
Under review as a conference paper at ICLR 2024

INDUCTIVE LINK PREDICTION IN KNOWLEDGE
GRAPHS USING PATH-BASED NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Link prediction is a crucial research area in knowledge graphs, with many down-
stream applications. In many real-world scenarios, inductive link prediction is
required, where predictions have to be made among unseen entities. Embedding-
based models usually need fine-tuning on new entity embeddings, and hence are
difficult to be directly applied to inductive link prediction tasks. Logical rules
captured by rule-based models can be directly applied to new entities with the
same graph typologies, but the captured rules are discrete and usually lack gen-
erosity. Graph neural networks (GNNs) can generalize topological information to
new graphs taking advantage of deep neural networks, which however may still
need fine-tuning on new entity embeddings. In this paper, we propose SiaILP, a
path-based model for inductive link prediction using light-weight siamese neural
networks. Our model only depends on relation and path embeddings, which can
be generalized to new entities without fine-tuning. Experiments show that our
model achieves several new state-of-the-art performances in link prediction tasks
using inductive versions of WN18RR, FB15k-237, and Nell995.

1 INTRODUCTION

Link prediction is a crucial task in network analysis that involves predicting the existence or likeli-
hood of a connection between two nodes in a network (Bordes et al., 2013; Sun et al., 2019; Yang
et al., 2014). It has various applications, including social network analysis (Valente et al., 2015),
recommendation systems (Zhang et al., 2019), and biological network analysis (Pavlopoulos et al.,
2011). In recent years, there has been a growing interest in the inductive approach to link prediction,
which involves predicting links between nodes that are not present in the training knowledge graph
(Teru et al., 2019; Chen et al., 2021; Lin et al., 2022; Mai et al., 2021).

Compared to the transductive link prediction scenario where models are trained and evaluated on
a fixed set of entities, the inductive link prediction scenario is more challenging. This is because
inductive link prediction models need to generalize to unseen entities for evaluation (Teru et al.,
2019). Due to this reason, traditional embedding-based link prediction models (Bordes et al., 2013;
Sun et al., 2019; Yang et al., 2014; Trouillon et al., 2016; Dettmers et al., 2018) cannot be directly
applied to the inductive scenario, where new entities do not possess trained embeddings. In contrast,
many rule-based link prediction models (Meilicke et al., 2018; Yang et al., 2017a; Sadeghian et al.,
2019) explicitly capture entity-invariant topological structures from the training knowledge graph.
The learned rules can then be applied to unseen entities with the same topological structures. How-
ever, the learned rules are discrete and usually suffer from sparsity, making rule-based models lack
of generosity (Teru et al., 2019).

Graph neural networks (GNNs) (Veličković et al., 2018; Kipf & Welling, 2017) can implicitly cap-
ture the topological structures of a graph into network weights, and hence can be generalized to
larger and more complicated graphs containing unseen entities. A series of GNNs-based induc-
tive link prediction models have been developed in recent years, achieving promising performances
(Vashishth et al., 2020; Teru et al., 2019; Mai et al., 2021; Lin et al., 2022; Pan et al., 2022). How-
ever, most GNNs-based models still rely on entity embeddings (Vashishth et al., 2020; Schlichtkrull
et al., 2018), which can be problematic when fine-tuning on new entity embeddings is forbidden.

In this paper, we present novel inductive link prediction models based on light-weight siamese neural
networks. Our models are path-based in order to capture entity-invariant topological structures from

1

Under review as a conference paper at ICLR 2024

a knowledge graph. To be specific, our connection-based model predicts the target relation using the
connecting paths between two entities, while our subgraph-based model predicts the target relation
using the out-reaching paths from two entities. Both of our models exclude entity embeddings,
which therefore can be directly applied to new knowledge graphs of the same topological structures
without any fine-tuning. Experiments show that our models achieve several new state-of-the-art
performances on the inductive versions (Teru et al., 2019) of the benchmark link prediction datasets
WN18RR (Toutanova & Chen, 2015), FB15K-237 (Toutanova et al., 2015) and Nell-995 (Xiong
et al., 2017).

Our models apply siamese neural network for inductive link prediction, therefore are named as
SiaILP. Briefly speaking, we recognize two advantages from our models:

1. Strictly inductive: Our models are path-based excluding entity embeddings, which can be di-
rectly applied to new entities for link prediction without fine-tuning.

2. New state-of-the-art: We apply our models to the inductive versions (Teru et al., 2019) of link
prediction datasets WN18RR (Toutanova & Chen, 2015), FB15K-237 (Toutanova et al., 2015) and
Nell-995 (Xiong et al., 2017). Experiments show that our models achieve several new state-of-the-
art performances compared to other benchmark models.

In the following section, we will briefly introduce related work for link prediction. Then, we will
present our models in Section 3, after describing some basic concepts of link prediction. After that,
experimental results will be provided in Section 4. Finally, we conclude this paper in Section 5.

2 RELATED WORK

In this section, we would introduce benchmark models published in the recent years for both trans-
ductive link prediction and inductive link prediction.

Transductive Link Prediction: The field of knowledge graph representation learning has gained
significant attention in the last decade. Inspired by the success of word embeddings in language
modeling (Mikolov et al., 2013; Pennington et al., 2014), various link prediction models have been
created based on entity and relation embeddings, including TransE (Bordes et al., 2013), Dist-
mult (Yang et al., 2014), ComplEx (Trouillon et al., 2016), RotatE (Sun et al., 2019), and ConvE
(Dettmers et al., 2018). However, these models often treat each triplet independently and do not con-
sider the topological structure of the knowledge graph. Recently, graph neural networks (GNNs),
such as graph convolutional networks (GCNs) (Kipf & Welling, 2017) and graph attention networks
(GATs) (Veličković et al., 2018), have been designed to capture global topological and structural
information inherent in knowledge graphs. Models like CompGCN (Vashishth et al., 2020), RGCN
(Schlichtkrull et al., 2018), WGCN (Shang et al., 2019), and VR-GCN (Ye et al., 2019) apply GCNs
to the link prediction problem using the topological structure from a knowledge graph, achieving
new state-of-the-art results on benchmark datasets such as WN18RR (Toutanova & Chen, 2015),
FB15K-237 (Toutanova et al., 2015), and Nell-995 (Xiong et al., 2017).

Inductive Link Prediction: Rule-based models like RuleN (Meilicke et al., 2018), Neural-LP (Yang
et al., 2017b), and DRUM (Sadeghian et al., 2019) use logical and statistical approaches to capture
knowledge graph structures and topology as explicit rules for inductive link prediction, but these
rules often lack generality. In contrast, graph neural networks (GNNs) implicitly capture knowledge
graph structures into network parameters, offering greater adaptability. GraIL (Teru et al., 2019) is
a typical application of GNNs on inductive link prediction, along which the inductive versions of
WN18RR (Toutanova & Chen, 2015), FB15K-237 (Toutanova et al., 2015) and Nell-995 (Xiong
et al., 2017) datasets are presented as benchmark evaluation on inductive link prediction models.

Following GraIL, CoMPILE (Mai et al., 2021) uses communicative message-passing GNNs to ex-
tract directed enclosing subgraphs for each triplet in inductive link prediction tasks. Graph convolu-
tional network (GCN)-based models like ConGLR (Lin et al., 2022), INDIGO (Liu et al., 2021), and
LogCo (Pan et al., 2022) are also applied to inductive link prediction. ConGLR combines context
graphs with logical reasoning, LogCo integrates logical reasoning and contrastive representations
into GCNs, and INDIGO transparently encodes the input graph into a GCN for inductive link pre-
diction. Lastly, TACT focuses on relation-corrupted inductive link prediction using a relational
correlation graph (RCG) (Chen et al., 2021).

2

Under review as a conference paper at ICLR 2024

Beyond these models, NBFNet (Zhu et al., 2021) takes advantages of both traditional path-based
model and graph neural networks for inductive link prediction, which is very similar to our model:
Instead, we combine traditional path-based models with light-weight siamese neural networks other
than GNNs for inductive link prediction, which is described in the next section. All the inductive
link prediction models mentioned in this section will serve as our baselines.

3 METHODOLOGY

In this section, we will first describe the problem of link prediction and its related concepts. Then, we
will introduce the structures of our connection-based model as well as our subgraph-based model for
inductive link prediction. After that, we will provide details on our recursive path finding algorithm.

3.1 DESCRIPTION ON THE PROBLEM AND CONCEPTS

A knowledge graph can be denoted as G = (E ,R, T), where E and R represent the set of entities
and relations, respectively. A triple (s, r, t) in the triple set T indicates that there is a relation r from
the source entity s to the target entity t. We say that there is a path r1∧r2∧· · ·∧rk, from entity s to
t, if there are entities e1, · · · ek−1 in E such that (s, r1, e1), (e1, r2, e2), · · · , (ek−1, rk, t) are known
triples in T . We use the letter p to denote a path. We use |E|, |R| and |T | to denote the number of
entities, number of relations, and number of triples in G, respectively. In this paper, we recognize a
path p only by its relation sequence r1∧r2∧· · ·∧rk. The on-path entities e1, · · · ek−1 are ignored.

Then, knowledge graph completion, or link prediction, means that given the known graph G, we need
to predict (in probability) whether an unknown triple (s, r, t) is correct. To be specific, transductive
link prediction guarantees that both s and t exist in E , while inductive link prediction assumes
either s or t to be unknown. For inductive link prediction, an inference knowledge graph Ginf =
(Einf ,R, Tinf) is given with new entity set Einf and new triples Tinf , but the relation set R and
graph topology are invariant. Then, the model will predict the correctness of (s, r, t) based on Ginf .

Besides, in most knowledge graphs, the relation r is directed. For instance, (monkey, has part, tail)
is a known triple in WordNet while (tail, has part, monkey) is not (Socher et al., 2013). Then, the
inverse relation r−1 can be defined for each relation r ∈ R, so that (t, r−1, s) is a known triple
whenever (s, r, t) is. Accordingly, we can expand the relation set to be R ∪ R−1 with R−1 =
{r−1}r∈R; and the triple set becomes T ∪ T −1 with T −1 = {(t, r−1, s)}(s,r,t)∈T . Hence, the
inverse-added knowledge graph will be G̃ = (E ,R ∪R−1, T ∪ T −1). To minimize confusion, we
still use the symbol G.

In this paper, we always work with inverse-added knowledge graphs. We always expand the relation
set to R ∪ R−1 and triple set to T ∪ T −1. In this way, a path can be formed by connecting both
initial and inverse relations. For example, we can have a path p = r1∧ r−1

2 ∧ r3 from s to t, where
r1, r3 ∈ R and r−1

2 ∈ R−1 (or in other words r2 ∈ R). Moreover, given a path p = r1∧· · ·∧ rk
from s to t, we can always obtain the inverse path p−1 = r−1

k ∧· · ·∧ r−1
1 , which is from t to s.

3.2 STRUCTURE OF THE CONNECTION-BASED MODEL

Suppose we have an inverse-added knowledge graph G = (E ,R∪R−1, T ∪ T −1). Inspired by the
Word2Vec model (Mikolov et al., 2013), we apply the input and output embeddings to the relations
in G. That is, we will generate both the input embedding vr and the output embedding ṽr for each
relation r ∈ R ∪ R−1. This gives us the input embedding matrix (v1, · · · ,v2|R|) ∈ RD×2|R| and
the output embedding matrix (ṽ1, · · · , ṽ2|R|) ∈ RD×2|R|, where D is the dimension size of the
embedding and |R| is the number of initial relations.

Given two entities s and t in the graph G, suppose there are three different paths, p1 = r1 ∧· · ·∧ rk,
p2 = r′1 ∧· · ·∧ r′k′ and p3 = r′′1 ∧· · ·∧ r′′k′′ , from s to t. Here, the path length and the composing
relations of each path can be different. Then, the framework of our connection-based model is
very simple: Given p1, p2 and p3 from s to t, the model will predict (in probability) whether the
triple (s, r, t) is correct with respect to a target relation r ∈ R. Figure 1 (a) briefly indicates this
framework.

3

Under review as a conference paper at ICLR 2024

Figure 1: The architectures of our proposed models. (a): Given the connection paths from s to t, our
connection-based model will predict the target relation r. (b): Given out-reaching paths from s and
t respectively, our subgraph-based model will predict the target relation r. (c): The architecture of
one stack in our siamese neural network. (d): The architecture of our connection-based model. (e):
The architecture of our subgraph-based model.

Before continuing, note that we only need to consider r ∈ R, i.e. an initial relation, as our target
relation. This is because predicting the correctness of (s, r−1, t) given paths p1, p2 and p3 from s to
t is equivalent to predicting that of (t, r, s) given the inverse paths p−1

1 , p−1
2 and p−1

3 from t to s.

We obtain embedding sequences V1 = (v1, · · · ,vk), V2 = (v′
1, · · · ,v′

k′) and V3 =
(v′′

1, · · · ,v′′
k′′) for paths p1, p2, and p3, respectively. Each vi represents the input embedding

of the relation at the corresponding path position. We construct a connection-based model using a
Siamese Neural Network (SNN) framework. This involves three stacks of deep neural networks,
sharing the same parameters and weights during training. Stack one takes V1 as input, stack two
takes V2, and stack three takes V3.

Each stack, as shown in Figure 1 1 (c), consists of two layers of bi-directional LSTM (bi-
LSTM) layers (Hochreiter & Schmidhuber, 1997) and one max-pooling layer, denoted as fLSTM1 ,
fLSTM2

and fmax, respectively. Within a bi-LSTM layer, the hidden vectors from forward
and backward LSTM networks are concatenated at each time step. Suppose (h1, · · ·,hk) =
fLSTM2

(fLSTM1
((v1, · · ·,vk))) are the output hidden vectors from the second bi-LSTM layer

when V1 is the input. We will make sure hi ∈ RD for i = 1, · · · , k. Then, we will do dimension-
wise max-pooling: hmax = fmax(h1, · · ·,hk) to obtain hmax ∈ RD, where each dimension
hd
max = max(hd

1, · · · , hd
k) for d = 1, · · · , D.

We use hV1
max to denote the output vector from the stack implementing on V1. Similarly, we will

obtain hV2
max and hV3

max from the stacks implementing on V2 and V3, respectively. After that, we
concatenate these three output vectors into one vector hconcat ∈ R3D. Then, a feed forward network
fFFN is applied: hrep = fFFN (hconcat), where hrep ∈ RD is the vector representation of the three
paths p1, p2 and p3. One can regard hrep as the ‘connection embedding’ for p1, p2, p3.

Finally, given a target relation r ∈ R, we will obtain its output embedding ṽr. We will further
normalize the magnitude of hrep and ṽr to unit length: ||hrep||2 = ||ṽr||2 = 1, where ||·||2 is the
L-2 norm. Then, we calculate hrep·ṽr, the inner product between hrep and ṽr, which is the final
output value of the connection-based model. We denoted this output value as P ((s, r, t)|p1, p2, p3)
or P connection

(s,r,t) , which is the evaluated probability for (s, r, t) to be correct, given paths p1, p2 and
p3 between s and t. Figure 1 (d) describes the architecture of the connection-based model.

However, there could be less than three different paths between two entities s and t. Then, we will
need the subgraph-based model for link prediction.

4

Under review as a conference paper at ICLR 2024

3.3 STRUCTURE OF THE SUBGRAPH-BASED MODEL

Given two entities s and t in the graph G, suppose there are three different paths ps1, ps2 and ps3 from
s to some other entities; also, suppose there are three different paths pt1, pt2 and pt3 from t to some
other entities. Then, we build another model to predict (in probability) whether the triple (s, r, t) is
correct with respect to a target relation r ∈ R, given ps1, ps2, ps3, pt1, pt2 and pt3. Figure 1 (b) briefly
indicates this framework. Since the out-reaching paths essentially represents the subgraph around
an entity, we refer to this model as the subgraph-based model.

Again, we only need to consider r ∈ R, an initial relation, as our target relation in the triple (s, r, t).
This is because predicting the correctness of (s, r−1, t) given ps1, ps2, ps3 from s and pt1, pt2, pt3 from
t is equivalent to predicting that of (t, r, s) given pt1, pt2, pt3 from t and ps1, ps2, ps3 from s.

Similarly, we obtain embedding sequences Vs
1, Vs

2, Vs
3, Vt

1, Vt
2 and Vt

3 for paths ps1, ps2, ps3, pt1, pt2
and pt3, respectively as in the connection-based model. The source and target paths share the same
input embedding matrix, which is independent from the embedding matrix in the connection-based
model. Again, we build SNN stacks to perform on the embedding sequences: Given Vs

1, Vs
2 and Vs

3
as input, each stack in the SNN will path them through two bi-LSTM layers and one max-pooling
layer to obtain h

Vs
1

max ∈ RD, hVs
2

max ∈ RD and h
Vs

3
max ∈ RD, respectively. Then, hs

concat ∈ R3D

is obtained by concatenating these three vectors, which is the output of the SNN. Note that there
is no topological difference between source entity subgraph and target entity subgraph. Hence, the
same SNN is performed on Vt

1, Vt
2 and Vt

3 to obtain ht
concat ∈ R3D. Then, we further concatenate

hs
concat and ht

concat into vector h(s,t)
concat ∈ R6D. After that, a feed forward network fFFN will be

applied: h(s,t)
rep = fFFN (h

(s,t)
concat), where h

(s,t)
rep ∈ RD can be viewed as the ‘subgraph embedding’

of ps1, ps2, ps3, pt1, pt2 and pt3.

Finally, given r ∈ R, we normalize the magnitude of h(s,t)
rep and ṽr to unit length. Here, ṽr is the

output embedding of r, independent from the connection-based model. Then, we calculate the inner
product between h

(s,t)
rep and ṽr, which is the final output of the subgraph-based model as described

in Figure 1 (e). We denote this value as P ((s, r, t)|ps1, ps2, ps3, pt1, pt2, pt3) or P subgraph
(s,r,t) , which is the

evaluated probability for (s, r, t) to be correct, given paths ps1, ps2, ps3 from s and pt1, pt2, pt3 from t.

We can see that both our models are path-based, depending only on the topological structure in a
knowledge graph. No entity embeddings are involved in our models.

3.4 RECURSIVE PATH-FINDING ALGORITHM

Given an entity s in the graph G, we use a recursive algorithm to find out-reaching paths from s.
Intuitively, if s reaches t via path p, we will further extend p by reaching out to each direct neighbor
of t recursively. Here is a more detailed description:

Suppose at the current step, we possess a path p = r1 ∧· · ·∧ rk starting from s and ending at another
entity t. Also, suppose the on-path entities are {s, e1, · · · , ek−1, t}, which are unique so that the
path is acyclic. Also, we set the upper bound on the length of a path to be L. Also, we denote Cs

l to
be the number of recursions already performed from s on paths of length l. Then, we set the upper
bound on Cs

l to be C, for l = 1, 2, · · · ,L− 1.

We define Qs to be the qualified entity set given the initial entity s. If entity t at current recursion
step does not belong to Qs, we will not record the discovered path p. In this paper, Qs can be the
entire entity set E , or the set containing all the direct neighbors of s, or the set containing only one
given entity t0.

Define Ns
t to be the number of discovered paths from s to t. Again, in this paper, paths are only

differed from each other by their relation sequences, rather than their on-path entities. We stop
recording discovered paths from s to t when N t

s reaches N, our pre-defined upper bound. Also,
suppose the direct neighbors (“one-hop” connections) of t are {t′1, · · · , t′n}, where each t′i is con-
nected with t via a triple (t, r′i, t

′
i). Again, r′i may be either an initial or an inverse relation.

Finally, we will decide whether to continue the recursion for each direct neighbor t′i of the current
entity t. That is, if the path length |p| < L, the current number of recursions Cs

|p| < C, and the direct

5

Under review as a conference paper at ICLR 2024

neighbor t′i does not belong to the current on-path entities {s, e1, · · · , ek−1, t}, we will proceed to
the next recursion step with respect to source entity s, path p′ = r1 ∧· · ·∧ rk∧ r′i, target entity t′i and
on-path entities {s, e1, · · · , ek−1, t, t

′
i}. In the meanwhile, Cs

|p| will increase by 1. Here, on-path
entities are considered to guarantee an acyclic path for next recursion.

Again, this path-finding algorithm depends on the starting entity s, which is summarized below.

Algorithm 1: Recursive Path-finding from entity s

Initialize L, C, N.
Func (p = r1 ∧· · ·∧ rk, t, {s, e1, · · · , ek−1, t}, Qs):
if t ∈ Qs and Ns

t < N then
Record the path p from s to t;
Ns

t ←− Ns
t + 1.

end
for r′i, t

′
i in the direct neighbor of t do

if |p| < L and Cs
|p| < C and t′i /∈ {s, e1, · · · , ek−1, t} then

Func (p = r1 ∧· · ·∧ rk∧ r′i, t
′
i, {s, e1, · · · , ek−1, t, t

′
i}, Qs);

Cs
|p| ←− Cs

|p| + 1.
end

end
Run Func (p = ∅, s, {s}, Qs).

Here, we use Func(x, y, · · ·) to represent a function with input x, y, etc. Also, p = ∅means that the
path p starts from empty, or none, or length-zero. If s reaches out to a direct neighbor t by r, then p
recursively becomes p = r.

In the next section, we will introduce how to implement our models and path-finding algorithms on
inductive link prediction datasets, as well as the performances of our model on these datasets.

4 EXPERIMENTAL RESULTS

In this section, we will first introduce the commonly used datasets for inductive link prediction
model evaluation, as well as other published models providing baselines for comparison. Then, we
will introduce the training methods and evaluation metrics we applied. The performances of our
models are provided right after. Finally, an ablation study will be conducted to see if the existing
structure reaches an optimism.

4.1 DATASETS AND BASELINE MODELS

We work on the benchmark datasets for inductive link prediction proposed with the GraIL model
(Teru et al., 2019), which are derived from WN18RR (Toutanova & Chen, 2015), FB15k-237
(Toutanova et al., 2015), and NELL-995 (Xiong et al., 2017). Each of the WN18RR, FB15k-237 and
NELL-995 datasets are further developed into four different versions for inductive link prediction.
Each version of each dataset contains a training graph and an inference graph, whereas the entity
set of the two graphs are disjoint. Detailed statistics on the number of entities, triples and relation
types of the datasets are summarized in many papers, such as (Teru et al., 2019; Chen et al., 2021;
Lin et al., 2022). For simplicity, we do not repeat the statistics in this paper again.

We adapt benchmark inductive link prediction models published in recent years as baselines in this
paper. They are Neural-LP from (Yang et al., 2017a), RuleN from (Meilicke et al., 2018), DRUM
from (Sadeghian et al., 2019), GraIL from (Teru et al., 2019), R-GCN from (Schlichtkrull et al.,
2018), CoMPILE from (Mai et al., 2021), ConGLR from (Lin et al., 2022), INDIGO from (Liu
et al., 2021), NBFNet from (Zhu et al., 2021), LogCo from (Pan et al., 2022) and TACT from (Chen
et al., 2021). Performances of these models will be given in subsection 4.4.

6

Under review as a conference paper at ICLR 2024

4.2 TRAINING PROTOCOLS

Suppose we obtain the inverse-added knowledge graph G = (E ,R ∪ R−1, T ∪ T −1) for training.
For the connection-based SiaILP model, we implement the recursive path-finding algorithm on each
entity s ∈ E to discover paths from s to its direct neighbors. Specifically, we use L = 10, C =
20000, N = 50, and set Qs to be the direct neighbors of s. For more details on this algorithm, please
refer to subsection 3.4. We repeat this algorithm ten times for each s ∈ E to enrich the discovered
paths.

Afterwards, we train the connection-based model using contrastive learning (negative sampling)
with the discovered paths. We randomly select three paths p1, p2, and p3 from s to t and provide
their corresponding input embedding sequences V1, V2, and V3 to the connection-based model.
We also provide the model with the output embedding of the target relation, which is either the
ground-truth relation r in a training triple (s, r, t) (where Qs being the direct neighbor of s ensures
the existence of such a triple), or a randomly selected relation r′ ∈ R. The connection-based model
calculates the inner product as described in subsection 3.2, with a label of 1 for the true relation r
and 0 for the random relation r′.

Here is the training strategy for the subgraph-based model: For each triple (s, r, t) ∈ T , we ran-
domly select two additional entities s′ and t′ from E and a random relation r′ ∈ R. We apply the
recursive path-finding algorithm separately from s, t, s′, and t′, using L = 3, C = 20000, and
N = 50. However, for comprehensive subgraph representation, we set Qs, Qt, Qs′ , and Qt′ to be
the entire set E . Similarly, the training is based on contrastive learning, which creates four triples:
(s, r, t), (s, r′, t), (s, r, t′), and (s′, r, t). For each triple, we randomly select three out-reaching
paths from each entity as input paths. The model calculates the inner product as described in section
3.3, with a label of 1 for a true triple and 0 for a corrupted triple.

We set the dimension of each relation embedding to be D = 300 in both models. We set the number
of hidden units to be H = 150 in each forward and backward LSTM layers in all siamese neural
network stacks. The learning rate is 10−5, the batch size is 32 and the training epoch is 10 across all
models on all datasets. The models are trained on an Apple M1 Max CPU.

4.3 EVALUATION METRICS

We apply both classification metric and ranking metric to evaluate the performance of our model. For
classification metric, we use the area under the precision-recall curve (AUC-PR) following GraIL
(Teru et al., 2019). That is, we replace the source or target entity of each test triple with a random
entity to form a negative triple. Then, we score the positive test triples with an equal number of
negative triples to calculate AUC-PR.

For the ranking metric, however, there seems to be two different settings. The first setting is purposed
in GraIL (Teru et al., 2019) and followed by CoMPILE (Mai et al., 2021), ConGLR (Lin et al., 2022),
INDIGO (Liu et al., 2021), NBFNet (Zhu et al., 2021) and LogCo (Pan et al., 2022), where each
test triple is ranked among other 50 negative triples whose source or target entities are replaced by
random entities. Accordingly, Hits@10 (the rate of true test triples ranked top-10 in all performed
rankings) is calculated with respect to all test triples. We refer to this setting as entity-corrupted
ranking. This setting coincides with that in the AUC-PR metric.

The second setting is proposed both in TACT (Chen et al., 2021) and INDIGO (Liu et al., 2021),
where each test triple is ranked among other negative triples whose relation is replaced by other
relations in the graph. Accordingly, Hits@1 is calculated with respect to all test triples in the paper
presenting TACT (Chen et al., 2021), while Hit@3 is calculated in the paper presenting INDIGO
(Liu et al., 2021). Here, the number of candidate triples depends on the number of relations in the
graph. We refer to this setting as relation-corrupted ranking. To comprehensively evaluate our
models, we apply both settings as our ranking metrics.

4.4 PERFORMANCES

The AUC-PR and entity-corrupted Hits@10 scores of Neural-LP, RuleN and DRUM are obtained
from (Teru et al., 2019), while the relation-corrupted Hits@1 score of these three models are ob-
tained from (Chen et al., 2021). The AUC-PR and entity-corrupted Hits@10 scores of TACT are

7

Under review as a conference paper at ICLR 2024

Model WN18RR FB15K-237 Nell-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Neural-LP 86.02 83.78 62.90 82.06 69.64 76.55 73.95 75.74 64.66 83.61 87.58 85.69
DRUM 86.02 84.05 63.20 82.06 69.71 76.44 74.03 76.20 59.86 83.99 87.71 85.94
RuleN 90.26 89.01 76.46 85.75 75.24 88.70 91.24 91.79 84.99 88.40 87.20 80.52
GraIL 94.32 94.18 85.80 92.72 84.69 90.57 91.68 94.46 86.05 92.62 93.34 87.50
TACT 95.43 97.54 87.65 96.04 83.15 93.01 92.10 94.25 81.06 93.12 96.07 85.75
CoMPILE 98.23 99.56 93.60 99.80 85.50 91.68 93.12 94.90 80.16 95.88 96.08 85.48
ConGLR 99.58 99.67 93.78 99.88 85.68 92.32 93.91 95.05 86.48 95.22 96.16 88.46
LogCo 99.43 99.45 93.99 98.75 89.74 93.65 94.91 95.26 91.24 95.96 96.28 87.81
SiaILP solo 79.04 78.17 76.39 70.96 88.03 94.95 92.75 95.42 83.58 87.65 91.22 81.98
SiaILP hybrid 84.23 88.54 83.94 84.50 88.64 93.39 92.81 93.20 76.35 88.20 89.88 81.03

Table 1: The AUC-PR metric values (in %) of inductive link prediction on twelve dataset versions.
The best score is in bold and the second best one is underlined.

Model WN18RR FB15K-237 Nell-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Neural-LP 74.37 68.93 46.18 67.13 52.92 58.94 52.90 55.88 40.78 78.73 82.71 80.58
DRUM 74.37 68.93 46.18 67.13 52.92 58.73 52.90 55.88 19.42 78.55 82.71 80.58
RuleN 80.85 78.23 53.39 71.59 49.76 77.82 87.69 85.60 53.50 81.75 77.26 61.35
GraIL 82.45 78.68 58.43 73.41 64.15 81.80 82.83 89.29 59.50 93.25 91.41 73.19
CoMPILE 83.60 79.82 60.69 75.49 67.64 82.98 84.67 87.44 58.38 93.87 92.77 75.19
ConGLR 85.64 92.93 70.74 92.90 68.29 85.98 88.61 89.31 81.07 94.92 94.36 81.61
LogCo 90.16 86.73 68.68 79.08 73.90 84.21 86.47 89.22 61.75 93.48 94.44 80.82
NBFNet 94.80 90.50 89.30 89.00 83.40 94.90 95.10 96.00 – – – –
SiaILP solo 73.95 65.76 73.22 63.99 88.29 95.19 96.88 96.77 78.00 89.08 97.40 81.94
SiaILP hybrid 77.43 77.55 76.86 73.06 81.95 92.89 93.99 95.03 67.00 79.62 90.96 75.02

Table 2: The Hits@10 metric values (in %) of inductive link prediction (entity-corrupted ranking)
on twelve dataset versions. The best score is in bold and the second best one is underlined.

obtained from the re-implementations by (Lin et al., 2022), whereas the relation-corrupted Hits@1
scores of TACT are still obtained from the initial paper (Chen et al., 2021). R-GCN is only used as
relation-corrupted Hits@3 baselines, obtained from (Liu et al., 2021). Performances of the remain-
ing models are obtained from their initial papers.

The AUC-PR results for the selected models are in Table 1, while their entity-corrupted Hits@10
performances are shown in Table 2. Here, “SiaILP solo” refers to using only the subgraph-based
model, while “SiaILP hybrid” combines both connection-based and subgraph-based models, with
output scores averaged on each triple. One can see that our models achieve several new state-of-the-
art results on inductive FB15K-237 and Nell-995 datasets, but perform moderately on the inductive
versions of WN18RR. This may be due to WN18RR’s more sparse relation types yet denser relation
connections compared to FB15K-237 and Nell-995 (Toutanova & Chen, 2015). In this case, path-
based subgraphs around different entities may be the same, and hence indistinguishable to SiaLP
models. This represents a trade-off, wherein prediction accuracy is sacrificed in favor of the capacity
for strict inductive link prediction. Therefore, it appears acceptable for the SiaLP models to be less
competitive in certain scenarios compared to entity-involved models.

Model WN18RR FB15K-237 Nell-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Neural-LP 54.80 23.60 3.00 19.50 7.30 3.60 3.90 4.10 5.00 5.70 3.30 3.20
DRUM 27.70 3.40 14.10 26.00 5.40 3.40 2.70 2.60 17.00 5.50 3.80 1.80
GraIL 74.90 62.80 37.70 61.00 1.60 1.30 0.30 1.70 14.60 1.00 0.70 1.70
TACT 99.50 97.80 85.20 98.20 74.10 71.70 72.20 40.90 77.60 53.30 35.40 44.40
SiaILP hybrid 85.11 85.26 75.70 82.44 70.73 82.64 82.43 81.04 85.00 70.38 65.39 68.81

Table 3: The Hits@1 metric values (in %) of inductive link prediction (relation-corrupted ranking)
on twelve dataset versions. The best score is in bold and the second best one is underlined.

Then, the relation-corrupted Hits@1 and Hits@3 performances of all models are shown in Table 3
and Table 4, respectively. Here, we only apply SiaILP hybrid setting, since performances by each

8

Under review as a conference paper at ICLR 2024

Model WN18RR FB15K-237 Nell-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

R-GCN 2.10 11.00 24.50 8.10 2.40 3.40 3.50 3.30 26.00 0.80 1.40 3.00
GraIL 0.60 10.70 17.50 22.60 1.00 0.40 6.60 3.00 0.00 7.40 2.50 0.50
INDIGO 98.40 97.30 91.90 96.10 53.10 67.60 66.50 66.30 80.00 56.90 64.40 45.70
SiaILP hybrid 99.47 97.05 91.24 98.46 81.95 93.51 93.29 93.68 100.00 81.30 83.31 81.12

Table 4: The Hits@3 metric values (in %) of inductive link prediction (relation-corrupted ranking)
on twelve dataset versions. The best score is in bold and the second best one is underlined.

single model are less satisfying. We can see that our SiaILP model performs especially well on
relation-corrupted rankings, which outperforms the baselines by a great margin on the inductive
versions of FB15K-237 and Nell-995. Here, our models can directly use relation embeddings in
relation-corrupted ranking scenarios. To our models, this is more straightforward than in entity-
corrupted ranking scenarios, where entities are indirectly represented by path-based connections or
subgraphs. Hence, our models become competitive when performing on the WN18RR datasets for
relation-corrupted inductive link prediction.

4.5 ABLATION STUDIES

Model WN18RR FB15K-237 Nell-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

SiaILP basic solo 79.04 78.17 76.39 70.96 88.03 94.95 92.75 95.42 83.58 87.65 91.22 81.98
SiaILP basic hybrid 84.23 88.54 83.94 84.50 88.64 93.39 92.81 93.20 76.35 88.20 89.88 81.03
SiaILP large solo 74.48 80.58 69.11 73.17 86.63 94.95 93.62 94.42 86.96 88.16 89.83 81.79
SiaILP large hybrid 75.40 86.95 77.30 85.64 82.44 94.71 93.98 93.85 77.09 85.37 90.05 70.91

Table 5: Ablation study: AUC-PR performances from four different settings of SiaILP models.

Model WN18RR FB15K-237 Nell-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

SiaILP basic solo 73.95 65.76 73.22 63.99 88.29 95.19 96.88 96.77 78.00 89.08 97.40 81.94
SiaILP basic hybrid 77.43 77.55 76.86 73.06 81.95 92.89 93.99 95.03 67.00 79.62 90.96 75.02
SiaILP large solo 60.11 66.21 50.74 54.09 82.93 94.56 94.91 95.86 82.00 87.18 97.15 82.08
SiaILP large hybrid 56.38 74.83 59.83 72.78 81.95 92.05 94.34 95.96 76.00 76.52 91.89 63.56

Table 6: Ablation study: Hits@10 performances from four different settings of SiaILP models.

Our ablation setting is straightforward: Instead of selecting three out-reaching paths from each entity
in the subgraph-based model (‘basic’), we randomly select six out-reaching paths (‘large’). But the
number of connecting paths between two entities in the connection-based model is always three. The
models are evaluated using AUC-PR and entity-corrupted Hits@10 ranking, with solo and hybrid
settings to be the same. The corresponding scores are shown in Table 5 and 6, respectively.

We can see that the best performances in general come from selecting three out-reaching paths for
each entity in the subgraph-based model (‘basic), whereas models with solo and hybrid settings
possess different advantages. This leads to the default setting in this paper.

5 CONCLUSION

In this paper, we proposed path-based inductive link prediction models. We only employ relation
embeddings and paths embeddings to capture the topological structure of a knowledge graph, ex-
cluding entity embeddings. We apply siamese neural network architectures to further reduce the
number of parameters in our models. These designs make the size of our models be negligible
compared to graph convolutional network based models, when applied to large knowledge graphs.
Experimental results show that our models achieve several new state-of-the-art performances on the
inductive versions of the link prediction datasets WN18RR, FB15K-237 and Nell-995.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in Neural Information Pro-
cessing Systems (NIPS 2013), 2013.

Jiajun Chen, Huarui He, Feng Wu, and Jie Wang. Topology-aware correlations between relations
for inductive link prediction in knowledge graphs. The Thirty-Fifth AAAI Conference on Artificial
Intelligence (AAAI-21), 2021.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. The Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI-18), pp. 1811–1818, 2018.

Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural Computation, 9(8),
1997.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. 2017 International Conference on Learning Representations (ICLR 2017), 2017.

Qika Lin, Jun Liu, Fangzhi Xu, Yudai Pan, Yifan Zhu, Lingling Zhang, and Tianzhe Zhao. Incor-
porating context graph with logical reasoning for inductive relation prediction. In Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 893–903, 2022.

Shuwen Liu, Bernardo Grau, Ian Horrocks, and Egor Kostylev. Indigo: Gnn-based inductive knowl-
edge graph completion using pair-wise encoding. In Advances in Neural Information Processing
Systems (NeurIPS 2021), volume 34, pp. 2034–2045, 2021.

Sijie Mai, Shuangjia Zheng, Yuedong Yang, and Haifeng Hu. Communicative message passing for
inductive relation reasoning. The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-
21), 2021.

C. Meilicke, M. Fink, Y. Wang, D. Ruffinelli, R. Gemulla, and H. Stuckenschmidt. Fine-grained
evaluation of rule- and embedding-based systems for knowledge graph completion. The Semantic
Web – ISWC 2018, 2018.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words
and phrases and their compositionality. In Advances in neural information processing systems,
pp. 3111–3119, 2013.

Yudai Pan, Jun Liu, Lingling Zhang, Tianzhe Zhao, Qika Lin, Xin Hu, and Qianying Wang. Induc-
tive relation prediction with logical reasoning using contrastive representations. In Proceedings
of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP 2022),
pp. 4261–4274, 2022.

G.A. Pavlopoulos, M. Secrier, and et al. Moschopoulos, C.N. Using graph theory to analyze biolog-
ical networks. BioData Mining, 4(10), 2011.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word rep-
resentation. 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
2014.

Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. Drum: End-to-
end differentiable rule mining on knowledge graphs. 33rd Conference on Neural Information
Processing Systems (NeurIPS 2019), 2019.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. European Semantic Web
Conference (ESWC), pp. 593–607, 2018.

Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou. End-to-end structure-
aware convolutional networks for knowledge base completion. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI), pp. 3060–3067, 2019.

10

Under review as a conference paper at ICLR 2024

Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Ng. Reasoning with neural ten-
sor networks for knowledge base completion. Advances in 26’th Neural Information Processing
Systems (NIPS), pp. 926–934, 2013.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding
by relational rotation in complex space. Pre-print on arXiv:1902.10197, 2019.

Komal K. Teru, Etienne Denis, and William L. Hamilton. Inductive relation prediction by subgraph
reasoning. Proceedings of Machine Learning Research, 119, 2019.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on Continuous Vector Space Models and their
Compositionality, pp. 57–66, 2015.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael
Gamon. Representing text for joint embedding of text and knowledge bases. 2015 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1499–1509, 2015.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. Proceedings of the 33 rd International Conference
on Machine Learning (ICML), 2016.

T.W. Valente, L.A. Palinkas, S. Czaja, K.-H. Chu, and C.H. Brown. Social network analysis for
program implementation. PLoS ONE, 10(6), 2015.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Talukdar Partha. Composition-based multi-
relational graph convolutional networks. International Conference on Learning Representations
2020 (ICLR 2020), 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. 2018 International Conference on Learning Representations
(ICLR 2018), 2018.

Wenhan Xiong, Thien Hoang, and William Yang Wang. DeepPath: A reinforcement learning
method for knowledge graph reasoning. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 564–573, 2017.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. Pre-print on arXiv:1412.6575, 2014.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for knowl-
edge base reasoning. Pre-print on arXiv:1702.08367, 2017a.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for knowl-
edge base reasoning. 31st Conference on Neural Information Processing Systems (NIPS 2017),
pp. 2319–2328, 2017b.

Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, and Mingzhong Wang. A vectorized relational graph
convolutional network for multi-relational network alignment. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pp. 4135–4141, 2019.

Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender system: A survey
and new perspectives. Association for Computing Machinery (ACM), 52(1), 2019.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford net-
works: A general graph neural network framework for link prediction. In Advances in Neural
Information Processing Systems (NeurIPS 2021), volume 34, pp. 29476–29490, 2021.

11

	Introduction
	Related Work
	Methodology
	Description on the Problem and Concepts
	Structure of the Connection-based Model
	Structure of the Subgraph-based Model
	Recursive Path-finding Algorithm

	Experimental Results
	Datasets and Baseline Models
	Training Protocols
	Evaluation Metrics
	Performances
	Ablation Studies

	Conclusion

