strengthen the challenges of
representation learning and output alignment in GCL. Interestingly, the re-implemented Deep L2P
achieves competing or even better performance than PTMs-based GCL baselines in many cases,
suggesting limited progress of the current GCL research.

In comparison, our proposed MePo serves as a plug-in - Table 2: Comparison of resource overheads:

strategy that substantially enhances the performance  Batch time on ImageNet-R under Sup-21K.
of PTMs-based CL and GCL methods in Si-Blurry

(Table[l)) , traditional online CL, offline CL and do-  Method +Param. +Ratio Time Accuracy
main CL settings (Appendix Table[7). The perfor-
mance gains tend to be more significant from su- MVP 639%  0.74% 5.34s 4150

. . w/MePo 1215k  1.41% 5.34s  46.35
pervised to self-supervised PTMs and from general — -gpsa-----+ Tk 0.74% 4845 " 5150
to fine-grained datasets (Table [I), as well as OOD w/MePo 1213k 141% 4.84s  54.86
datasets NCH for chest X-ray and GTSRB for traffic
sign (Appendix Table [6), suggesting the adaptive effectiveness of MePo in overcoming GCL chal-
lenges. For example, the Aayc/Apast improvements over MISA are 15.10%/8.74%, 13.36%/10.45%,
and 12.56%/12.53% on CIFAR-100, ImageNet-R, and CUB-200 under Sup-21/1K, demonstrating
clearly the new state-of-the-art. MePo remains consistently effective across different downstream
task lengths 7" (Appendix Table[I0), where using more pseudo tasks in the meta-refinement phase is
more advantageous if the downstream task sequence is longer.

Computational cost. The computation cost of MePo consists of two components: a one-time
meta-refinement phase and the subsequent downstream GCL phase. Notably, our meta-refinement
can be seen as a prolonged pretraining phase with one-time cost, which is method-agnostic and
reusable for GCL. Once the backbone is refined from pseudo tasks of the pretraining data, it can be
directly reused by any downstream GCL method and dataset. The data budgets of meta-refinement is
only accounting for 0.15% of ViT-B/16 pretraining (Appendix Table[TT|and[T2). In the downstream
GCL phase, MePo only preserves an additional covariance matrix of negligible storage overhead
(0.67% of the ViT-B/16 backbone) and does not introduce additional computational overhead during
the GCL stage (Table[2), positioning it as an efficient choice.

Ablation Study. We present an extensive ablation study with two comparably challenging datasets
(ImageNet-R and CUB-200) under the three pretrained checkpoints, using MVP and MISA as the
plug-in baselines. Overall, MePo for both representation learning (Meta Rep) and output alignment
(Meta Cov) contributes to its strong performance (Table[3)), validating the effectiveness of our designs.
Interestingly, there exist some cases (e.g., MISA on CUB-200 under Sup-21/1K and iBOT-21K)
where using either Meta Rep or Meta Cov alone is not necessarily effective, while only using both
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Figure 5: Empirical evaluation of the combination weight « in MePo. Here we employ Aayc(T) as
the evaluation metric. The complete quantification results are included in Appendix Tables EI andEl
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Figure 6: Visualization of pre-aligned, post-aligned, and combined features with t-SNE (Van de

Maaten & Hinton} 2008)). Here we take the setup of MISA w/ MePo, ImageNet-R, and Sup-21/1K as
an example. Best viewed in color.

simultaneously can obtain considerable enhancements. These results demonstrate the complementary
effects between Meta Rep and Meta Cov to overcome GCL challenges.

We further evaluate the impact of « in Eq. (TI)), i.e., the combination weight of pre-aligned and
post-aligned features. As shown in Fig.[5] « is relatively insensitive and delivers strong improvements
over a wide range of hyperparameter values (0.3-0.7). o = 0 is equivalent to Meta Rep only, resulting
in sub-optimal performance due to the balanced but less separable classes (Figs.[dand[6). a = 1
aligns all features to the pretrained representation space, failing to accommodate new distributions
during the GCL phase. In comparison, a moderate value strikes an appropriate balance of pretrained
and finetuned representations: o = 0.5 for Sup-21K and o = 0.7 for Sup-21/1K and iBOT-21K,
suggesting that self-supervised representations require greater stability to overcome recency bias in
prediction.

Detailed Analysis. Here we visualize the pre-aligned, post-aligned, and combined features with t-
SNE (Van der Maaten & Hinton| [2008) (Fig. [Bh). The post-aligned features mapping to the pretrained
representation space exhibit a “meta” distribution at the center of all features, with identical distances
to the pre-aligned features of each class. The combined features generally locate between the pre-
aligned and post-aligned features as the design of Eq. (TT), and tend to be more separable than
both. We further perform t-SNE of only pre-aligned and combined features (Fig. [6b). Again, the
transformed features of each class are clearly more separable than the pre-aligned features, consistent
with the significant improvements observed in Table[3] (i.e., Meta Rep with or without Meta Cov).

Next, we provide visualization results to explic- wjo Meta Rep. wio Meta Re wjo Meta Rep.

p.
Class 1 (Active rate = 17.97%)  Class 2 (Active rate = 10.81%) Average (Active rate = 5.90%)

itly demonstrate the effectiveness of Meta Rep
and Meta Cov. We first visualize the distribu-
tion of activated class-wise representations. As
shown in Fig[7} Appendix Fig.[8] and Fig.[9] the

Normalized Activation

use of Meta Rep results in much sparser acti- ] our Meta Rep, W/ our Meta Rep, W our Meta Rep

Class 1 (Active rate = 3.39%) Class 2 (Active rate = 4.43%) Average (Active rate = 3.49%)

vation in GCL, alleviating the mutual interfer-
ence of different classes in representation space

during CL (Javed & White|, 2019; Michieli &

Zanuttigh| 2021} [Pourcel et al., 2022} [Shi et al.
2022). Interestingly, a previous work called

OML (Javed & Whitel, [2019) has also attempted ImageNet-R under Sup-21K.
meta-learning representations for CL via updat-
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ing the output layer and backbone parameters separately, obtaining sparser representations than naive
pretraining. In comparison, Meta Rep updates all parameters within the inner loop, enabling more
adequate adaptation. We empirically validate that OML is significantly inferior to ours in GCL (e.g.,
the Axyc improvements over MISA are 0.58% and 6.07% with OML and Meta Rep on ImageNet-R
under Sup-21/1K).

5 CONCLUSION AND DISCUSSION

In this work, we investigate GCL with Si-Blurry as a typical realization. We reveal that the two
practical challenges, namely online datastreams and blurry task boundaries, severely undermine the
effectiveness of advanced PTMs-based CL and GCL methods by degrading representation learning
and output alignment, respectively. To address these challenges, we propose an innovative approach
that refines pretrained representations through a post-refinement process to enable rapid adaptation,
and initializes a meta covariance matrix to align second-order statistics within the representation
space. Our approach achieves state-of-the-art performance across an range of benchmark datasets
and pretrained checkpoints. We contend that GCL scenarios mirror the highly complex and dynamic
nature of real-world environments, and the effective use of post-refinement offers a promising solution.
These explorations are expected to further enhance Al adaptability, such as enabling robust online
interaction with the physical world in embodied intelligence.

This work remains some potential limitations. First, although we employ subsets of pretraining data
to implement MePo, these data may not be always available in applications. It is promising to explore
massive in-the-wild data as the alternative. Second, this work focuses on image classification tasks
with Si-Blurry as the realization of GCL. Further work may explore other typical tasks in real-world
scenarios, e.g., egocentric videos and embodied reasoning. Since this work is a fundamental research
in machine learning, the potential negative societal impact is not obvious at the current stage.

10
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A RELATED WORK

Continual Learning (CL) aims to overcome catastrophic forgetting when learning sequentially
arriving tasks with distinct data distributions (Wang et al,, |2024; Van de Ven & Tolias| [2019).
Conventional CL settings often assume offline learning of each task with disjoint task boundaries,
such as task-incremental learning (TIL), class-incremental learning (CIL), and domain-incremental
learning (DIL) (Van de Ven & Tolias, 2019). Representative methods focus on CL from scratch, such
as regularization-based, replay-based, and architecture-based methods. Recent advances in CL have
involved PTMs to obtain better performance (Zhang et al.,[2023). Since CL tends to progressively
overwrite the pretrained knowledge, these methods often keep the pretrained backbone frozen and
exploits PET techniques to instruct representation learning (Wang et al., [2022bja; [Wu et al., |2025]).
They also replay representations of old tasks to rectify potential bias of the output layer (Wang et al.,
2023 McDonnell et al.| [2024). However, the efficacy of PET techniques relies heavily on offline
task learning with adequate training samples, and the representation replay requires disjoint task
boundaries to approximate old task distributions, which severely limits their applicability.

General Continual Learning (GCL) is introduced to capture the practical challenges for applying
CL in real-world scenarios (De Lange et al., 2021} Buzzega et al., |2020)), such as “online learning”,
“blurry task boundaries”, “no test-time oracle”, “constant memory”, etc. These challenges have been
partially involved in many existing CL settings, such as “no test-time oracle” in CIL and “online
learning” in online CL, while “constant memory” is a desirable requirement for all CL methods.
Si-Blurry (Moon et al.| |2023)) is one of the latest GCL settings that incorporate all aforementioned
challenges, where the training samples of each task are randomly sampled from distributions that
may involve old and new classes. Many efforts have been made in adapting PTMs-based CL methods
to this GCL scenario. For example, MVP (Moon et al.,[2023)) devises a contrastive loss for visual
prompt tuning and adopts learnable logit masking to rectify the output layer. MISA (Kang et al.,
2025) employs pretraining data to initialize the prompt parameters and simplifies the logit masking
into a non-parametric implementation. Despite the promise, these methods are limited by the capacity
of PET techniques for representation learning and the overly simplistic modeling of representation
space for output alignment, leading to sub-optimal GCL performance.

B IMPLEMENTATION DETAILS

We follow the previous implementations (Moon et al.,|2023; Kang et al.,[2025) to ensure fairness
of the comparison. We adopt a ViT-B/16 backbone and consider three ImageNet-21K pretrained
checkpoints with different levels of supervision: Sup-21K (vit-base-patchl6-224) performs
supervised pretraining on ImageNet-21K, Sup-21/1K (Ridnik et al., 2021} |[Dosovitskiy et al.| 2020b)
performs self-supervised pretraining on ImageNet-21K and supervised finetuning on ImageNet-1K,
while iBOT-21K (Zhou et al.| [2021) performs self-supervised pretraining on ImageNet-21K. To
implement MePo, both Dy, and D¢ are constructed from ImageNet-1K (Russakovsky et al., 2015)).
In MePo Phase I, we construct Dy, by randomly sampling |Cpera| = 100 classes with 400 samples
per class and training-validation split rate v 0.3. We employ a SGD optimizer of learning rate
1p = 0.0001 for backbone and learning rate 7,, = 0.01 for output layer, and batch size 256 for 50, 10,
150 meta epochs for Sup-21K, Sup-21/1K, iBOT-21K respectively. In MePo Phase II, we construct
Dier by randomly sampling |C| = 1000 classes with N. = 200 samples per class. To ensure that
the Cholesky decomposition remains stable when X...,,,- is ill-conditioned, we add a small diagonal
regularizer (e.g., € = le — 4) before decomposition. During the GCL phase, we employ an Adam
optimizer of learning rate 0.005 and batch size 64 for 1 epoch.

All the experiments are conducted with one-card 3090 GPU, AMD EPYC 7402 (2.8G Hz).

C ADDITIONAL RESULTS
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Table 4: Evaluation of hyperparameter « in Eq. with average any-time accuracy Aayc(?T). We
use MVP (Moon et al., 2023 and MISA (Kang et al., 2025) as the baseline implementation. All

results are averaged over five runs with different task sequences.

Setup MVP w/ MePo MISA w/ MePo
0 0.1 0.3 0.5 0.7 1.0 0 0.3 0.5 0.7 1.0
Sup-21K CIFAR-100 | 71.7444.14 71.864414 72.091426 72181450 71.631466 49.84:582 | 81.294097 233 82144256 82301283 81.561324 76.9514.48
Sup-21K ImageNet-R | 46.324199 46.351131 46.2641.42 45.7611.48 43.6841.34 34.86+1.30 | 52.3542.00 54234905 54.861220 53.301223 39.3110.07
Sup-21K CUB-200 58.67+280 58.731203 58.731331 58.08+362 56.444386 42.94:350 4 66.924305 68.131317 67.80+397 63.641399
Sup-21/1K CIFAR-100 | 68.114+393 68.271381 69.001304 69.701401 70.254493 61.57+577 | 73.2142.16 T4.591950 76.041085 78.01i300 74871475
Sup-21/1K ImageNet-R | 57.50+1.18 57.971+193 59.054123 60.1611.19 61.284191 52.5441 86 | 56.7141.08 58954090 61.271099 64.231130 51.9711.08
Sup-21/1K CUB-200 | 47.261335 47.69:340 48.601331 49.401300 49.721353 35.54135 | 44.681046 45.2 46961315 49.231383 54121400 55314450
iBOT-21K CIFAR-100 | 66.53+459 66.701473 66.851473 66.88+1486 66.53.4514 60.08:707 | 70.52.4034 72.261981 73.831320 75.804377 66.70.46.45
iBOT-21K ImageNet-R | 52.67+1.41 52.92+138 53.454+1.40 53.75+1.38 53.361149 42.0541.05 | 50.214193 50.8 4 52.514997 54.661225 57.004252 33154211
iBOT-21K CUB-200 40.6143.41 40.684338 40.991345 40.7613.56 39.361372 25.414076 | 39.444903 42.814337 45814345 49.3313.50 39.9343.10

Table 5: Evaluation of hyperparameter « in Eq. with average last accuracy Ay,ast(1). We use
MVP (Moon et al.,2023)) and MISA (Kang et al.| |2025) as the baseline implementation. All results
are averaged over five runs with different task sequences.

Setup MVP w/ MePo MISA w/ MePo
0 0.1 0.3 0.5 0.7 1.0 0 0.1 0.3 0.5 0.7 1.0
Sup-21K CIFAR-100 | 65.40+1.99 66.0511.90 67.47+168 68.454150 68.821156 47.43:004 [ 81.9641.12 82311106 83.1811.11 83.99+1.35 84221137 82.0641.74
Sup-21K ImageNet-R | 38.06+3.77 38.214366 38.151361 © 6 35.914400 29984043 | 45.814108 46551100 48.094100 49.184138 47.7811.45 34.8541.06
Sup-21K CUB-200 6543 694311 52.224250 52.3640.58 40.4541.74 | 59.5741.73 60.08+1 48 044143 64.7541.00 66.7240.47 65.3911.50
Sup-21/1K CIFAR-100 | 55.88.3 33 g 58.2643.05 62.0540.30 60.4740.74 | 73.2140.16 73 594050 76.041085 78.01i3.00 74.87T447s5
Sup-21/1K ImageNet-R | 46.7544.85 4 48.33 4407 4 50.8243.70 46.524003 | 56.7111.08 57.28410.99 58.9540.00 61271099 64.231130 51.9741.08
Sup-21/1K CUB-200 | 39.6545,09 40.44. 41.6547.71 42. 4 42814674 3 +2.81 | 44.6810.46 45. 46.961318 49.231383 54.1244.00 55.31i452
iBOT-21K CIFAR-100 | 55.4443.75 3 56.6712.85 5H7.1¢ 3 58261181 62.68:311 | 70.4742.45 7 72.084121 73.55:050 76.0241.18 72.5041.95
iBOT-21K ImageNet-R | 41.9143.95 42.054380 42.3913.42 42.5543.08 42484305 35.44:3.04 | 43.524130 43.94 45174106 47331132 49.861122 28.9110.60
iBOT-21K CUB-200 34.1740.00 34.541007 34.661840 34.72:1811 33.8947.14 22.96:1.31 | 40.3841.79 4 235 41.8lig19 43421980 45.681250 41.3510.80

Table 6: GCL performance with OOD datasets NCH and GTSRB under Sup-21K.

Method NCH / Sup-21K GTSRB / Sup-21K
Apavc (1) Arast(T) Aavc(?) Arvast(T)

DualPrompt 53.36 34.39 32.24 19.46

w/ MePo (Ours) 55.01 37.96 32.04 20.67

MISA 69.72 53.52 56.46 39.86

w/ MePo (Ours) 71.97 55.31 56.96 42.47

Table 7: Performance of L2P (Wang et al.,|2022b) and DualPrompt (Wang et al.,|2022a) with and
without MePo under different continual learning settings.

Setting Method Anvg(1)  Arast(T) Forgetting ()
L2P 81.71 76.35 6.50
Offline CL w/ MePo (Ours) 86.66 81.47 5.70
(Sup-21K CIFAR-100) DualPrompt 88.22 83.59 4.99
w/ MePo (Ours) 89.36 84.50 4.78
L2P 76.72 69.00 8.70
Online CL w/ MePo (Ours) 83.64 76.98 7.30
(Sup-21K CIFAR-100) DualPrompt 81.36 76.47 6.04
w/ MePo (Ours) 85.28 80.11 5.89
L2P 94.27 93.70 0.49
Domain CL w/ MePo (Ours) 95.87 95.42 0.33
(Sup-21K Core50) DualPrompt 96.49 96.11 0.29
w/ MePo (Ours) 97.12 96.97 0.15
L2P 45.69 37.18 8.11
Domain CL w/ MePo (Ours) 47.87 39.81 7.98
(Sup-21K DomainNet)  DualPrompt 52.24 44.34 7.49
w/ MePo (Ours) 53.52 45.36 7.43
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Table 8: Performance using different batch sizes on CIFAR-100 under Sup-21K. All results are

averaged over five runs.

Batch Size  Method Aavc(1)  Apest(?) Forgetting ()
L2pP 70.87 72.23 11.67
w/ MePo (Ours) 80.41 82.40 6.63
10 Improvement +9.54 +10.17 -5.04
MISA 75.29 75.83 9.30
w/ MePo (Ours) 82.04 82.95 7.69
Improvement +6.75 +7.12 -1.61
L2P 75.14 76.29 10.82
w/ MePo (Ours) 82.17 83.51 7.18
3 Improvement +7.03 +7.22 -3.64
MISA 79.19 79.28 9.68
w/ MePo (Ours) 82.04 82.95 7.69
Improvement +2.85 +3.67 -1.99
L2p 78.12 71.73 12.41
w/ MePo (Ours) 83.63 83.98 8.62
64 Improvement +5.51 +6.25 -3.79
MISA 80.35 80.75 9.67
w/ MePo (Ours) 82.30 83.99 7.66
Improvement +1.95 +3.24 -2.01

Table 9: Effect of different pretraining data on downstream GCL performance using L2P and MISA.

Method Pretraining Data Downstream GCL Data A uc(t)  Apast(T)
L2P-based Methods
w/o MePo - ImageNet-R 42.39 38.16
w/ MePo (Ours) CIFAR-100 ImageNet-R 50.72 48.40
w/ MePo (Ours) ImageNet-1K ImageNet-R 58.71 55.13
w/o MePo - CUB200 60.95 56.31
w/ MePo (Ours) CIFAR-100 CUB200 63.57 64.40
w/ MePo (Ours) ImageNet-1K CUB200 64.92 63.30
MISA-based Methods
w/o MePo - ImageNet-R 51.52 45.08
w/ MePo (Ours) CIFAR-100 ImageNet-R 54.92 49.33
w/ MePo (Ours) ImageNet-1K ImageNet-R 54.86 49.18
w/o MePo - CUB200 65.40 60.20
w/ MePo (Ours) CIFAR-100 CUB200 68.54 65.11
w/ MePo (Ours) ImageNet-1K CUB200 68.13 64.75

Table 10: Effect of varying the number of pseudo-tasks (7”) under different GCL task sequence
lengths (7). Results are averaged over 5 runs using MISA (Kang et al.,|2025) on ImageNet-R under
Sup-21K.

Downstream GCL task T = 5 Downstream GCL task T = 20

Method Aavc (1) ALast (1) Aavc (1) AL st (1)

Baseline (w/o MePo) 51.494+2.04 45.044-1.40 48.944-0.62 47.884+1.28
Pseudo tasks (T’ =5) 54.154+£2.37 48.60+1.60 50.63+0.92 51.494+0.97
Pseudo tasks (T/ = 10) 54.31+2.34 48.684+1.65 50.90+1.00 51.62+1.15
Pseudo tasks (T' = 20) 54.414£2.27 48.744-1.59 51.14+0.94 51.70£1.39
Pseudo tasks (T’ = 50) 54.554+2.27 48.81+1.61 51.544-0.92 52.10+1.07
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Table 11: Runtime analysis of the meta-refinement phase. Only 50 meta-epochs are required for Sup-
21K, and just 10 meta-epochs for Sup-21/1K to reach convergence. Trainable parameters is 87.16M
and training time measured on single NVIDIA RTX 3090 GPUs, AMD EPYC 7402 (2.8GHz).

Meta epoch 1 2 3 4 5 Average

Time (mins) 14.43 14.20 14.13 14.00 13.96 14.14

Table 12: Comparison of data budgets between Sup-21K pretraining and MePo meta-refinement.
Sup-21K pretraining on ImageNet-21K for 90 epochs processes ~1.3B images, while MePo meta-
refinement on ImageNet-1K (400 samples per class) for 50 epochs processes only ~2M images
(0.15% of pretraining).

Training Image Size  Epochs  Batch Size  Total Steps  Images Processed
Sup-21K (Pretraining) (Dosovitskiy et al.|2020a) 224224 90 4096 ~310k ~1.3B
Sup-21K (MePo Post-Refinement) 224 x224 50 256 ~12.8k ~2M
w/o Meta Rep. w/o Meta Rep. w/o Meta Rep.
Class 1 (Active rate = 6.77%) Class 2 (Active rate = 3.39%) Average (Active rate = 2. 05%)
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Figure 8: Visualization of feature representation with Meta Rep. We reshape the 768 length class-
prototype representation vectors into 12x64, normalize and visualize them with threshold 0.8; here
random class means representation for a randomly chosen class-prototype from ImageNet-R, whereas
average activation is the mean representation for the all classes.

w/o Meta Rep. w/o Meta Rep. w/o Meta Rep.
Class 1 (Active rate = 38.54%) Class 2 (Active rate = 27.86%) Average (Active rate = 14.23%)
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Figure 9: Visualization of feature representation with Meta Rep. We reshape the 768 length class-
prototype representation vectors into 12x64, normalize and visualize them with threshold 0.7; here
random class means representation for a randomly chosen class-prototype from ImageNet-R, whereas
average activation is the mean representation for the all classes.
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Algorithm 1 Meta Post-Refinement (MePo) for General Continual Learning (GCL)

Ju—

R A A R

Input: Pretraining dataset Dy, meta-learning rate Mmea
Hyperparameters: Meta-epochs K, tasks per meta-epoch 7", learning rates 7y, 1, weight o

Step 1: Meta-Learning for Representation Learning
Initialize backbone 6(°) « pretrained parameters
for meta-epoch k = 1 to K do

> Construct pseudo task sequence

Sample Dr(nkeZa C Dpre With Crera classes

Split D,(nlga into {ﬁﬁk) M| (sequential training) and D) (joint training)

joint
> Inner loop: sequential training
Initialize Gékfl) — 6*=1 1)y < random
for task t = 1to 7" do - x
Compute L; via Eq. on D,E )
Update Gt(k*l) — 9,?:1) —noVeLly > Eq.
Update wt — wt—l — nwvwﬁt
end for
> Quter loop: joint training

Refine égﬁfl) via Eq. on D)

joint
> Meta—pammeter accumulation

Update 6 « 00— 40 (0571 — g(k=1) > Eq.(6)

: end for
. Obtain optimized backbone §* « )

: Step 2: Meta Covariance Initialization

: Sample reference data Dyey C Dpre With Crer classes

: Compute class prototypes {p.} via Eq.(7)

: Calculate 3 ﬁ Solpe — ) (e — ) " > Eq.
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

38:
39:
40:
41:
42:
43:

Step 3: Feature Alignment in GCL
for each incoming batch B in GCL tasks do
> Current feature statistics
Compute X, via Eq.(9)
Decompose X, = LCUIL;':H, Ypre = LpreL];';e
> Feature transformation
Compute A <+ Ll Ly

cur

for each feature f; € 5 do
ftrans,i — Oéfi + (1 — a)fz > Eq ‘i
end for
> Model update
Update A6, ) via Lcg on {ftmns,i}ii‘l > Eq. 1;
end for

return Adapted backbone 6* + A, aligned classifier ¢

18



Under review as a conference paper at ICLR 2026

D THEORETICAL ANALYSIS OF META-REP

We provide a theoretical justification for why the Meta-Rep of MePo improves continual learning (CL)
performance. Specifically, we show that the meta-learned initialization reduces gradient interference
and better aligns sequential updates with joint updates, thereby mitigating catastrophic forgetting.

D.1 SETUP AND NOTATION

Let § € R¥ denote the backbone parameters of a neural network before learning a new task. Meta-Rep
optimizes # via meta-learning over pseudo-task sequences sampled from the pretraining data.

Let a pseudo-task sequence be denoted by 7 = (ﬁl:T/, Djoim), where 251, R ﬁT/ form a sequential
training stream, and Djyiy; is a held-out validation set containing all classes in the sequence.

Each loss L;(6) denotes the empirical loss over task ¢ from f)t, and Ljoim(H) is the joint loss over
Dioint-

The inner-loop update of Meta-Rep at time ¢ is:
0y =01 — gV Li(0i-1), t=1,...,T, (13)
followed by a meta-validation step:
07/ 11 = 011 — 0oV Lioint(077), (14)
where 7 is the learning rate.
We define the overall inner-loop operator as:

F(0,T) = 0pi 1. (15)

Then, Meta-Rep applies a Reptile-style (Nichol & Schulman| 2018)) meta-update:
6" =6+ (F(6,T) ), (16)

D.2 MAIN RESULT
We formally characterize how Meta-Rep reduces the deviation between sequential and joint updates,
which serves as a surrogate for mitigating forgetting.

Theorem 1 (Sequential Update Consistency Theorem). Let 0* be a stationary point of the surrogate
meta-objective:

T/
J(O) =E7 | > Li(0) + Lioin(0) | , (17)
t=1

obtained by applying the meta-update in equation Assume each loss Ly and Lj,ip; is twice
differentiable, with bounded gradients and Hessians, and the inner-loop step size 1 is sufficiently
small.

Then for any two-task sequence A — B and some constant C' > 0, the deviation between sequential
and joint updates satisfies:

16seq = Opoiml| < C - 1| Hp (6%)]] - [IVLAE)]| + O,

Moreover, if the pseudo-task distribution approximates the downstream continual learning distribution,
this bound is strictly smaller than the same quantity evaluated at a generic pretrained initialization
90.‘

‘ | oxeq - ojnint | |

g < ||9xeq - 9joim|| 00-

D.3 PROOF OF THEOREM

We proceed to prove Theorem [I] The proof is organized in the following steps.
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Step 1: Reptile Expansion. We apply Taylor expansion to each gradient update in the inner loop.
For any ¢, we have:

VLi(0s_1) = VLi(0) + V2Le(0;) (01 — 6), (18)
for some ét on the line between 0;_; and 6. Since each 8,_; — 6 = O(ny), we get:
VLi(0i—1) = VLi(0) + O(ng). (19)

Substituting into the inner-loop update and unrolling over all tasks:

T/
F(0.T) =01 ) VLi(0) — 1oV Lioin(6) + O(1). (20)
t=1
Taking expectation over pseudo-tasks:
E7 [F(0,T) — 0] = —ngVJ(0) + O(nj). 1)

Under Robbins—Monro conditions (Robbins & Monro, |1951) on the meta step size (diminishing,
square-summable), this ensures convergence to a stationary point 8* of J(6).

Step 2: Forgetting Gap Between Sequential and Joint Updates. For a two-task sequence A — B,
define:

Oioint = 0 — 1 (VLA(0) + VLE(H)), (22)
Oseq =0 —nVLA(0) —nVLp(0 —nVL4(H)). (23)

Taylor expanding V Lz (-) around 6:
VLp(0 —nVLa(0)) = VLp(0) —nHp(0)VLa(0) + O(). (24)

Substituting into equation [23] we obtain:

eseq - ejoint = 772HB(9)VLA(9) + 0(773)- (25)

Therefore, the forgetting error satisfies:

10seq — Goimell < C - 1| HE(0) || - [VLAO)I + O(0). (26)

Step 3: Effect of Minimizing J. Both |VLA(6)| and ||Hp(6)]| appear in the meta-objective .J (6).
Hence, minimizing .J at 8* reduces both terms:

1Hp(0")VLAO™)| < [Hp(0")] - [VLaO")] . 27)

Combining with equation 26| shows that:
[0seq — Bjoinc|| is minimized at 6*,

concluding the proof.

D.4 INTERPRETATION

The Meta-Rep update approximates first-order gradient descent on a surrogate meta-objective J(6),
which integrates both sequential learning loss and joint loss over pseudo-tasks. This objective
implicitly encourages smoother loss landscapes (via small Hessians) and more stable gradients. As a
result, the update discrepancy between sequential and joint training is reduced, which improves model
stability and mitigates catastrophic forgetting. These theoretical insights align with our empirical
observations in Sec.
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