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ABSTRACT

Multi-goal long-horizon problems are prevalent in real-world applications. The
additional goal space introduced by multi-goal problems intensifies the spatial
complexity of exploration; meanwhile, the long interaction sequences in long-
horizon problems exacerbate the temporal complexity of exploration. Address-
ing the great exploration challenge posed by multi-goal long-horizon problems
depends not only on the design of algorithms but also on the design of environ-
ments and the availability of demonstrations to assist in training. To facilitate the
above research, we propose a multi-goal long-horizon Reinforcement Learning
(RL) environment based on realistic fixed-wing UAV’s velocity vector control,
named VVC-Gym, and generate multiple demonstration sets of various quality.
Through experimentation, we analyze the impact of different environment designs
on training, assess the quantity and quality of demonstrations and their influence
on training, and assess the effectiveness of various RL algorithms, providing base-
lines on VVC-Gym and its corresponding demonstrations. The results suggest
that VVC-Gym is suitable for studying: (1) the influence of environment designs
on addressing multi-goal long-horizon problems with RL. (2) the assistance that
demonstrations can provide in overcoming the exploration challenges of multi-
goal long-horizon problems. (3) the RL algorithm designs with the least possible
impact from environment designs on the efficiency and effectiveness of training.

1 INTRODUCTION

Many real-world applications fall into the category of multi-goal long-horizon problems. For in-
stance, a UAV must be capable of achieving not only the left-side goal but also the right-side goal
(multi-goal); when completing an ascending turn, it is necessary to perform a horizontal turn first,
then accelerate in a straight line, and finally climb in altitude (long-horizon). Addressing multi-goal
long-horizon problems with Reinforcement Learning (RL) (Sutton & Barto, 2018) encounters a sig-
nificant exploration challenge: (1) the multi-goal nature requires the policy to explore not only the
state and action spaces but also the additional goal space during training, which intensifies the spatial
complexity of exploration; (2) due to the learning signal decreasing exponentially with the horizon
(Osband et al., 2016), the long-horizon nature exacerbates the temporal complexity of exploration.

Existing work predominantly focuses on the design of algorithms, neglecting the importance of en-
vironment design and the potential benefits that demonstrations can provide during training. Specif-
ically, (1) insufficient environment designs hinder training efficiency and effectiveness, such as the
absence of effective termination conditions, which can lead to the collection of numerous ineffec-
tive samples after severe states occur; (2) demonstrations can assist in overcoming the exploration
challenge from multiple perspectives, for instance, by constraining the policy’s exploration space
and providing a behavioral prior for the policy. Moreover, within the Goal-Conditioned RL (GCRL)
community (Liu et al., 2022), existing multi-goal environments (Plappert et al., 2018; Ghosh et al.,
2020; Liu et al., 2022; Hu et al., 2022) often feature tasks that are relatively simple with short control
sequences, while also commonly encountering the aforementioned two issues. Consequently, the
GCRL community urgently requires a multi-goal long-horizon environment that allows researchers
to (1) evaluate GCRL on more realistic and complex tasks, (2) investigate the impact of environ-
ment designs on GCRL training, (3) investigate how demonstrations can be utilized to overcome the
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Figure 1: The framework of VVC-Gym.

exploration challenge, and (4) when engaged in algorithm design, suffer the least possible impact
from environment design on the efficiency and effectiveness of training.

To facilitate the community’s research on multi-goal long-horizon problems, we: (1) provide the
GCRL community with the first RL environment on realistic fixed-wing UAV’s velocity vector con-
trol (VVC) task, VVC-Gym. VVC is a typical multi-goal long-horizon problem; on one hand, VVC
requires the UAV to achieve arbitrary desired velocity vectors, which is a typical multi-goal problem.
On the other hand, fixed-wing UAVs are high-speed vehicles, and precise control at high velocities
necessitates frequent control outputs (Wang & Wang, 2020), resulting in the long-horizon problem.
(2) conduct ablation studies on the environment design of VVC-Gym, showcasing how VVC-Gym
can facilitate researchers in studying the influence of environment design on GCRL training. (3)
Equip VVC-Gym with multi-quality demonstration sets, evaluate them from various perspectives,
and show their effectiveness in aiding GCRL in overcoming the exploration challenge. (4) Provide
baselines on VVC-Gym and corresponding demonstrations to illustrate their broad applicability in
studying RL, including GCRL, demonstration-based RL (Ramı́rez et al., 2022).

2 RELATED WORK

Multi-goal environments. Existing GCRL research often conducts experiments on open-source
multi-goal environments, such as: (1) the robotic arm control task based on Mujoco (Nair et al.,
2018; Plappert et al., 2018; Gupta et al., 2020; Foundation, 2022), DMC (Tunyasuvunakool et al.,
2020), Panda-Gym (Gallouédec et al., 2021). (2) maze-like tasks such as PointMaze (Trott et al.,
2019) and AntMaze (Nachum et al., 2018). (3) Atari games (Warde-Farley et al., 2018), etc. Most of
these environments either utilize non-realistic tasks with short horizons or employ simplistic envi-
ronment designs, such as sparse rewards, without considering mechanisms for terminating episodes
in the event of severe states, resulting in low exploration efficiency at the environment level. Addi-
tionally, some lack accompanying demonstrations, which precludes the support for demonstration-
based RL. In contrast, we introduce VVC-Gym to address these issues. VVC-Gym features various
environment designs and includes accompanying demonstration sets. It facilitates studying the influ-
ence of environment designs on GCRL training and demonstrations’ aids in overcoming exploration
challenges. Additionally, the default environment designs of VVC-Gym enable effective GCRL
algorithm evaluation unaffected by environmental designs.

RL for multi-goal problems. Hindsight experience replay (HER) (Andrychowicz et al., 2017) is
a core method employed by existing GCRL algorithms (GCRL algorithm background is provided
in Appendix E) to address the multi-goal challenge. HER enhances sample efficiency by replacing
the desired goals of failed trajectories with the achieved states to yield positive rewards. (Pitis et al.,
2020) summarizes a general GCRL framework for solving multi-goal problems using HER-based
RL. In this framework, most research focuses on how to sample behavioral goals to further improve
sampling efficiency, with the central idea being to avoid sampling training data on goals that the
current policy has no capability of achieving (also known as self-curriculum methods). For instance,
RIG (Nair et al., 2018) samples goals directly from the distribution of achieved goals, DISCERN
(Warde-Farley et al., 2018) samples uniformly on the support set of the distribution of achieved
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goals, and MEGA (Pitis et al., 2020) uses inverse probability weighting sampling (Jacq et al., 2023)
on the distribution of achieved goals to samples goals that the current policy can achieve but not
well. These studies focus on the algorithmic perspective, without considering the potential impact
of environment design on training efficiency.

RL for long-horizon problems. Existing work addresses the long-horizon challenges through
three approaches. The first approach is Imitation Learning (IL) (Zheng et al., 2022), where poli-
cies learned from demonstrations serve as a behavioral prior to bias the exploration of RL (Baker
et al., 2022; Gong et al., 2024). This method implicitly constrains the exploration space, thereby
significantly enhancing exploration efficiency (Ramı́rez et al., 2022). The second approach involves
designing efficient exploration strategies, with a focus on the behavioral goal selection strategy (re-
fer to the above RL for multi-goal problems). The third approach is to design subgoal generation
strategies, which are centered around the idea of decomposing long-horizon tasks into smaller, more
manageable subtasks (Nasiriany et al., 2019). While the aforementioned research concentrates on al-
gorithms designs to tackle the long-horizon challenge, our work is dedicated to providing the GCRL
community with a novel and realistic multi-goal long-horizon RL environment. We offer baselines
for the three aforementioned methods on VVC-Gym, demonstrating its suitability as a testbed for
researching multi-goal long-horizon problems.

3 VVC-GYM

The framework of VVC-Gym is depicted in Fig. 1. VVC-Gym comprises two main modules: the
Simulator and the Task. The Simulator is responsible for UAV-related simulations, while the Task
encapsulates the velocity vector control task based on the Gymnasium. Additionally, we equip
VVC-Gym with multi-quality demonstrations and provide baselines on VVC-Gym. The detailed
simulation process is described in Appendix A, and the baselines are presented in Section 4.3. In
this section, we provide a detailed introduction to the Task and demonstrations.

3.1 PROBLEM FORMULATION

During the process, roll angle ϕ, pitch angle θ, yaw angle ψ, flight path elevator angle µ, flight path
azimuth angle χ, true airspeed v, altitude h, roll rate p (observation space) are observable. The agent
is tasked with manipulating the UAV’s velocity vector (v, µ, χ) to match a desired velocity vector
(vg, µg, χg) (goal space), by controlling the deflections of the aileron actuator δa, elevator actuator
δe, rudder actuator δr, and power level actuator δpla (action space).

Two control modes are provided: The first is the guidance law mode, where the controller outputs
intermediate control commands: roll rate command pc, overload command nzc, and the position of
the power level actuator δpla. These three intermediate commands are then transformed into final
control commands δa, δe, δr, δpla through a control law model that smooths the output, which is
detailed in Appendix B. The smoothing action of the control law model serves a purpose similar to
the temporal abstraction provided by frame-skipping (Kalyanakrishnan et al., 2021), alleviating the
temporal complexity of exploration. The second mode is the end-to-end mode, where the controller
directly outputs δa, δe, δr, δpla. This mode exhibits significant oscillation in actions during training,
and combined with the long-horizon nature of the VVC task, the training suffers greatly from the
temporal complexity of exploration. In Appendix I, we provide experimental analysis of the distinct
impacts of these two training modes on RL training.

3.2 TRANSITION

The VVC-Gym’s Transition employs a modular design principle, comprising the Dynamics sub-
module and the Termination Condition sub-module. The Dynamics sub-module is responsible for
communicating with the Simulator, sending actions, and receiving the new state of the UAV. The
Simulator performs the core computations of the aerodynamic equations detailed in Appendix A.
The Termination Condition sub-module is tasked with terminating an episode based on certain con-
ditions, which are user-defined and can be used to study how to avoid sampling ineffective samples,
thereby enhancing exploration efficiency. To facilitate research, we provide 3 categories, totaling 7
default termination conditions:
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The first category consists of termination conditions for determining whether the UAV has achieved
its desired goals:

(1) Reach Target Termination (RT): if error of v⃗ keeps in the error band for at least TR steps.

The second category consists of termination conditions for truncating excessively long trajectories
from both temporal and spatial dimensions:

(2) Timeout termination (T): if the goal is not reached within the step limit Tmax.
(3) Crash Termination (C): if the altitude of UAV is less than the safe altitude h0.

The third category consists of termination conditions for truncating unreasonable or invalid trajec-
tories:

(4) Continuously Move Away Termination (CMA): if the velocity vector moves away from
the desired velocity vector continuously for TM steps.

(5) Continuously Roll Termination (CR): if the UAV rolls ϕmax continuously.
(6) Extreme State Termination (ES): if the true airspeed v reaches the limit vmax or the roll

rate p reaches the limit pmax.
(7) Negative Overload and Big Roll Angle Termination (NOBR): if the overload component

along the OZ axis of the Body Coordinate System nz is negative and the roll angle ϕ is
bigger than a limit ϕN for more than TN steps.

We believe that for multi-goal long-horizon problems, termination conditions can be designed by ref-
erencing the above three categories, which respectively represent (1) the conditions for goal achieve-
ment, (2) the maximum limit for exploration, and (3) the truncation of unreasonable or invalid tra-
jectories based on the characteristics of the task itself. The 7 termination conditions proposed for
our fixed-wing UAV control scenario are all relatively simple. Although they are straightforward,
our experiments in Section 4 show that they can significantly enhance exploration efficiency.

3.3 REWARD FUNCTION

Addressing multi-goal long-horizon problems’ exploration challenge requires informative rewards,
which can remarkably enhance training efficiency(Sutton & Barto, 2018; Eckstein & Schiffmann,
2020). Existing multi-goal long-horizon environments typically employ either sparse rewards or
simplistic distance-based rewards, such as rg(st) = −∥ζ(st), g∥, where ζ maps a state to its
achieved goal and ∥·∥ calculates the difference between two goals (Liu et al., 2022). Such simplistic
reward functions are not conducive to investigation into the impact of reward design on training. To
this end, we propose a general distance-based goal-conditioned reward structure:

rg,t =


0, if triggers RT
rpenalty, if triggers any of CMA, CR, C, ES, or NOBR
−(∥ζ(st)−g∥

σ )b, else
(1)

where rpenalty is a negative number, ∥.∥ calculates the difference in two velocity vectors, σ is a
normalization factor for velocity vector difference such that ∥ζ(st)−g∥

σ ∈ [0, 1], b is a scaling factor
that controls change rate of the reward function over different error intervals. This reward function
gives the agent a negative reward between [−1, 0] at each step if the agent does not trigger any
termination condition. The closer the current velocity vector aligns with the desired velocity vector,
the closer the reward gets to 0. This negative reward spurs the agent to achieve the desired velocity
vector promptly. The differences from previous rewards (Bøhn et al., 2019; Koch et al., 2019b;a)
are highlighted in two aspects:

(1) Penalty rpenalty is incorporated into the reward to work in synergy with the termination con-
ditions, thereby enhancing exploration efficiency. It penalizes the agent for activating non-RT ter-
minations. Crucially, rpenalty must be much less than the minimum single-step reward to prevent
premature episode terminations. This ensures the agent doesn’t intentionally trigger termination to
avoid low cumulative reward due to negative rewards in each step (Eckstein & Schiffmann, 2020).
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We propose two approaches to set rpenalty: The large negative constant method, which sets
rpenalty much lower than the average reward from triggering termination T, to discourage premature
episode terminations via other conditions. The pessimistic estimation method, which sets rpenalty
based on the remaining steps until the maximum Tmax. If the agent triggers a termination at step Tτ
and receives the worst reward of −1 per step, rpenalty is given by rpenalty = − 1−γTmax−Tτ

1−γ . We
analyze the effects of these methods on learning in Section 4.4.2.

� =− �0.5

� =− �2 Large error

Small error

change slowly

change rapidly

change slowly

change rapidly

Figure 2: reward b

(2) Scaling factor b is incorporated into the reward to adjust the
change rate of rewards in different learning stages. As shown in
Fig. 2, with b > 1, the reward reacts quickly to large errors but slowly
to small ones, speeding up goal approach from afar but hindering fine
adjustments near the goal. Conversely, b < 1 favors accuracy over
speed. The choice of b balances the speed of goal achievement with
its accuracy. The effect of b on learning is analyzed in Section 4.4.2.

3.4 DEMONSTRATIONS

Demonstrations facilitate the utilization of demonstration-based methods to enhance the learning
efficiency of RL, enabling RL to tackle exploration-challenging tasks (Ramı́rez et al., 2022). When
collecting demonstrations, it is significantly less labor-intensive for human experts to design a sim-
ple controller than to collect directly. However, this approach presents the challenge of low demon-
stration quality (Brown et al., 2020; Sasaki & Yamashina, 2020; Xu et al., 2022) from the simple
controller designs. Nevertheless, demonstrations generated by human-designed simple controllers
still hold significant value in enhancing the efficiency of RL training (Gong et al., 2024). There-
fore, based on a simple human-designed PID controller (Visioli, 2006), detailed in Appendix C, we
generate multi-quality demonstrations through the following three steps:

Generating demonstrations with the PID controller. We first discretize the desired goal space,
detailed in Appendix D, to obtain a desired goal set. We then use the PID controller to sample within
this goal set, recording trajectories that successfully trigger the RT condition as D0

E .

Augmenting demonstrations based on symmetry. Demonstration DE is augmented by leveraging
the symmetry in the flight path azimuth angle, as detailed in Appendix D. The augmented demon-
stration set is denoted as DE .

Generating more and high-quality demonstrations. Iterative Regularized Policy Optimization
(IRPO) (Gong et al., 2024) is employed to iteratively optimize the policy and generate demon-
strations Di

E , i ∈ [1, 2, . . . , ND], with increasingly improved quantity and quality. These demon-
strations are then further augmented with the method detailed in the second step, resulting in
Di

E , i ∈ [1, 2, . . . , ND].

In Section 4.2, we provide a detailed analysis of the differences between these demonstration sets.

4 EXPERIMENTS

In this section, we: (1) compare the impact of using versus not using the environment designs
introduced in Section 3 on GCRL training. (2) present analysis on demonstration quantity and
quality. (3) provide baselines for GCRL and demonstration-based RL, showcasing the extensive
applicability of VVC-Gym and demonstrations in GCRL research. (4) conduct ablation studies to
assess the impact of various environment designs on GCRL training.

In the experiments, we employ two versions of the velocity vector control task: the normal ver-
sion and the hard version, which are detailed in Appendix F. In the experiments, unless otherwise
specified, the normal version are used, with the hard version only used when specifically indicated.

4.1 MAIN RESULTS

To demonstrate the benefits of the termination conditions and informative reward function in ad-
dressing multi-goal long-horizon problems, we evaluate the impact of the environment designs
proposed in Section 3 on GCRL training by training policies with SAC (Haarnoja et al., 2018) +
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Figure 3: Comparison between policies trained by SAC+HER and
PPO on using versus not using the environment designs introduced
in Section 3. ”w/ env designs” refers to using all 7 termination
conditions and reward Eq. 1, while ”w/o env designs” refers to
only using RT and T and reward rg(st) = −∥ζ(st), g∥. Results
come from experiments over 5 random seeds.
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Figure 4: GCRL with and with-
out pre-training from demonstra-
tions. Results come from PPO
and D0

E trained on the hard ver-
sion of VVC-Gym over 5 ran-
dom seeds.

HER (Andrychowicz et al., 2017) and PPO (Schulman et al., 2017) (with a goal-conditioned policy
(Schaul et al., 2015)) on VVC-Gym. The experimental results are displayed in Fig. 3. The results
indicate that, irrespective of the specific algorithm employed, policies trained with our environment
designs surpass those trained without these designs, when an equivalent training budget is allocated.
This demonstrates that the termination conditions and reward function tailored for VVC-Gym effec-
tively facilitate more efficient training for GCRL algorithms. We provide a detailed analysis of the
reasons why the termination conditions and reward function contribute to the training in Section 4.4.

To illustrate the benefits of demonstrations for GCRL training, we examine the effect of pre-training
with demonstrations on the subsequent GCRL training. The results are presented in Fig. 4. It is
evident that when an algorithm attempts to train a policy directly without pre-training, it struggles
to learn any skills due to the task’s intrinsic exploration complexity. In contrast, after pre-training
the policy with Goal-Conditioned Behavioral Cloning (GCBC) (Ding et al., 2019), the algorithm
is capable of further improving policy performance through subsequent GCRL training. This high-
lights the importance of demonstrations in facilitating more efficient GCRL training. An extensive
analysis of demonstration quantity and quality is provided in Section 4.2, and the performance of
various algorithms on different demonstration sets is detailed in Section 4.3.

4.2 ANALYSIS OF DEMONSTRATION QUANTITY AND QUALITY

Demonstrations are collected with methods detailed in Section 3.4. IRPO is used to collect ND = 3
demonstration sets. We analyze the statistical information of the demonstration sets, and the results
are presented in Table 1. In terms of quantity, as the index i increases, Di

E covers an increasing
number of goals, resulting in an increase in total transitions. In terms of quality, there is no signif-
icant difference in the goal achieving accuracy. In addition, as discussed in Appendix M, we also
consider the state and action smoothness, which also do not exhibit significant differences across dif-
ferent Di

E . However, the average length of the trajectories decreases, indicating that as i increases,
the trajectories contained within Di

E are able to achieve goals more quickly without compromising
goal achieving accuracy and state and action smoothness. In summary, as i increases, the trajectory
quantity and quality of Di

E improves. The variations among these 8 demonstration sets enable re-
searchers to investigate the influence of demonstration quantity and quality on demonstration-based
RL.

4.3 GCRL AND DEMONSTRATION-BASED RL BASELINES

In this section, we show the potential of VVC-Gym in studying RL by establishing baselines for:
(1) GCRL. (2) demonstration-based RL, including IL and RL from demonstrations (RLfD) (Ramı́rez
et al., 2022). Additionally, the reward function in VVC-Gym can be configured as Non-Markovian
Reward (NMR) (Abel et al., 2021). We discuss NMR in Appendix H and provide relevant baselines.

Investigating GCRL. To demonstrate the suitability of VVC-Gym for studying GCRL, we conduct
experiments on VVC-Gym as follows:
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Table 1: Trajectory Number, Average Length of Trajectory, Total Transition Number, and Goal
Achieving Accuracy of Demonstrations

Demonstration Number of
trajectories

Goal space
coverage (%)

Average length
of trajectories

Number of
transitions

Accuracy
errorv errorµ errorχ

D0
E 10184 20.08 282.01±149.98 2872051 6.56±3.25 0.36±0.35 0.53±0.45

D0
E 10264 20.24 281.83±149.48 2892731 6.56±3.25 0.36±0.36 0.53±0.45

D1
E 24924 49.15 124.64±53.07 3106516 4.12±3.45 0.59±0.32 0.57±0.41

D1
E 27021 53.28 119.64±47.55 3232896 4.47±3.49 0.58±0.32 0.60±0.44

D2
E 33114 65.29 117.65±46.24 3895791 4.83±3.45 0.57±0.33 0.66±0.54

D2
E 34952 68.92 115.76±45.65 4045887 5.16±3.47 0.56±0.33 0.68±0.60

D3 38654 76.22 116.59±46.81 4506827 5.24±3.41 0.60±0.34 0.71±0.69
D3

E 39835 78.55 116.56±47.62 4643048 5.29±3.38 0.60±0.35 0.74±0.75

Table 2: Performance of GCRL algorithms on VVC-Gym.
Results (% success rates over 5 random seeds) come from
the hard version of VVC-Gym.

(a) GCRL algorithms

RL type Algorithm Success rate

Off-policy SAC 1.08±0.48
HER 8.32±1.86

On-policy PPO 0.04±0.03
GCBC + PPO 38.31±1.62

(b) Curriculum methods

Curriculum Success rate

None 38.31±1.62
RIG 49.03±1.54

DISCERN 49.36±1.91
MEGA 48.62±2.35

Table 3: Performance of pre-train &
fine-tune algorithms on the hard ver-
sion of VVC-Gym (% success rates
over 5 random seeds).

Demos GCBC GCBC + PPO

D0
E 17.08±0.57 38.31±1.62

D1
E 36.54±1.97 53.83±0.80

D2
E 41.79±0.44 68.47±1.20

D3
E 42.77±1.35 71.68±2.86

(1) We train the off-policy GCRL algorithm SAC and HER, the on-policy GCRL algorithm PPO
and GCBC+PPO, with the corresponding results presented in Table 2a. It is noted that, firstly,
while employing a goal-conditioned policy or a goal-conditioned value function directly can adapt
standard RL algorithms (SAC and PPO) to address multi-goal problems, the performance is poor.
However, the integration of techniques specifically designed to tackle exploration challenges, such
as HER and GCBC-pretraining, leads to a significant improvement in policy performance. Secondly,
both HER and GCBC+PPO show potential for increased success rates, suggesting that VVC-Gym
poses a challenging task that is well-suited for studying multi-goal long-horizon problems.

(2) We train self-curriculum methods including RIG (Nair et al., 2018), DISCERN (Warde-Farley
et al., 2018), and MEGA (Pitis et al., 2020), with the results presented in Table 2b. It is evident
that different self-curriculum methods can enhance learning effectiveness, although the differences
among these three methods are not pronounced, suggesting that VVC-Gym is suitable for studying
self-curriculum in GCRL. It has been observed that while the implementation of curriculum methods
can significantly enhance the policy’s success rate, the rate remains relatively low for the VVC task.
This is primarily attributed to the inherent challenges associated with the VVC task, which we have
thoroughly discussed in Appendix J.

Figure 5: A long-horizon
ascending turn task finished
by a GCRL policy with pre-
defined sub-goals.

(3) We utilize the policy trained by GCBC+PPO+MEGA to complete
a long-horizon ascending turn task, as shown in Fig. 5. The optimal
solution to this task involves initially performing a horizontal turn,
followed by a straight-line acceleration, and finally ascending in alti-
tude. We sequentially assign these three sub-goals to the aforemen-
tioned trained policy, and it can be observed that the policy is able
to complete the task effectively. This demonstrates that VVC-Gym
supports the modification of the goal for the current episode as nec-
essary (Bøhn et al., 2023). From the inverse perspective, if presented
with a complex long-horizon task, VVC-Gym can facilitate research
on sub-goal generation methods.

Investigating demonstration-based RL. Demonstration-based RL
can help overcome the exploration challenge (Ramı́rez et al., 2022;
Gong et al., 2024). To showcase the suitability of VVC-Gym for studying demonstration-based RL,
we conduct experiments on VVC-Gym with the GCBC and RLfD algorithm GCBC+PPO (Vinyals

7
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Figure 6: The left two figures: Comparison between training process with and without termination
conditions. The right two figures: Analysis of training process when employing the 7 termination
conditions. Results come from experiments over 5 random seeds.

et al., 2019; Baker et al., 2022), with the results presented in Table 3. It is evident that, firstly,
the performance of GCBC trained on the relatively low-quality and low-quantity D0

E far exceeds
that of the non-demonstration-based RL algorithms such as SAC, SAC+HER, and PPO as shown
in Table 2a. Secondly, both GCBC and GCBC+PPO exhibit improved policy performance as the
quantity and quality of the demonstrations increase. This suggests that VVC-Gym and the accom-
panying demonstrations are well-suited for studying demonstration-based RL, including the inves-
tigation of the impact of demonstration quantity and quality on training, and the development of
high-performing policies even with imperfect demonstrations.

4.4 ABLATION STUDIES

In this section, we conduct ablation studies on the termination conditions and the reward function,
examining how their settings affect training. In the experiments, all configurations of the environ-
ment and algorithm, except for those being studied in the ablation study, are listed in Appendix F in
G.

4.4.1 ABLATION ON TERMINATION CONDITIONS

To demonstrate the role of each termination condition during RL training, we conduct ablation
studies on termination conditions by training policies using PPO, with experimental details listed in
Appendix K. Fig. 6 shows the corresponding results. Fig. 6a and 6b illustrate the trends in cumulative
reward and success rate with and without the use of termination conditions. Without them, the
policy experiences a rapid rise in cumulative reward, which then plateaus at a certain level, while
the success rate remains near zero throughout the training process. The rapid increase in cumulative
reward is primarily due to the fact that the reward for triggering T is higher than that for other non-RT
termination conditions. Conversely, with the use of termination conditions, the policy’s cumulative
reward can be consistently enhanced, incrementally raising the success rate.

Fig. 6c and 6d illustrate why the use of termination conditions results in better policies. Fig. 6c
shows how the frequency of termination conditions changes over training, while Fig. 6d shows the
average length of episodes when termination conditions are triggered. It is evident that employing
termination conditions can lead the training process to exhibit several distinct stages, each with
unique characteristics, as outlined in Appendix K. The training stages indicate two key advantages
of using termination conditions: First, they enable early termination of unreasonable episodes at
various stages, avoiding the collection of meaningless samples after the occurrence of severe states
(as shown by Fig. 6d). This results in more episodes sampled within the same computational budget,
thus enhancing training efficiency. Second, the training process features several smooth transitions,
which aid in the gradual mastery of goal achievement (as shown by Fig. 6c). This incremental
learning process eases policy learning, allowing capabilities to evolve progressively.

4.4.2 ABLATION ON REWARD FUNCTIONS

In this section, we conduct ablation studies on the settings of rpenalty, b to analyze the impact of
different settings on training. The specific experimental settings are detailed in Appendix L.
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Ablation study on the setting of rpenalty . In our experiments, we set the penalty reward rpenalty
with a large negative constant and a pessimistic estimation, with the results shown in Fig. 7. Fig. 7a
illustrates the trend in the proportion of termination conditions triggered during training when us-
ing the large negative constant. It is obvious that the agent prefers timeout terminations over other
types, indicating a distinct intermediate learning phase where it shifts from frequently triggering
non-timeout terminations to timeout termination. Fig. 7b shows the trend in the error between
the end-of-episode state and the goal during training. It is observed that the policy intentionally
increases the error, or moves away from the goal, to trigger timeout termination and thus avoid
the large penalty associated with triggering C, CR, NOBR, ES, and CMA. Furthermore, in Ap-
pendix L.2, we provide an analysis of cumulative rewards and success rates, which further corrob-
orates the aforementioned analysis. In summary, employing the large negative constant method in-
troduces an intermediate learning stage where the policy adopts an opportunistic and easier-to-learn
manner to trigger timeout terminations by moving away from the goal. This intermediate phase is
counterproductive to the agent’s goal achievement learning process.

Ablation study on the setting of b. To analyze the impact of the scaling factor b on policy training,
we conduct training with different b and show the corresponding results in Fig. 8. Fig. 8a and 8b
show the success rate and cumulative reward during training, respectively. It can be observed that,
except for b = 0.5, policies trained with other b barely possess the capability to achieve goals.
However, the larger the value of b, the higher the cumulative reward, indicating that with a larger b,
the policy tends to have a higher average reward per step. This suggests that with a larger b, although
the policy may not meet the precision requirements for triggering RT, it can quickly move closer to
the goal from a greater distance. However, the low success rate of larger b indicates that it fails in
helping the policy to continuously approach the goal. We provide a detailed analysis of the impact
of b on velocity direction in the appendix L.3. In summary, the selection of b should be carefully
considered based on the task requirements, trading off between the speed and accuracy of achieving
goals.

In summary, through ablation studies, we demonstrate that both termination conditions and reward
structure have a significant impact on GCRL training, affecting both the training process and the final
training outcomes. The default termination conditions and general reward structure of VVC-Gym
facilitate researchers in exploring the effects of various environment designs on GCRL training.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we introduce VVC-Gym, a fixed-wing UAV environment tailored for researching
multi-goal long-horizon problems, accompanied by multi-quality demonstration sets. We offer a
comprehensive description of the VVC-Gym design and the methodology for generating demon-
strations. Additionally, we provide several baselines for Goal-Conditioned Reinforcement Learning
(GCRL) and demonstration-based Reinforcement Learning (RL) on VVC-Gym and the accompa-
nying demonstrations. Finally, we conduct ablation studies on environment designs, illustrating that
VVC-Gym is well-suited for investigating the impact of environment designs on GCRL training.

Despite the contributions of our work, there are several limitations and directions for extension that
should be noted in future research: (1) construct tasks with longer control sequences, including
BFMs such as Slow Roll and Knife Edge, to facilitate GCRL researchers in utilizing VVC-Gym
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as a challenging long-horizon task environment for their studies. (2) Establish baselines for auto-
matic sub-goal generation methods. (3) Explore methods for collecting low-cost demonstrations for
velocity vector control tasks from human play data.
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Appendix
A EQUATIONS OF MOTION

Figure 9: Body coordinate system of
fixed-wing aircraft (from Fig.3.9 of
Allerton (2009)).

The Equations of Motion (EoM) of a Fixed-Wing air-
craft is comprised of translational and rotational nonlin-
ear equations of a 6-Degrees-of-Freedom (6-DoF) system
about the 3 Body Coordinate System (BCS) axes. This
generates a 12-dimensional fully observable state space,
positions and their rates Clarke & Hwang (2020): the ve-
locity component along the OX axis of the BCS u, the
velocity component along the OY axis of the BCS v, the
velocity component along the OZ axis of the BCS w, the
roll angle ϕ, the pitch angle θ, the yaw angle ψ, the roll
rate p, the pitch rate q, the yaw rate r, the coordinate of
the x-axis in the Geodetic Coordinate System (GCS) xE ,
the coordinate of the y-axis in the GCS yE , and the coor-
dinate of the z-axis in the GCS zE .

du

dt
=
Tx −D cosα cosβ − Y cosα sinβ + L sinα−mg sin θ

m
+ rv − qw (2)

dv

dt
=
Ty −D sinβ + Y cosβ +mg sinϕ cos θ

m
+ pw − ru (3)

dw

dt
=
Tz −D sinα cosβ − Y sinα sinβ − L cosα+mg cosϕ cos θ

m
+ qu− pv (4)

dϕ

dt
= p+ tan θ (q sinϕ+ r cosϕ) (5)

dθ

dt
= q cosϕ− r sinϕ (6)

dψ

dt
=

1

cos θ
(q sinϕ+ r cosϕ) (7)

dp

dt
= (c1r + c2p) q + c3Mx + c4Mz (8)

dq

dt
= c5pr − c6

(
p2 − r2

)
+ c7My (9)

dr

dt
= (c8p− c2r) q + c4Mx + c9Mz (10)

where T is the thrust force, D is the drag force, Y is the side force, L is the lift force, M is the
moment (T,D, Y, L,M are calculated by an aerodynamic model with open-source aircraft model
Simulator (2022). Please refer to the Fig.1 of Wang & Wang (2020) for the detailed calculation
process.), m is the mass of the aircraft, g is the gravitational acceleration, c1 =

(Iy−Iz)Iz−I2
zx

IxIz−I2
zx

, c2 =

(Ix−Iy+Iz)Izx
IxIz−I2

zx
, c3 = Iz

IxIz−I2
zx

, c4 = Izx
IxIz−I2

zx
, c5 = Iz−Ix

Iy
, c6 = Izx

Iy
, c7 = 1

Iy
, c8 =

(Ix−Iy)Ix+I2
zx

IxIz−I2
zx

,

and c9 = Ix
IxIz−I2

zx
, where Ix, Iy, Iz, Izx are moment of inertia.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 4: Comparison of efficiency between VVC-Gym and popular RL environments. The content
within the parentheses indicates the physical engine used in the environment.

Reach (Panda) HalfCheetah (Mujoco) Ant (Mujoco) Hammer (Adroit) VVC-Gym

FPS 2189 4042 2504 2308 3623
Wall-clock time (s) 4506 2435 3947 4306 2854

For the linear velocities along the three axes in the Global Coordinate System (GCS), denoted as
νx, νy, νz , the relationships are as follows

νx =
dxE
dt

= u cos θ cosψ + v(sin θ sinϕ cosψ − cosϕ cosψ) + w(sin θ cosϕ cosψ + sinϕ sinψ)

(11)

νy =
dyE
dt

= u cos θ sinψ + v(sin θ sinϕ sinψ + cosϕ cosψ) + w(sin θ cosϕ sinψ − sinϕ cosψ)

(12)

νz =
dzE
dt

= −u sin θ + v sinϕ cos θ + w cosϕ sin θ (13)

Besides, the airspeed V =
√
ν2x + ν2y + ν2z =

√
u2 + v2 + w2, flight path elevator angle µ =

arcsin(νz

V ), the flight path azimuth angle χ = arctan(
νy

νx
), angle of attack α = arctan(wu ), and

sideslip angle β = arcsin( ν
V ).

Although VVC-Gym is implemented in Python, we implement the aforementioned computations
with C++, which renders the simulations in VVC-Gym highly efficient. On a single node (equipped
with an Intel Core i9-10980XE CPU, NVIDIA GeForce RTX 3090, and 128GB of memory), we
train for 107 steps using the PPO algorithm (with 64 rollout workers) within the StableBaselines3
framework and compare VVC-Gym with commonly used RL environments. The results are pre-
sented in Table 4. It can be observed that VVC-Gym achieves the sampling speed of environments
commonly used in academic research and even surpasses several of them.

B THE CONTROL LAW

The control law is responsible for converting the pilot’s commands or the signals from the automatic
flight system into precise movements of the aircraft’s control surfaces, such as the ailerons, elevators,
and rudder, to achieve stable flight and precise maneuvering of the aircraft. Our control law model
receives overload command nzc and roll rate command pc as input, and outputs the deflections of
the elevator and aileron, denoted as δe and δa, respectively,

δe = kp,e (nz − nzc) + ki,e

∫
(nz − nzc) dt+ kd,eq (14)

δa = kp,a (p− pc) + ki,a

∫
(p− pc) dt (15)

where kp,e, ki,e, kd,e are the proportional gain, integral gain, and derivative gain of the PID con-
troller that controls the elevator, and kp,a, ki,a are the proportional gain and integral gain of the PID
controller that controls the aileron.
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C THE PID CONTROLLER OF GUIDANCE LAW FOR VELOCITY VECTOR
CONTROL

The expert model of the guidance law takes desired velocity vector vc, µc, χc as input and produces
overload command nzc, roll rate command pc, and the deflection of the power level actuator δpla:

nyc,e =
∆χ

Tχ
· Vg,hor/g (16)

nzc,e =
∆µ

Tµ
· Vg/g + cosµ (17)

nzc =
√
n2yc,e + n2zc,e (18)

ϕc = tan−1
(nyc,e
cos θ

)
(19)

pc = kp,p (ϕc − ϕ) + kd,pp (20)
δpla = kp,pla (vc − v) + ∆pla (21)

where nyc,e is the lateral overload command in GCS, nzc,e is the normal overload command in
GCS, ∆µ = µc − µ is the error in flight path elevator angle, ∆χ = χc − χ is the error in flight path
azimuth angle, Tχ is the estimation of the time required for the aircraft to reach the desired flight path
azimuth angle, Tµ is the estimation of the time required for the aircraft to reach the desired flight path
elevator angle, Vg is the aircraft ground speed, Vg,hor is the horizontal component of Vg , ϕc is an
intermediate variable representing the roll angle command, kp,p, kd,p are the proportional gain and
integral gain of the PID controller that controls the roll rate command, kp,pla is the proportional gain
of the PID controller that controls the deflection of the power level actuator, and ∆pla is constant
that ensures that the aircraft maintains its velocity without decrease during level flight.

D GENERATING DEMONSTRATIONS Table 5: Parameters used
to discretize the goal
space.

v µ χ

min 100 -85 -170
max 300 85 170

N 21 35 69

#discretized goals: 50715

Discretizing the goal space. The goal space G = [vmin, vmax] ×
[µmin, µmax] × [χmin, χmax] is discretized to G′ = {vmin +
i vmax−vmin

Nv−1 |i ∈ [1, 2, . . . , Nv − 1]} × {µmin + iµmax−µmin

Nµ−1 |i ∈
[1, 2, . . . , Nµ − 1]} × {χmin + iχmax−χmin

Nχ−1 |i ∈ [1, 2, . . . , Nχ − 1]},
where Nv, Nµ, Nχ are the number that we equally divide the v, µ, χ
spaces. In the experiments, we utilize the parameters specified in Ta-
ble 5 to generate the discrete goal set.

Augmenting demonstrations based on symmetry. If DE contain a trajectory
τg = {(s1, a1), . . . , (sT , aT )} that achieves goal g = (v, µ, χ), then DE is aug-
mented with τg−1 = {(s−1

1 , a−1
1 ), . . . , (s−1

T , a−1
T )}, where g−1 = (v, µ,−χ), s−1 =

(θ,−ϕ,−ψ,−χ, µ, h,−p, v), a−1 = (−p, nz, δpla). If DE has a trajectory that can achieve
g−1, then the shorter one is kept.

E ALGORITHM BACKGROUND

E.1 GOAL-CONDITIONED REINFORCEMENT LEARNING

Let ∆(X ) denote the probability distribution over a set X . Goal-conditioned RL is described by
goal-augmented MDP Liu et al. (2022); Pitis et al. (2020) M = ⟨S,A, T , r, γ,G, pg, ζ⟩, where
S,A, γ are the state set, action set, and discount factor, T : S × A → ∆(S) is the transition
probabilities, r = {rg|rg : S → R, g ∈ G} is the goal-conditioned reward functions, G is the
space of goals, pg is the desired goal distribution, and ζ : S → G is a tractable mapping function
that maps the state to a specific goal. For a fixed goal g, solving it means finding optimal policy
from a standard MDP Mg = ⟨S,A, T , rg, γ⟩. There are three kinds of goals in goal-conditioned
RL: desired goal is the requirements of the task, and the desired goal distribution is denoted as
pdg; achieved goal is the corresponding goal achieved by the current timestamp and state, and the
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Table 6: Parameters used in Environment

(a) Normal Version

Parameter Value

vmin, vmax 150, 250
µmin, µmax -10, 10
χmin, χmax -30, 30

simulation frequency 10
Tmax 400
wv, wd 0.5, 0.5
σv, σd 100, 180
b 0.5

rpenalty pessimistic estimation
TR, TM 10, 20
h0 0
ϕmax 720

vmax, pmax in ES 400, 300
ϕN , TN 60, 20

(b) Hard Version

Parameter Value

vmin, vmax 100, 300
µmin, µmax -85, 85
χmin, χmax -170, 170

simulation frequency 10
Tmax 400
wv, wd 0.5, 0.5
σv, σd 100, 180
b 0.5

rpenalty pessimistic estimation
TR, TM 10, 20
h0 0
ϕmax 720

vmax, pmax in ES 400, 300
ϕN , TN 60, 20

achieved goal distribution is denoted as pag; behavioral goal is the goal for sampling trajectory in the
current episode Liu et al. (2022). The policy parameterized by θ is modeled as πθ : S ×G → ∆(A)
based on the idea of universal value function approximators (UVFA) Schaul et al. (2015). The
objective of goal-conditioned RL is to maximize the expectation Eg∼pdg,π[

∑∞
t=0 γ

trg(st)].

E.2 IMITATION LEARNING

Imitation learning is a demonstration-driven, sample-efficient method for learning policies by imi-
tating demonstrators Belkhale et al. (2023). IL assumes access to a dataset DE = (τ1, . . . , τN ) of
N demonstrations. τi = {(s1, a1), . . . , (sTi

, aTi
)} is a sequence of length Ti of state-action pairs

sampled by the demonstrator πE(·|st) through environment dynamics T (·|st, at). The objective of
IL is to learn a policy πθ : S → ∆(A) parameterized by θ from DE . Behavioral cloning Pomerleau
(1991) is a widely applied IL method, which learns the imitation policy by optimizing a supervised
loss to maximize the likelihood of demonstrator actions Sasaki & Yamashina (2020):

L(θ) = −E(s,a)∼DE
[log πθ(a|s)]. (22)

F TWO VERSIONS OF VELOCITY VECTOR CONTROL TASKS

We implement two versions of the velocity vector control task in VVC-Gym: the normal version
and the hard version, which are detailed in Table 6. The distinction between the two versions lies in
the definition of the goal space. The hard version features a larger goal space, which encompasses
nearly the entire three-dimensional space, making it more challenging.

G ALGORITHM DETAILS

The Imitation Gleave et al. (2022) framework is utilized to implement behavioral cloning (BC)
Pomerleau (1991) algorithm with parameters listed in Table 7a, and the Stable Baselines3 Raffin
et al. (2021) framework for SAC and PPO with parameters listed in Table 7b and 7c. 128*128 fully
connected network and the Tanh activation function are used.

H SUPPORT FOR RESEARCH ON NON-MARKOVIAN REWARD PROBLEMS

The values of TR, TM , TN in termination conditions R, CMA, and NOBR respectively shape the
reward function’s characteristics, impacting the policy’s form. When TR = TM = TN = 1, rewards
are Markovian that only depend on the current state, allowing policies to be based solely on the
current state. If any of TR, TM , TN exceed 1, rewards become dependent on a history of consecutive
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Table 7: Algorithm configurations.

(a) BC

Parameter Value

l2 weight 0
ent weight 10−2

batch size 4096
epochs 300

(b) SAC

Parameter Value

ent coef ‘auto’
gamma 0.995

lr 3× 10−4

batch size 1024
buffer size 2× 105

learning starts 10240
gradient steps 1

train steps 106

rollout process num 1
use sde False

HER:n sampled goal 4

(c) PPO

Parameter Value

ent coef 10−2

gamma 0.995
gae lambda 0.95

lr 3× 10−4

batch size 4096
train steps 5× 108

rollout process num 64
n steps 2048

n epochs 5
use sde True

normalize advantage True

Table 8: Success rate on MR and various NMR problems. Results come from experiments over 5
random seeds.

TR Reward type Success rate

1 MR 84.43±4.74
10 NMR 65.53±12.95
20 NMR 45.03±10.65
30 NMR 21.99±6.63

states, making them non-Markovian, and policies must account for state history Abel et al. (2021);
Gaon & Brafman (2020); Abel et al. (2022).

Investigating non-Markovian reward problems. Non-Markovian reward (NMR) refers to the re-
ward that depends on multiple steps of states and action Abel et al. (2021), such as determining
whether an UAV has stably achieved a desired velocity vector based on a sequence of states. Typi-
cally, the longer the state sequence that a NMR depends on, the more challenging it becomes to train
policies with RL. To illustrate the impact of NMR on RL training, we set different values of TR in
VVC-Gym, which represents the dependency of the NMR on the length of the state sequence. The
results are presented in Table 8. It is observed that as TR increases, the policy’s performance deteri-
orates. Additionally, adjusting TM and TN can also alter the Markovian nature of reward function.
This indicates that VVC-Gym is well-suited for studying NMR problems.

I THE TWO CONTROL MODES OF VVC-GYM

We train both a guidance law model and an end-to-end model using SAC on the easy version of
VVC-Gym, and present the corresponding results in Table 9. It can be observed that the trained
guidance law model demonstrates superior performance. The reason for this is that the control
law model provided in Appendix B is capable of stabilizing the control outputs, which serves a
purpose analogous to the temporal abstraction achieved through frame-skipping, thereby reducing
the temporal complexity of exploration.

The above results can be interpreted from two perspectives: On one hand, the use of a simple
control law model to stabilize RL outputs helps address the temporal complexity of exploration.
On the other hand, although the end-to-end mode is more difficult to train, it also serves as a more
challenging testbed for evaluating RL exploration methods. Additionally, the end-to-end mode can
also be employed to investigate the oscillation action problem Mysore et al. (2021) in RL.
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Table 9: Success rate of SAC between training a guidance law model and training a end-to-end
model. Results come from experiments over 5 random seeds.

Guidance law model End-to-end model

Success Rate (%) 90.40±0.49 7.60±5.08

Table 10: Success rate (%) of GCRL algorithms on Reach, PointMaze, and VVC. The demon-
strations used in the Reach experiments are from the official script provided by Panda-Gym, the
demonstrations used in the PointMaze experiments are from Minari, and the demonstrations used in
the VVC experiments are D0

E . Results come from experiments over 5 random seeds.

MEGA GCBC GCBC+PPO

Reach 100.0±0.0 70.63±2.99 100.0±0.0
PointMaze 100.0±0.0 75.96±5.34 93.33±3.06

VVC 8.32±1.86 17.08±0.57 38.31±1.62

J CHALLENGE OF THE VVC TASK

Fixed-wing UAV’s VVC is a challenging task. The difficulties lie in: (1) The large exploration
space of the policy, which is a continuous state, continuous action problem, and the policy requires
additional exploration of the goal space during training. (2) The long interaction sequences, with
the average length of demonstrations exceeding 280. Even well-trained policies require an average
of over 100 steps to achieve a goal, and more challenging goals can demand upwards of 300 steps
(see Table 1 for corresponding results).

We provide evidence that VVC is a challenging task through the following three sets of experiments:

Firstly, standard RL algorithms struggle to solve the VVC task. Table 2a shows the success rates
of SAC (1.08%) and PPO (0.04%). It is evident that SAC and PPO struggle to solve the VVC task.

Secondly, existing GCRL algorithms can effectively solve common multi-goal tasks in aca-
demic research, but they can only solve the VVC task to a certain extent. We compare the
performance of different GCRL algorithms on VVC and common multi-goal tasks in academic re-
search, PointMaze (PointMaze Large DIVERSE G-v3) and Reach (PandaReach-v3). The results
are shown in Table 10. It can be seen that these GCRL algorithms can almost completely solve
Reach and PointMaze, but the best algorithm achieves only a 38.31% success rate on VVC. These
results indirectly reflect that VVC is a challenging task.

Thirdly, the human-designed classical PID controller (detailed in Appendix C) has only a
20.08% success rate, which also indirectly reflects that VVC is a challenging task.

We believe that for academic research, the difficulty of the task should progress in tandem with the
research on algorithms. The task should have appropriate levels of difficulty to properly evaluate
different algorithms. If the task is too easy, too hard, or unsolvable, it will fail to provide a useful
signal for benchmarking. Therefore, we believe that the current success rates of GCRL algorithms
on VVC being less than 50% is helpful for researchers to discover more insights when designing
algorithms.

K ABLATION ON TERMINATIONS

K.1 EXPERIMENT DETAILS

For the experiment with termination conditions, all of the 7 termination conditions are used in the
environment, with parameters listed in 6a. For the experiment without terminations conditions, only
RT, T, and ES are used in the environment, with the corresponding parameters the same as 6a. In the
comparative experiments, the primary purpose of using ES is to prevent excessive values of linear
velocity v and angular velocity p, which could lead to floating-point overflow errors. However, we
utilize the largest possible values for vmax = 600, pmax = 600 to ensure that ES operates with the

18

https://panda-gym.readthedocs.io/en/latest/usage/manual_control.html
https://minari.farama.org/datasets/D4RL/pointmaze/


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6
episode 1e5

0

10

20

30

40

50

60

70

80

er
ro

r v

with terminations without terminations

(a) Error in magnitude of
velocity vector

0 1 2 3 4 5 6
episode 1e5

20

40

60

80

er
ro

r a
ng

le

with terminations without terminations

(b) Error in direction of
velocity vector

0 1 2 3 4 5 6
episode 1e5

0.6

0.5

0.4

0.3

0.2

0.1

w
v

*e
rr

or
v

+
w

d
*e

rr
or

an
gl

e

with terminations without terminations

(c) Weighted sum of er-
rors in magnitude and di-
rection of velocity vector

0 1 2 3 4 5
episodes 1e5

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
ta

ge

RT T CMA CR C ES NOBR

(d) Triggering proportions
of each termination condi-
tion during training

Figure 10: Statistical information on training process of termination conditions. Results come from
experiments over 5 random seeds.

minimal necessary intervention. For the PPO algorithm, both experiments use parameters listed in
7c.

K.2 ADDITIONAL ANALYSIS ON THE ABLATION OF TERMINATION CONDITIONS

From Fig. 6c and 6d, it can be observed that when termination conditions are employed, the entire
training process can be divided into four stages:

In the first stage, when the number of training episodes is less than 104, the policy lacks any mean-
ingful capability and tends to explore randomly. The policy frequently triggers CR, NOBR, ES, and
CMA, with short average episode lengths when these conditions are triggered.

The second stage occurs when the number of training episodes is between 104 and 5 ∗ 104. During
this stage, the frequency of CR being triggered significantly decreases, while the frequency of C
being triggered increases substantially. Additionally, the average episode lengths for CR, NOBR,
ES, and CMA are notably longer. This indicates that in this stage, the policy has learned how to
quickly avoid triggering CR, NOBR, ES, and CMA. And the higher frequency of triggering C is due
to the policy’s lack of capability to continuously approach the goal, leading to frequent triggering of
C.

The third stage is when the number of training episodes is between 5∗104 and 3∗105. In this stage,
the frequency of C being triggered significantly decreases, while the frequency of T being triggered
rapidly increases. This suggests that as training progresses in this stage, the policy begins to acquire
the ability to approach the goal, but it is not yet able to do so quickly or continuously, resulting in
frequent triggering of T.

The fourth stage occurs when the number of training episodes exceeds 3∗105. In this stage, the pol-
icy’s ability to approach the desired goal is gradually improved, leading to an increasing frequency
of triggering RT. The policy starts to possess the capability to complete parts of the goals.

Furthermore, the trend in the error between the state at the end of episode and the goal, which is
present in Fig. 10, also corroborates the aforementioned four stages exhibited by the learning process
when termination conditions are used.

L ABLATION ON REWARD FUNCTIONS

L.1 EXPERIMENT DETAILS.

Aside from the parameters investigated in the ablation study, all other environment and algorithm
configuration parameters are consistent with those detailed in Table 6 and 7. In the ablation study
on rpenalty, rpenalty = −1000 is employed for the large negative constant method, and rpenalty =

− 1−γTmax−Tτ

1−γ is employed for the pessimistic estimation method, where Tτ is the length of current
sampled episode τ . In the ablation study on the scaling factor b, 0.25, 0.5, 1.0, 2.0, and 4.0 are
employed for training. From the previous experimental results, it is evident that controlling the
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experiments over 5 random seeds.
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Figure 13: Triggering proportions of each termination condition during training. Results come from
experiments over 5 random seeds.

magnitude of velocity is simpler than controlling the direction of velocity. Therefore, we used a
larger wd compared to wv , specifically setting wd to 0.5, 0.625, 0.75, and 0.875 for training.

L.2 ADDITIONAL ANALYSIS OF THE ABLATION ON rpenalty .

Fig. 11c and Fig. 11d respectively depict the error in magnitude of velocity vector and the error
in direction of velocity vector during training. It is evident that when a large negative constant is
employed, the policy opportunistically moves away from the goal to trigger the timeout termina-
tion, thereby avoiding the greater punishment associated with non-timeout termination. The above
analysis aligns with our conclusion in Sec. 4.4.2.

Additionally, Fig. 11a and 11b illustrate the changes in cumulative reward and success rate during
training for the two methods of setting rpenalty. When using the large negative constant method,
the cumulative reward plateaus at around -300 after rising from -1000, and the policy’s success rate
remains nearly zero throughout, indicating that the policy has learned to avoid triggering C, CR,
NOBR, ES, and CMA by frequently triggering timeout terminations, and it is difficult to learn to
achieve goals based on this behavior.
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Table 11: Error in the direction of the velocity vector and the immediate reward at the last step of
the trajectory finished by policies trained with different b. The ‘Error interval’ indicates the range to
which the error in the direction of the velocity vector must decrease before the reward change rate
exceeds 1 (The curve of reward varying with error can be found in Fig. 2). The ‘Error between the
state at the end of episode and the goal’ represents the error in the direction of the velocity vector
between the last state of the trajectory finished by policies and the goal. The ‘Immediate reward at
the last step of episode’ is the immediate reward of the last state of the trajectory finished by policies.

b
Error interval

(reward change rate ¿ 1)

Error between the state
at the end of episode

and the goal

Immediate reward at the
last step of episode

0.25 (0, 63.64) 70 -0.79
0.5 (0, 45) 40 -0.47
1.0 / 60 -0.33
2.0 (90, 180) 40 -0.05
4.0 (113.39, 180) 60 -0.01

L.3 ADDITIONAL ANALYSIS OF THE ABLATION ON b.

Fig. 12a and 12b present the trends in the error of velocity magnitude and velocity direction between
the state at the end of an episode and the goal during training. Controlling the velocity magnitude of
the UAV is relatively simple, and a smaller b is more beneficial for the UAV to improve the accuracy
of reaching the desired velocity magnitude. Controlling the velocity direction of the UAV is more
challenging, and the experiments with b = 0.5 and b = 2.0 achieved the best results. This is because
when b > 1, the reward function changes rapidly in the region of high error but slowly in the region
of low error, which is beneficial for the policy to quickly approach the goal when the error is large
but not beneficial for the policy to continuously approach the goal when the error is small; when
b < 1, the reward function’s characteristics are opposite. Therefore, a b slightly greater or less than
1 can effectively balance the policy’s speed in different error intervals, somewhat improving the
precision of approaching the goal, as shown in Fig. 12c. However, when b is too large or too small,
it significantly increases the policy’s speed in one interval but severely reduces it in another, which,
as evidenced by the experimental results, is not beneficial for the policy to achieve goals.

Fig. 13 presents the proportion of termination conditions triggered by policies trained with different
b during training. From an overall perspective, as learning progresses, the policy effectively learns to
avoid triggering the four termination conditions CMA, CR, ES, and NOBR, with C and T dominating
the training process for most of the time; (2) as b increases, the proportion of policy triggering T
also increases, indicating that a larger b is beneficial for the policy to approach the goal. This is
consistent with the analysis of Fig. 12.

Additionally, Table 11 presents the immediate reward at the last step of the completed trajectory
and the error between the state and the goal. It is observed that only when b = 0.5 can the policy
reduce the error to a region where the reward change rate exceeds 1. When b is too small, the reward
remains in the error range where dr

de < 1, which is not conducive to the policy quickly approaching
the goal. When b = 0.25, the policy does not even reduce the error to the dr

de > 1 error range. When
b is too large, the reward remains in the error range where dr

de < 1, which is not conducive to the
policy continuously approaching the goal. When b = 2 and b = 4, although the policy can reduce
the error to the dr

de < 1 error range, the slow change in reward with error makes it difficult for the
policy to learn, thus preventing the policy from continuously reducing the error to trigger RT.

In summary, When b < 1, it is beneficial for the policy to learn the ability to continuously approach
the goal in the error-small interval, but it is not conducive to the policy acquiring the ability to
quickly approach the goal in the error-large interval. Conversely, when b > 1, it is beneficial for
the policy to acquire the ability to quickly approach the goal in the error-large interval, but it is
not conducive to the policy acquiring the ability to continuously approach the goal in the error-small
interval. Therefore, the selection of b should be carefully considered based on the task requirements,
balancing the trade-off between the speed and accuracy of achieving goals.
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Figure 14: Results of ablation study on wv, wd. Results come from experiments over 5 random
seeds.
Table 12: The Smoothness Measure of State and Action of Each Demonstration. As there is almost
no difference between Di

E and Di
E , i ∈ {0, 1, 2, 3}, we show the smoothness measure of Di

E in this
table. Optimal values are highlighted in bold, and sub-optimal values are underlined.

Demonstration
state action

θ ϕ ψ χ µ h p v p nz δpla

D0
E

s1 0.25±0.05 0.06±0.03 0.23±0.12 0.23±0.12 0.04±0.05 1.47±1.31 0.64±0.47 0.15±0.09 0.46±0.23 0.006±0.005 0.0015±0.0016
s2 0.14±0.09 1.93±2.14 0.36±0.16 0.31±0.16 0.08±0.06 2.24±1.64 30.65±45.14 0.20±0.12 2.11±2.21 0.03±0.07 0.0028±0.0026

D1
E

s1 0.20±0.14 0.31±0.49 0.57±0.31 0.56±0.28 0.19±0.14 4.46±3.08 1.35±0.77 0.31±0.17 1.44±0.64 0.05±0.03 0.0044±0.0035
s2 0.81±0.44 3.18±2.17 1.16±0.87 0.81±0.51 0.45±0.21 6.34±3.90 16.00±23.16 0.47±0.19 7.54±6.51 0.47±0.54 0.016±0.018

D2
E

s1 0.25±0.18 0.31±0.39 0.60±0.37 0.58±0.31 0.24±0.18 4.83±3.18 1.43±0.83 0.31±0.17 1.52±0.92 0.05±0.03 0.0043±0.0036
s2 0.82±0.38 3.34±2.02 1.30±1.07 0.83±0.46 0.52±0.23 6.95±3.94 18.55±26.42 0.48±0.20 10.98±11.65 0.43±0.47 0.016±0.015

D3
E

s1 0.28±0.20 0.39±0.65 0.60±0.39 0.58±0.31 0.27±0.18 4.83±3.11 1.51±0.93 0.31±0.18 1.55±0.99 0.06±0.03 0.0042±0.0038
s2 0.82±0.35 3.34±2.61 1.26±1.00 0.81±0.39 0.54±0.23 7.15±3.81 20.15±27.62 0.49±0.19 11.94±13.64 0.48±0.48 0.018±0.021

L.4 ABLATION STUDY ON THE SETTING OF wv AND wd.

In the experimental process, we discovered that Eq. 1 can be further refined by breaking down the
term −(∥ζ(st)−g∥

σ )b into two separate components: −(wv(
∥v⃗t−v⃗g∥t

σv
)b+wd(

∥v⃗t−v⃗g∥d

σd
)b), where ∥.∥t

calculates the difference in magnitude of two velocity vectors, and ∥.∥d calculates the difference in
the direction of two velocity vectors,σv, σd are normalization factors for velocity and direction such
that ∥v⃗t−v⃗g∥t

σv
∈ [0, 1],

∥v⃗t−v⃗g∥d

σd
∈ [0, 1], wv ∈ [0, 1], wd ∈ [0, 1], wv + wd = 1.0 are weight factors

for velocity and direction. After the decomposition, we can balance the importance of the velocity
direction and the magnitude by adjusting the weights wv and wd.

To analyze the impact of wv and wd on policy training, we conduct training with different values
of wv and wd and present the corresponding results in Fig. 14. From Fig. 14a, it is evident that the
smaller the value of wv , the larger the error in velocity magnitude at the end of episode, indicating
a positive correlation between the increase in reward weight wv and the reduction in error for the
relatively simple control of velocity magnitude.

Fig. 14b shows that when wd is set to 0.5, 0.625, and 0.75, the resulting policies have similar errors
in velocity direction, but the larger the value of wd, the faster the error decreases during training,
suggesting that a higher wd is more beneficial for the policy to reduce the error in velocity direction.
However, when wd is set to the highest value of 0.875, the error in velocity direction is the largest.
This is because the policy is unable to reduce the error in velocity magnitude to within 10, which
prevents the policy from triggering RT and limits its ability to decrease the error in velocity direction.

Fig. 14c and 14d illustrate the trends in cumulative reward and success rate. It can be observed that
appropriately increasing wd is beneficial for enhancing the policy’s capability to obtain cumulative
reward and to speed up the increase in success rate. However, an excessively large wd affects the
error in velocity magnitude, which is detrimental to the improvement of cumulative reward and
further restricts the increase in success rate.

M STATE AND ACTION SMOOTHNESS OF DEMONSTRATIONS

Two metrics are introduced to measure the smoothness of states and actions. Taking the pitch angle θ
as an example, the formulas for these two metrics are given in the following. And the other variables
of state and action are the same. The first metric is inspired by Discrete Fourier Transform (DFT),
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and is calculated as

sθ1(τ) =
2

nfs

n∑
i=1

Mifi, (23)

where fs is the sampling frequency, Mi and fi are the amplitude and frequency of the ith frequency
component Mysore et al. (2021). Larger values on this metric indicate the presence of larger high-
frequency signal components, thus less smoothness the signal is. The second metric is calculated by
accumulating the change of variable over the entire trajectory, and is calculated as

sθ2(τ) =

|τ |−1∑
i=1

|θi+1 − θi|. (24)

The larger this value, the greater the oscillation of variable between two consecutive timestamps.

Table 12 shows that D0
E has nearly the smallest s1 and s2 values among all demonstration sets. This

is because the derivative term of the PID controller explicitly suppresses oscillations in the control
variables. When IRPO starts updating D0

E with the policy trained by RL, both smoothness metrics s1
and s2 begin to increase. This is because we do not include terms explicitly in the reward function to
penalize oscillations, and the inadequately trained RL policy is unable to achieve goals at the fastest
speed, resulting in some degree of oscillation. However, there is little difference between s1 and s2
across D1

E , D2
E , and D3

E . This indicates that the policies trained with VVC-Gym’s reward function
do not exhibit significant differences in the smoothness of states and actions.

N SOCIETAL IMPACTS

We open-source VVC-Gym and its accompanying demonstrations. They can be utilized to train
control policies for fixed-wing UAVs. However, it is important to note that VVC-Gym’s design does
not account for specific hardware-related requirements, such as the need to avoid (1) bang-bang
control to minimize hardware wear and tear, and (2) prolonged overload beyond a certain threshold
to ensure the structural integrity of the aircraft within acceptable limits.
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