

000 001 002 003 004 005 MEPO: META POST-REFINEMENT FOR REHEARSAL- 006 FREE GENERAL CONTINUAL LEARNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

To cope with uncertain changes of the external world, intelligent systems must continually learn from complex, evolving environments and respond in real time. This ability, collectively known as general continual learning (GCL), encapsulates practical challenges such as online datastreams and blurry task boundaries. Although leveraging pretrained models (PTMs) has greatly advanced conventional continual learning (CL), these methods remain limited in reconciling the diverse and temporally mixed information along a single pass, resulting in sub-optimal GCL performance. Inspired by meta-plasticity and reconstructive memory in neuroscience, we introduce here an innovative approach named **Meta Post-Refinement** (MePo) for PTMs-based GCL. This approach constructs pseudo task sequences from pretraining data and develops a bi-level meta-learning paradigm to refine the pretrained backbone, which serves as a prolonged pretraining phase but greatly facilitates rapid adaptation of representation learning to downstream GCL tasks. MePo further initializes a meta covariance matrix as the reference geometry of pretrained representation space, enabling GCL to exploit second-order statistics for robust output alignment. MePo serves as a plug-in strategy that achieves significant performance gains across a variety of GCL benchmarks and pretrained checkpoints in a rehearsal-free manner (e.g., 15.10%, 13.36%, and 12.56% on CIFAR-100, ImageNet-R, and CUB-200 under Sup-21/1K).¹

1 INTRODUCTION

Human learning is characterized by the remarkable adaptability to accumulate knowledge from complex, evolving environments and to respond in real time. While numerous efforts in continual learning (CL) (Wang et al., 2024; Van de Ven & Tolias, 2019) aim to construct AI models in a similar way, conventional settings have focused on offline learning of sequential tasks with disjoint task boundaries, which are out of touch with real-world scenarios. In this regard, the concept of general continual learning (GCL) (Buzzega et al., 2020; De Lange et al., 2021) has been proposed to cover a variety of practical challenges, particularly those with online datastreams and blurry task boundaries (Moon et al., 2023; Kang et al., 2025), making it increasingly difficult for AI models to rapidly capture and effectively balance successive information. Most existing methods that attempt GCL from scratch rely on replaying old training samples (Aljundi et al., 2019; Buzzega et al., 2020; Koh et al., 2021; Bang et al., 2021; Yan et al., 2024), which incurs additional memory costs and privacy risks. Without leveraging prior knowledge, these methods exhibit inferior learning efficacy, limited generalization capabilities, and severe catastrophic forgetting (Kang et al., 2025).

Recent advances in CL have shifted toward employing pretrained models (PTMs) and parameter-efficient tuning (PET) techniques for representation learning (Wang et al., 2022b;a; Wu et al., 2025), and recover old task distributions in representation space for output alignment (Zhang et al., 2023; McDonnell et al., 2024), which obtain superior performance in conventional CL settings in a rehearsal-free manner. Despite the promise, these methods still face significant challenges in GCL: mainstream PET techniques (e.g., visual prompt tuning (Yoo et al., 2023; Ma et al., 2023)) often fall short in capturing the nuances of online datastreams, while common strategies of approximating old task distributions rely on disjoint task boundaries. State-of-the-art GCL methods (Kang et al., 2025; Moon et al., 2023) perform contrastive regularization or initial session adaptation of prompt parameters,

¹Our code is included in Supplementary Materials for examination, and will be released upon acceptance.

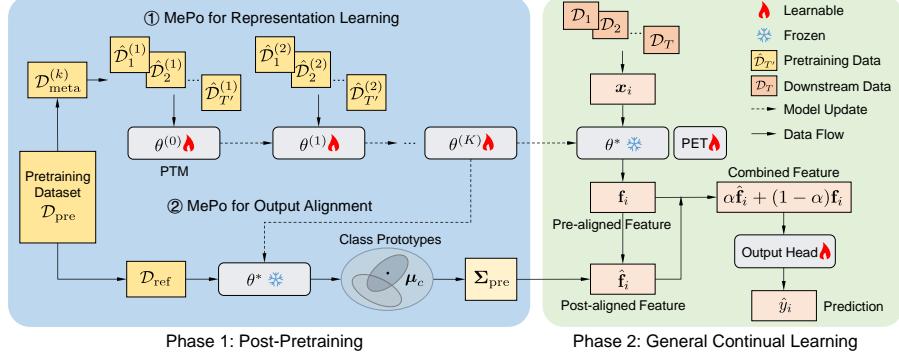


Figure 1: The proposed MePo framework for rehearsal-free general continual learning.

along with logit masking for balancing the output layer.² However, these methods fall short in fully addressing the two GCL challenges, especially under self-supervised PTMs that are more realistic yet often underfitted in their representations (see our empirical results in Sec. 2.2).

Compared to AI models, the biological brain enjoys strong GCL-like capabilities by imposing meta-plasticity (Abraham, 2008; Abraham & Bear, 1996; Sun et al., 2025) underlying the brain networks that retain substantial ‘‘pre-trained knowledge’’, positioning them in a critical state of neurodynamics for rapid adaptation. Up on meta-plasticity, the neural representations of incoming memories are continually encoded into and reconstructed from a shared representation space that enables real-time generalization, known as the reconstructive memory theory (Lei et al., 2022; 2024; Richards & Frankland, 2017). Inspired by such biological mechanisms, we propose an innovative approach named **Meta Post-Refinement** (MePo) for PTMs-based GCL (Fig. 1). MePo constructs pseudo tasks sequences from subsets of pretraining data, and develops a bi-level meta-learning paradigm to refine the pretrained backbone in a data-driven manner. This serves as a prolonged pretraining phase of *one-time cost*, but greatly facilitates rapid adaptation of representation learning to downstream GCL tasks *without additional overhead*. MePo further initializes a meta covariance matrix as the reference geometry of pretrained representation space, to which the features of incoming training samples are continually aligned and reconstructed, ensuring accurate and balanced predictions.

Unlike prior PTMs-based CL/GCL methods that rely solely on upstream pretraining or downstream adaptation, MePo extends the upstream pretraining with an additional post-refinement using pretraining data. To our knowledge, this is the first attempt that prepares PTMs for CL/GCL in advance, enabled by meta-learned pseudo task sequences for effective backbone refinement and meta-covariance for stable output alignment. We perform extensive experiments to validate the proposed framework. MePo serves as a plug-in strategy that significantly improves recent strong PTMs-based CL and GCL methods across a variety of GCL benchmarks and pretrained checkpoints in a rehearsal-free manner (e.g., 15.10%, 13.36%, and 12.56% on CIFAR-100, ImageNet-R, and CUB-200 under Sup-21/1K), while ensuring resource efficiency during the GCL phase. Comprehensive ablation studies and visualization results confirm its adaptive benefits in both representation learning and output alignment.

2 FORMULATION AND PRELIMINARY ANALYSIS

In this section, we first describe the problem setup of GCL, and then analyze the practical challenges of adapting state-of-the-art PTMs-based CL methods to GCL.

2.1 PROBLEM SETUP

Let’s consider a neural network model comprising a backbone $f_\theta(\cdot)$ parameterized by θ and an output layer $h_\psi(\cdot)$ parameterized by ψ . The model needs to learn sequential tasks $t \in \{1, \dots, T\}$ from their respective training sets $\mathcal{D}_1, \dots, \mathcal{D}_T$. Each \mathcal{D}_t consists of multiple data-label pairs (\mathbf{x}_t, y_t) , where the input data $\mathbf{x}_t \in \mathcal{X}_t$ and its ground-truth label $y_t \in \mathcal{Y}_t$ have respective spaces. For classification tasks, we further denote $|\mathcal{Y}_t|$ as the number of classes observed in task t . The objective of CL is to learn a

²Due to the space limit, we present a comprehensive summary of related work in Appendix A.

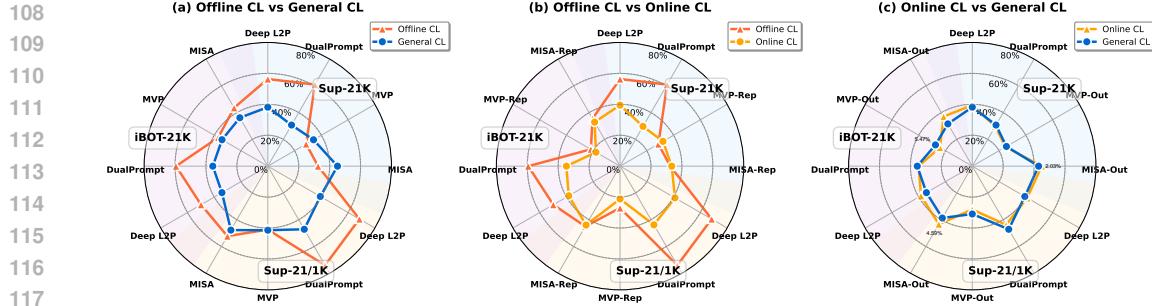


Figure 2: Empirical analysis of PTMs-based methods under different experimental setups. We compare (a) Offline CL vs General CL, (b) Offline CL vs Online CL, and (c) Online CL vs General CL. “-Rep”, without logit masking. “-Out”, without representation learning.

mapping function from $\mathcal{X} = \bigcup_{t=1}^T \mathcal{X}_t$ to $\mathcal{Y} = \bigcup_{t=1}^T \mathcal{Y}_t$, so as to predict the label $\hat{y} = h_\psi(f_\theta(\mathbf{x}))$ of any unseen test data \mathbf{x} belonging to the previous tasks.

In conventional CL settings, the task-wise input spaces (for DIL) or output spaces (for TIL and CIL, where TIL requires the test-time oracle of task identities) are often assumed to be disjoint. Specifically, $\forall i, j \in \{1, \dots, T\}, i \neq j, \mathcal{Y}_i = \mathcal{Y}_j, \mathcal{X}_i \cap \mathcal{X}_j = \emptyset$ for DIL. $\forall i, j \in \{1, \dots, T\}, i \neq j, \mathcal{Y}_i \cap \mathcal{Y}_j = \emptyset$ for TIL and CIL. Also, each \mathcal{D}_t is learned in an **offline CL** manner, i.e., the model learns all data-label pairs $(\mathbf{x}_t, y_t) \in \mathcal{D}_t$ over multiple epochs till convergence. In contrast, **online CL** and GCL often assumes all tasks to be learned with a one-pass online datastream, i.e., only one epoch, which poses the challenge of rapid adaptation. Meanwhile, **GCL** involves blurry task boundaries that the label spaces are different but may overlapped across tasks, making it difficult to balance the task-wise knowledge:

$$\forall i, j \in \{1, \dots, T\}, i \neq j, P(\mathcal{Y}_i \cap \mathcal{Y}_j \neq \emptyset) \geq 0, \quad (1)$$

where $P(\cdot)$ denotes the overlapping probability. GCL also includes other practical challenges such as “no test-time oracle” and “constant memory” (De Lange et al., 2021; Buzzega et al., 2020), which are not explicitly formulated for clarity. **Si-Blurry** (Moon et al., 2023) is a recent GCL setting that incorporates the above challenges. It divides classes of the overall label space \mathcal{Y} into disjoint classes of \mathcal{Y}^D and blurry classes of \mathcal{Y}^B , where $\mathcal{Y} = \mathcal{Y}^D \cup \mathcal{Y}^B$ and $\mathcal{Y}^D \cap \mathcal{Y}^B = \emptyset$. The *disjoint class ratio* $m = |\mathcal{Y}^D|/|\mathcal{Y}|$ regulates the proportion of disjoint classes. \mathcal{Y}^D and \mathcal{Y}^B are assigned to sequential tasks in a *non-uniform* manner, i.e., $\{\mathcal{Y}_t^D\}_{t=1 \dots T}$ and $\{\mathcal{Y}_t^B\}_{t=1 \dots T}$ where $\mathcal{Y}_i^D \cap \mathcal{Y}_j^D = \emptyset, P(\mathcal{Y}_i^B \cap \mathcal{Y}_j^B \neq \emptyset) \geq 0, \forall i, j \in \{1, \dots, T\}$ and $i \neq j$. The training samples of \mathcal{Y}_t^D are all introduced when learning task t , while the training samples of \mathcal{Y}_t^B are assigned to sequential tasks with a *blurry sample ratio* n . Therefore, m and n control the task sequence of Si-Blurry. This formulation has proven to satisfy Eq. (1) as a realization of GCL (Kang et al., 2025).

2.2 EMPIRICAL ANALYSIS OF PTMs-BASED METHODS

Although recent PTMs-based methods have made significant progress with strong supervised PTMs, their designs in both representation learning and output alignment remain sub-optimal in addressing the GCL challenges, especially under self-supervised PTMs that are more realistic yet often underfitted in their representations. Here we provide an in-depth empirical investigation of mainstream PTMs-based CL and GCL methods, with 5-task ImageNet-R as the benchmark (Fig. 2) with details in Sec. 4.1. We compare three groups of settings to dissect the distinct impact of online datastreams and blurry task boundaries: offline CL vs GCL, offline CL vs online CL, and online CL vs GCL. We consider three representative pretrained checkpoints: Sup-21K (supervised pretraining on ImageNet-21K), Sup-21/1K (self-supervised pretraining on ImageNet-21K and supervised finetuning on ImageNet-1K), and iBOT-21K (self-supervised pretraining on ImageNet-21K).

Overall, PTMs-based CL methods such as L2P (Wang et al., 2022b) and DualPrompt (Wang et al., 2022a) perform well in the offline setting, but their performance markedly drops once moved to GCL (Fig. 2a). These methods rely on repeatedly refining prompts, a process that becomes substantially less effective under single-pass online updates (Fig. 2b), explaining the majority of their degradation when transitioning from offline CL to GCL (Fig. 2a-c). By contrast, PTMs-based GCL methods such as MVP (Moon et al., 2023) and MISA (Kang et al., 2025) show more stable behavior across the three settings, particularly when strong supervised PTMs are used. However, their robustness diminishes

162 notably when shifting to the more challenging self-supervised PTMs, where feature separability is
 163 weaker and adaptation under online CL and GCL constraints becomes harder (Fig. 2a).
 164

165 We further dissect the designs of PTMs-based GCL methods for **representation learning** (“-Rep”)
 166 and **output alignment** (“-Out”). MVP devises a contrastive loss for visual prompt tuning, but
 167 is less effective in addressing online datastreams under Sup-21/1K and iBOT-21K (MVP-Rep,
 168 Fig. 2b). While its learnable logit mask performs even better with blurry task boundaries, the baseline
 169 performance is extremely low (MVP-Out, Fig. 2c). On the other hand, MISA achieves state-of-the-art
 170 GCL performance through the initialization of prompt parameters (MISA-Rep, Fig. 2b) and non-
 171 parametric logit mask (MISA-Out, Fig. 2c). However, MISA-Rep fails to improve the representation
 172 learning of its baseline method under Sup-21/1K and iBOT-21K (compared to DualPrompt, Fig. 2b),
 173 and MISA-Out suffers clear performance degradation with blurry task boundaries (-2.03%, -4.59%,
 174 and -5.47% on Sup-21K, Sup-21/1K, and iBOT-21K, respectively, Fig. 2c). These observations
 175 motivate us to explore more effective strategies for representation learning from online datastreams
 176 and output alignment from blurry task boundaries, as described in the following section.
 177

3 META POST-REFINEMENT

179 In this section, we present an innovative approach named **Meta Post-Refinement** (MePo) for PTMs-
 180 based GCL (Fig. 1). Our approach involves a meta-learning framework with subsets of pretraining
 181 data, which facilitates rapid adaptation of pretrained representations to GCL (**Meta Rep**) and
 182 initializes a meta covariance matrix for robust output alignment (**Meta Cov**). We include a pseudo-
 183 code in Appendix Alg. 1.

3.1 MEPO FOR REPRESENTATION LEARNING

187 Due to the discrepancy between the pretraining and
 188 GCL objectives, mainstream PET techniques often
 189 struggle to capture the nuances of online datastreams.
 190 Initialization of prompt parameters (Kang et al., 2025)
 191 has been shown to be an effective strategy, but is
 192 still limited by their tuning capacity and catastrophic
 193 forgetting, resulting in sub-optimal performance es-
 194 specially under the more realistic self-supervised
 195 PTMs (Sec. 2.2). Inspired by meta-plasticity (Abra-
 196 ham, 2008; Abraham & Bear, 1996) underlying the
 197 brain networks, which retain substantial “pre-trained
 198 knowledge” positioned in a critical state of neuro-
 199 dynamics for rapid adaptation, we propose a MePo
 200 framework to improve the adaptability of the entire
 201 backbone parameters θ to downstream GCL tasks.
 202 Our framework constructs pseudo task sequences
 203 from pretraining data and develops a bi-level meta-learning paradigm: an inner loop simulates
 204 sequentially arriving tasks and an outer loop optimizes meta-level generalization (see Fig. 1), thereby
 205 obtaining GCL-tailored representations in a data-driven manner.

206 **Pseudo Task Sequence.** The bi-level meta-learning paradigm allows for data-driven inductive bias
 207 through the specialized design of its learning objective and task sampling (Finn et al., 2017; Javed &
 208 White, 2019). In our case, the objective is to ensure rapid adaptation of pretrained representations to
 209 the online datastream in GCL. Since the true task sequence $\mathcal{D}_1, \dots, \mathcal{D}_T$ is not available during the
 210 pretraining stage, we propose to construct pseudo task sequences $\hat{\mathcal{D}}_1, \dots, \hat{\mathcal{D}}_{T'}$ from the pretraining
 211 dataset \mathcal{D}_{pre} . Specifically, in each meta-epoch $k \in \{1, \dots, K\}$, we randomly sample a subset $\mathcal{D}_{\text{meta}}^{(k)} \in$
 212 \mathcal{D}_{pre} consisting of classes $c \in \mathcal{C}_{\text{meta}}$ with N_{meta}^c training samples per class. Then, $\mathcal{D}_{\text{meta}}^{(k)}$ is partitioned
 213 into a meta-training set $\mathcal{D}_{\text{seq}}^{(k)}$ and a meta-validation set $\mathcal{D}_{\text{joint}}^{(k)}$ according to a training-validation split
 214 ratio γ of the class-wise training samples. The pseudo task sequences $\hat{\mathcal{D}}_1^{(k)}, \dots, \hat{\mathcal{D}}_{T'}^{(k)}$ are constructed
 215 by randomly splitting the class set $\mathcal{C}_{\text{meta}}$ in a similar way as described in Sec. 2. Then, we formulate
 the bi-level optimization as $\theta^{(k)} = \arg \min_{\theta} \mathcal{L}(\theta, \mathcal{D}_{\text{joint}}^{(k)})$, s.t., $\theta = \text{InnerLoop}(\theta^{(k-1)}, \mathcal{D}_{\text{seq}}^{(k)})$.

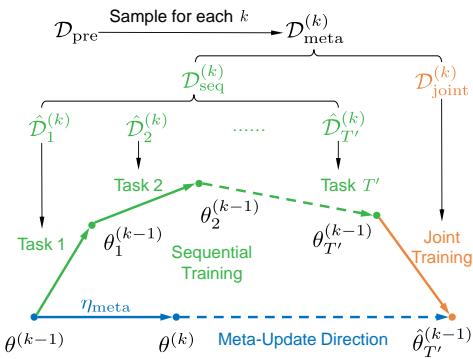


Figure 3: MePo representation learning.

216 **Inner Loop: Sequential Training.** Given the pseudo task sequence sampled at each meta-epoch
 217 $k \in \{1, \dots, K\}$, we update both θ and ψ by learning sequentially arriving tasks $t \in \{1, \dots, T'\}$
 218 with the task-specific loss:

$$\mathcal{L}_t(\theta, \psi) = \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}_t^{(k)}} [\mathcal{L}_{\text{CE}}(h_\psi(f_\theta(\mathbf{x})), y)], \quad (2)$$

221 where \mathcal{L}_{CE} is the cross-entropy loss for classification tasks. We further denote $\theta_{t-1}^{(k-1)}$ as the backbone
 222 parameters updated from the meta-epoch $k-1$ after learning task $t-1$, where $\theta^{(0)}$ represents the
 223 original pretrained backbone parameters (the task identity is omitted if the pseudo task sequence has
 224 not yet been introduced). Similarly, we denote ψ_{t-1} as the output layer parameters after learning task
 225 $t-1$. With learning rates η_θ and η_ψ , the entire model is sequentially optimized as
 226

$$\theta_t^{(k-1)} = \theta_{t-1}^{(k-1)} - \eta_\theta \nabla_\theta \mathcal{L}_t(\theta_{t-1}^{(k-1)}, \psi_{t-1}), \quad (3)$$

$$\psi_t = \psi_{t-1} - \eta_\psi \nabla_\psi \mathcal{L}_t(\theta_{t-1}^{(k-1)}, \psi_{t-1}). \quad (4)$$

230 **Outer Loop: Joint Training.** After performing the inner loop, we refine the backbone parameters
 231 $\theta_{T'}^{(k-1)}$ by joint training of all tasks with the held-out meta-validation set $\mathcal{D}_{\text{joint}}^{(k)}$, which encourages the
 232 pretrained representations to overcome potential bias caused by sequential training:

$$\hat{\theta}_{T'}^{(k-1)} = \theta_{T'}^{(k-1)} - \eta_\theta \nabla_\theta \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}_{\text{joint}}^{(k)}} [\mathcal{L}_{\text{CE}}(h_{\psi_{T'}}(f_{\theta_{T'}^{(k-1)}}(\mathbf{x})), y)]. \quad (5)$$

233 With $\hat{\theta}_{T'}^{(k-1)}$ obtained from the bi-level learning paradigm, we follow the previous work (Nichol &
 234 Schulman, 2018) to accumulate parameter updates through a first-order approximation:

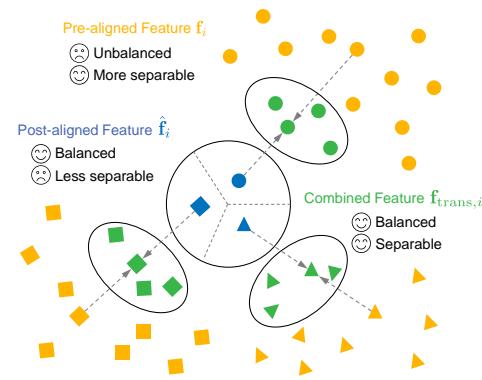
$$\theta^{(k)} = \theta^{(k-1)} + \eta_{\text{meta}}(\hat{\theta}_{T'}^{(k-1)} - \theta^{(k-1)}), \quad (6)$$

235 where $\eta_{\text{meta}} \in [0, 1]$ denotes the meta-learning rate. This update encourages the pretrained backbone
 236 to evolve towards representations that are appropriate for learning a potentially new task sequence in
 237 GCL (see Fig. 3). The entire parameter updates persist for K meta-epochs, culminating in the refined
 238 backbone parameters θ^* for output alignment, as described below.

239 **Mechanism of Meta Rep.** Meta-learning methods such as MAML (Finn et al., 2017) aim to learn an
 240 initialization that enables rapid adaptation. Reptile (Nichol et al., 2018) further demonstrates that this
 241 can be achieved through a first-order approximation to the second-order meta-gradient. Following
 242 this theoretical principle, MePo Rep constructs pseudo sequential tasks from pretraining data so that
 243 the inner loop simulates CL-style sequential updates. The outer loop then meta-refines the backbone
 244 to remain stable after these updates, yielding a CL-tailored initialization that is resilient to sequential
 245 drift yet retains plasticity that standard finetuning cannot provide (see detailed proof in Sec. D).

246 3.2 MEPO FOR OUTPUT ALIGNMENT

247 With θ^* , we strive to further rectify the potential
 248 bias of the output layer. Recent PTMs-based GCL
 249 methods (Moon et al., 2023; Kang et al., 2025) often
 250 involve logit masking of classes observed in each
 251 batch, yet limited by the over simplified representation
 252 modeling (i.e., the output layer amounts to preserving
 253 class-wise prototypes) and severely imbalanced
 254 classes in GCL. Advanced PTMs-based CL
 255 methods (McDonnell et al., 2024; Zhang et al., 2023;
 256 Wang et al., 2023) have identified that the second-
 257 order statistics (i.e., the feature covariance) are critical
 258 for preserving the geometry of representation
 259 space to obtain well-balanced predictions, but are
 260 difficult to estimate all at once in GCL. Inspired by
 261 the reconstructive memory theory (Lei et al., 2022; 2024; Richards & Frankland, 2017) in neuro-
 262 science, where the neural representations of incoming memories are continually encoded into and
 263 reconstructed from a previously established representation space, we propose to initialize a meta
 264 covariance matrix from pretraining data, serving as a reference geometry for robust output alignment.



265 Figure 4: MePo feature alignment.

270 **Meta Covariance Matrix.** To approximate the second-order statistics of pretrained representations,
 271 we randomly sample a reference group of class-specific subsets $\mathcal{D}_{\text{ref}} = \{\mathcal{D}_{\text{ref}}^c\}_{c \in \mathcal{C}_{\text{ref}}} \in \mathcal{D}_{\text{pre}}$ consisting
 272 of classes $c \in \mathcal{C}_{\text{ref}}$ with N_{ref}^c training samples per class. We then obtain the class-wise feature mean:
 273

$$274 \quad \boldsymbol{\mu}_c = \frac{1}{N_c} \sum_{i=1}^{N_c} f_{\theta^*}(\mathbf{x}_i), \quad (\mathbf{x}_i, c) \in \mathcal{D}_{\text{ref}}^c. \quad (7)$$

277 Next, we obtain the covariance matrix initialized with \mathcal{D}_{ref} as a reference geometry of pretrained
 278 representation space, which is subsequently used in GCL to perform output alignment:
 279

$$280 \quad \boldsymbol{\Sigma}_{\text{pre}} = \frac{1}{|\mathcal{C}_{\text{ref}}| - 1} \sum_{c=1}^{|\mathcal{C}_{\text{ref}}|} (\boldsymbol{\mu}_c - \bar{\boldsymbol{\mu}})(\boldsymbol{\mu}_c - \bar{\boldsymbol{\mu}})^\top, \quad (8)$$

282 where $\bar{\boldsymbol{\mu}} = \frac{1}{|\mathcal{C}_{\text{ref}}|} \sum_{c=1}^{|\mathcal{C}_{\text{ref}}|} \boldsymbol{\mu}_c$ denotes the global feature mean.
 283

284 **Feature Alignment.** During the GCL phase, training samples are introduced in small batches of
 285 imbalanced classes. To balance their contributions, we first calculate batch-wise feature covariance
 286 from the feature vector $\mathbf{f}_i = f_{\theta^* + \Delta\theta}(\mathbf{x}_i)$ of each training sample $(\mathbf{x}_i, y_i) \in \mathcal{D}_t$, where $\Delta\theta$ denotes
 287 the tunable parameters for representation learning in GCL (usually implemented via PET techniques).
 288 Given a batch of training samples alongside features $\mathcal{B} = \{\mathbf{f}_i\}_{i=1}^{|\mathcal{B}|}$, we estimate the batch-wise feature
 289 mean and covariance:
 290

$$291 \quad \bar{\mathbf{f}} = \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \mathbf{f}_i, \quad \boldsymbol{\Sigma}_{\text{cur}} = \frac{1}{|\mathcal{B}| - 1} \sum_{i=1}^{|\mathcal{B}|} (\mathbf{f}_i - \bar{\mathbf{f}})(\mathbf{f}_i - \bar{\mathbf{f}})^\top. \quad (9)$$

294 To rectify the potential bias of imbalanced classes in GCL, we propose to align batch-wise feature
 295 distributions (i.e., $\boldsymbol{\Sigma}_{\text{cur}}$) to the reference geometry of pretrained representation space (i.e., $\boldsymbol{\Sigma}_{\text{pre}}$) for
 296 subsequent use in prediction. Here we align $\boldsymbol{\Sigma}_{\text{cur}}$ and $\boldsymbol{\Sigma}_{\text{pre}}$ via the Cholesky decomposition (Benoit,
 297 1924; Watkins, 2004; Press, 1992), an efficient and numerically stable strategy to decompose a positive
 298 definite matrix (e.g., the covariance matrix) into the product of a lower triangular matrix and its
 299 transpose. We calculate the lower triangular matrices of current feature statistics \mathbf{L}_{cur} by decomposing
 300 $\boldsymbol{\Sigma}_{\text{cur}} = \mathbf{L}_{\text{cur}} \mathbf{L}_{\text{cur}}^\top$ and of pretrained feature statistics \mathbf{L}_{pre} by decomposing $\boldsymbol{\Sigma}_{\text{pre}} = \mathbf{L}_{\text{pre}} \mathbf{L}_{\text{pre}}^\top$. We then
 301 align each feature vector \mathbf{f}_i to the pretrained representation space:
 302

$$302 \quad \hat{\mathbf{f}}_i = \mathbf{f}_i \mathbf{A}, \quad \mathbf{A} = \mathbf{L}_{\text{cur}}^{-1} \mathbf{L}_{\text{pre}}, \quad (10)$$

303 which ensures $\mathbb{E}_{\mathbf{f}_i \in \mathcal{B}} [\hat{\mathbf{f}}_i \hat{\mathbf{f}}_i^\top] = \mathbf{A}^\top \boldsymbol{\Sigma}_{\text{cur}} \mathbf{A} = \boldsymbol{\Sigma}_{\text{pre}}$.
 304

305 The pre-aligned feature \mathbf{f}_i and the post-aligned feature $\hat{\mathbf{f}}_i$ exhibit distinct properties (see Fig. 4):
 306 \mathbf{f}_i collected from the finetuned representation space of $f_{\theta^* + \Delta\theta}(\cdot)$ tends to be more separable yet
 307 imbalanced, while $\hat{\mathbf{f}}_i$ aligned to the pretrained representation space of $f_{\theta^*}(\cdot)$ tend to be more balanced
 308 yet crowded. We take advantages of both via a weighted combination:
 309

$$310 \quad \mathbf{f}_{\text{trans},i} = \alpha \hat{\mathbf{f}}_i + (1 - \alpha) \mathbf{f}_i, \quad (11)$$

311 where $\alpha \in [0, 1]$ is a hyperparameter that controls the balance of stability and plasticity.
 312

313 Finally, we employ the combined feature $\mathbf{f}_{\text{trans},i}$ to update the tunable backbone parameters $\Delta\theta$ and
 314 the output layer parameters ψ during the GCL phase:
 315

$$316 \quad \mathcal{L}_{\text{CE}}(h_\psi(\mathbf{f}_{\text{trans},i}), y_i) = - \sum_{c \in \mathcal{Y}_t} y_i^{(c)} \log p_i^{(c)}, \quad p_i^{(c)} = \frac{\exp(h_\psi(\mathbf{f}_{\text{trans},i})^{(c)})}{\sum_{k \in \mathcal{Y}_t} \exp(h_\psi(\mathbf{f}_{\text{trans},i})^{(k)})}, \quad (12)$$

317 where the superscript (c) denotes the vector component corresponding to class c .
 318

319 **Mechanism of Meta Cov.** Meta Cov addresses the challenge that feature covariance in PTMs-based
 320 CL drifts severely under small, noisy, and imbalanced online batches, leading to distorted representa-
 321 tion geometry and increased task interference. To stabilize this process, Meta Cov introduces a meta
 322 covariance matrix $\boldsymbol{\Sigma}_{\text{pre}}$ computed from large-scale, balanced pretraining data, serving as a reliable
 323 reference geometry. By aligning $\boldsymbol{\Sigma}_{\text{cur}}$ toward $\boldsymbol{\Sigma}_{\text{pre}}$ through a Cholesky transformation, Meta Cov
 324 constrains feature updates to a stable manifold, preventing collapse or expansion and improving the
 325 overall stability–plasticity balance.
 326

Table 1: Overall performance of different methods in GCL. All results are averaged over five runs (\pm standard deviation) with different task sequences.

PTM	Method	CIFAR-100		ImageNet-R		CUB-200	
		$A_{AUC}(\uparrow)$	$A_{Last}(\uparrow)$	$A_{AUC}(\uparrow)$	$A_{Last}(\uparrow)$	$A_{AUC}(\uparrow)$	$A_{Last}(\uparrow)$
Sup-21K	Seq FT	19.71 \pm 3.39	10.42 \pm 4.92	7.51 \pm 3.94	2.29 \pm 0.85	3.47 \pm 0.41	1.49 \pm 0.42
	Linear Probe	49.69 \pm 6.09	23.07 \pm 7.33	29.24 \pm 1.26	16.87 \pm 3.14	28.96 \pm 2.46	17.33 \pm 3.08
	Seq FT (SL)	64.90 \pm 7.18	62.06 \pm 1.89	47.20 \pm 1.47	39.60 \pm 2.43	56.16 \pm 4.32	56.50 \pm 3.08
	CODA-P	78.81 \pm 3.38	80.30 \pm 1.58	50.11 \pm 2.14	46.17 \pm 2.00	64.96 \pm 3.30	59.28 \pm 3.14
	Deep L2P	78.12 \pm 0.61	77.73 \pm 1.09	42.39 \pm 0.23	38.16 \pm 1.37	60.95 \pm 1.22	56.31 \pm 2.53
	w/ MePo (Ours)	83.63 \pm 0.61	83.98 \pm 0.29	58.71 \pm 1.28	55.13 \pm 1.16	64.92 \pm 1.47	63.30 \pm 1.52
	DualPrompt	66.36 \pm 4.42	58.09 \pm 4.40	38.63 \pm 2.19	30.71 \pm 0.82	55.73 \pm 2.77	47.08 \pm 4.94
	w/ MePo (Ours)	71.37 \pm 4.07	66.48 \pm 2.82	44.65 \pm 2.09	36.76 \pm 1.21	58.36 \pm 2.59	52.16 \pm 3.74
	MVP	68.13 \pm 4.34	60.56 \pm 2.57	41.50 \pm 1.15	34.14 \pm 3.95	56.78 \pm 2.88	50.25 \pm 3.53
	w/ MePo (Ours)	72.18 \pm 4.50	68.45 \pm 1.59	46.35 \pm 1.31	38.21 \pm 3.66	58.73 \pm 3.31	52.22 \pm 2.80
Sup-21/1K	MiSA	80.35 \pm 2.39	80.75 \pm 1.24	51.52 \pm 2.09	45.08 \pm 1.43	65.40 \pm 3.01	60.20 \pm 1.82
	w/ MePo (Ours)	82.30 \pm 2.83	83.99 \pm 1.35	54.86 \pm 2.20	49.18 \pm 1.38	68.13 \pm 3.17	64.75 \pm 1.00
	Deep L2P	69.15 \pm 1.66	68.57 \pm 1.38	42.74 \pm 0.83	39.22 \pm 2.14	39.20 \pm 1.69	46.76 \pm 1.87
	w/ MePo (Ours)	78.75 \pm 1.18	77.52 \pm 1.03	62.71 \pm 1.09	58.91 \pm 0.98	48.36 \pm 1.88	50.88 \pm 2.85
	DualPrompt	64.84 \pm 2.62	67.22 \pm 8.54	49.52 \pm 2.92	47.14 \pm 3.39	43.96 \pm 2.00	41.20 \pm 7.61
	w/ MePo (Ours)	67.18 \pm 4.48	57.95 \pm 3.69	54.75 \pm 1.66	44.75 \pm 0.74	47.06 \pm 3.19	38.24 \pm 9.29
	MVP	65.26 \pm 3.87	53.66 \pm 5.61	51.26 \pm 1.47	41.41 \pm 4.81	45.12 \pm 3.08	37.95 \pm 9.32
	w/ MePo (Ours)	70.25 \pm 4.23	62.05 \pm 2.39	61.28 \pm 1.21	50.82 \pm 3.70	49.72 \pm 3.53	42.81 \pm 6.74
	MiSA	62.91 \pm 7.96	67.99 \pm 7.41	50.87 \pm 1.69	47.75 \pm 2.87	42.76 \pm 2.33	44.05 \pm 1.94
	w/ MePo (Ours)	78.01 \pm 3.09	76.73 \pm 1.06	64.23 \pm 1.30	58.20 \pm 0.51	55.31 \pm 4.52	56.58 \pm 2.33
iBOT-21K	Deep L2P	64.48 \pm 1.23	66.71 \pm 1.27	33.68 \pm 2.78	36.24 \pm 1.83	16.22 \pm 0.85	27.14 \pm 0.75
	w/ MePo (Ours)	75.83 \pm 1.23	76.40 \pm 0.94	55.30 \pm 0.50	52.38 \pm 1.87	40.90 \pm 1.44	46.50 \pm 2.90
	DualPrompt	63.09 \pm 2.36	61.20 \pm 8.76	41.33 \pm 2.11	35.58 \pm 3.24	24.56 \pm 2.25	21.32 \pm 6.38
	w/ MePo (Ours)	65.76 \pm 3.56	59.21 \pm 3.18	48.06 \pm 2.20	37.69 \pm 2.10	38.19 \pm 3.74	31.03 \pm 11.55
	MVP	64.01 \pm 3.27	50.00 \pm 11.45	43.89 \pm 1.88	34.19 \pm 4.56	29.59 \pm 3.28	27.85 \pm 8.89
	w/ MePo (Ours)	66.88 \pm 4.86	57.19 \pm 2.63	53.75 \pm 1.38	42.55 \pm 3.08	40.99 \pm 3.45	34.66 \pm 8.40
	MiSA	65.30 \pm 2.28	67.43 \pm 6.75	40.94 \pm 1.22	36.16 \pm 1.58	18.62 \pm 3.36	23.66 \pm 2.21
	w/ MePo (Ours)	75.80 \pm 3.77	76.02 \pm 1.18	57.00 \pm 2.52	49.86 \pm 1.22	49.33 \pm 3.59	45.68 \pm 2.59

4 EXPERIMENT

In this section, we will first describe the experimental setups of GCL with Si-Blurry, and then present the experimental results with an in-depth analysis.

4.1 EXPERIMENTAL SETUP

Benchmarks. We employ three representative datasets, CIFAR-100 (Krizhevsky et al., 2009) (general dataset, 100-class small-scale images), ImageNet-R (Hendrycks et al., 2021) (general dataset, 200-class large-scale images), and CUB-200 (Wah et al., 2011) (fine-grained dataset, 200-class large-scale images), to construct the evaluation benchmarks. We follow the official implementation of Si-Blurry (Moon et al., 2023; Kang et al., 2025), with the disjoint class ratio $m = 50\%$ and the blurry sample ratio $n = 10\%$, and split all classes into 5 learning phases. Following the previous evaluation protocols (Moon et al., 2023; Kang et al., 2025), we report the average any-time accuracy A_{AUC} and the average last accuracy A_{Last} as the main metrics. We adopt a ViT-B/16 backbone with Sup-21K, Sup-21/1K, and iBOT-21K checkpoints. The implementation details are included in Appendix B.

Baselines. We consider a variety of representative baselines, categorized into three groups: (1) Simple lower-bound methods such as sequential fine-tuning (Seq FT) of the entire model, Seq FT with slow learner (SL) (Zhang et al., 2023) that selectively reduces the backbone learning rate, and linear probing of the fixed backbone. (2) PTMs-based CL methods such as L2P (Wang et al., 2022b), DualPrompt (Wang et al., 2022a), and CODA-P (Smith et al., 2023). Here we follow the previous work (Smith et al., 2023) to re-implement L2P (Wang et al., 2022b) by replacing its prompt tuning with prefix tuning, denoted as Deep L2P, for comparison fairness and the ease of combination with MePo. (3) PTMs-based GCL methods such as MVP (Moon et al., 2023) and MiSA (Kang et al., 2025). All PTMs-based methods employ prefix tuning with prompt length 5, inserted into layers 1-5.

378 Table 3: Ablation study of representation (Meta Rep) and covariance (Meta Cov) in MePo. All results
 379 are averaged over five runs (\pm standard deviation) with different task sequences.

381 PTM	382 Meta Rep	383 Meta Cov	384 ImageNet-R (MVP)		385 ImageNet-R (MISA)		386 CUB-200 (MVP)		387 CUB-200 (MISA)	
			388 AAUC(\uparrow)	389 $A_{\text{Last}}(\uparrow)$	390 AAUC(\uparrow)	391 $A_{\text{Last}}(\uparrow)$	392 AAUC(\uparrow)	393 $A_{\text{Last}}(\uparrow)$	394 AAUC(\uparrow)	395 $A_{\text{Last}}(\uparrow)$
396 Sup-21K	\times	\times	41.50 \pm 1.15	34.14 \pm 3.95	51.52 \pm 2.09	45.08 \pm 1.43	56.78 \pm 2.88	50.25 \pm 3.53	65.40 \pm 3.01	60.20 \pm 1.82
	\checkmark	\times	46.32 \pm 1.29	38.06 \pm 3.77	52.35 \pm 2.09	45.81 \pm 1.08	58.67 \pm 2.80	51.65 \pm 3.23	64.83 \pm 2.82	59.57 \pm 1.73
	\times	\checkmark	40.51 \pm 1.20	33.99 \pm 4.11	53.59 \pm 2.26	47.90 \pm 1.65	55.82 \pm 3.64	51.49 \pm 2.72	68.03 \pm 3.05	65.30 \pm 1.82
	\checkmark	\checkmark	46.35 \pm 1.31	38.21 \pm 3.66	54.86 \pm 2.20	49.18 \pm 1.38	58.73 \pm 3.31	52.22 \pm 2.80	68.13 \pm 3.17	64.75 \pm 1.00
397 Sup-21/1K	\times	\times	51.26 \pm 1.47	41.41 \pm 4.81	50.87 \pm 1.69	47.75 \pm 2.87	45.12 \pm 3.08	37.95 \pm 9.32	42.76 \pm 2.33	44.05 \pm 1.94
	\checkmark	\times	57.50 \pm 1.18	46.75 \pm 4.85	56.71 \pm 1.08	50.29 \pm 2.04	47.26 \pm 3.38	39.65 \pm 8.09	44.68 \pm 2.46	43.88 \pm 2.72
	\times	\checkmark	55.83 \pm 1.62	45.83 \pm 5.07	57.66 \pm 0.96	52.30 \pm 0.58	47.69 \pm 3.05	40.51 \pm 8.67	49.60 \pm 3.31	47.21 \pm 1.72
	\checkmark	\checkmark	61.28 \pm 1.21	50.82 \pm 3.70	64.23 \pm 1.30	58.20 \pm 0.51	49.72 \pm 3.53	42.81 \pm 6.74	55.31 \pm 4.52	56.58 \pm 2.33
398 iBOT-21K	\times	\times	43.89 \pm 1.88	34.19 \pm 4.56	40.94 \pm 1.22	36.16 \pm 1.58	29.59 \pm 3.28	27.85 \pm 8.89	18.62 \pm 3.36	23.66 \pm 2.21
	\checkmark	\times	52.67 \pm 1.41	41.91 \pm 3.95	50.21 \pm 1.93	43.52 \pm 1.39	40.61 \pm 3.41	34.17 \pm 9.09	39.44 \pm 2.93	40.38 \pm 1.79
	\times	\checkmark	47.44 \pm 1.76	37.02 \pm 5.00	44.24 \pm 1.90	38.08 \pm 1.15	31.75 \pm 3.43	30.35 \pm 9.12	20.65 \pm 3.22	22.92 \pm 0.75
399	\checkmark	\checkmark	53.75 \pm 1.38	42.55 \pm 3.08	57.00 \pm 2.52	49.86 \pm 1.22	40.99 \pm 3.45	34.66 \pm 8.40	49.33 \pm 3.59	45.68 \pm 2.59

394 4.2 EXPERIMENTAL RESULT

395
 396 **Overall Performance.** We first evaluate the overall performance in Table 1. MISA is the state-of-the-
 397 art GCL method that outperforms other PTMs-based CL and GCL methods under strong supervised
 398 PTMs (Sup-21K) and general datasets (CIFAR-100 and ImageNet-R). However, the performance of
 399 all baselines tend to decay severely under weakly supervised and self-supervised PTMs (Sup-21/1K
 400 and iBOT-21K) and fine-grained dataset (CUB-200), both of which strengthen the challenges of
 401 representation learning and output alignment in GCL. Interestingly, the re-implemented Deep L2P
 402 achieves competing or even better performance than PTMs-based GCL baselines in many cases,
 403 suggesting limited progress of the current GCL research.

404 In comparison, our proposed MePo serves as a plug-in
 405 strategy that substantially enhances the performance
 406 of PTMs-based CL and GCL methods in Si-Blurry
 407 (Table 1), traditional online CL, offline CL and do-
 408 main CL settings (Appendix Table 7). The per-
 409 formance gains tend to be more significant from su-
 410 pervised to self-supervised PTMs and from general
 411 to fine-grained datasets (Table 1), as well as OOD
 412 datasets NCH for chest X-ray and GTSRB for traffic
 413 sign (Appendix Table 6), suggesting the adaptive effectiveness of MePo in overcoming GCL chal-
 414 lenges. For example, the $A_{\text{AUC}}/A_{\text{Last}}$ improvements over MISA are 15.10%/8.74%, 13.36%/10.45%,
 415 and 12.56%/12.53% on CIFAR-100, ImageNet-R, and CUB-200 under Sup-21/1K, demonstrating
 416 clearly the new state-of-the-art. MePo remains consistently effective across different downstream
 417 task lengths T (Appendix Table 10), where using more pseudo tasks in the meta-refinement phase is
 418 more advantageous if the downstream task sequence is longer.

419 **Computational cost.** The computation cost of MePo consists of two components: a one-time
 420 meta-refinement phase and the subsequent downstream GCL phase. Notably, our meta-refinement
 421 can be seen as a prolonged pretraining phase with one-time cost, which is method-agnostic and
 422 reusable for GCL. Once the backbone is refined from pseudo tasks of the pretraining data, it can be
 423 directly reused by any downstream GCL method and dataset. The data budgets of meta-refinement is
 424 only accounting for 0.15% of ViT-B/16 pretraining (Appendix Table 11 and 12). In the downstream
 425 GCL phase, MePo only preserves an additional covariance matrix of negligible storage overhead
 426 (0.67% of the ViT-B/16 backbone) and does not introduce additional computational overhead during
 427 the GCL stage (Table 2), positioning it as an efficient choice.

428 **Ablation Study.** We present an extensive ablation study with two comparably challenging datasets
 429 (ImageNet-R and CUB-200) under the three pretrained checkpoints, using MVP and MISA as the
 430 plug-in baselines. Overall, MePo for both representation learning (Meta Rep) and output alignment
 431 (Meta Cov) contributes to its strong performance (Table 3), validating the effectiveness of our designs.
 432 Interestingly, there exist some cases (e.g., MISA on CUB-200 under Sup-21/1K and iBOT-21K)
 433 where using either Meta Rep or Meta Cov alone is not necessarily effective, while only using both

434 Table 2: Comparison of resource overheads:
 435 Batch time on ImageNet-R under Sup-21K.

436 Method	437 +Param.	438 +Ratio	439 Time	440 Accuracy
MVP	639k	0.74%	5.34s	41.50
w/ MePo	1215k	1.41%	5.34s	46.35
MISA	637k	0.74%	4.84s	51.52
w/ MePo	1213k	1.41%	4.84s	54.86

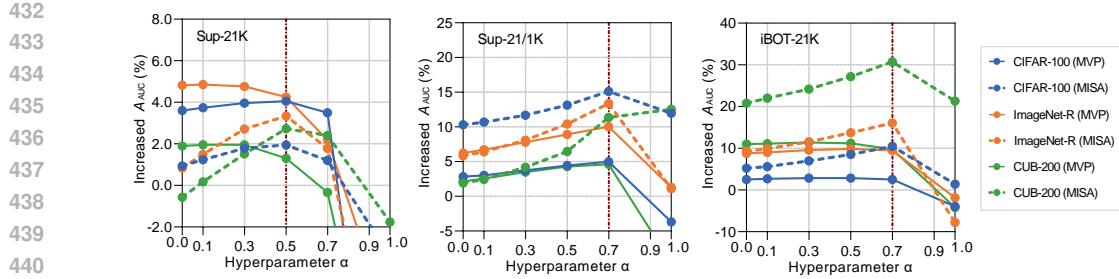


Figure 5: Empirical evaluation of the combination weight α in MePo. Here we employ $A_{AUC}(\uparrow)$ as the evaluation metric. The complete quantification results are included in Appendix Tables 4 and 5.

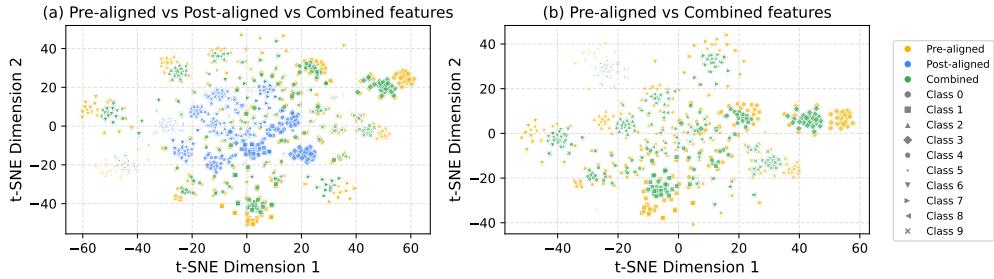


Figure 6: Visualization of pre-aligned, post-aligned, and combined features with t-SNE (Van der Maaten & Hinton, 2008). Here we take the setup of MISA w/ MePo, ImageNet-R, and Sup-21/1K as an example. Best viewed in color.

simultaneously can obtain considerable enhancements. These results demonstrate the complementary effects between Meta Rep and Meta Cov to overcome GCL challenges.

We further evaluate the impact of α in Eq. (11), i.e., the combination weight of pre-aligned and post-aligned features. As shown in Fig. 5, α is relatively insensitive and delivers strong improvements over a wide range of hyperparameter values (0.3-0.7). $\alpha = 0$ is equivalent to Meta Rep only, resulting in sub-optimal performance due to the [balanced but less separable classes](#) (Figs. 4 and 6). $\alpha = 1$ aligns all features to the pretrained representation space, failing to accommodate new distributions during the GCL phase. In comparison, a moderate value strikes an appropriate balance of pretrained and finetuned representations: $\alpha = 0.5$ for Sup-21K and $\alpha = 0.7$ for Sup-21/1K and iBOT-21K, suggesting that self-supervised representations require greater stability to overcome recency bias in prediction.

Detailed Analysis. Here we visualize the pre-aligned, post-aligned, and combined features with t-SNE (Van der Maaten & Hinton, 2008) (Fig. 6a). The post-aligned features mapping to the pretrained representation space exhibit a “meta” distribution at the center of all features, with identical distances to the pre-aligned features of each class. The combined features generally locate between the pre-aligned and post-aligned features as the design of Eq. (11), and tend to be more separable than both. We further perform t-SNE of only pre-aligned and combined features (Fig. 6b). Again, the transformed features of each class are clearly more separable than the pre-aligned features, consistent with the significant improvements observed in Table 3 (i.e., Meta Rep with or without Meta Cov).

Next, we provide visualization results to explicitly demonstrate the effectiveness of Meta Rep and Meta Cov. We first visualize the distribution of activated class-wise representations. As shown in Fig 7, Appendix Fig. 8, and Fig. 9, the use of Meta Rep results in much sparser activation in GCL, [alleviating the mutual interference of different classes](#) in representation space during CL (Javed & White, 2019; Michieli & Zanuttigh, 2021; Pourcel et al., 2022; Shi et al., 2022). Interestingly, a previous work called OML (Javed & White, 2019) has also attempted meta-learning representations for CL via updat-

Figure 7: Visualization of class-wise prototypes on ImageNet-R under Sup-21K.

486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

ing the output layer and backbone parameters separately, obtaining sparser representations than naive pretraining. In comparison, Meta Rep updates all parameters within the inner loop, enabling more adequate adaptation. We empirically validate that OML is significantly inferior to ours in GCL (e.g., the A_{AUC} improvements over MISA are 0.58% and 6.07% with OML and Meta Rep on ImageNet-R under Sup-21/1K).

5 CONCLUSION AND DISCUSSION

In this work, we investigate GCL with Si-Blurry as a typical realization. We reveal that the two practical challenges, namely online datastreams and blurry task boundaries, severely undermine the effectiveness of advanced PTMs-based CL and GCL methods by degrading representation learning and output alignment, respectively. To address these challenges, we propose an innovative approach that refines pretrained representations through a post-refinement process to enable rapid adaptation, and initializes a meta covariance matrix to align second-order statistics within the representation space. Our approach achieves state-of-the-art performance across a range of benchmark datasets and pretrained checkpoints. We contend that GCL scenarios mirror the highly complex and dynamic nature of real-world environments, and the effective use of post-refinement offers a promising solution. These explorations are expected to further enhance AI adaptability, such as enabling robust online interaction with the physical world in embodied intelligence.

This work remains some potential *limitations*. First, although we employ subsets of pretraining data to implement MePo, these data may not be always available in applications. It is promising to explore massive in-the-wild data as the alternative. Second, this work focuses on image classification tasks with Si-Blurry as the realization of GCL. Further work may explore other typical tasks in real-world scenarios, e.g., egocentric videos and embodied reasoning. Since this work is a fundamental research in machine learning, the potential *negative societal impact* is not obvious at the current stage.

540 **Ethics statement.** I acknowledge that I and all co-authors of this work have read and commit to
 541 adhering to the ICLR Code of Ethics.
 542

543 **Reproducibility statement.** We have included the source code with clear instructions in Supplemen-
 544 tary Materials. We will release them upon acceptance.
 545

546 **Large language models assistance.** Large language models were used to polish the manuscript. The
 547 authors have thoroughly reviewed and edited all content and take full responsibility for the published
 548 work.
 549

550 REFERENCES

551 Wickliffe C Abraham. Metaplasticity: tuning synapses and networks for plasticity. *Nature Reviews*
 552 *Neuroscience*, 9(5):387–387, 2008.
 553

554 Wickliffe C Abraham and Mark F Bear. Metaplasticity: the plasticity of synaptic plasticity. *Trends in*
 555 *Neurosciences*, 19(4):126–130, 1996.
 556

557 Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for
 558 online continual learning. *NeurIPS*, 32, 2019.
 559

560 Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow memory:
 561 Continual learning with a memory of diverse samples. In *CVPR*, pp. 8218–8227, 2021.
 562

563 Commandant Benoit. Note sur une méthode de résolution des équations normales provenant de
 564 l’application de la méthode des moindres carrés à un système d’équations linéaires en nombre
 565 inférieur à celui des inconnues (procédé du commandant cholesky). *Bulletin géodésique*, 2(1):
 566 67–77, 1924.
 567

568 Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
 569 experience for general continual learning: a strong, simple baseline. *NeurIPS*, 33:15920–15930,
 570 2020.
 571

572 Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
 573 Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
 574 tasks. *PAMI*, 44(7):3366–3385, 2021.
 575

576 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 577 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 578 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
 579 *arXiv preprint arXiv:2010.11929*, 2020a.
 580

581 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 582 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 583 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
 584 *arXiv:2010.11929*, 2020b.
 585

586 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
 587 deep networks. In *International Conference on Machine Learning*, pp. 1126–1135. PMLR, 2017.
 588

589 Dan Hendrycks, Steven Basart, et al. The many faces of robustness: A critical analysis of out-of-
 590 distribution generalization. In *ICCV*, 2021.
 591

592 Khurram Javed and Martha White. Meta-learning representations for continual learning. *Advances in*
 593 *neural information processing systems*, 32, 2019.
 594

595 Zhiqi Kang, Liyuan Wang, Xingxing Zhang, and Karteek Alahari. Advancing prompt-based methods
 596 for replay-independent general continual learning. In *International Conference on Learning*
 597 *Representations*, 2025.
 598

599 Hyunseo Koh, Dahyun Kim, Jung-Woo Ha, and Jonghyun Choi. Online continual learning on class
 600 incremental blurry task configuration with anytime inference. *arXiv preprint arXiv:2110.10031*,
 601 2021.
 602

594 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 595 Technical report, 2009.

596

597 Bo Lei, Li Lv, Shiqiang Hu, Yikai Tang, and Yi Zhong. Social experiences switch states of memory
 598 engrams through regulating hippocampal rac1 activity. *PNAS*, 2022.

599 Bo Lei, Bilin Kang, Yuejun Hao, Haoyu Yang, Zihan Zhong, Zihan Zhai, and Yi Zhong. Reconstruct-
 600 ing a new hippocampal engram for systems reconsolidation and remote memory updating. *Neuron*,
 601 2024.

602 Xinhong Ma, Yiming Wang, Hao Liu, Tianyu Guo, and Yunhe Wang. When visual prompt tuning
 603 meets source-free domain adaptive semantic segmentation. *NeurIPS*, 2023.

604

605 Mark D McDonnell, Dong Gong, Amin Parvaneh, Ehsan Abbasnejad, and Anton van den Hengel.
 606 Ranpac: Random projections and pre-trained models for continual learning. *NeurIPS*, 36, 2024.

607

608 Umberto Michieli and Pietro Zanuttigh. Continual semantic segmentation via repulsion-attraction of
 609 sparse and disentangled latent representations. In *Proceedings of the IEEE/CVF conference on*
 610 *computer vision and pattern recognition*, pp. 1114–1124, 2021.

611 Jun-Yeong Moon, Keon-Hee Park, Jung Uk Kim, and Gyeong-Moon Park. Online class incremental
 612 learning on stochastic blurry task boundary via mask and visual prompt tuning. In *ICCV*, pp.
 613 11731–11741, 2023.

614 Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. *arXiv preprint*
 615 *arXiv:1803.02999*, 2(3):4, 2018.

616

617 Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. *arXiv*
 618 *preprint arXiv:1803.02999*, 2018.

619 Julien Pourcel, Ngoc-Son Vu, and Robert M French. Online task-free continual learning with dynamic
 620 sparse distributed memory. In *European Conference on Computer Vision*, pp. 739–756. Springer,
 621 2022.

622 William H Press. *The art of scientific computing*. Cambridge university press, 1992.

623

624 Blake A Richards and Paul W Frankland. The persistence and transience of memory. *Neuron*, 94(6):
 625 1071–1084, 2017.

626

627 Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
 628 the masses. *arXiv preprint arXiv:2104.10972*, 2021.

629

630 Herbert Robbins and Sutton Monro. A stochastic approximation method. *The annals of mathematical*
 631 *statistics*, pp. 400–407, 1951.

632

633 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
 634 Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
 635 challenge. *International Journal of Computer Vision*, 115:211–252, 2015.

636

637 Yujun Shi, Kuangqi Zhou, Jian Liang, Zihang Jiang, Jiashi Feng, Philip HS Torr, Song Bai, and Vin-
 638 cent YF Tan. Mimicking the oracle: An initial phase decorrelation approach for class incremental
 639 learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 640 pp. 16722–16731, 2022.

641

642 James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
 643 Arbelae, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
 644 attention-based prompting for rehearsal-free continual learning. In *CVPR*, pp. 11909–11919, 2023.

645

646 Guanglong Sun, Chencen Yu, Ruolan Cai, Mingxuan Li, Lingzhu Fan, Hao Sun, Chenfei Lyu, Yingxu
 647 Lin, Lixia Gao, Kuan Hong Wang, et al. Neural representation of self-initiated locomotion in the
 648 secondary motor cortex of mice across different environmental contexts. *Communications Biology*,
 649 8(1):1–17, 2025.

650

651 Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. *arXiv preprint*
 652 *arXiv:1904.07734*, 2019.

648 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Machine*
 649 *Learning Research*, 9(11), 2008.

650

651 Catherine Wah, Steve Branson, Peter Welinder, et al. The caltech-ucsd birds-200-2011 dataset. 2011.

652

653 Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, and Jun Zhu. Hierarchical
 654 decomposition of prompt-based continual learning: Rethinking obscured sub-optimality. *NeurIPS*,
 2023.

655

656 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
 657 Theory, method and application. *PAMI*, 2024.

658

659 Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
 660 Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
 661 rehearsals-free continual learning. In *ECCV*, pp. 631–648. Springer, 2022a.

662

663 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
 664 Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *CVPR*, pp.
 139–149, 2022b.

665

666 David S Watkins. *Fundamentals of matrix computations*. John Wiley & Sons, 2004.

667

668 Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhua Li, Hanspeter Pfister, Deyu
 669 Meng, Kede Ma, and Ying Wei. Sd-lora: Scalable decoupled low-rank adaptation for class
 incremental learning. In *ICLR*, 2025.

670

671 Hongwei Yan, Liyuan Wang, Kaisheng Ma, and Yi Zhong. Orchestrate latent expertise: Advancing
 672 online continual learning with multi-level supervision and reverse self-distillation. In *Proceedings*
 673 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23670–23680,
 2024.

674

675 Seungryong Yoo, Eunji Kim, Dahuin Jung, Jungbeom Lee, and Sungroh Yoon. Improving visual
 676 prompt tuning for self-supervised vision transformers. In *ICML*, 2023.

677

678 Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, and Yunchao Wei. Slca: Slow learner with
 679 classifier alignment for continual learning on a pre-trained model. *arXiv preprint arXiv:2303.05118*,
 2023.

680

681 Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
 682 Image bert pre-training with online tokenizer. *arXiv preprint arXiv:2111.07832*, 2021.

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A RELATED WORK
703
704
705

706 **Continual Learning (CL)** aims to overcome catastrophic forgetting when learning sequentially
707 arriving tasks with distinct data distributions (Wang et al., 2024; Van de Ven & Tolias, 2019).
708 Conventional CL settings often assume offline learning of each task with disjoint task boundaries,
709 such as task-incremental learning (TIL), class-incremental learning (CIL), and domain-incremental
710 learning (DIL) (Van de Ven & Tolias, 2019). Representative methods focus on CL from scratch, such
711 as regularization-based, replay-based, and architecture-based methods. Recent advances in CL have
712 involved PTMs to obtain better performance (Zhang et al., 2023). Since CL tends to progressively
713 overwrite the pretrained knowledge, these methods often keep the pretrained backbone frozen and
714 exploits PET techniques to instruct representation learning (Wang et al., 2022b;a; Wu et al., 2025).
715 They also replay representations of old tasks to rectify potential bias of the output layer (Wang et al.,
716 2023; McDonnell et al., 2024). However, the efficacy of PET techniques relies heavily on offline
717 task learning with adequate training samples, and the representation replay requires disjoint task
718 boundaries to approximate old task distributions, which severely limits their applicability.

719 **General Continual Learning (GCL)** is introduced to capture the practical challenges for applying
720 CL in real-world scenarios (De Lange et al., 2021; Buzzega et al., 2020), such as “online learning”,
721 “blurry task boundaries”, “no test-time oracle”, “constant memory”, etc. These challenges have been
722 partially involved in many existing CL settings, such as “no test-time oracle” in CIL and “online
723 learning” in online CL, while “constant memory” is a desirable requirement for all CL methods.
724 Si-Blurry (Moon et al., 2023) is one of the latest GCL settings that incorporate all aforementioned
725 challenges, where the training samples of each task are randomly sampled from distributions that
726 may involve old and new classes. Many efforts have been made in adapting PTMs-based CL methods
727 to this GCL scenario. For example, MVP (Moon et al., 2023) devises a contrastive loss for visual
728 prompt tuning and adopts learnable logit masking to rectify the output layer. MISA (Kang et al.,
729 2025) employs pretraining data to initialize the prompt parameters and simplifies the logit masking
730 into a non-parametric implementation. Despite the promise, these methods are limited by the capacity
731 of PET techniques for representation learning and the overly simplistic modeling of representation
732 space for output alignment, leading to sub-optimal GCL performance.

733 B IMPLEMENTATION DETAILS
734
735

736 We follow the previous implementations (Moon et al., 2023; Kang et al., 2025) to ensure fairness
737 of the comparison. We adopt a ViT-B/16 backbone and consider three ImageNet-21K pretrained
738 checkpoints with different levels of supervision: Sup-21K (vit-base-patch16-224) performs
739 supervised pretraining on ImageNet-21K, Sup-21/1K (Ridnik et al., 2021; Dosovitskiy et al., 2020b)
740 performs self-supervised pretraining on ImageNet-21K and supervised finetuning on ImageNet-1K,
741 while iBOT-21K (Zhou et al., 2021) performs self-supervised pretraining on ImageNet-21K. To
742 implement MePo, both $\mathcal{D}_{\text{meta}}$ and \mathcal{D}_{ref} are constructed from ImageNet-1K (Russakovsky et al., 2015).
743 In MePo Phase I, we construct $\mathcal{D}_{\text{meta}}$ by randomly sampling $|\mathcal{C}_{\text{meta}}| = 100$ classes with 400 samples
744 per class and training-validation split rate $\gamma = 0.3$. We employ a SGD optimizer of learning rate
745 $\eta_{\theta} = 0.0001$ for backbone and learning rate $\eta_{\psi} = 0.01$ for output layer, and batch size 256 for 50, 10,
746 150 meta epochs for Sup-21K, Sup-21/1K, iBOT-21K respectively. In MePo Phase II, we construct
747 \mathcal{D}_{ref} by randomly sampling $|\mathcal{C}| = 1000$ classes with $N_c = 200$ samples per class. **To ensure that**
748 **the Cholesky decomposition remains stable when Σ_{cur} is ill-conditioned, we add a small diagonal**
749 **regularizer (e.g., $\epsilon = 1e-4$) before decomposition.** During the GCL phase, we employ an Adam
750 optimizer of learning rate 0.005 and batch size 64 for 1 epoch.

751 All the experiments are conducted with one-card 3090 GPU, AMD EPYC 7402 (2.8G Hz).

752 C ADDITIONAL RESULTS
753
754
755

756
757 Table 4: Evaluation of hyperparameter α in Eq. (11) with average any-time accuracy $A_{\text{AUC}}(\uparrow)$. We
758 use MVP (Moon et al., 2023) and MISA (Kang et al., 2025) as the baseline implementation. All
759 results are averaged over five runs with different task sequences.

Setup	MVP w/ MePo					MISA w/ MePo						
	0	0.1	0.3	0.5	0.7	1.0	0	0.1	0.3	0.5	0.7	1.0
Sup-21K CIFAR-100	71.74 \pm 4.14	71.86 \pm 4.14	72.09 \pm 4.26	72.18 \pm 4.50	71.63 \pm 4.66	49.84 \pm 5.82	81.29 \pm 2.27	81.59 \pm 2.33	82.14 \pm 2.56	82.30 \pm 2.83	81.56 \pm 3.24	76.95 \pm 4.48
Sup-21K ImageNet-R	46.32 \pm 1.29	46.35 \pm 1.31	46.26 \pm 1.42	45.76 \pm 1.48	43.68 \pm 1.34	34.86 \pm 1.30	52.35 \pm 2.09	53.02 \pm 2.06	54.23 \pm 2.05	54.86 \pm 2.20	53.30 \pm 2.23	39.31 \pm 2.07
Sup-21K CUB-200	58.67 \pm 2.80	58.73 \pm 2.93	58.73 \pm 3.31	58.08 \pm 3.62	56.44 \pm 3.86	42.94 \pm 3.59	64.83 \pm 2.82	65.57 \pm 3.04	66.92 \pm 3.05	68.13 \pm 3.17	67.80 \pm 3.27	63.64 \pm 3.99
Sup-21K CIFAR-100	68.11 \pm 3.90	68.27 \pm 3.81	69.00 \pm 3.94	69.70 \pm 4.01	70.25 \pm 4.20	61.57 \pm 5.77	73.21 \pm 2.16	73.60 \pm 2.47	74.59 \pm 2.59	76.04 \pm 2.88	78.01 \pm 3.09	74.87 \pm 4.75
Sup-21K ImageNet-R	57.50 \pm 1.18	57.97 \pm 1.23	59.05 \pm 1.23	60.16 \pm 1.19	61.28 \pm 1.21	52.54 \pm 1.86	56.71 \pm 1.08	57.28 \pm 0.99	58.95 \pm 0.90	61.27 \pm 0.98	64.23 \pm 1.30	51.97 \pm 1.98
Sup-21K CUB-200	47.26 \pm 3.38	47.69 \pm 3.42	48.60 \pm 3.31	49.40 \pm 3.29	49.72 \pm 3.53	35.54 \pm 3.51	44.68 \pm 2.46	45.21 \pm 2.52	46.96 \pm 3.18	49.23 \pm 3.83	54.12 \pm 4.09	55.31 \pm 4.52
iBOT-21K CIFAR-100	66.53 \pm 4.59	66.70 \pm 4.73	66.85 \pm 4.73	66.88 \pm 4.86	66.53 \pm 5.14	60.08 \pm 7.07	70.52 \pm 2.34	70.90 \pm 2.48	72.26 \pm 2.81	73.83 \pm 3.22	75.80 \pm 3.77	66.70 \pm 6.45
iBOT-21K ImageNet-R	52.67 \pm 1.41	52.92 \pm 1.38	53.45 \pm 1.40	53.75 \pm 1.38	53.36 \pm 1.40	42.05 \pm 7.07	50.21 \pm 1.93	50.85 \pm 2.04	52.51 \pm 2.17	54.66 \pm 2.25	57.00 \pm 2.52	33.15 \pm 2.11
iBOT-21K CUB-200	40.61 \pm 3.41	40.68 \pm 3.38	40.99 \pm 3.45	40.76 \pm 3.56	39.36 \pm 3.72	25.41 \pm 2.76	39.44 \pm 2.93	40.63 \pm 3.28	42.81 \pm 3.37	45.81 \pm 3.45	49.33 \pm 3.59	39.93 \pm 3.19

767
768 Table 5: Evaluation of hyperparameter α in Eq. (11) with average last accuracy $A_{\text{Last}}(\uparrow)$. We use
769 MVP (Moon et al., 2023) and MISA (Kang et al., 2025) as the baseline implementation. All results
770 are averaged over five runs with different task sequences.

Setup	MVP w/ MePo					MISA w/ MePo						
	0	0.1	0.3	0.5	0.7	1.0	0	0.1	0.3	0.5	0.7	1.0
Sup-21K CIFAR-100	65.40 \pm 1.99	66.05 \pm 1.90	67.47 \pm 1.68	68.45 \pm 1.59	68.82 \pm 1.56	47.43 \pm 2.24	81.96 \pm 1.12	82.31 \pm 1.06	83.18 \pm 1.11	83.99 \pm 1.35	84.22 \pm 1.37	82.06 \pm 1.74
Sup-21K ImageNet-R	38.06 \pm 3.77	38.21 \pm 3.66	38.15 \pm 3.61	37.92 \pm 3.66	35.91 \pm 4.20	29.98 \pm 4.43	45.81 \pm 1.08	46.55 \pm 1.00	48.09 \pm 1.00	49.18 \pm 1.38	47.78 \pm 1.45	34.85 \pm 1.06
Sup-21K CUB-200	51.69 \pm 3.23	51.69 \pm 3.11	52.22 \pm 2.80	52.42 \pm 2.61	52.36 \pm 2.58	40.45 \pm 1.74	59.57 \pm 1.73	60.08 \pm 1.48	62.04 \pm 1.43	64.75 \pm 1.00	66.72 \pm 0.47	65.39 \pm 1.59
Sup-21K CIFAR-100	55.88 \pm 3.33	56.36 \pm 3.31	56.28 \pm 3.05	59.43 \pm 3.02	60.05 \pm 2.88	60.47 \pm 2.74	73.21 \pm 2.16	73.60 \pm 2.47	74.59 \pm 2.59	76.04 \pm 2.85	78.01 \pm 3.09	74.87 \pm 4.75
Sup-21K ImageNet-R	46.75 \pm 4.85	47.07 \pm 4.71	48.33 \pm 4.27	49.53 \pm 4.04	50.82 \pm 3.70	46.52 \pm 2.23	56.71 \pm 1.08	57.28 \pm 0.99	58.95 \pm 0.90	61.27 \pm 0.98	64.23 \pm 1.30	51.97 \pm 1.98
Sup-21K CUB-200	39.65 \pm 8.09	40.44 \pm 7.83	41.65 \pm 7.71	42.10 \pm 7.74	42.81 \pm 6.74	32.91 \pm 2.81	44.68 \pm 2.46	45.21 \pm 2.52	46.96 \pm 3.18	49.23 \pm 3.83	54.12 \pm 4.09	55.31 \pm 4.52
iBOT-21K CIFAR-100	55.44 \pm 3.75	56.22 \pm 3.52	56.67 \pm 2.85	57.19 \pm 2.63	58.26 \pm 1.81	62.68 \pm 3.11	70.47 \pm 2.45	70.78 \pm 2.37	72.08 \pm 1.21	73.55 \pm 0.58	76.02 \pm 1.18	72.50 \pm 1.95
iBOT-21K ImageNet-R	41.91 \pm 3.09	42.05 \pm 3.80	42.39 \pm 3.42	42.48 \pm 3.08	35.44 \pm 3.03	43.52 \pm 1.39	43.94 \pm 1.47	45.17 \pm 1.26	47.35 \pm 1.32	49.86 \pm 1.22	28.91 \pm 0.69	
iBOT-21K CUB-200	34.17 \pm 9.09	34.54 \pm 9.27	34.66 \pm 8.40	34.72 \pm 8.11	33.89 \pm 7.14	22.96 \pm 1.31	40.38 \pm 1.79	41.02 \pm 2.35	41.81 \pm 2.19	43.42 \pm 2.82	45.68 \pm 2.59	41.35 \pm 2.80

779
780 Table 6: GCL performance with OOD datasets NCH and GTSRB under Sup-21K.

Method	NCH / Sup-21K		GTSRB / Sup-21K	
	$A_{\text{AUC}}(\uparrow)$	$A_{\text{Last}}(\uparrow)$	$A_{\text{AUC}}(\uparrow)$	$A_{\text{Last}}(\uparrow)$
DualPrompt w/ MePo (Ours)	53.36	34.39	32.24	19.46
MISA w/ MePo (Ours)	55.01	37.96	32.04	20.67

789
790 Table 7: Performance of L2P (Wang et al., 2022b) and DualPrompt (Wang et al., 2022a) with and
791 without MePo under different continual learning settings.

Setting	Method	$A_{\text{Avg}}(\uparrow)$	$A_{\text{Last}}(\uparrow)$	Forgetting (\downarrow)
Offline CL (Sup-21K CIFAR-100)	L2P	81.71	76.35	6.50
	w/ MePo (Ours)	86.66	81.47	5.70
	DualPrompt	88.22	83.59	4.99
	w/ MePo (Ours)	89.36	84.50	4.78
Online CL (Sup-21K CIFAR-100)	L2P	76.72	69.00	8.70
	w/ MePo (Ours)	83.64	76.98	7.30
	DualPrompt	81.36	76.47	6.04
	w/ MePo (Ours)	85.28	80.11	5.89
Domain CL (Sup-21K Core50)	L2P	94.27	93.70	0.49
	w/ MePo (Ours)	95.87	95.42	0.33
	DualPrompt	96.49	96.11	0.29
	w/ MePo (Ours)	97.12	96.97	0.15
Domain CL (Sup-21K DomainNet)	L2P	45.69	37.18	8.11
	w/ MePo (Ours)	47.87	39.81	7.98
	DualPrompt	52.24	44.34	7.49
	w/ MePo (Ours)	53.52	45.36	7.43

810
 811 Table 8: Performance using different batch sizes on CIFAR-100 under Sup-21K. All results are
 812 averaged over five runs.

Batch Size	Method	$A_{AUC}(\uparrow)$	$A_{Last}(\uparrow)$	Forgetting (\downarrow)
10	L2P	70.87	72.23	11.67
	w/ MePo (Ours)	80.41	82.40	6.63
	Improvement	+9.54	+10.17	-5.04
	MISA	75.29	75.83	9.30
	w/ MePo (Ours)	82.04	82.95	7.69
	Improvement	+6.75	+7.12	-1.61
32	L2P	75.14	76.29	10.82
	w/ MePo (Ours)	82.17	83.51	7.18
	Improvement	+7.03	+7.22	-3.64
	MISA	79.19	79.28	9.68
	w/ MePo (Ours)	82.04	82.95	7.69
	Improvement	+2.85	+3.67	-1.99
64	L2P	78.12	77.73	12.41
	w/ MePo (Ours)	83.63	83.98	8.62
	Improvement	+5.51	+6.25	-3.79
	MISA	80.35	80.75	9.67
	w/ MePo (Ours)	82.30	83.99	7.66
	Improvement	+1.95	+3.24	-2.01

833
 834 Table 9: Effect of different pretraining data on downstream GCL performance using L2P and MISA.
 835

Method	Pretraining Data	Downstream GCL Data	$A_{AUC}(\uparrow)$	$A_{LAST}(\uparrow)$
L2P-based Methods				
w/o MePo	-	ImageNet-R	42.39	38.16
w/ MePo (Ours)	CIFAR-100	ImageNet-R	50.72	48.40
w/ MePo (Ours)	ImageNet-1K	ImageNet-R	58.71	55.13
w/o MePo	-	CUB200	60.95	56.31
w/ MePo (Ours)	CIFAR-100	CUB200	63.57	64.40
w/ MePo (Ours)	ImageNet-1K	CUB200	64.92	63.30
MISA-based Methods				
w/o MePo	-	ImageNet-R	51.52	45.08
w/ MePo (Ours)	CIFAR-100	ImageNet-R	54.92	49.33
w/ MePo (Ours)	ImageNet-1K	ImageNet-R	54.86	49.18
w/o MePo	-	CUB200	65.40	60.20
w/ MePo (Ours)	CIFAR-100	CUB200	68.54	65.11
w/ MePo (Ours)	ImageNet-1K	CUB200	68.13	64.75

853
 854 Table 10: Effect of varying the number of pseudo-tasks (T') under different GCL task sequence
 855 lengths (T). Results are averaged over 5 runs using MISA (Kang et al., 2025) on ImageNet-R under
 856 Sup-21K.

Method	Downstream GCL task $T = 5$		Downstream GCL task $T = 20$	
	$A_{AUC}(\uparrow)$	$A_{Last}(\uparrow)$	$A_{AUC}(\uparrow)$	$A_{Last}(\uparrow)$
Baseline (w/o MePo)	51.49 ± 2.04	45.04 ± 1.40	48.94 ± 0.62	47.88 ± 1.28
Pseudo tasks ($T' = 5$)	54.15 ± 2.37	48.60 ± 1.60	50.63 ± 0.92	51.49 ± 0.97
Pseudo tasks ($T' = 10$)	54.31 ± 2.34	48.68 ± 1.65	50.90 ± 1.00	51.62 ± 1.15
Pseudo tasks ($T' = 20$)	54.41 ± 2.27	48.74 ± 1.59	51.14 ± 0.94	51.70 ± 1.39
Pseudo tasks ($T' = 50$)	54.55 ± 2.27	48.81 ± 1.61	51.54 ± 0.92	52.10 ± 1.07

864
 865 Table 11: Runtime analysis of the meta-refinement phase. Only 50 meta-epochs are required for Sup-
 866 21K, and just 10 meta-epochs for Sup-21/1K to reach convergence. Trainable parameters is 87.16M
 867 and training time measured on single NVIDIA RTX 3090 GPUs, AMD EPYC 7402 (2.8GHz).

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917	Meta epoch	1	2	3	4	5	Average
Time (mins)	14.43	14.20	14.13	14.00	13.96	14.14	

Table 12: Comparison of data budgets between Sup-21K pretraining and MePo meta-refinement. Sup-21K pretraining on ImageNet-21K for 90 epochs processes \sim 1.3B images, while MePo meta-refinement on ImageNet-1K (400 samples per class) for 50 epochs processes only \sim 2M images (0.15% of pretraining).

Training	Image Size	Epochs	Batch Size	Total Steps	Images Processed
Sup-21K (Pretraining) (Dosovitskiy et al., 2020a)	224 \times 224	90	4096	\sim 310k	\sim 1.3B
Sup-21K (MePo Post-Refinement)	224 \times 224	50	256	\sim 12.8k	\sim 2M

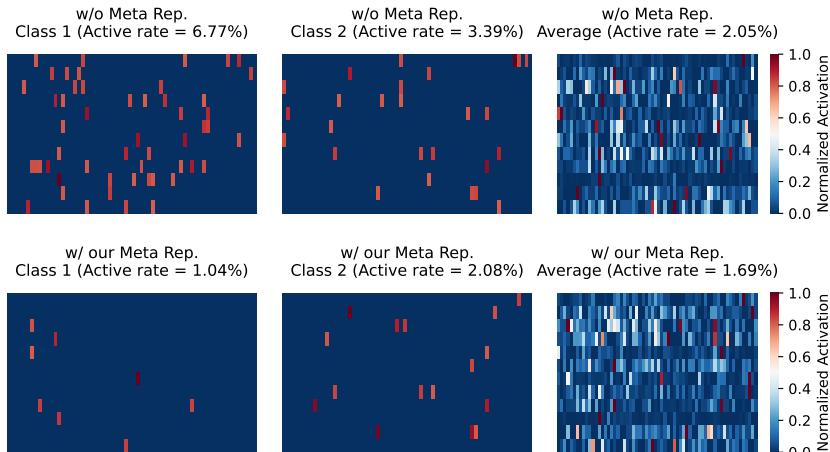


Figure 8: Visualization of feature representation with Meta Rep. We reshape the 768 length class-prototype representation vectors into 12x64, normalize and visualize them with threshold 0.8; here random class means representation for a randomly chosen class-prototype from ImageNet-R, whereas average activation is the mean representation for the all classes.

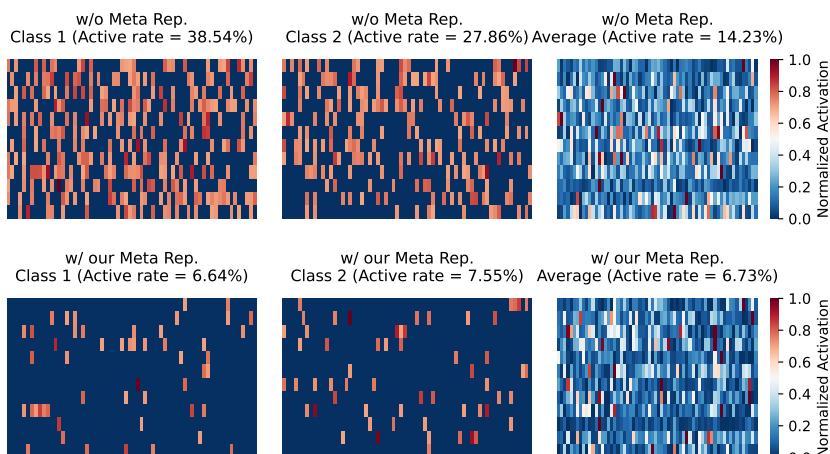


Figure 9: Visualization of feature representation with Meta Rep. We reshape the 768 length class-prototype representation vectors into 12x64, normalize and visualize them with threshold 0.7; here random class means representation for a randomly chosen class-prototype from ImageNet-R, whereas average activation is the mean representation for the all classes.

918
919
920
921
922
923

Algorithm 1 Meta Post-Refinement (MePo) for General Continual Learning (GCL)

924
925: **Input:** Pretraining dataset \mathcal{D}_{pre} , meta-learning rate η_{meta}
 926: **Hyperparameters:** Meta-epochs K , tasks per meta-epoch T' , learning rates $\eta_{\theta}, \eta_{\psi}$, weight α
 927: 3:
 928: 4: **Step 1: Meta-Learning for Representation Learning**
 929: 5: Initialize backbone $\theta^{(0)} \leftarrow$ pretrained parameters
 930: 6: **for** meta-epoch $k = 1$ to K **do**
 931: 7: ▷ *Construct pseudo task sequence*
 932: 8: Sample $\mathcal{D}_{\text{meta}}^{(k)} \subset \mathcal{D}_{\text{pre}}$ with C_{meta} classes
 933: 9: Split $\mathcal{D}_{\text{meta}}^{(k)}$ into $\{\hat{\mathcal{D}}_t^{(k)}\}_{t=1}^{T'}$ (sequential training) and $\mathcal{D}_{\text{joint}}^{(k)}$ (joint training)
 934: 10: ▷ *Inner loop: sequential training*
 935: 11: Initialize $\theta_0^{(k-1)} \leftarrow \theta^{(k-1)}$, $\psi_0 \leftarrow$ random
 936: 12: **for** task $t = 1$ to T' **do**
 937: 13: Compute \mathcal{L}_t via Eq.(2) on $\hat{\mathcal{D}}_t^{(k)}$
 938: 14: Update $\theta_t^{(k-1)} \leftarrow \theta_{t-1}^{(k-1)} - \eta_{\theta} \nabla_{\theta} \mathcal{L}_t$ ▷ Eq.(3)
 939: 15: Update $\psi_t \leftarrow \psi_{t-1} - \eta_{\psi} \nabla_{\psi} \mathcal{L}_t$
 940: 16: **end for**
 941: 17: ▷ *Outer loop: joint training*
 942: 18: Refine $\hat{\theta}_{T'}^{(k-1)}$ via Eq.(5) on $\mathcal{D}_{\text{joint}}^{(k)}$
 943: 19: ▷ *Meta-parameter accumulation*
 944: 20: Update $\theta^{(k)} \leftarrow \theta^{(k-1)} + \eta_{\text{meta}}(\hat{\theta}_{T'}^{(k-1)} - \theta^{(k-1)})$ ▷ Eq.(6)
 945: 21: **end for**
 946: 22: Obtain optimized backbone $\theta^* \leftarrow \theta^{(K)}$
 947: 23:
 948: 24: **Step 2: Meta Covariance Initialization**
 949: 25: Sample reference data $\mathcal{D}_{\text{ref}} \subset \mathcal{D}_{\text{pre}}$ with C_{ref} classes
 950: 26: Compute class prototypes $\{\mu_c\}$ via Eq.(7)
 951: 27: Calculate $\Sigma_{\text{pre}} \leftarrow \frac{1}{C_{\text{ref}}-1} \sum_c (\mu_c - \bar{\mu})(\mu_c - \bar{\mu})^\top$ ▷ Eq.(8)
 952: 28:
 953: 29: **Step 3: Feature Alignment in GCL**
 954: 30: **for** each incoming batch \mathcal{B} in GCL tasks **do**
 955: 31: ▷ *Current feature statistics*
 956: 32: Compute Σ_{cur} via Eq.(9)
 957: 33: Decompose $\Sigma_{\text{cur}} = \mathbf{L}_{\text{cur}} \mathbf{L}_{\text{cur}}^\top$, $\Sigma_{\text{pre}} = \mathbf{L}_{\text{pre}} \mathbf{L}_{\text{pre}}^\top$
 958: 34: ▷ *Feature transformation*
 959: 35: Compute $\mathbf{A} \leftarrow \mathbf{L}_{\text{cur}}^{-1} \mathbf{L}_{\text{pre}}$
 960: 36: **for** each feature $\mathbf{f}_i \in \mathcal{B}$ **do**
 961: 37: $\hat{\mathbf{f}}_i \leftarrow \mathbf{f}_i \mathbf{A}$ ▷ Eq.(10)
 962: 38: $\mathbf{f}_{\text{trans},i} \leftarrow \alpha \hat{\mathbf{f}}_i + (1 - \alpha) \mathbf{f}_i$ ▷ Eq.(11)
 963: 39: **end for**
 964: 40: ▷ *Model update*
 965: 41: Update $\Delta\theta, \psi$ via \mathcal{L}_{CE} on $\{\mathbf{f}_{\text{trans},i}\}_{i=1}^{|\mathcal{B}|}$ ▷ Eq. (12)
 966: 42: **end for**
 967: 43: **return** Adapted backbone $\theta^* + \Delta\theta$, aligned classifier ψ

968
969
970
971

972 **D THEORETICAL ANALYSIS OF META-REP**
 973

974 We provide a theoretical justification for why the Meta-Rep of MePo improves continual learning (CL)
 975 performance. Specifically, we show that the meta-learned initialization reduces gradient interference
 976 and better aligns sequential updates with joint updates, thereby mitigating catastrophic forgetting.
 977

978 **D.1 SETUP AND NOTATION**
 979

980 Let $\theta \in \mathbb{R}^d$ denote the backbone parameters of a neural network before learning a new task. Meta-Rep
 981 optimizes θ via meta-learning over pseudo-task sequences sampled from the pretraining data.
 982

983 Let a pseudo-task sequence be denoted by $\mathcal{T} = (\hat{\mathcal{D}}_{1:T'}, \mathcal{D}_{\text{joint}})$, where $\hat{\mathcal{D}}_1, \dots, \hat{\mathcal{D}}_{T'}$ form a sequential
 984 training stream, and $\mathcal{D}_{\text{joint}}$ is a held-out validation set containing all classes in the sequence.
 985

986 Each loss $L_t(\theta)$ denotes the empirical loss over task t from $\hat{\mathcal{D}}_t$, and $L_{\text{joint}}(\theta)$ is the joint loss over
 987 $\mathcal{D}_{\text{joint}}$.
 988

989 The inner-loop update of Meta-Rep at time t is:
 990

$$\theta_t = \theta_{t-1} - \eta_\theta \nabla L_t(\theta_{t-1}), \quad t = 1, \dots, T', \quad (13)$$

991 followed by a meta-validation step:
 992

$$\theta_{T'+1} = \theta_{T'} - \eta_\theta \nabla L_{\text{joint}}(\theta_{T'}), \quad (14)$$

993 where η_θ is the learning rate.
 994

995 We define the overall inner-loop operator as:
 996

$$F(\theta, \mathcal{T}) := \theta_{T'+1}. \quad (15)$$

997 Then, Meta-Rep applies a Reptile-style (Nichol & Schulman, 2018) meta-update:
 998

$$\theta' = \theta + \eta_\theta (F(\theta, \mathcal{T}) - \theta), \quad (16)$$

1001 **D.2 MAIN RESULT**
 1002

1003 We formally characterize how Meta-Rep reduces the deviation between sequential and joint updates,
 1004 which serves as a surrogate for mitigating forgetting.
 1005

1006 **Theorem 1** (Sequential Update Consistency Theorem). *Let θ^* be a stationary point of the surrogate
 1007 meta-objective:*

$$\tilde{J}(\theta) = \mathbb{E}_{\mathcal{T}} \left[\sum_{t=1}^{T'} L_t(\theta) + L_{\text{joint}}(\theta) \right], \quad (17)$$

1011 *obtained by applying the meta-update in equation 16. Assume each loss L_t and L_{joint} is twice
 1012 differentiable, with bounded gradients and Hessians, and the inner-loop step size η is sufficiently
 1013 small.*

1014 *Then for any two-task sequence $A \rightarrow B$ and some constant $C > 0$, the deviation between sequential
 1015 and joint updates satisfies:*

$$\|\theta_{\text{seq}} - \theta_{\text{joint}}\| \leq C \cdot \eta^2 \|H_B(\theta^*)\| \cdot \|\nabla L_A(\theta^*)\| + \mathcal{O}(\eta^3),$$

1018 *Moreover, if the pseudo-task distribution approximates the downstream continual learning distribution,
 1019 this bound is strictly smaller than the same quantity evaluated at a generic pretrained initialization
 1020 θ_0 :*

$$\|\theta_{\text{seq}} - \theta_{\text{joint}}\|_{\theta^*} < \|\theta_{\text{seq}} - \theta_{\text{joint}}\|_{\theta_0}.$$

1024 **D.3 PROOF OF THEOREM**
 1025

We proceed to prove Theorem 1. The proof is organized in the following steps.

1026 **Step 1: Reptile Expansion.** We apply Taylor expansion to each gradient update in the inner loop.
 1027 For any t , we have:

$$1028 \quad \nabla L_t(\theta_{t-1}) = \nabla L_t(\theta) + \nabla^2 L_t(\tilde{\theta}_t)(\theta_{t-1} - \theta), \quad (18)$$

1029 for some $\tilde{\theta}_t$ on the line between θ_{t-1} and θ . Since each $\theta_{t-1} - \theta = \mathcal{O}(\eta_\theta)$, we get:

$$1031 \quad \nabla L_t(\theta_{t-1}) = \nabla L_t(\theta) + \mathcal{O}(\eta_\theta). \quad (19)$$

1033 Substituting into the inner-loop update and unrolling over all tasks:

$$1035 \quad F(\theta, \mathcal{T}) = \theta - \eta_\theta \sum_{t=1}^{T'} \nabla L_t(\theta) - \eta_\theta \nabla L_{\text{joint}}(\theta) + \mathcal{O}(\eta_\theta^2). \quad (20)$$

1038 Taking expectation over pseudo-tasks:

$$1040 \quad \mathbb{E}_{\mathcal{T}} [F(\theta, \mathcal{T}) - \theta] = -\eta_\theta \nabla \tilde{J}(\theta) + \mathcal{O}(\eta_\theta^2). \quad (21)$$

1042 Under Robbins–Monro conditions (Robbins & Monro, 1951) on the meta step size (diminishing,
 1043 square-summable), this ensures convergence to a stationary point θ^* of $\tilde{J}(\theta)$.

1045 **Step 2: Forgetting Gap Between Sequential and Joint Updates.** For a two-task sequence $A \rightarrow B$,
 1046 define:

$$1047 \quad \theta_{\text{joint}} = \theta - \eta (\nabla L_A(\theta) + \nabla L_B(\theta)), \quad (22)$$

$$1049 \quad \theta_{\text{seq}} = \theta - \eta \nabla L_A(\theta) - \eta \nabla L_B(\theta - \eta \nabla L_A(\theta)). \quad (23)$$

1050 Taylor expanding $\nabla L_B(\cdot)$ around θ :

$$1052 \quad \nabla L_B(\theta - \eta \nabla L_A(\theta)) = \nabla L_B(\theta) - \eta H_B(\theta) \nabla L_A(\theta) + \mathcal{O}(\eta^2). \quad (24)$$

1054 Substituting into equation 23, we obtain:

$$1056 \quad \theta_{\text{seq}} - \theta_{\text{joint}} = \eta^2 H_B(\theta) \nabla L_A(\theta) + \mathcal{O}(\eta^3). \quad (25)$$

1058 Therefore, the forgetting error satisfies:

$$1059 \quad \|\theta_{\text{seq}} - \theta_{\text{joint}}\| \leq C \cdot \eta^2 \|H_B(\theta)\| \cdot \|\nabla L_A(\theta)\| + \mathcal{O}(\eta^3). \quad (26)$$

1061 **Step 3: Effect of Minimizing \tilde{J} .** Both $\|\nabla L_A(\theta)\|$ and $\|H_B(\theta)\|$ appear in the meta-objective $\tilde{J}(\theta)$.
 1062 Hence, minimizing \tilde{J} at θ^* reduces both terms:

$$1064 \quad \|H_B(\theta^*) \nabla L_A(\theta^*)\| \leq \|H_B(\theta^*)\| \cdot \|\nabla L_A(\theta^*)\| \downarrow. \quad (27)$$

1066 Combining with equation 26 shows that:

$$1068 \quad \|\theta_{\text{seq}} - \theta_{\text{joint}}\| \text{ is minimized at } \theta^*,$$

1069 concluding the proof.

1071 D.4 INTERPRETATION

1073 The Meta-Rep update approximates first-order gradient descent on a surrogate meta-objective $\tilde{J}(\theta)$,
 1074 which integrates both sequential learning loss and joint loss over pseudo-tasks. This objective
 1075 implicitly encourages smoother loss landscapes (via small Hessians) and more stable gradients. As a
 1076 result, the update discrepancy between sequential and joint training is reduced, which improves model
 1077 stability and mitigates catastrophic forgetting. These theoretical insights align with our empirical
 1078 observations in Sec. 4.

1079