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Abstract

Time series data is ubiquitous across various do-001
mains, including manufacturing, finance, and002
healthcare. High-quality annotations are es-003
sential for effectively understanding time se-004
ries and facilitating downstream tasks. How-005
ever, obtaining such annotations is challeng-006
ing, particularly in mission-critical domains.007
In this paper, we propose TESSA, a multi-008
agent system designed to automatically gen-009
erate both general and domain-specific annota-010
tions for time series data. TESSA introduces011
two agents: a general annotation agent and a012
domain-specific annotation agent. The general013
agent captures common patterns and knowl-014
edge across multiple source domains, leverag-015
ing both time-series-wise and text-wise features016
to generate general annotations. Meanwhile,017
the domain-specific agent utilizes limited anno-018
tations from the target domain to learn domain-019
specific terminology and generate targeted an-020
notations. Extensive experiments on multiple021
synthetic and real-world datasets demonstrate022
that TESSA effectively generates high-quality023
annotations, outperforming existing methods.024
Our code and data are available at https://025
anonymous.4open.science/r/TESSA-8B7D.026

1 Introduction027

Time series data is prevalent in various fields such028

as manufacturing (Hsu and Liu, 2021), finance (Lee029

et al., 2024), and healthcare (Cascella et al., 2023).030

It captures critical temporal patterns essential for031

informed decision-making. However, general users032

frequently encounter difficulties in interpreting this033

data due to its inherent complexity, particularly in034

multivariate contexts where multiple variables inter-035

act over time. Furthermore, effective interpretation036

typically requires domain-specific knowledge to037

properly contextualize these patterns, thereby pos-038

ing significant challenges for individuals without039

specialized expertise.040
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Figure 1: How to annotate time series automatically?

High-quality annotations are crucial for address- 041

ing these interpretive challenges. Annotations pro- 042

vide meaningful context or insights into time series 043

data, highlighting important patterns, events, or 044

anomalies. They facilitate accurate analysis, fore- 045

casting, and decision-making, enhancing the perfor- 046

mance of downstream tasks such as anomaly detec- 047

tion, trend prediction, and automated reporting. For 048

instance, in predictive maintenance, understanding 049

sensor data trends is vital for preventing equip- 050

ment failure, while in finance, interpreting stock 051

price movements is crucial for informed investment 052

strategies. Despite their importance, high-quality 053

annotations are often scarce in real-world appli- 054

cations. This scarcity stems primarily from the 055

reliance on domain experts for manual annotation, 056

which is resource-intensive, costly, and prone to 057

inconsistencies. Moreover, the need for precise and 058

domain-specific terminology further complicates 059

the annotation process, as different fields require 060

highly specialized knowledge for accurate and con- 061

textually relevant interpretation. 062

To alleviate the above issues, one straightforward 063

approach is to leverage external resources to gen- 064

erate annotations (Liu et al., 2024a). For example, 065

Time-MMD (Liu et al., 2024a) uses web searches 066

to retrieve information as annotations, aiming to 067

find similar patterns and descriptions from the in- 068

ternet. Others (Jin et al., 2024; Liu et al., 2024b) 069

directly adopt large language models (LLMs) for 070
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annotation, leveraging LLMs’ great language un-071

derstanding capability. Prototype-based methods,072

such as prototype networks (Ni et al., 2021), have073

also been employed to identify representative exam-074

ples for annotation. However, these methods often075

fall short of producing high-quality annotations.076

Web search-based methods may retrieve irrelevant077

or inconsistent information. LLMs, while power-078

ful, tend to generate generic annotations, capture079

only basic patterns, or even hallucinate, and fail080

to account for the complex nature of time series081

data. Prototype networks rely on large amounts of082

data to train the network and identify representative083

prototypes, but the scarcity of high-quality anno-084

tations limits the quality and representativeness of085

these prototypes, making it difficult to generalize086

effectively to new or unseen patterns.087

To address these limitations, we propose to ex-088

tract knowledge from existing annotations across089

multiple source domains and transfer this knowl-090

edge to target domains with limited annotations.091

Specifically, as shown in Fig. 1, we aim to de-092

velop a system that automatically interprets time093

series data across various fields using common or094

domain-specific language. Formally, given abun-095

dant annotations from multiple source domains and096

limited annotations from a target domain, our goal097

is to leverage both time-series-wise and text-wise098

knowledge to generate accurate and contextually099

appropriate annotations for the target domain. This100

raises two key technical challenges: (i) How to101

extract common knowledge from source domains?102

(ii) How to learn domain-specific jargon from lim-103

ited target-domain annotations?104

To tackle these challenges and overcome the lim-105

itations of existing methods, we propose TESSA,106

a multi-agent system designed for both general and107

domain-specific TimE SerieS Annotation. As il-108

lustrated in Fig. 2, TESSA introduces two agents:109

a general annotation agent and a domain-specific110

annotation agent. The general annotation agent111

focuses on capturing common patterns and knowl-112

edge across various domains to generate annota-113

tions understandable by general users. To learn114

common knowledge from multiple domains, the115

general agent employs a time series-wise feature116

extractor and a text-wise feature extractor to extract117

both time-series-wise and text-wise features from118

time series data and domain-specific annotations119

from multiple source domains. To ensure impor-120

tant features are included in the general annota-121

tions, two feature selection methods—LLM-based122

and reinforcement learning-based selection—are 123

introduced to effectively and efficiently select both 124

the top-k most important time-series-wise and text- 125

wise features. The domain-specific agent lever- 126

ages limited target-domain annotations to learn and 127

generate annotations for specific domains using 128

domain-specific terminologies (jargon). It incor- 129

porates a domain-specific term extractor to learn 130

jargon from the limited target-domain annotations. 131

Additionally, an annotation reviewer is proposed to 132

maintain consistency between general annotations 133

and domain-specific annotations. 134

Our contributions are: (i) Problem. We explore 135

a novel problem in cross-domain multi-modal time 136

series annotation, bridging the gap between general 137

understanding and domain-specific interpretation; 138

(ii) Framework. We propose a novel multi-agent 139

system, TESSA, designed for both general and 140

domain-specific time series annotation by lever- 141

aging both time-series-wise and text-wise knowl- 142

edge from multiple domains; (iii) Experiments. 143

Extensive experiments on multiple synthetic and 144

real-world datasets demonstrate the effectiveness 145

of TESSA in producing high-quality annotations. 146

2 Related Work 147

Time Series Annotation. Time series anno- 148

tation aims to assign labels or descriptions to 149

specific segments, events, or patterns within a 150

time series dataset to highlight significant fea- 151

tures for further analysis. Traditionally, this pro- 152

cess has relied on manual annotation (Reining 153

et al., 2020), which is often time-consuming, labor- 154

intensive, and requires substantial domain exper- 155

tise. To reduce the effort needed for creating 156

large-scale, high-quality annotated datasets, sev- 157

eral studies have proposed semi-automatic annota- 158

tion approaches (Cruz-Sandoval et al., 2019; Nino 159

et al., 2016) that require minimal manual input or 160

post-annotation revisions. Despite these advance- 161

ments, fully automated time series annotation re- 162

mains underexplored due to the challenges of cap- 163

turing semantic and contextual information from 164

the data (Yordanova and Krüger, 2018). 165

LLMs for Time Series Analysis. Recent advance- 166

ments in LLMs have showcased their strong capa- 167

bilities in sequential modeling and pattern recogni- 168

tion, opening up promising new directions for time 169

series analysis. Several studies (Xue and Salim, 170

2023; Yu et al., 2023; Gruver et al., 2024; Jin et al., 171

2024; Li et al., 2024) have explored this potential. 172
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Figure 2: Overall framework of TESSA. It consists of two main agents: a general annotation agent, which
generates domain-independent annotations by selecting salient time-series and textual features, and a domain-
specific annotation agent, which refines these annotations by incorporating domain-specific terminology.

For instance, PromptCast (Xue and Salim, 2023)173

is a pioneering work that applies LLMs to general174

time series forecasting using a sentence-to-sentence175

approach. Time-LLM (Jin et al., 2024) reprograms176

time series into textual prototypes for LLaMA-7B,177

enhanced by natural language prompts incorporat-178

ing expert knowledge. Additional related works179

are discussed in Appendix A.1.180

Cross-modality Knowledge Transfer Learning181

through Pre-trained Models. There has been182

growing interest in leveraging pre-trained models183

for cross-modality knowledge transfer, particularly184

between the language, vision, and time series do-185

mains (Bao et al., 2022; Lu et al., 2022; Yang et al.,186

2021; Zhou et al., 2023). Recently, Zhou et al.187

(2023) have applied pre-trained language and im-188

age models to time series analysis tasks. To the best189

of our knowledge, no previous work has specifi-190

cally explored cross-modality knowledge transfer191

for time series annotation. Our work fills this gap192

by exploring how cross-modality transfer learning193

can enable automatic time series annotation. More194

details of the related works are in Appendix A.3195

3 Methodology196

In this section, we define the problem and present197

the details of our proposed TESSA framework,198

which aims to generate both general and domain-199

specific annotations for time series data.200

Cross-Domain Time Series Annotation Problem.201

Given several source domains {Ds1 ,Ds2 , . . .} and202

a target domain Dt, let {e1si , e
2
si , . . .} denote the203

domain-specific annotations from the source do-204

main Ds1 , and {e1t , e2t , . . .} represent the limited205

domain-specific annotations from the target domain206

Dt. Suppose X = (x1, · · · ,xL) is a time series in207

Dt, where L is the number of past timestamps and 208

xi = (x1i, · · · , xCi)
T ∈ RC represents the data 209

from C different channels at timestamp i. The ob- 210

jective of cross-domain time series annotation is to 211

generate the general annotation eg and the domain- 212

specific annotation es for X based on the anno- 213

tations from both the source and target domains. 214

More notations are provided in Appendix B. 215

Overview of TESSA. As illustrated in Fig. 2, the 216

proposed TESSA comprises two key components: 217

a general annotation agent and a domain-specific 218

annotation agent. The general annotation agent is 219

responsible for generating domain-independent an- 220

notations and consists of several modules: a time 221

series feature extraction module to capture time- 222

series-specific features, a domain decontextualiza- 223

tion module to convert domain-specific text into 224

common language, a text feature extraction module 225

to retrieve textual features from the decontextual- 226

ized text, two policy networks for selecting the top- 227

k most salient time-series and textual features, and 228

a general annotator to produce general annotations 229

based on the selected features. The domain-specific 230

annotation agent refines the general annotations to 231

generate domain-specific annotations. It includes 232

a domain-specific term extractor to identify key 233

terminology from a limited set of target-domain an- 234

notations and a domain-specific annotator to adjust 235

the general annotations accordingly. An annota- 236

tion reviewer further enhances the quality of the 237

domain-specific annotations. Next, we introduce 238

details of each component. 239

3.1 Multi-modal Feature Extraction 240

To address the challenge of extracting common 241

knowledge from source domains, we introduce two 242

feature extraction modules: a time-series feature 243
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extractor and a text-wise feature extractor, which244

extract features from time series data and source-245

domain annotations. We also propose a domain246

decontextualizer to enhance the extraction of com-247

mon knowledge from multi-source annotations.248

Time Series Feature Extraction. We extract fea-249

tures from time series data through a structured250

process Mr. Formally, for each channel c ∈ C, the251

set of time-series features Ft is denoted as:252

Ft = {f1
t , · · · , fnt

t } = Mr(X), (1)253

where Mr denotes the feature extraction frame-254

work applied to X, f i
t is the i-th extracted feature255

of X, and nt is the number of extracted features.256

For multivariate time series data, inter-variable fea-257

tures (e.g., Pearson correlation) are also included.258

Details of Mr are provided in Appendix C.259

Domain Decontextualization. In addition to260

time-series-wise features, textual annotations from261

source domains often contain valuable information262

(such as support or resilience in finance time se-263

ries annotations) for interpreting time series data. A264

straightforward method to extract this knowledge is265

to use LLMs on domain-specific annotations, lever-266

aging their real-world knowledge. However, in267

practice, many domains lack sufficient high-quality268

annotations, and domain-specific terminology can269

further hinder effective extraction.270

To address these challenges and facilitate knowl-271

edge transfer from source to target domains, we272

introduce a domain decontextualization LLM to273

convert domain-specific annotations into general274

annotations by removing domain-specific termi-275

nology. This makes it easier to extract common276

knowledge across domains. Specifically, given a277

domain-specific annotation eis in domain di, the278

decontextualized annotation eid is obtained as:279

eid = Md(pde(e
i
s, di)), (2)280

where Md is the domain decontextualization LLM.281

Details of the prompt template pde and examples282

can be found in Appendix C.2.283

Text Feature Extraction. After decontextualiza-284

tion, we use an LLM Ml to extract textual features285

from multiple source domains. Formally, given a286

set of decontextualized annotations {eid}
nd
i=1 and287

the text feature extractor Ml, the extracted textual288

features are denoted as:289

Fl = {f1
l , · · · , fn

l } = Ml(pl({eid}nd
i=1)), (3)290

where pl is the prompt for text feature extraction291

to guide Ml to output the text-wise features explic-292

itly or implicitly mentioned in the decontextualized293

annotations. The complete prompt template is pro- 294

vided in Appendix C.3. 295

3.2 Adaptive Feature Selection 296

With a diverse set of features extracted from time 297

series and text data, it becomes essential to fo- 298

cus on the most relevant ones to ensure the gener- 299

ated annotations remain concise and interpretable. 300

Moreover, repeatedly querying LLMs with both the 301

old and new data1 each time wastes computational 302

resources and incurs additional costs, especially 303

when using non-open-source models. 304

To address these issues, we propose a hybrid 305

strategy for adaptive feature selection that com- 306

bines Offline LLM-based Feature Selection with In- 307

cremental Reinforcement Learning-based Feature 308

Selection. The incremental method builds on the 309

offline approach, minimizing the need to re-query 310

LLMs with both old and new data as it arrives. 311

Offline LLM-based Feature Selection. Lever- 312

aging LLMs’ reasoning abilities, we introduce a 313

feature selection method using LLM-generated fea- 314

ture importance scores to identify the top-k most 315

important time-series-wise and text-wise features. 316

Features mentioned more frequently—either ex- 317

plicitly or implicitly—in annotations are assigned 318

higher importance scores. 319

Specifically, given an LLM as the feature 320

selector Msel, we prompt Msel with domain- 321

decontextualized annotations {eid}
nd
i=1 and the ex- 322

tracted features {f i
t}

nt
i=1 and {f i

l }
nl
i=1 to gener- 323

ate numerical feature importance scores: st = 324

[s1, · · · , snt ] for time-series-wise features and sl = 325

[s1, · · · , snl
] for text-wise features. 326

sj = Msel(pscore(f
j
t , {e

i
d}nd

i=1)), ∀j ∈ {1, · · · , nt},

sk = Msel(pscore(f
k
l , {eid}nd

i=1)), ∀k ∈ {1, · · · , nl},
(4) 327

Here, pscore is the prompt used to score fea- 328

ture importance. Higher scores, sj and sk ∈ 329

R+, indicate that the features f j
t and fk

l appear 330

more frequently, either explicitly or implicitly, in 331

the domain-decontextualized annotations {eid}
nd
i=1. 332

The templates for pscore are shown in Fig. 14 and 333

Fig. 15, respectively. To ensure that explicitly men- 334

tioned features receive higher importance scores, 335

we instruct Msel to assign greater weight to fea- 336

tures that are explicitly referenced in the annota- 337

tions. More details are provided in Appendix D.1. 338

1To avoid redundancy, unless specified otherwise, ‘data’ in
this paper refers to time series and their corresponding textual
annotations from various domains.
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Incremental Reinforcement Learning-based339

Feature Selection. When new data1 arrives, the340

offline LLM-based approach requires re-querying341

both old and new data, which becomes burden-342

some due to LLMs’ limited context window. As343

annotations increase, re-querying all data becomes344

impractical and costly, leading to higher resource345

consumption and reduced cost-effectiveness.346

To address the limitations of the offline ap-347

proach, we propose an Incremental Reinforcement348

Learning-based Feature Selection method that is349

more cost-effective for dynamic environments with350

evolving data. Specifically, we introduce a multi-351

agent reinforcement learning (MARL) framework352

to train two policy networks, Ft and Fl, to select353

the top-k most important time-series-wise and text-354

wise features, respectively. These policy networks355

store knowledge from existing annotations and are356

incrementally updated as new data arrives. This357

reduces the need to re-query the LLM with all the358

data, requiring only the new data during updates.359

As shown in Fig. 2, each policy network is ini-360

tialized with the first three layers of a small LLM,361

such as GPT-2 (Radford et al., 2019), which remain362

frozen during training. A trainable multi-head at-363

tention layer and a language model (LM) head from364

GPT-2 follow these layers, using the smallest ver-365

sion of GPT-2 with 124M parameters.366

During training, only the multi-head atten-367

tion layer is updated. For time-series-wise fea-368

tures, given the candidate features {f i
t}

nt
i=1 and369

their corresponding feature name tokens Y =370

{yi1, · · · , yint
}, the policy network Ft computes371

action-values (Q-values) qz = [qz,f1
t
, · · · , qz,fnt

t
]372

based on the mean logits of the feature names:373

qs = Ft({yi}nt
i=1), (5)374

A softmax function generates a probability distri-375

bution over the features, and the top-k features are376

selected based on the highest probabilities.377

At each timestep, the selected top-k features are378

passed to the LLM Msel to obtain their importance379

scores si, ∀i ∈ {1, · · · , k}. The agent receives a380

reward rt defined as:381

rt =

{∑k
i=1 si, si ≥ τ

−0.5, otherwise,
(6)382

where τ is a threshold to discourage selecting unim-383

portant features. The text-wise feature policy net-384

work Fl undergoes a similar training process.385

After training, the policy networks are incremen-386

tally updated with only new data, eliminating the387

need to re-query the LLM with both old and new 388

data. This approach improves the scalability and 389

efficiency of feature selection while reducing com- 390

putational costs, effectively overcoming the offline 391

approach’s limitations. By incrementally updating 392

the policy networks, we ensure that feature selec- 393

tion remains scalable and cost-effective in dynamic 394

environments with evolving data. More discussion 395

of the necessity of the RL component is provided 396

in Appendix D.2. 397

3.3 General Annotation Generation 398

After selecting the top-k most important features 399

from both time-series and text, a general annotator 400

is introduced to generate general annotations by 401

analyzing these selected features. An LLM, serv- 402

ing as the general annotator, interprets the given 403

time series data based on the selected features. For- 404

mally, given time series data X = {xi}Li=1 and 405

the selected time-series-wise and text-wise features 406

{f i
t}

kt
i=1 and {f i

l }
kl
i=1, the generation of a general 407

annotation eg is represented as: 408

eg = Mgen(pgen({xi}Li=1, {f i
t}kt

i=1, {f
i
l }kl

i=1)), (7) 409

where pgen is the prompt for generating general 410

annotations. By emphasizing the signal from the 411

selected common knowledge, the general annota- 412

tions capture richer patterns that may be overlooked 413

when directly applying LLMs. An example of the 414

prompt template is shown in Fig. 16. 415

3.4 Domain-specific Annotation Generation 416

Generating domain-specific annotations for time 417

series is crucial as different domains rely on spe- 418

cialized jargon and context-specific terminology 419

to accurately interpret and understand data. Time 420

series data from financial markets, healthcare sys- 421

tems, or industrial processes can exhibit patterns, 422

trends, and anomalies that are unique to each do- 423

main. General annotations may overlook critical 424

nuances, whereas domain-specific annotations cap- 425

ture contextual relevance, improving the precision 426

and reliability of downstream analysis or model 427

predictions. By tailoring annotations to a domain’s 428

specific lexicon, we can detect meaningful patterns 429

more accurately and make informed decisions. 430

Domain-specific Term Extractor. To address 431

the challenge of learning domain-specific terminol- 432

ogy, we introduce a domain-specific term extractor. 433

Given limited domain-specific annotations {eit}
net
i=1 434

from the target domain, an LLM Mext is employed 435
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to extract domain-specific terms. We prompt Mext436

with the annotations {eit}
net
i=1 to extract a set of437

domain-specific terms {Ji}nJ

i=1:438

{Ji}nJ

i=1 = Mext(pext({eit}
net
i=1)), (8)439

where nJ is the number of extracted terms, and pext440

is the prompt for domain-specific term extraction.441

Fig. 17 provides the template for pext.442

Domain-specific Annotator. To ensure alignment443

between domain-specific and general annotations,444

an LLM Mspe, acting as a domain-specific annota-445

tor, applies the extracted terms {Ji}nJ

i=1 to general446

annotations eg, converting them into target-domain447

annotations et. Formally, this is represented as:448

et = Mspe(pspe(eg, {Ji}nJ

i=1)), (9)449

where pspe is the prompt for generating domain-450

specific annotations, shown in Fig. 18.451

Annotation Reviewer. To improve the quality452

of domain-specific annotations and ensure better453

alignment with general annotations, we introduce454

an annotation reviewer. This LLM, Mrev, reviews455

the generated annotations and extracted terms, pro-456

viding feedback ef to the extractor and annotator:457

ef = Mrev(prev(eg, et, {Ji}nJ

i=1)), (10)458

where prev is the prompt for reviewing annotations.459

An example is shown in Fig. 19. This feedback460

loop ensures more precise term extraction and bet-461

ter alignment between general and domain-specific462

annotations. Based on the feedback, the extractor463

Mext refines the extraction process, and the anno-464

tator Mspe enhances its annotations accordingly.465

4 Experiments466

This section presents the experimental results. We467

first evaluate the TESSA’s annotations in down-468

stream tasks and on a synthetic dataset, then exam-469

ine domain-specific annotations, and finally assess470

the contribution of key TESSA components.471

4.1 Experimental Setup472

Dataset. To evaluate the effectiveness of TESSA,473

five real-world datasets from distinct domains are474

considered: Stock, Health, Energy, Environment,475

Social Good, Climate and Economy. Specifically,476

the stock dataset includes 1,935 US stocks with477

the recent 6-year data, collected by ourselves. The478

other four datasets come from the public bench-479

mark Time-MMD (Liu et al., 2024a). In this paper,480

the Stock and Health datasets serve as the source 481

domains, while the rest five datasets are treated as 482

the target domains. Additionally, we generate a 483

synthetic dataset containing both time series and 484

ground-truth annotations to directly assess the qual- 485

ity of general annotations. More details on these 486

datasets can be found in Appendix F.1. 487

LLMs. Our experiments utilize one closed-source 488

model, GPT-4o (Achiam et al., 2023) and two open- 489

source models, LLaMA3.1-8B (Dubey et al., 2024) 490

and Qwen2-7B (Yang et al., 2024). 491

4.2 Evaluating General Annotations in 492

Downstream Tasks 493

To evaluate the quality of the general annotations, 494

we apply the generated annotations to the multi- 495

modal downstream tasks (i.e., time series forecast- 496

ing and imputation) by following the experimental 497

setup in Time-MMD (Liu et al., 2024a). As in 498

Fig. 4, time series data and textual annotations are 499

processed independently by unimodel TSF mod- 500

els and LLMs with projection layers. The model- 501

specific outputs are then fused through a linear 502

weighting mechanism to generate final predictions. 503

Incremental RL-based selection in Section 3.2 is 504

used in TESSA to select the top-k most important 505

features for generating annotations. The implemen- 506

tation details are provided in Appendix F.3 and G.1. 507

Baselines. TESSA is, to the best of our knowledge, 508

the first work on cross-domain multi-modal time 509

series annotation. We compare it with several rep- 510

resentative single-domain methods: No-Text, Time- 511

MMD (Liu et al., 2024a), and DirectLLM (which 512

directly uses LLM-generated annotations). Details 513

of these methods are provided in Appendix F.2. 514

Evaluation Metrics. For time series forecasting 515

task, we use MSE (Mean Squared Error) and MAE 516

(Mean Absolute Error) as evaluation metrics, where 517

lower values for them mean better annotations. 518

Experimental Results. Table 1 presents the com- 519

parison results for the time series forecasting task, 520

where Informer (Zhou et al., 2021) is the forecast- 521

ing model and GPT-4o (Achiam et al., 2023) serves 522

as the LLM backbone. Additional forecasting re- 523

sults using different LLM backbones are available 524

in Appendix G.2. The following observations can 525

be made: (1) No-Text shows the worst performance 526

across all datasets, validating the need for annota- 527

tions to improve performance in downstream tasks. 528

This suggests that better downstream task perfor- 529

mance indicates higher-quality annotations. (2) 530

TESSA achieves the best performance among all 531
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Table 1: Forecasting results with GPT-4o as the LLM
backbone. NT, TM, and DL refer to No-Text, Time-
MMD, and DirectLLM, respectively. MSE is shown in
the top half and MAE in the bottom half.

Domain NT TM DL TESSA

Environment 1.2542 0.8483 0.7714 0.4629
Energy 2.0117 0.2172 0.0575 0.0482
Social Good 2.1457 1.6072 0.4639 0.1935

Environment 0.7387 0.6865 0.6604 0.4424
Energy 1.1663 0.2139 0.0055 0.0040
Social Good 1.1205 0.9731 0.3801 0.0825

compared methods, demonstrating its effectiveness532

in generating high-quality general annotations. Ad-533

ditional results of time series imputation tasks, can534

be found in Appendix G.3.535

4.3 Evaluating General Annotations in536

Synthetic Datasets537

We construct a synthetic dataset with time se-538

ries data and ground-truth annotations to validate539

TESSA’s performance. Implementation details are540

provided in Appendix H.1.541

Evaluation Metrics. We apply the LLM-as-a-542

judge approach (Bubeck et al., 2023; Dubois et al.,543

2024), evaluating two metrics: Clarity and Compre-544

hensiveness. Two distinct LLMs score the gener-545

ated annotations on a scale of 1 to 5 for each metric,546

with an overall score calculated as the mean of the547

two metrics. Further details on the metrics and the548

LLM-judge prompts can be found in Appendix H.2.549

Experimental Results. We compare TESSA550

with DirectLLM in Table 2. The “Mean” de-551

notes the average score of generated annotations552

for each method, and P(T>D) is the percentage of553

TESSA’s annotations that receive higher scores554

than DirectLLM’s. The results show that TESSA555

outperforms DirectLLM on both metrics, with av-556

erage scores of 3.90 in Clarity and 4.44 in Compre-557

hensiveness, compared to DirectLLM’s 3.79 and558

1.55. Additionally, 82.71% of TESSA’s annota-559

tions receive higher scores, indicating that TESSA560

produces more essential and easily understandable561

features, further demonstrating its effectiveness.562

4.4 Domain-specific Annotation Evaluation563

In this subsection, we evaluate the quality of do-564

main specific annotations. Similar to Section 4.3,565

we adopt a LLM-as-a-Judger strategy to evalu-566

ate the performance of domain-specific annotation567

agent from three perspectives: Clarity, Comprehen-568

siveness, and Domain-relevance. The overall score569

is the average of these three metrics. Further details570

Table 2: General annotation results on the synthetic
dataset with GPT-4o as the LLM backbone.

Metric Method Mean P(T>D) (%)

Clarity TESSA 3.90 69.76DirectLLM 3.79

Compre. TESSA 4.44 87.10DirectLLM 1.55

Overall TESSA 4.14 82.71DirectLLM 2.84

Table 3: Domain-specific annotation results on the En-
vironment dataset using GPT-4o as the LLM. Dom. Rel.
is the domain-relevance metric used in Section 4.4.

Metric Method Mean P(T>D) (%)

Clarity TESSA 4.74 99.81DirectLLM 3.32

Compre. TESSA 4.38 97.04DirectLLM 3.01

Dom. Rel. TESSA 4.30 94.72DirectLLM 3.57

Overall TESSA 4.64 98.51DirectLLM 3.41

on these metrics are provided in Appendix I.1. 571

Experimental Results. We present the compar- 572

ison results of TESSA and DirectLLM on the 573

Environment dataset in Table 3, with GPT-4o as 574

the LLM backbone. The key observations are: 575

(1) TESSA significantly outperforms DirectLLM 576

across all metrics, achieving an overall score of 577

4.64 compared to DirectLLM’s 3.41. Notably, 578

98.51% of TESSA’s annotations receive higher 579

scores, demonstrating its effectiveness in generat- 580

ing high-quality domain-specific annotations. (2) 581

TESSA scores 4.74 in Clarity and 4.38 in Com- 582

prehensiveness, while DirectLLM scores 3.32 and 583

3.01, respectively. This shows that TESSA ’s an- 584

notations are clearer, more concise, and cover more 585

important features. (3) TESSA also excels in do- 586

main relevance, with 94.72% of its annotations 587

scoring higher, achieving an average of 4.30, sig- 588

nificantly outperforming DirectLLM’s 3.41. This 589

indicates that TESSA produces highly accurate 590

annotations that effectively use domain-specific ter- 591

minology and maintain strong contextual relevance. 592

More results on other datasets are in Appendix I.3. 593

4.5 In-depth Dissection of TESSA 594

Adaptive Feature Selections. We compare our 595

two feature selection methods: offline LLM-based 596

selection and incremental RL-based selection. To 597

assess their effectiveness in selecting the top-k 598

most important features, we evaluate the quality 599
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Figure 3: Comparison of offline vs. incremental feature
selection. GPT-4o is the LLM backbone, with Envi-
ronment as the target domain. (a) General annotation
results; (b) Domain-specific annotation results.

of the generated general and domain-specific an-600

notations, following the procedures in Sections 4.2601

and 4.4. Environment is set as the target domain,602

with results shown in Fig. 3. The results indicate603

that TESSA performs comparably in both general604

and domain-specific annotation generation using605

either selection method. Specifically, as shown in606

Fig. 3(a), both approaches achieve MSE and MAE607

around 0.46 and 0.44 for general annotations. Sim-608

ilarly, in Fig. 3(b), both methods score consistently609

high across all domain-specific metrics, demon-610

strating their effectiveness in selecting important611

features. However, incremental RL-based selection612

proves more cost-effective by reducing redundant613

re-querying of previously used data.614

Ablation Studies. We perform ablation studies to615

assess the importance of domain decontextualiza-616

tion and adaptive feature selection in TESSA. For617

domain decontextualization, we introduce a variant,618

TESSA/D, which bypasses the domain decontex-619

tualization LLM and directly extracts text-wise fea-620

tures from domain-specific annotations. Table 13621

shows that TESSA/D captures irrelevant features,622

such as higher prices over time and fun, which are623

unrelated to time series analysis. This confirms624

that domain-specific terminology can hinder the625

accurate extraction of time-series-relevant features.626

To prove the importance of adaptive feature se-627

lection in TESSA, we remove the adaptive feature628

selection module to create a variant, TESSA/F. We629

apply an LLM-as-a-judger to compare the quality630

of the generated annotations between TESSA and631

its variants. The evaluation metrics are introduced632

in Appendix L.1. The comparison results on the633

Social Good dataset are in Table 4, with qualitative634

examples in Appendix L.2. We observe: TESSA635

consistently outperforms TESSA/F. Specifically,636

TESSA achieves a clarity score of 4.41, compared637

to 3.66 for TESSA/F. This demonstrates the ne-638

cessity of adaptive feature selection. Furthermore,639

according to Table 15 in Appendix L.2, the annota-640

Table 4: Ablation studies in the SocialGood dataset.
GPT-4o is the LLM backbone.

Metric Method Mean P(T>D) (%)

Clarity TESSA 4.41 83.3TESSA/F 3.66

tions generated by TESSA/F tend to include many 641

features without proper analysis. This shows that 642

involving too many features can hinder the clarity 643

of the annotations, further emphasizing the impor- 644

tance of adaptive feature selection in improving 645

annotation quality. Additional ablation studies ex- 646

amining the contributions of other components of 647

TESSA are in Appendix L.3. And discussions on 648

data contamination are in Appendix L.4. 649

4.6 Case Study of TESSA 650

We conduct a case study to further validate the 651

effectiveness of TESSA. A representative time 652

series from the Social Good domain (Fig. 6(b)) is 653

selected, and both TESSA and DirectLLM are ap- 654

plied to generate general and domain-specific anno- 655

tations, summarized in Table 22. To assess the qual- 656

ity of the annotations, we use an LLM-as-a-judger 657

to evaluate the domain-specific annotations from 658

both methods, with results shown in Table 14. Our 659

findings indicate that: (1) TESSA’s general anno- 660

tations capture more meaningful patterns, aiding 661

user understanding and downstream tasks, whereas 662

DirectLLM only highlights basic trends; and (2) 663

TESSA’s domain-specific annotations consistently 664

outperform DirectLLM across all metrics, offering 665

clearer, more comprehensive, and contextually rel- 666

evant insights. More case studies of multivariate 667

time series data are provided in Appendix M. 668

5 Conclusion 669

In this work, we introduce TESSA, a multi-agent 670

system for automatic general and domain-specific 671

time series annotation. TESSA incorporates two 672

agents, a general annotation agent and a domain- 673

specific annotation agent, to extract and leverage 674

both time-series-wise and text-wise knowledge 675

from multiple domains for annotations. TESSA 676

overcomes the limitations of directly applying 677

LLMs, which often capture only basic patterns 678

and may hallucinate, by effectively identifying 679

and emphasizing significant patterns in time series 680

data. Our experiments on synthetic and real-world 681

datasets from diverse domains demonstrate the ef- 682

fectiveness of TESSA in generating high-quality 683

general and domain-specific annotations. 684
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6 Limitations685

Potential limitations of this work include the need686

for limited target-domain annotations to learn687

domain-specific jargon for generating domain-688

specific annotations. Additionally, our approach689

relies on annotations from source domains to trans-690

fer knowledge to target domains. If the chosen691

source domain annotations are all of low quality or692

lack sufficient common knowledge, it may affect693

the overall performance of TESSA.694

7 Ethics Statement695

We adhere to the ACM Code of Ethics in our re-696

search. All datasets and models used in this study697

are either publicly accessible or synthetically gen-698

erated. Specifically, we created a synthetic dataset699

comprising time series data with generated gen-700

eral annotations to facilitate our experiments while701

avoiding the use of any personal or sensitive real-702

world data. We acknowledge the potential risks and703

harms associated with LLMs, such as generating704

harmful, offensive, or biased content. Moreover,705

LLMs are often prone to generating incorrect in-706

formation, sometimes referred to as hallucinations.707

We recognize that the models studied in this paper708

are not exceptions to these limitations. Previous709

research has shown that the LLMs used in this710

study suffer from bias, hallucinations, and other is-711

sues. We emphasize the importance of responsible712

and ethical use of LLMs and the need for further713

research to mitigate these challenges before deploy-714

ing them in real-world applications. The models715

used in this work are licensed under the terms of716

OpenAI, LLaMA, and Qwen.717
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A More Related Work917

A.1 LLMs for Time Series Analysis918

The rapid advancement of LLMs in natural lan-919

guage processing has unveiled unprecedented ca-920

pabilities in sequential modeling and pattern recog-921

nition, which can be leveraged for time series anal-922

ysis. Three primary approaches are commonly923

adopted (Jiang et al., 2024): direct querying of924

LLMs (Xue and Salim, 2023; Yu et al., 2023;925

Gruver et al., 2024), fine-tuning LLMs with task-926

specific modifications (Chang et al., 2023; Cao927

et al., 2024; Jin et al., 2024; Sun et al., 2024), and928

incorporating LLMs into time series models to en-929

hance feature extraction (Li et al., 2024).930

Direct querying involves using LLMs to gener-931

ate predictions or identify patterns from the data932

without modifying the underlying architecture. For933

example, PromptCast (Xue and Salim, 2023) ap-934

plies LLMs to time series forecasting through a935

sentence-to-sentence paradigm. Yu et al. explore936

the use of LLMs for domain-specific tasks like937

financial time series forecasting (Yu et al., 2023),938

while LLMTime (Gruver et al., 2024) demonstrates939

how LLMs can function as effective learners by to-940

kenizing time series data in a text-like format.941

Fine-tuning LLMs enables them to better cap-942

ture the intricacies of time series data by adapting943

them to specific datasets or tasks. For instance,944

LLM4TS (Chang et al., 2023) shows that fine-945

tuning pre-trained models can enhance forecasting946

performance. Additionally, TEMPO (Cao et al.,947

2024) and TEST (Sun et al., 2024) introduce archi-948

tectures tailored for time series prediction, further949

demonstrating the power of specialized designs.950

Lastly, LLMs can also act as feature enhancers951

within traditional time series models, enriching952

data representations and boosting performance. For953

example, (Li et al., 2024) illustrates how a frozen954

LLM can augment zero-shot learning for ECG time955

series analysis, highlighting the potential of LLMs956

to provide valuable features for complex datasets.957

A.2 Domain Specialization of LLMs958

Domain specialization of LLMs refers to the959

process of adapting broadly trained models to960

achieve optimal performance within a specific do-961

main. This is generally categorized into three962

approaches: prompt crafting (Ben-David et al.,963

2022; Zhang et al., 2023; Xu et al., 2024), ex-964

ternal augmentation (Izacard et al., 2023), and965

model fine-tuning (Malik et al., 2023; Pfeiffer et al.,966

2020). One of the earliest efforts in this area is 967

PADA (Ben-David et al., 2022), which enhances 968

LLMs for unseen domains by generating domain- 969

specific features from test queries and using them 970

as prompts for task prediction. Auto-CoT (Zhang 971

et al., 2023) advances domain specialization by 972

prompting LLMs with the phrase “Let’s think step 973

by step,” helping guide the models in generat- 974

ing reasoning chains. Additionally, Izacard et al. 975

(2023) propose integrating a relatively lightweight 976

LLM with an external knowledge base, achieving 977

performance comparable to much larger models 978

like PaLM (Chowdhery et al., 2023). These stud- 979

ies highlight the flexibility of LLMs in adapting 980

to specific domains through various strategies for 981

domain adaptation. 982

A.3 Cross-modality Knowledge Transfer 983

Learning through Pre-trained Models 984

There has been growing interest in leveraging pre- 985

trained models for cross-modality knowledge trans- 986

fer, particularly between the language, vision, and 987

time series domains (Bao et al., 2022; Lu et al., 988

2022; Yang et al., 2021; Zhou et al., 2023). For 989

instance, Bao et al. (2022) proposes a stagewise 990

pre-training strategy that trains a language expert 991

using frozen attention blocks pre-trained on image- 992

only data. Similarly, Lu et al. (2022) examines 993

the transferability of language models to other do- 994

mains, while Zhou et al. (2023) applies pre-trained 995

language and image models to time series analysis 996

tasks. To the best of our knowledge, no previ- 997

ous work has specifically explored cross-modality 998

knowledge transfer for time series annotation. Our 999

work aims to fill this gap by investigating the ap- 1000

plication of cross-modality transfer learning in the 1001

context of automatic time series annotation. 1002

B Notations 1003

Table 5 presents all the notations we used in this 1004

paper. 1005

Additionally, we also provide some specific ex- 1006

amples of domains, annotations, and features to 1007

improve the clarity of the problem settings of cross- 1008

domain time series annotation defined in Section 3. 1009

Specifically, our paper consider six distinct do- 1010

mains, i.e., Stock, Health, Environment, Social 1011

Good, Climate and Economy. For instance, the 1012

stock dataset includes multivariate time series data 1013

(e.g., stock price, volume, RSI, moving average) 1014

with corresponding annotations capturing features 1015
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Table 5: Notation Table

Symbol Description

x Input time series data
es Domain-specific annotation from source do-

mains
et Domain-specific annotation from target do-

main
ed Domain-decontextualized annotation
eg General annotation
ft Time-series-wise feature
fl Text-wise feature
J Domain-specific term (jargon) from target

domain

Md Domain decontextualizer
Mt Time-series-wise feature extractor
Ml Text-wise feature extractor
Msel Feature selector
Mgen General annotator
Mjar domain-specific term extractor
Mspe Domain-specific annotator
Mrev Annotation reviewer

pde prompt of domain-decontextualization
pl prompt of text-wise feature extraction

pscore prompt of scoring
pgen prompt of general annotation
pext prompt of domain-specific term extraction
pspe prompt of domain-specific annotation
prev prompt of annotation review

like support levels and resilience. More examples1016

of text-wise features can be found in Table 13.1017

More examples of domain-specific annotations are1018

provided in Tables 27, 28, 29, 30, 31 and 32 of1019

Appendix M.‘1020

C More Details of Multi-modal Feature1021

Extraction1022

C.1 Time-series Feature Extraction1023

Given a time series data X = {(x1, · · · ,xL)},1024

we develop a time series extraction toolbox1025

{f1
t , . . . , f

Nt
t } to extract time-series-wise features1026

from X. Specifically, we include seasonality, trend,1027

noise, moving average, lag feature, rolling window1028

feature, and Fourier frequency as intra-variable1029

time-series-wise features. For multivariate time1030

series, we also consider inter-variable time-series-1031

wise features, i.e., mutual information, Pearson1032

correlation, and canonical correlation.1033

In particular, we employ Seasonal-Trend de-1034

composition (STL) (Cleveland et al., 1990)1035

to extract seasonality, trend, and noise from1036

the given time series data. To extract1037

Fourier frequencies, the Fast Fourier Transform1038

(FFT) (Almeida, 1994) is applied to convert a1039

time-domain signal into its frequency compo-1040

nents. For the inter-variable time-series fea- 1041

tures, we use np.corrcoef to compute the Pear- 1042

son correlation. To calculate mutual informa- 1043

tion, two time series are first discretized, followed 1044

by sklearn.metrics.mutual_info_score. To 1045

calculate canonical correlation, we first use 1046

sklearn.cross_decomposition to decompose 1047

two time series data, and then use np.corrcoef 1048

to obtain the correlation. 1049

C.2 Domain Decontextualization 1050

We present the prompt template for domain decon- 1051

textualization in Fig. 13. 1052

C.3 Text Feature Extraction 1053

Table 33 shows the prompt template for textual 1054

feature extraction. 1055

D More Details of Adaptive Feature 1056

Selection 1057

D.1 Offline LLM-based Feature Selection 1058

The templates for pscore in Eq. (4) are shown in 1059

Fig. 14 and Fig. 15, respectively. 1060

In some cases, we cannot input all the annota- 1061

tions to LLMs for calculating scores. We may split 1062

the annotations into several small batches and input 1063

the annotations in the small batches to calculate the 1064

score using Eq. (4). After that, we will accumulate 1065

the scores from all batches to get the final scores 1066

of each feature/token and then select the features 1067

with the top-k highest scores. 1068

D.2 Incremental Reinforcement 1069

Learning-based Feature Selection 1070

The necessity of this component. In the proposed 1071

LLM-based feature selection from Section 3, when 1072

new annotations exhibit different distributions or 1073

feature characteristics compared to the old data, 1074

it becomes necessary to re-query both old and 1075

new data to select the top-k most important fea- 1076

tures. This process is computationally intensive 1077

and resource-inefficient, especially as the volume 1078

of data grows. To address this issue, we propose 1079

the incremental reinforcement learning (RL)-based 1080

feature selection method. This approach provides 1081

the following benefits: 1082

• Cost-Efficiency: Instead of re-querying LLMs 1083

with all the data, the RL-based method incre- 1084

mentally updates the knowledge stored in policy 1085

networks, requiring only the new data during up- 1086

dates. 1087
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• Scalability: By reducing redundant computa-1088

tions, the incremental RL-based method ensures1089

scalability in dynamic environments with evolv-1090

ing data.1091

E Time Complexity Analysis1092

To analyze the time complexity of TESSA, we1093

consider each component of TESSA separately,1094

focusing on the computational cost associated with1095

feature extraction, feature selection, and annotation1096

generation and review.1097

Feature Extraction. Extracting intra-variable and1098

inter-variable features has a complexity of O(C2 ·1099

n) , where C is the number of channels in the time1100

series and n is the number of time points.1101

Feature Selection. For offline LLM-based fea-1102

ture selection, the complexity is O(k · M · L2),1103

where k is the number of features, M is the model1104

size (number of parameters) of the LLM, and L is1105

the input sequence length. Incremental RL-based1106

selection reduces this overhead by incrementally1107

updating policy networks without re-querying old1108

data.1109

Annotation Generation and Review. Each LLM1110

inference for annotation generation or review has1111

a complexity of O(M · L2). Given T samples, the1112

overall complexity becomes O(T ·M · L2).1113

Overall Complexity. The combined complexity1114

can be expressed as:1115

O(T · [C2 · n+ k ·M · L2]),1116

where T is the number of time series samples.1117

F Experimental Settings1118

F.1 Dataset Statistics1119

Datasets. To evaluate the effectiveness of TESSA,1120

five real-world datasets from distinct domains are1121

considered: Stock, Health, Energy, Environment,1122

and Social Good. Specifically, the stock dataset1123

includes 1,935 US stocks with the recent 6-year1124

data, collected from Investtech2. The other four1125

datasets come from the public benchmark Time-1126

MMD (Liu et al., 2024a). The dataset statistics are1127

summarized in Table 6.1128

Additionally, we generate a synthetic dataset1129

containing both time series and ground-truth an-1130

notations to directly assess the quality of the gen-1131

eral annotations. The synthetic dataset is created1132

by combining several key components from the1133

time-series data:1134
2https://www.investtech.com/

• Trend: Introduces an overall direction, which 1135

can be upward, downward, or mixed. 1136

• Seasonality: Adds cyclical patterns, modeled 1137

using sine waves. 1138

• Fourier Feature: Incorporates complex periodic 1139

behavior by combining multiple sine and cosine 1140

waves. 1141

• Noise: Adds Gaussian noise to simulate random 1142

fluctuations and real-world imperfections. 1143

• Rolling Window Features: Captures smoothed 1144

trends (mean) and local variability (max/min). 1145

• Lag Features: Uses past values to capture auto- 1146

correlation in the time series. 1147

Ground-truth annotations are then generated by 1148

summarizing the key components of the synthetic 1149

time series. 1150

In our synthetic dataset, we conduct 100 times 1151

random generation of each components and then 1152

combine them together to get 100 synthetic time 1153

series data, each with corresponding textual anno- 1154

tation. 1155

F.2 Baseline Methods 1156

Three baselines are applied in our general annota- 1157

tion evaluation for downstream tasks: 1158

• No Text: No textual data are utilized in the fore- 1159

casting process. 1160

• Time-MMD (Liu et al., 2024a): A multimodal 1161

benchmark for time series analysis that incorpo- 1162

rates both time series and text data. To adapt this 1163

method to our setting, we apply the original text 1164

data from the target datasets in (Liu et al., 2024a) 1165

to the forecasting task. 1166

• DirectLLM: Directly uses the annotations gener- 1167

ated by LLMs for time series forecasting. In this 1168

paper, we compare several representative LLMs 1169

in our evaluations. 1170

F.3 Framework for Multi-modal Downstream 1171

tasks 1172

To evaluate the quality of general annotations, 1173

we leverage the multi-modal time series analysis 1174

framework proposed in Time-MMD (Liu et al., 1175

2024a), illustrated in Fig. 4. Using time series 1176

forecasting as a representative task, this frame- 1177

work employs an end-to-end pipeline that combines 1178
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Table 6: Dataset Statistics

Domain Frequency # Channels # Timestamps # Samples

Stock Daily 4 854,878 1,758
Health Weekly 1 1,389 1,356
Social Good Monthly 1 916 497
Energy Daily 1 1,622 1,586
Environment Daily 1 11,102 1,935
Climate Monthly 5 496 177
Economy Monthly 3 423 410
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Figure 4: Overall framework of MM-TSFlib from Time-
MMD (Liu et al., 2024a) used in our multi-modal down-
stream tasks. MMTSFlib uses a model-agnostic multi-
modal integration framework that independently models
time-series and textual annotations within an end-to-
end training manner. MM-TSFlib slightly increases the
number of trainable parameters, balancing effectiveness
and efficiency.

open-source language models with diverse time-1179

series forecasting (TSF) models. Time-series data1180

and textual annotations are modeled independently1181

through dedicated unimodal TSF architectures and1182

language models (LLMs) equipped with projection1183

layers. The outputs of these modalities are fused1184

via a dynamic linear weighting mechanism to gen-1185

erate final predictions. To optimize computational1186

efficiency, we keep the LLM parameters frozen1187

during training and update only the projection lay-1188

ers. Additionally, pooling layers are introduced1189

to resolve dimension mismatches between textual1190

variables and time-series features. The framework1191

supports end-to-end training with minimal parame-1192

ter overhead, ensuring both scalability and practi-1193

cality.1194

G Additional Results for General1195

Annotation Evaluation in Downstream1196

Tasks1197

G.1 Implementation Details1198

Time Series Forecasting Models. We use In-1199

former (Zhou et al., 2021) as the forecasting model1200

for the time series forecasting task. The model is1201

configured with a dropout rate of 0.1 and a learning 1202

rate of 0.0001. 1203

Large Language Models. We utilize GPT- 1204

4o (Achiam et al., 2023), along with two open- 1205

source models: LLaMA3.1-8B (Dubey et al., 2024) 1206

and Qwen2-7B (Yang et al., 2024). For the 1207

open-source models, we set temperature=1 and 1208

max_tokens=2048, while all other settings follow 1209

the defaults. 1210

Each experiment in our paper is conducted five 1211

times, with the average result reported. All models 1212

are trained on an Nvidia A6000 GPU with 48GB 1213

of memory. 1214

G.2 Evaluation in Time Series Forecasting 1215

Tasks 1216

The full results are presented in Table 7. From the 1217

table, we can observe the following: (1) TESSA 1218

consistently outperforms all baselines across all set- 1219

tings, demonstrating its effectiveness in generating 1220

high-quality general annotations. (2) Among the 1221

three LLMs, GPT-4o-backed TESSA achieves the 1222

best performance, outperforming both LLaMA3.1- 1223

8B and Qwen2-7B. We attribute this to the higher 1224

quality of the annotations generated by GPT-4o 1225

compared to the other models, further emphasiz- 1226

ing that high-quality annotations can significantly 1227

enhance downstream task performance. 1228

G.3 Evaluation in Time Series Imputation 1229

Tasks 1230

To demonstrate the effectiveness of TESSA in im- 1231

proving the performance of various downstream 1232

tasks, we further apply the generated general anno- 1233

tations in time series imputation task. Specifically, 1234

time series imputation task refers to the process 1235

of filling in missing or incomplete data points in 1236

a time series dataset, where some values are ran- 1237

domly mask. 1238

Implementation Details. We implement the multi- 1239

modal time series imputation based on TSLib (Wu 1240

et al., 2023). We use Informer (Zhou et al., 2021) as 1241
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Table 7: Comparison results in forecasting. Informer is the time series forecasting model.

Domain Backbone Metrics No Text Time-MMD DirectLLM TESSA

Environment

GPT-4o MSE 1.2542 0.8483 0.7714 0.4629
MAE 0.7387 0.6865 0.6604 0.4424

LLaMA3.1-8B MSE 1.2542 0.8483 0.8108 0.5654
MAE 0.7387 0.6865 0.6805 0.5128

Qwen2-7B MSE 1.2542 0.8483 0.7956 0.5824
MAE 0.7387 0.6865 0.6729 0.5419

Energy

GPT-4o MSE 2.0117 0.2172 0.0575 0.0482
MAE 1.1663 0.2139 0.0055 0.0040

LLaMA3.1-8B MSE 2.0117 0.2172 0.1023 0.0531
MAE 1.1663 0.2139 0.0130 0.0049

Qwen2-7B MSE 2.0117 0.2172 0.0824 0.0522
MAE 1.1663 0.2139 0.0097 0.0048

Social Good

GPT-4o MSE 2.1457 1.6072 0.4639 0.1935
MAE 1.1205 0.9731 0.3801 0.0825

LLaMA3.1-8B MSE 2.1457 1.6072 0.6720 0.3422
MAE 1.1205 0.9731 0.6138 0.2489

Qwen2-7B MSE 2.1457 1.6072 0.5550 0.3651
MAE 1.1205 0.9731/ 0.4850 0.2838

the forecasting model for the time series forecasting1242

task. The model is configured with a dropout rate1243

of 0.1 and a learning rate of 0.0001. GPT-4o is set1244

as the LLM backbone. Other settings follow these1245

in Section G.1.1246

Experimental Results. The experimental results1247

are shown in Table 8. From the table, we observe1248

that TESSA consistently outperforms baselines in1249

all datasets, demonstrating that TESSA’s annota-1250

tions can significantly benefits various downstream1251

tasks, including forecasting and imputation.1252

H Additional Details of General1253

Annotation Evaluation in Synthetic1254

Datasets1255

H.1 Implementation Details1256

To evaluate the effectiveness of TESSA in gener-1257

ating general annotations for synthetic time series1258

using an LLM-as-a-judger approach, we set GPT-1259

4o as the backbone of the judger. Two metrics,1260

Clarity and Comprehensiveness, are used to assess1261

the quality of the annotations:1262

• Clarity: Evaluates the clarity and readability of1263

the annotations.1264

• Comprehensiveness: Assesses whether the an-1265

notations cover the most important patterns.1266

H.2 Prompt Templates of LLM-as-a-judger1267

The prompts for evaluations are shown in Table 341268

and Table 35.1269

I Additional Results of Domain-specific 1270

Annotation Evaluation 1271

I.1 Evaluation Metrics 1272

We use the following three metrics to evaluate the 1273

quality of domain-specific annotations: 1274

• Clarity: Assesses the clarity and readability of 1275

the annotations. 1276

• Comprehensiveness: Checks whether the anno- 1277

tations cover the most important patterns. 1278

• Domain-Relevance: Evaluates whether the an- 1279

notations correctly apply domain-specific knowl- 1280

edge. 1281

I.2 Prompt Template 1282

The prompts used to evaluate the domain-specific 1283

annotations based on the three metrics are shown 1284

in Table 36, Table 37, and Table 38, respectively. 1285

I.3 Additional Results on Other LLM 1286

Backbones 1287

We report the evaluation results of the domain- 1288

specific annotations on the Energy and Social Good 1289

datasets in Table 9 and Table 10, respectively. Sim- 1290

ilar observations are made in Section 4.4, further 1291

demonstrating the effectiveness of TESSA in gen- 1292

erating high-quality domain-specific annotations. 1293
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Table 8: Imputation results with GPT-4o as the LLM backbone. Informer is the imputation model.

Metric Domain NoText TimeMMD DirectLLM TESSA

MSE
Environment 0.9718 0.9657 0.9453 0.5698
Energy 0.9109 0.9081 0.9018 0.8690
Social Good 1.4971 0.9784 0.6873 0.5492

MAE
Environment 0.6872 0.6867 0.6973 0.5438
Energy 0.8216 0.8176 0.8111 0.8075
Social Good 0.8371 0.7806 0.6036 0.5116

Table 9: Domain-specific annotation results on the En-
ergy dataset with GPT-4o as the LLM backbone.

Metric Method Mean P(T>D) (%)

Clarity TESSA 4.79 99.35DirectLLM 3.48

Compre. TESSA 4.57 98.01DirectLLM 3.10

Dom. Rel. TESSA 4.25 95.24DirectLLM 3.01

Overall TESSA 4.57 98.31DirectLLM 3.35

Table 10: Domain-specific annotation results on the
Social Good dataset with GPT-4o as the LLM backbone.

Metric Method Mean P(T>D) (%)

Clarity TESSA 4.68 99.61DirectLLM 3.28

Compre. TESSA 4.49 97.54DirectLLM 3.26

Dom. Rel. TESSA 4.45 95.34DirectLLM 3.33

Overall TESSA 4.48 97.16DirectLLM 3.29

J Experimental results of Human in Loop1294

In this section, we demonstrate that the an-1295

notations generated by TESSA can assist hu-1296

mans in analyzing time-series data. To evalu-1297

ate this, we selected 60 time-series samples from1298

three domains—Environment, Energy, and Social1299

Good—with 20 datasets per domain. We com-1300

pared annotations generated by TESSA and Di-1301

rectLLM, asking 20 PhD stduents, researchers, and1302

professors as the participants to assess which an-1303

notations were more informative and useful. The1304

results of this human-in-the-loop evaluation, sum-1305

marized in Table 11, reveal that TESSA consis-1306

tently outperforms DirectLLM across all three do-1307

mains. Participant assessments indicate that 88.3%1308

of TESSA’s general annotations and 93.3% of its1309

domain-specific annotations are more informative1310

compared to DirectLLM’s outputs. This substan- 1311

tiates TESSA ’s capacity to produce semantically 1312

meaningful annotations that enhance human inter- 1313

pretability during time-series analysis workflows. 1314

Table 11: Comparison results of general and domain-
specific annotations. GPT-4o is the LLM backbone.

Domain Method P(T>D) (%)

Environment General 83.3
Specific 91.7

Energy General 88.3
Specific 93.3

Social Good General 85.8
Specific 92.5

K Additional Results on Multivariate 1315

Time Series 1316

In this section, we aim to demonstrate the effec- 1317

tiveness of TESSA in generalizing to multivariate 1318

time series. Specifically, We use Stock and Health 1319

datasets as the source domains, Climate and Econ- 1320

omy datasets as the target domains. 1321

Domain-specific Annotations Evaluation. Sim- 1322

ilar to Section 4.4, we adopt a LLM-as-a-Judger 1323

strategy to evaluate the performance of TESSA 1324

and DirectLLM in generating domain-specific an- 1325

notations. Other settings follow these in Sec- 1326

tion 4.4. We present the comparison results on 1327

the two datasets in Table 12. From the table, we ob- 1328

serve that similar to these of univariate time series 1329

in Section 4.4, TESSA significantly outperforms 1330

DirectLLM across all metrics in both two multivari- 1331

ate time series datasets, aciving an overall score of 1332

4.51 and 4.55 compared to DirectLLM’s 3.38 and 1333

3.42 in Climate and Economy dataset, respectively. 1334

This demonstrates the effectiveness of TESSA in 1335

generalizing to multivariate time series. Additional 1336

case studies of TESSA applied to multivariate time 1337

series are presented in Appendix M. 1338
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Table 12: Comparison results of domain-specific anno-
tations for multivariate time series in the Climate and
Economy datasets using GPT-4o as the LLM backbone.

Domains Metric Method Mean P(T>D) (%)

Climate

Clarity TESSA 4.58 99.17DirectLLM 3.35

Compre. TESSA 4.37 96.43DirectLLM 3.38

Dom. Rel. TESSA 4.57 96.20DirectLLM 3.40

Overall TESSA 4.51 97.26DirectLLM 3.38

Economy

Clarity TESSA 4.46 97.14DirectLLM 3.48

Compre. TESSA 4.57 96.81DirectLLM 3.41

Dom. Rel. TESSA 4.61 96.70DirectLLM 3.37

Overall TESSA 4.55 96.88DirectLLM 3.42

L Additional Details of Ablation Studies1339

L.1 Evaluation Metric1340

To evaluate the effectiveness of the adaptive feature1341

selection, we use an LLM-as-a-judger to evaluate1342

the general annotations generated by TESSA and1343

its variant TESSA/F. We propose to evaluate it by1344

using the prompt in Table 39.1345

L.2 Qualitative Examples1346

We present a qualitative example of extracting1347

text-wise features using TESSA and TESSA/D,1348

shown in Table 13. From the table, we observe1349

that TESSA/D captures irrelevant features, such1350

as higher prices over time and fun, which are un-1351

related to time series analysis. This supports our1352

claim that domain-specific terminology can hin-1353

der the accurate extraction of time-series-relevant1354

features.1355

We also provide another qualitative example in1356

Table 15 to demonstrate the effectiveness of adap-1357

tive feature selection. The annotations generated1358

by TESSA/F tend to include numerous features1359

without proper analysis. This illustrates that includ-1360

ing too many features can reduce the clarity of the1361

annotations, further emphasizing the importance of1362

adaptive feature selection in improving annotation1363

quality.1364

Table 13: Ablation studies of the impact of domain de-
contextualization. Red denotes the irrelevant features.

TESSA’s extracted text-wise features:
support level, resistance level, volume correlation,
breakthrough, trend reversal, relative strength index,
negative signal, positive signal, channel boundaries

TESSA/D’s extracted text-wise features:
higher prices over time , autocorrelation,

price increase , trend channel, stationary, fun ,

lower prices , outliers, breakdown, rising trend

Table 14: Case study: Evaluation results of domain-
specific annotation of time series data in Fig. 6 from the
Environment dataset. GPT-4o is the LLM backbone.

Metric Method Score

Clarity TESSA 5.0
DirectLLM 3.0

Compre. TESSA 3.0
DirectLLM 3.0

Dom. Rel. TESSA 5.0
DirectLLM 3.0

Overall TESSA 4.3
DirectLLM 3.0

L.3 Additional Ablation Studies on the 1365

Contributions of TESSA’s Components 1366

In Section 4.5, we conduct ablation studies to as- 1367

sess the importance of domain decontextualization 1368

and adaptive feature selection in TESSA. To fur- 1369

ther understand the contributions of TESSA’s com- 1370

ponents, we conduct additional ablation studies on 1371

domain-specific term extractor and annotation re- 1372

viewers, respectively. 1373

Domain-specific Term Extractor. To understand 1374

the ability of LLMs to process domain-specific 1375

jargon to generate useful features, we implement 1376

a variant TESSA/S, which removes the domain- 1377

specific term extractor in TESSA and directly gen- 1378

erate domains-specific annotations from general 1379

annotations. We provide the comparison results in 1380

Stock and SocialGood datasets in Tables 16 and 17, 1381

which demonstrate that TESSA is able to capture 1382

more jargon-rich in information, such as resistance 1383

levels in the Stock dataset and reactive bounds in 1384

the SocialGood dataset. In contrast, TESSA/S 1385

merely converts general features into basic domain- 1386

specific features. This highlights that LLMs, when 1387

used as domain-specific term extractors, can effec- 1388

tively generate valuable jargon that enhances the 1389
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Table 15: Ablation studies of the impact of adaptive feature selection. Two compared methods are used for
generating general annotation ploted in Fig. 6(a). Purple highlights basic patterns, green highlights general
patterns.

TESSA’s generated general annotation:
The time series data tracks a single variable over time, showing a gradual upward trend from around 6.96 to over

10.4. There are clear seasonal patterns, with regular cycles of peaks and troughs, hinting at periodic influences

like seasonal demand. The data exhibits strong support and resistance levels , where it hesitates at specific values

before continuing its rise, demonstrating resilience . There is a consistent upward indicator trend , suggesting

stable or improving underlying factors driving this increase. Overall, the data indicates a positive growth trajectory ,
with predictable cyclical fluctuations due to natural or recurring factors.

TESSA/F’s generated general annotations:
The provided time series data shows a clear upward trend , indicated by the gradual increase in trend values

over time. Initially, fluctuations are minor, but as the series progresses, we observe larger increases, especially
towards the end of the sequence, suggesting a strong positive momentum . The occasional deviations from the

trend, as shown by the residue , hint at short-term fluctuations or potential anomalies . Seasonality seems to
have minimal impact with slight cyclical patterns, possibly reflecting periodic but non-dominant effects. Overall,

if this time series pertains to a scenario where higher values are desirable, such as sales or economic indicators ,
this upward trend and increased values could be considered as positive signals or a breakthrough .

generation of domain-specific annotations.1390

Annotation Reviewer. To evaluate the impact1391

of the annotation reviewer component, we intro-1392

duce a variant TESSA/A that excludes this module.1393

We assess the quality of domain-specific annota-1394

tions generated by TESSA and TESSA/A using1395

an LLM-as-a-judger framework, focusing on two1396

criteria: (1) Clarity (readability and coherence of1397

annotations) and (2) Domain-Relevance (alignment1398

with domain-specific context). An overall score,1399

calculated as the average of these metrics, provides1400

a holistic performance measure. As shown in Ta-1401

ble 18, TESSA achieves statistically significant1402

improvements over TESSA/A across all metrics.1403

This quantitative comparison demonstrates that1404

the annotation reviewer critically enhances both1405

the clarity and contextual relevance of generated1406

annotations, ensuring they better capture domain-1407

specific nuances.1408

L.4 Additional Ablation Studies of Data1409

Contamination1410

To investigate whether TESSA retains its effec-1411

tiveness when the LLMs used are not exposed to1412

data describing the time series, we conduct an ab-1413

lation study using fully open LLMs, specifically1414

OLMo-7B (Groeneveld et al., 2024). The cate-1415

gories of the training data for the LLM are listed in1416

Table 19. In this study, we carefully select time se-1417

ries with textual annotations that neither appear in1418

the training data of OLMo-7B nor describe the time 1419

series themselves. We use the Stock and Health 1420

datasets as source domains, and the Energy dataset 1421

as the target domain. We then apply TESSA and 1422

DirectLLM to generate both general and domain- 1423

specific annotations for the time series data in the 1424

Energy dataset. 1425

The results are presented in Table 20. From the 1426

table, we observe that: (1) despite using a fully 1427

open LLM that has not been exposed to data de- 1428

scribing the time series, TESSA with OLMo-7B 1429

as the LLM backbone is still able to understand 1430

and generate informative annotations with richer 1431

general and domain-specific patterns, using more 1432

natural language. In contrast, DirectLLM only of- 1433

fers a simplistic description of the basic trend of 1434

the time series data. This further underscores the 1435

effectiveness of TESSA even in a scenario of strict 1436

data non-contamination. 1437

Additionally, we employ an LLM-as-a-Judger 1438

strategy to evaluate the domain-specific annota- 1439

tions generated by TESSA and DirectLLM, as 1440

shown in Table 20. The evaluation is conducted 1441

from three perspectives: Clarity, Comprehensive- 1442

ness, and Domain-relevance. GPT-4o serves as the 1443

LLM judger, and the other settings follow those in 1444

Sec. 4.4. The comparison results are presented 1445

in Table 21. We observe that TESSA consis- 1446

tently achieves full scores in all three metrics, sig- 1447

nificantly outperforming DirectLLM. This further 1448
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Table 16: Ablation studies of the impact of the domain-
specific term extractor in Stock dataset. Purple high-
lights basic patterns, green highlights general patterns,

yellow highlights domain-specific patterns and blue
highlights correlations between variables in multivariate
time series data.

TESSA:
Compass Digital Acquisition Unit’s stock price shows a no-
table pattern of rising and falling periodically , indicating

seasonality with stable long-term trend s interrupted by

short-term fluctuations . There are key resistance levels
around intervals 134,270, and 403, where prices peak
before dipping. The stock volume demonstrates significant
spikes at specific points, suggesting irregular activity,
particularly around values 7,000 and 80,500, which may
indicate volume bursts or unusual market events. The rel-
ative strength index (RSI) also reveals a recurring pattern,

gradually trending upward before a sharp decline, reflect-
ing a cycle of growth and subsequent drop. Overall, the
mild positive correlation between stock price and RSI
indicates that periodic changes in price are somewhat
echoed in RSI patterns, potentially offering predictive
insights for future stock movements.

TEESA/S:
Compass Digital Acquisition Unit’s stock price ex-
hibits a distinct cyclical pattern , suggesting seasonality ,

with occasional fluctuations . The relative strength
index (RSI) shows a repeating trend, gradually

rising before experiencing a sharp drop, indicating
a pattern of growth followed by a decline. The
mild positive relationship between stock price and RSI
suggests that changes in price tend to be mirrored in the
RSI, offering potential clues for predicting future price
movements.

demonstrates TESSA ’s effectiveness in generat-1449

ing high-quality domain-specific annotations with1450

stronger clarity, comprehensiveness, and domain-1451

relevant contextual precision.1452

M Additional Details of Case Studies1453

More Details of the Case Studies in Section 4.61454

In this section, we provide additional details of the1455

case studies in Section 4.6. We select a represen-1456

tative time series from the Social Good domain,1457

shown in Fig. 6(b). In Table 22, both the general1458

and domain-specific annotations generated by Di-1459

rectLLM and TESSA are reported. We also quan-1460

titatively evaluate the domain-specific annotations1461

of TESSA and DirectLLM, following the setup1462

outlined in Section 4.4. The evaluation results are1463

presented in Table 14.1464

From the table, we observe that (1) TESSA’s1465

Table 17: Ablation studies of the impact of the domain-
specific term extractor in SocialGood dataset. Purple
highlights basic patterns, green highlights general pat-

terns and yellow highlights domain-specific patterns.

TESSA: The unemployment rate displays a clear upward
trend over time, starting from the mid-5s and progress-
ing to the mid-7s toward the end of the series, signal-
ing persistent growth in unemployment. This movement

is influenced by volatility periods , suggesting that eco-
nomic cycle phases are periodically impacting employ-
ment levels. The observed resistance thresholds around
the mid-5s and mid-6s mark critical threshold levels ,
where unemployment temporarily stabilizes before con-
tinuing its upward momentum. Analyzing lag features ,
past values like 5.5 and 6.0 serve as baselines, help-
ing to understand how unemployment has evolved over
time. This steady upward movement, punctuated by
cyclical variations, highlights the need for strategies that
address both economic momentum indicators and short-
term reactive bounds , ensuring a robust response to both
long-term trends and periodic disruptions in the labor mar-
ket.

TEESA/S: The unemployment rate data reveals a con-
sistent upward trend over time, starting from 5.18
and rising to approximately 7.24. This suggests an
increasing trend in unemployment, which might pose

socio-economic challenges if it persists. The data also
exhibits seasonal fluctuations , indicating periods of ele-
vated unemployment that could align with specific eco-
nomic or legislative cycles. These recurring ups and downs
highlight how external factors might periodically impact

the job market. Recognizing these cyclical variations can
help policymakers craft effective strategies to mitigate the
potential socio-economic risks of rising unemployment in
the future.

general annotations capture more meaningful pat- 1466

terns, enhancing user understanding and supporting 1467

downstream tasks, while DirectLLM only high- 1468

lights basic trends; and (2) TESSA’s domain- 1469

specific annotations consistently outperform those 1470

of DirectLLM across all metrics, providing clearer, 1471

more comprehensive, and contextually relevant 1472

insights. Specifically, TESSA’s annotations are 1473

more fluent, more detailed and provide a richer 1474

analysis using domain-specific jargons, like eco- 1475

nomic momentum and labor market resilience, 1476

while the annotations of DirectLLM only simply 1477

analyze the trend of the unemployment rate, pro- 1478

viding less insights. 1479

Case Study for Multivariate Time Series We then 1480

conduct a case study to demonstrate the effective- 1481

ness of TESSA in generating high-quality anno- 1482

tations for multivariate time series data. Specifi- 1483
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Table 18: Ablation studies for the annotation reviewer
in the Social Good dataset with GPT-4o as the LLM
backbone.

Metric Method P(TESSA>TESSA/A) (%)

Clarity TESSA 95.4TESSA/A

Dom. Rel. TESSA 87.6TESSA/A

Overall TESSA 91.6TESSA/A

Table 19: The categority of the training data used to
pre-train OLMo-7B (Groeneveld et al., 2024), which is
from OLMo’s technical report (Groeneveld et al., 2024).

Source Type
UTF-8
bytes
(GB)

Docs
(millions)

Tokens
(billions)

Common Crawl web pages 9,812 3,734 2,180
GitHub code 1,043 210 342
Reddit social media 339 377 80
Semantic Scholar papers 268 38.8 57
Project Gutenberg books 20.4 0.056 5.2
Wikipedia encyclopedic 16.2 6.2 3.7

Total 11,519 4,367 2,668

cally, we set the Stock dataset as the target domain.1484

Health and Environment datasets are then applied1485

in the source domains. The example multivariate1486

time series data is shown in Fig. 8, where the multi-1487

variate time series data has four variables, i.e., price,1488

volume, relative strength index (RSI) and simple1489

moving average (SMA). The generated annotations1490

are shown in Table 23. From the table, we observe1491

that (1) TESSA’s generated annotations are more1492

natural than DirectLLM; (2) DirectLLM interprets1493

each variable independently by only focusing their1494

trends. However, TESSA can capture the correla-1495

tion between variables. This shows TESSA is able1496

to analyze inter-variable patterns. These further1497

imply the effectiveness of TESSA in generating1498

high-quality domain-specific annotations for multi-1499

variate time series data.1500

Case Study in the Synthetic Dataset. We fur-1501

ther select an example from the synthetic dataset1502

to conduct similar experiments to generate gen-1503

eral annotations. The selected time series data is1504

in Fig. 7. The qualitative example of the annota-1505

tions of this time series data is shown in Table 24.1506

From the table, we observe a discrepancy in Di-1507

rectLLM’s analysis, as it detects 138 values in the1508

time series data, despite there being only 120 val-1509

ues. This leads to inaccurate annotations. More-1510
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Figure 5: Selected time series data from Energy dataset
for ablation studies on data contimination. This time
series data has 30 data points. The corresponding gen-
erated annotations of TESSA and DirectLLMs are pro-
vided in Table 20.

over, DirectLLM captures only the basic trend of 1511

the time series, whereas TESSA identifies more sig- 1512

nificant patterns, such as the rolling window feature, 1513

seasonality, and resilience. This demonstrates the 1514

effectiveness of TESSA in providing more com- 1515

prehensive and accurate annotations. We analyze 1516

the reason TESSA mitigates the hallucination seen 1517

in DirectLLM is that it highlights important pat- 1518

terns overlooked by LLMs, such as seasonality. By 1519

focusing on these patterns rather than just basic 1520

trends, LLMs can analyze and interpret time series 1521

data from multiple perspectives, leading to fewer 1522

hallucinations in the annotations. 1523

Additional Examples on Various Domains. Ad- 1524

ditional examples are presented for the synthetic, 1525

environment, energy and social good datasets, re- 1526

spectively. Specifically, the general annotations of 1527

selected time series on the synthetic dataset that 1528

in Fig. 9 are shown in Tables 25 and 26. The 1529

domain-specific annotations of selected time series 1530

on the environment dataset (Fig. 10) are shown 1531

in Tables 27 and 28. And the domain-specific 1532

annotations of time series on the energy dataset 1533

(Fig. 11) are shown in Tables 29 and 30. Similarly, 1534

the domain-specific annotations of time series on 1535

the social good dataset (Fig. 12) are shown in Ta- 1536

bles 31 and 32. Similar observations to those in 1537

Table 14 and Table 24 are found. 1538
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Table 20: Ablation studies on data contamination using OLMo-7B-Instruct. We select a time-series in the Energy
dataset, which is shown in Fig. 5. Purple highlights basic patterns, green highlights general patterns, and yellow
highlights domain-specific patterns.

TESSA’s general annotations The time series data shows a trend of increasing and decreasing values with some

seasonality , which can be observed from the values of the intra-variable time series features such as trend,

seasonality , and moving average . The values of the intra-variable moving average are not stable, indicating that

the time series data is volatile and prone to fluctuations . The values of the intra-variable lag features are not
significant, indicating that there is no strong correlation among the time series data points.
DirectLLM’s general annotations This time series data represents a process with high variability in the values,

with an increasing trend . The data is separated by ’|’ tokens, which could represent different stages or conditions
of the process. The highest value of 1.108 is observed at the 11th instance, which might indicate a bottleneck
or peak in the process. The series shows a decreasing trend from instances 9-12, which suggests that certain
measures or interventions were put in place to address the bottleneck. Overall, the data suggests that the process is
subject to fluctuations , but can be managed by identifying and addressing the root causes of the bottlenecks.

TESSA’s domain-specific annotations The natural gas price is exhibiting a volatile pattern with significant fluc-
tuations, suggesting a lack of stability in the market. This volatility hints at underlying market dynamics

that are affecting price movements, potentially tied to factors such as supply and demand shifts

or external economic variables . A closer examination of the trend channels indicates intermittent
rising and falling trends , pointing towards a potential cyclical behavior in natural gas prices. Currently, the

market does not show strong correlation from lag features, suggesting that recent price changes are not strongly

influenced by past values. Support and resistance levels could play a crucial role, as breaking through these levels

may signal a significant trend shift in the gas market’s future pricing.
DirectLLM’s domain-specific annotations Gasonline prices in the Energy domain are fluctuating , ranging

from 1.04 to 1.10 per unit, with occasional spikes above 1.10, and drops below 1.00. These prices fluctuate
consecutively, indicating a dynamic market for Gasonline.

Table 21: Ablation studies of data contamination.
We use an LLM-as-a-Judger to compare a domain-
specific annotation in the Energy dataset generated
by DirectLLM and TESSA. OLMo-7B is the LLM-
backbone. GPT-4o is used as the LLM judger.

Metric Method Mean

Clarity TESSA 5
DirectLLM 3

Compre. TESSA 5
DirectLLM 2

Dom. Rel. TESSA 5
DirectLLM 3

Overall TESSA 5
DirectLLM 2.67
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Figure 6: Selected time series data from Social Good
dataset for ablation studies and case studies. (a) for
ablation studies ; and (b) is for case studies.

.
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Table 22: A case study in Social Good dataset. The target time series data is shown in Fig. 6 (a). Purple highlights

basic patterns, green highlights general patterns, and yellow highlights domain-specific patterns.

TESSA’s general annotations
The time series data shows a generally decreasing trend , initially rising until a midpoint before consistently declin-

ing. Seasonal patterns are evident, with regular peaks around specific intervals. The series experiences rapid posi-
tive and negative fluctuations, reflecting significant changes in the measured system. Support and resistance levels
are observed, with values frequently pausing near 7.0 and struggling to exceed 10.5. Past values have an impact on
current data, indicating that recent patterns help predict future outcomes.
DirectLLM’s general annotations
The uni-variate time series data exhibits fluctuating values with an overall descending trend . Initially, the data is
relatively stable around the 9.5 to 10.5 range, peaking at 11.4 before descending gradually. Midway through the
series, after reaching a peak, there is a noticeable decline as values drop from approximately 11 to levels around 8.
By the end, the values stabilize somewhat but decline further, reaching a low near 7. This pattern suggests an initial
increase followed by a downward trend and final stabilization at lower levels, indicating a potential cycle or shift
in the underlying phenomenon being measured.

TESSA’s domain-specific annotations
The unemployment rate shows a pattern consistent with trends in labor market resilience and economic momentum.
Initially stable, with rates between 9 and 10, there is a gradual upward movement indicating early signs of
economic growth and potential tightening in the labor market, peaking around 11. This is followed by a downturn,
reflecting possible macroeconomic constraints or shifts that reduce economic momentum , as the rate drops to
approximately 7.5 towards the end of the period. The rates around 9 and 11 can be seen as support and resistance

thresholds for employment, where the market experiences inertia. Notably, the subtle seasonal fluctuations suggest
the presence of moderate cyclic factors influencing employment trends , helping to understand broader economic
activity patterns.
DirectLLM’s domain-specific annotations
The time series data represents fluctuations in the unemployment rate over a specific period. Initially, the
unemployment rate starts quite high, around 9.5%, and exhibits slight ups and downs but generally remains above
9% until a significant increase is observed, reaching its peak at 11.4%. Following this peak, the rate gradually
declines, showing an overall downward trend with a notable reduction to as low as 7%. This decline suggests a
potential improvement in the employment situation, perhaps due to economic recovery or effective employment
policies. Towards the end of the series, the unemployment rate stabilizes around 7-8%, although a slight increase is
seen again, indicating the dynamic nature of employment conditions.

Figure 7: Case study: A selected time series data from
the synthetic dataset. The time series data has 120 data
points. OT denotes the target variable.
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Figure 8: Case study: a multivariate time series data
from the Stock dataset, which has four variables, i.e.,
price, volumn, RSI and SMA.
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Table 23: A case study in Stock dataset. The target multivariate time series data is shown in Fig. 8 (a). GPT-4o
is the LLM backbone. Purple highlights basic patterns, green highlights general patterns, yellow highlights

domain-specific patterns and blue highlights correlations between variables in multivariate time series data.

TESSA’s domain-specific annotations
Compass Digital Acquisition Unit’s stock price shows a notable pattern of rising and falling periodically , in-

dicating seasonality with stable long-term trend s interrupted by short-term fluctuations . There are key

resistance levels around intervals 134, 270, and 403, where prices peak before dipping. The stock volume
demonstrates significant spikes at specific points, suggesting irregular activity, particularly around values 7000 and
80500, which may indicate volume bursts or unusual market events. The relative strength index (RSI) also reveals
a recurring pattern, gradually trending upward before a sharp decline, reflecting a cycle of growth and subsequent

drop. Overall, the mild positive correlation between stock price and RSI indicates that periodic changes in price
are somewhat echoed in RSI patterns, potentially offering predictive insights for future stock movements.
DirectLLM’s domain-specific annotations
The provided time series data consists of three primary features: price, volume, and relative strength index (RSI).
Over the observation period, the price demonstrates an overall upward trend , starting around $9.74, exhibiting

fluctuations , and rising to hover around $10.81 towards the end. Notable price spikes correspond with significant
increases in trading volume, indicating periods of high trading activity, such as jumps to 80,500 and 100,200 in

volume. Additionally, the RSI values range sharply , highlighting areas of overbought conditions (RSI approaching
or at 100) and oversold conditions (RSI dropping around or below 50). These RSI changes suggest periods of
potential buying or selling pressure, mirroring the observed price moves.
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Figure 9: More selected time series data from the syn-
thetic dataset. The time series data has 120 data points.
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Figure 10: More selected time series data from the
Environment dataset. The time series data has 120 data
points.
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Figure 11: More selected time series data from the
Energy dataset. The time series data has 36 data points.
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Figure 12: More selected time series data from the
Social Good dataset. The time series data has 36 data
points.
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Table 24: A case study in the synthetic dataset. The selected time series data is shown in Fig. 7, where the time
series data has 120 data points. Purple highlights basic patterns, green highlights general patterns, and red
highlights hallucinations.

TESSA’s general annotations
This time series exhibits notable fluctuations with values ranging from 35.0 to 118.0. The trend indicates a general
decline , starting around 65.26 and ending around 53.58 reflecting a significant downward movement over time.
Periodic peaks are captured by the rolling window feature showing intermittent spikes up to 118.0, suggesting

instances of strong breakout behavior despite an overall support decrease. The seasonality component reveals
cyclical patterns with both positive and negative offsets, indicating underlying periodic forces affecting the data,
akin to an oscillator. The alignment between the lag feature and the actual values underscores a historical reliance
or resilience of the present data points on past values. reflecting consistency in patterns.
DirectLLM’s general annotations
The provided time series data consists of 138 values and exhibits significant fluctuations. There are notable
peaks at several points such as 118.0 and 113.0, indicating occasional high spikes in values. Conversely, values

also drop to lows around 35.0, suggesting substantial variability. Most data points seem to oscillate around a

mid-range, between approximately 50.0 and 70.0. This pattern suggests periods of stability interspersed with
sporadic increases and decreases. Analyzing such a dataset can be indicative of a highly dynamic system or process
with frequent transitions between states of varying magnitude.

System Prompt

Your job is to act an extremely clever time series expert to remove 
the domain-specific terms from the given textual descriptions. You 
will write a high-quality domain-decontextulized time series 
annotation that is informative and helps in understanding given time 
series data.

User Prompt

Your task is to remove the domain-specific [example of domain-
specific terms] description from the given texts. Please use some 
time series analysis common knowledge to replace the domain-specific 
term with terms common-used in time series analysis. Write a concise 
report that provides insights crucial for understanding the time 
series data. The textual annotation is:

[Textual annotation]
Please do not include some domain-specific information and terms in 
[specific domain] to write the report. The indicators name should 
also not be included in the report. The text data is only used to 
understand the time series and generate more insightful and concise 
analysis.

Figure 13: Prompt for domain decontextualization.
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Table 25: One more example of general annotation generation in the synthetic dataset. The selected dataset is
shown in Fig. 9 (a). Purple highlights basic patterns, green highlights general patterns, and red highlights
hallucinations. DirectLLM only captures on the basic trend pattern for time series annotation, while TESSA
considers more important general patterns.

TESSA’s general annotations The time series exhibits a complex behavior with an overall downward trend ,
accompanied by periods of fluctuation and temporary upward corrections. Key points include
support and resistance levels , where the trend either pauses or reverses, notably around values 10.834 and 8.929.

Increased volatility is evident, indicating active trading periods, which align with higher variability. Trend chan-
nels are apparent, where the data moves within upper and lower boundaries, particularly showing both descending
and emerging upward trends. In some instances, breakout thresholds highlight significant changes, signaling
momentum shifts .

DirectLLM’s general annotations This uni-variate time series data exhibits a pattern with multiple phases of
rise and fall , indicative of periodic fluctuations over time. Initially, the series starts at a moderate level, gradually

ascending to a peak around the values of 7.58 and 7.52 before experiencing a gradual decline. The data then
showcases another rise peaking just above 9 and 10 marks, followed by a sharp and continuous decline, entering
negative territory around the value of -6.270 and continuing downwards . Near the end of the series, escalating
towards positive values and climaxing at 5.091. The overall structure suggests well-defined periodic or seasonal
trends, potentially influenced by external or inherent factors.

Table 26: One more example of general annotation generation in the synthetic dataset. The selected dataset is
shown in Fig. 9 (b). Purple highlights basic patterns, green highlights general patterns, and red highlights
hallucinations. DirectLLM only captures on the basic trend pattern for time series annotation, while TESSA
considers more important general patterns.

TESSA’s general annotations The time series data illustrates an overall upward trend characterized by increasing
values over time, signifying growth. Initially, the series displays stability with minor fluctuations, often not dropping
below certain support levels , indicating consistency. As the series advances, breakthrough points become

apparent, where values exceed previous resistance levels , suggesting heightened momentum and possible shifts
in liquidity that drive this progress. The later parts of the data feature more pronounced scending trends, pointing to a
stronger upward movement . Periodic trend reversals also appear, reflecting temporary changes before returning

to the dominant upward trend , which highlights the series’ dynamic nature and potential for fluctuations .

DirectLLM’s general annotations The given uni-variate time series data exhibits a fluctuating pattern with a gen-

eral upward trend . Initially, from the first data point, there is a notable increase in values, reaching a peak around

the seventh value. This is followed by a gradual decline and subsequent stabilization with minor fluctuations
between the 12th and 31st values. Notably, around the 84th value, a significant surge in values begins, culminating
in a prominent steep increase towards the end of the series, suggesting a potential exponential growth or shift
occurring in the data. Overall, the time series transitions from more stable periods into a pronounced upward trend,
signaling potential external influences or underlying factors driving the increase.
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Table 27: One more example of domain-specific annotation generation in the Environment dataset. The selected
dataset is shown in Fig. 10 (a). Purple highlights basic patterns, green highlights general patterns, and yellow
highlights the domain-specific patterns.

TESSA’s domain-specific annotations
The air quality index (AQI) data exhibits significant fluctuations , with values ranging from 53 to 235 over time,

indicating variability in air quality. Support levels around values like 100 and 140 suggest periods when air quality

temporarily stabilizes or improves. On the other hand, resistance levels near values like 200 and 235 show points
where air quality struggles to improve further before worsening. Several distinct upward trends, particularly from
AQI values 70 to 150 and 177 to 235, indicate temporary periods of improvement in air quality, whereas downward
trends around values 166 to 123 and 208 to 84 reflect deteriorating air quality after peaks. Monitoring these trends
and critical thresholds will be essential for identifying and responding to significant pollution events effectively.
DirectLLM’s domain-specific annotations
The time series data represents the air quality index (AQI) over a series of observations, showing fluctuations in air
pollution levels. Initially, the AQI values are moderate , transitioning to higher levels, peaking at alarming numbers
such as 235 and 209, which indicate very unhealthy air quality. This indicates potential spikes in pollution that could
be associated with environmental events or increased urban activity. Periods of lower AQI values suggest moments
of improved air quality, but these are often followed by sharp increases , highlighting the inconsistency and poor
air conditions in the observed timeframe. Overall, the data reflects significant air quality concerns, emphasizing the
need for monitoring and potential interventions to safeguard public health.

Table 28: One more example of domain-specific annotation generation in the Environment dataset. The selected
dataset is shown in Fig. 10 (b). Purple highlights basic patterns, green highlights general patterns, and yellow
highlights the domain-specific patterns.

TESSA’s domain-specific annotations
The air quality index (AQI) exhibits noticeable upward and downward trends over time, indicating periods of

improvement and decline in air quality. Regular seasonal patterns are apparent, with AQI values cyclically
rising and falling, suggesting that certain times of the year may be more prone to higher pollution levels.
Critical thresholds in AQI levels highlight points where air quality significantly improves or deteriorates, with

some values acting as resistance levels that AQI struggles to surpass. Episodes of high variability in AQI indi-
cate times of significant fluctuations, potentially due to varying pollution sources or climate conditions. Lastly,
breakout patterns where AQI values suddenly shift indicate potential changes in pollution control effectiveness or

new influences on air quality dynamics.
DirectLLM’s domain-specific annotations
The provided time series data represents fluctuations in the air quality index (AQI), with values indicating varying
levels of air pollution over time. Initially, the AQI remains in a moderate range, typically below 100, but there
is a noticeable spike as values reach up to 220, indicating very poor air quality. This suggests that certain
periods experienced significantly higher pollution levels, which can have serious implications for public health and
environmental quality. The data shows some improvements, but the peaks raise concerns about excessive pollution,
particularly during certain months. Continuous monitoring and mitigation of pollution sources are essential to
reduce the frequency and severity of these dangerous air quality levels.
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Table 29: One more example of domain-specific annotation generation in the Energy dataset. The selected dataset is
shown in Fig. 11 (a). Purple highlights basic patterns, green highlights general patterns, and yellow highlights
the domain-specific patterns.

TESSA’s domain-specific annotations
Gas prices have exhibited an upward trend, peaking at $1.077 before experiencing a slight decline towards the
latter part of the series. This indicates an initial growth phase followed by stabilization. Minor, yet consistent
seasonal variations suggest periodic influences that slightly affect the price. The analysis of residuals reveals

small but steady fluctuations, indicating some level of unpredictability in the market. Support and resistance

analysis identifies critical thresholds around $1.003 and $1.092, highlighting potential reversal points and

consolidation zones .
DirectLLM’s domain-specific annotations
The time series data represents fluctuations in gas prices over a period of time, listed in ascending order. Initially,

the gas prices start around $1.06 but gradually show a downward trend , reaching as low as approximately $0.99
before slightly rising again. This decline suggests that there may have been favorable market conditions or increased
supply during this period, which typically leads to lower prices for consumers. Toward the end of the observed
period, prices stabilize around the $1.00 mark, indicating a potential plateau or gradual recovery in price levels.
Overall, the data illustrates a dynamic market scenario, highlighting the volatility and changing nature of gas prices
influenced by various factors in the energy domain.

Table 30: One more example of domain-specific annotation generation in the Energy dataset. The selected dataset is
shown in Fig. 11 (b). Purple highlights basic patterns, green highlights general patterns, and yellow highlights
the domain-specific patterns.

TESSA’s domain-specific annotations
Gas prices show a generally upward trend , starting around 1.11 and gradually increasing over time, indicating a

long-term positive movement . Minor seasonal fluctuations are observed, but they do not dominate the overall trend.

There are key support levels around 1.113 and resistance levels at 1.133, which may act as pivotal points for future
price movements. Residuals suggest occasional minor deviations from the trend due to random factors, resulting in a
generally stable series with slight intraday volatility . The moving average values reinforce this steady climb, suggesting

continued stability with periodic minor disruptions in gas prices.
DirectLLM’s domain-specific annotations
The time series data represents fluctuations in gas prices over a specific period, with values consistently hovering around
the $1.11 to $1.18 range. Notably, the data shows slight increases and decreases in price, suggesting moderate volatility
within this timeframe. The highest recorded price peaks at approximately $1.18, reflecting potential market adjustments or
external factors influencing gas prices. This stability could indicate a balanced supply and demand scenario, although
one should remain aware that various events, such as geopolitical developments, can lead to sudden shifts. Overall, these
insights provide a snapshot of gas price trends, useful for consumers and industry stakeholders in making informed
decisions related to energy expenditures.
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Table 31: One more example of domain-specific annotation generation in the Social Good dataset. The selected
dataset is shown in Fig. 12 (a). Purple highlights basic patterns, green highlights general patterns, and yellow
highlights the domain-specific patterns.

TESSA’s domain-specific annotations
The unemployment rate data shows a gentle upward trend from approximately 5.4% to 6.57% over the

observed period, indicating a consistent rise in unemployment levels. This gradual increase implies a
weakening labor market , which could be influenced by broader socioeconomic conditions. Although there

are oscillations suggesting cyclical patterns, these are not strong and exhibit some irregularities , pointing to

potential short-term fluctuations or external disruptions . The stable relationship between consecutive data points
suggests that the unemployment rate changes are relatively steady without abrupt shifts, allowing for some degree
of predictability. Overall, the trend may signal policymakers to consider implementing measures to address the
rising unemployment, especially if the current trajectory continues.
DirectLLM’s domain-specific annotations The time series data represents the unemployment rate over a period
of time. Initially, the unemployment rate showed a slight fluctuation around the 5% mark, indicating a relatively
stable job market. However, a noticeable increase began, with rates rising to over 7%, suggesting a worsening
economic situation and potential job losses. After peaking at 7.3%, the data indicates a gradual decrease , though
the rates remained relatively high around 6.5% towards the end. This pattern highlights a period of economic
challenge, with gradual steps towards recovery.

Table 32: One more example of domain-specific annotation generation in the Social Good dataset. The selected
dataset is shown in Fig. 12 (b). Purple highlights basic patterns, green highlights general patterns, and yellow
highlights the domain-specific patterns.

TESSA’s domain-specific annotations The unemployment rate data reflects a positive economic momentum ,
as evidenced by a persistent upward trend starting from around 4.1 and moving above 6, suggesting a gradual
increase in unemployment over the series. This trend could indicate rising employment participation pressure
or an effectiveness of policy breakthrough effects aimed at fostering job growth, which could be interpreted as

a counter-effect if not analyzed in tandem with job creation data. Despite the upward trend , the series shows

seasonality patterns, with periodic fluctuations above and below a baseline, suggesting regular influences on
employment rates, possibly due to economic cycles or policy adjustments. These fluctuations may align with
safety net thresholds, which temporarily reduce unemployment rates during specific intervals. In summary, the data
represents a complex interplay of economic dynamics, signaling opportunities for policy interventions to maintain a
balance between growth and employment stability.
DirectLLM’s domain-specific annotations
The time series data illustrates the fluctuation of the unemployment rate over a specific period. Initially, the
unemployment rate started at a level of 4.5% and experienced a gradual decline to a low of about 3.6%. However,

this was followed by an upward trend , eventually reaching highs of around 6.3%. Such fluctuations might have
been influenced by changing economic conditions, labor market policies, or external events impacting employment.
Notably, the trend indicates periods of economic strengthening followed by downturns, reflecting possible cycles of
growth and contraction in the job market.

Table 33: Prompt for text feature extraction

System Prompt Your job is to an exceptionally clever time series expert to extract time-series features from the
textual annotations.

User Prompt: Your task is to extract the text-wise features based on the given textual annotation about the time
series annotation. Each text annotation is separated by a ’|’ token:

[Decontextualized textual annotation]

Based on the textual annotation, please use common knowledge of time series analysis to extract the text-wise
features that are explictly or implictly mentioned in the textual annotations but missing in the following time-series-
wise tokens (separated by ’|’):

[Text-wise features]

The extracted features should be concise and common-used feature terms for time series analysis. Please only output
the extracted features in the format of python list.
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System Prompt

Your job is to an exceptionally clever time series expert to score 
the given time series features by the relevance between the time-
series features and the textual annotations

User Prompt

Your task is to score and rank the given time series features based 
on the given textual annotations. The candidate time series features 
are separated by a '|' tokes: 

[Time-series-wise features]
Each text annotation is seperated are by a '|' tokes:

[Decontextualized textual annotations]
Based on the textual annotation, please use common knowledge of time 
series analysis to provide a score and rank of given time-series 
feature names, based on the following score metric: (1) Every time 
the time-series feature is explicitly appear in one annotation, the 
score of this time-series feature add 1. (2) Every time the time-
series feature is implicitly appear in one annotation, that is, 
although the time-series feature is not explicitly mentioned in 
annotation, the internal properties are implied in annotation, then 
the score of this time-series feature add 0.5. Note that please only 
output the scores of the features that in the candidate time series 
features.

Figure 14: Prompt for scoring time-series-wise feature importance

System Prompt

Your job is to an exceptionally clever time series expert to score 
the given text-wise features by the relevance between the text-wise 
features and time series-wise features

User Prompt

Your task is to score and rank the given text-wise features based on 
the given time series-wise features. The candidate text-wise features 
are separated by a '|' tokes : 

[Text-wise features]
Based on the textual annotation, please use common knowledge of time 
series analysis to extract the time series features that are 
explicitly or implicitly mentioned in the textual annotations but 
missing in the following time-series-wise tokens (separated by '|’):

[Time-series-wise features]
Based on the time series-wise features, please use common knowledge 
of time series analysis to provide a score and rank of given time-
series feature names, based on the following score metric: (1) For 
each candidate text-wise feature, if it has already 
explicitly/implicitly appeared in the given time series-wise 
features, the score of this text-wise features are fixed as -2. (2) 
For each candidate text-wise feature that satisfies (1), that is, 
doesn't have overlap with time series-wise features, if the text-wise 
feature is related to time series analysis, then the score of this 
time-series feature add 1. Note that please only output the scores of 
the features that in the candidate time series features.

Figure 15: Prompt for scoring text-wise feature importance
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System Prompt

Your job is to an exceptionally clever time series expert to do time 
series annotation by explaining the given time series data. You will 
write a high-quality annotation that is informative and helps in 
understanding given time series data

User Prompt

You will be provided a univariate time series data, several time 
series features extracted from the given univariate time series data 
and corresponding text-wise token related to time series. Your task 
is to interpret the given univariate time series data based on the 
given time series tokens and features. The generated interpretation 
is for general audiences without any time series knowledge. Assume we 
don't know domain and background knowledge. For the original 
univariate time series, each value in these time series features is 
separated by a '|' token: 

[Time series data]
For the intra-variable time series-wise features in all variables, 
each value in these time series features is separated by a '|' token:

[Time-series-wise features]
We also have several text-wise tokens as references for time series 
interpretation, they are separated by a '|' token:

[Time-series-wise features]
Based on these time series features and text-wise tokens, write a 
concise interpretation that provides insights crucial for 
understanding the given time series data. These tokens are only help 
you to write a more insightful annotation to help users to understand 
the time series, you are not required to add them into the 
interpretation but just consider to analysis these tokens. Please 
avoid using uncommon words and phrases. Your interpretation should be 
up to five sentence, yet comprehensive.

Figure 16: Prompt for general annotation

System Prompt

Your job is to an an extremely clever clever time series expert to 
extract domain-specific terms related to the given time series 
features. 

User Prompt

Your task is to extract domain-specific terms related to the given 
time series features for the [target domain name]. domain, which is 
useful for time series analysis based on the given time series 
features. The features related to time series analysis are separated 
by a '|' tokens: 

[Extracted general features]
Each given textual annotation is separated by a '|' token:

[Target-domain annotations]
The time series data is used to denote [target variable name]. Your 
extracted domain-specific terms should be relevant and useful to the 
given time series tokens, which are useful in understanding the time 
series data and doing time series analysis. These extracted domain-
specific terms should be the time series feature for time series 
analysis. Please use domain-specific descriptions to describe the 
extracted term instead of directly using general time series feature 
tokens.

Figure 17: Prompt for jargon extraction
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System Prompt

Your job is to an extremely clever expert to write interpretations of 
the time series data for [target domain name] domain. 

User Prompt

You will be provided a comprehensive general time series 
interpretation that contains rich information. Several human-written 
domain-specific interpretations in the [target domain name] domain 
are also given as the reference annotations. Your task is to write 
domain-specific interpretations for [target variable name] in [target 
domain name] domain for general audiences, all necessary important 
variables and patterns are provided and extracted from the given 
general annotation. 

Your writing style need to refer to the given reference domain-
specific annotation:

[General annotation]
The reference domain-specific interpretation is:

[Reference annotation]
For the given general interpretation: 

[Definition of each variable].
The key variable is [Key variable name] in focus. The domain-specific 
terms are separated by a '|' token: 

[Domain-specific terms].
You are required to select several the most important patterns, 
variables, text-wise tokens analysis and inter-variable relationships 
from the general interpretations to write the domain-specific 
interpretations. Note that please ignore the less important 
variables, no-correlated patterns and the description no related to 
the analysis in the generated annotations. Also only include strong 
correlation patterns and important variables in the annotations. The 
domain-specific terms are only help you to write a more informative 
interpretations to help users to understand the time series, you are 
not required to involved them. The reference interpretations are only 
help you to refer the writing style and the involved information. The 
written interpretation should be naturally and smoothly, which sounds 
like written by domain experts. Please avoid using uncommon words and 
phrases. Your report should be limited to five sentences, yet 
comprehensive.

Figure 18: Prompt for domain-specific annotation

System Prompt

Your job is to an exceptionally clever time series expert with the 
unique ability to find errors and repeat features from the given 
domain-specific time series annotations and provide feedback to help 
revise them.

User Prompt

You will be provided with a general annotation, a corresponding 
domain-specific annotation in [target domain name] domain and 
extracted domain-specific terms. Your task is to use common knowledge 
of time series analysis to review the annotation, identify if the 
domain-specific annotation is contextual consistent with the general 
annotation and the domain-specific terms are well involved in the 
domain-specific annotation. 

The domain-specific annotation is: 
[domain-specific annotation]

The general annotation is:
[general annotation] 

Please provide comments about improving the process of extracting 
domain-specific terms and converting general annotation to domain-
specific annotation such that LLM can perform better based on the 
comments.

Figure 19: Prompt for reviewing annotation
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Table 34: Prompt for evaluating clarity of the annotations of time series

System Prompt
Your job is to act as an extremely clever time series expert to scoring the clarity and readability of textual interpre-
tations generated for time series data. You will assesse how clear, concise, and understandable the interpretation
is. You will score each interpretation on a scale of 1 to 5, where 1 indicates that the interpretation is unclear and
difficult to understand, and 5 indicates that the interpretation is exceptionally clear and easy to read. Your evaluation
should consider factors such as language clarity, coherence, and how effectively the interpretation communicates
the insights from the time series data.

User Prompt:
You will be provided two time series interpretations. Your task is to evaluate and compare the comprehensiveness of
the following interpretation of time series data.
The time series interpretation A is shown as follow: [input annotation A]. The time series interpretation B is shown
as follow: [input annotation B].
Assign a score between 1 and 5 for each interpretation based on the following criteria:
1. Score 1: The interpretation is poorly written, confusing, or unclear. It is difficult to follow the logic, and essential
insights such as trends, seasonality, or patterns are not communicated effectively due to poor readability.
2. Score 2: The interpretation is somewhat understandable but still suffers from clarity issues. The language may be
overly technical, vague, or lacking coherence, making it hard to extract insights from the explanation.
3. Score 3: The interpretation is moderately clear but could be improved in readability. While it conveys some
important insights (e.g., trends, seasonality, etc.), the structure may be inconsistent, or the explanation may use
technical jargon that hinders understanding.
4. Score 4: The interpretation is clear, readable, and communicates most of the insights effectively.
5. Score 5: The interpretation is clear and readable,. Advanced terminology is used appropriately to enhance the
clarity of the insights, and the interpretation draws meaningful connections between observed data patterns and
broader market or system behaviors (e.g., support-level, resistant-level, trend reversals)..

Table 35: Prompt for evaluating comprehensiveness of annotations of synthetic time series data

System Prompt
Your job is to act as an extremely clever time series expert to scoring the comprehensiveness of two textual
interpretations generated for time series data. Your primary focus is on assessing how well each interpretation
covers important patterns within the data. These patterns may include, but are not limited to, seasonality, trend,
residue, frequency, lag features, and rolling window features. Additionally, for multivariate time series data, you
should evaluate whether the interpretation identifies inter-variable patterns, such as correlations. The more patterns
an interpretation covers, the higher the score it should receive. You will score each interpretation separately on a
scale of 1 or 5.

User Prompt:
You will be provided a time series interpretation. Your task is to evaluate and compare the clarity and readability
of the following interpretation of time series data. The time series interpretation A is shown as follow: [input
annotation A]. The time series interpretation B is shown as follow: [input annotation B].The ground-truth annotation
is shown as follows: [ground truth annotations]. Consider the following patterns when evaluating each interpretation:
1. Seasonality. 2. Trend; 3. Residue; 4. Fourier Feature; 5. Lag features; 6. Rolling window features;
Assign a score 1 or 5 for each interpretation based on the following criteria: if interpretation A implicitly or explicitly
cover more above patterns (e.g., 1. Seasonality. 2. Trend; 3. Residue; 4. Fourier Feature; 5. Lag features; 6. Rolling
window features;) than B, score A to 5 and B to 1. Otherwise, score A to 1 and B to 5.
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Table 36: Prompt for evaluating clarity of the annotations of time series

System Prompt
Your job is to act as an extremely clever time series expert to score the clarity and readability of textual interpretations
generated for time series data. You will assesse how clear, concise, and understandable the interpretation is. You
will score each interpretation on a scale of 1 to 5, where 1 indicates that the interpretation is unclear and difficult to
understand, and 5 indicates that the interpretation is exceptionally clear and easy to read. Your evaluation should
consider factors such as language clarity, coherence, and how effectively the interpretation communicates the
insights from the time series data.

User Prompt:
You will be provided two time series interpretations. Your task is to evaluate and compare the comprehensiveness
of the following interpretation of time series data. The time series interpretation A is shown as follows: [input
annotation A]. The time series interpretation B is shown as follows: [input annotation B]. Assign a score between 1
and 5 for each interpretation based on the following criteria:
1. Score 1: The interpretation covers very few or none of the important patterns in the time series data. It fails to
address key aspects such as seasonality, trends, residues, frequency, or correlations in multivariate data.
2. Score 2: The interpretation covers a few important patterns, but significant aspects are missing or poorly addressed.
It provides a limited view of the time series data.
3. Score 3: The interpretation covers some important patterns but misses or inadequately addresses others. It gives a
moderate level of insight into the time series data but lacks full comprehensiveness.
4. Score 4: The interpretation covers most of the important patterns, including seasonality, trends, residues,
frequency, and correlations in multivariate data. It is comprehensive but may have minor omissions or weaknesses.
5. Score 5: The interpretation is highly comprehensive, covering all important patterns in the time series data. It
thoroughly addresses seasonality, trends, residues, frequency, and correlations in multivariate data without significant
omissions.

Table 37: Prompt for evaluating comprehensiveness of domains-specific annotations

System Prompt
Your job is to act as an extremely clever time series expert to scoring the comprehensiveness of two textual
interpretations generated for time series data. Your primary focus is on assessing how well each interpretation
covers important patterns within the data. These patterns may include, but are not limited to, seasonality, trend,
residue, frequency, lag features, and rolling window features. Additionally, for multivariate time series data, you
should evaluate whether the interpretation identifies inter-variable patterns, such as correlations. The more patterns
an interpretation covers, the higher the score it should receive. You will score each interpretation separately on a
scale of 1 to 5, where 1 indicates minimal pattern coverage, and 5 indicates highly comprehensive coverage of the
data’s important patterns. You will score each interpretation separately on a scale of 1 to 5.

User Prompt:
You will be provided a time series interpretation. Your task is to evaluate and compare the clarity and readability
of the following interpretation of time series data. The time series interpretation A is shown as follow: [input
annotation A]. The time series interpretation B is shown as follow: [input annotation B]. Consider the following
patterns when evaluating each interpretation: 1. Seasonality. 2. Trend; 3. Residue; 4. Frequency; 5. Lag features; 6.
Rolling window features; 7. For multivariate data: Inter-variable correlations.
Assign a score between 1 and 5 for each interpretation based on the following criteria:
1. Score 1: The interpretation covers few or none of the important patterns. It is largely incomplete.
2. Score 2: The interpretation covers some patterns but misses many others, providing only a basic overview.
3. Score 3: The interpretation covers several important patterns but is still incomplete, missing key aspects of the
data.
4. Score 4: The interpretation covers most of the important patterns, with only minor omissions. It provides a strong
overview of the data.
5. Score 5: The interpretation comprehensively covers all important patterns, including any inter-variable correlations
in multivariate data. It provides a thorough and complete analysis.
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Table 38: Prompt for evaluating domain-relevance of domains-specific annotations

System Prompt
Your job is to act as an extremely clever time series expert to scoring the domain relevance of two textual
interpretations generated for time series data. Your primary focus is on assessing how well each interpretation aligns
with the established principles and practices specific to time series analysis. This includes evaluating the correctness
of the methods used, the appropriateness of the terminology, and the accuracy of the interpretation of patterns
within the time series data. You will score each interpretation separately on a scale of 1 to 5, where 1 indicates poor
alignment with time series analysis principles, and 5 indicates a highly accurate and relevant interpretation that
effectively applies time series analysis concepts

User Prompt:
You will be provided two time series interpretation for one time series data. Your task is to evaluate and compare
the domain relevance of the following two interpretation of time series data, focusing on their alignment with
established principles and practices in time series analysis. The time series interpretation A is shown as follow:
[input annotation A]. The time series interpretation B is shown as follow: [input annotation B].
Consider the following patterns when evaluating each interpretation:
1. Correct use of time series analysis terminology (e.g., seasonality, trend, autocorrelation);
2. Accurate application of time series analysis methods;
3. Appropriate interpretation of patterns within the time series data;
4. Relevance to the time series context and best practices;
Assign a score between 1 and 5 for each interpretation based on the following criteria:
1. Score 1: The interpretation uses incorrect or inappropriate time series analysis terminology and methods. It
misinterprets the data and lacks relevance to established practices.
2. Score 2: The interpretation uses some correct terminology and methods but is often inaccurate or lacks contextual
relevance to time series analysis. It partially aligns with the principles but has significant gaps.
3. Score 3: The interpretation correctly uses several time series analysis terms and methods but lacks full accuracy
or completeness. It is moderately relevant but still has gaps in applying time series principles.
4. Score 4: The interpretation accurately applies most time series analysis terminology and methods, with only
minor errors. It is contextually relevant and appropriate, aligning well with best practices.
5. Score 5: The interpretation is highly accurate in its use of time series analysis terminology and methods, with
a strong contextual relevance. It demonstrates a deep understanding of time series analysis and applies concepts
correctly and comprehensively.

Table 39: Prompt for evaluating clarity of annotations generated by TESSA and TESSA/F.

System Prompt
Your job is to act as an extremely clever time series expert to scoring the clarity and readability of textual interpre-
tations generated for time series data. You will assess how clear, concise, and understandable the interpretation
is. You will score each interpretation on a scale of 1 to 5, where 1 indicates that the interpretation is unclear and
difficult to understand, and 5 indicates that the interpretation is exceptionally clear and easy to read. Your evaluation
should consider factors such as language clarity, coherence, and how effectively the interpretation communicates
the insights from the time series data.

User Prompt:
You will be provided two time series interpretations. Your task is to evaluate and compare the comprehensiveness
of the following interpretation of time series data. The time series interpretation A is shown as follow: [input
annotation A]. The time series interpretation B is shown as follow: [input annotation B].
Assign a score between 1 and 5 for each interpretation based on the following criteria:
1. Score 1: The interpretation covers very few or none of the important patterns in the time series data. It fails to
address key aspects such as seasonality, trends, residues, frequency, or correlations in multivariate data.
2. Score 2: The interpretation covers a few important patterns, but significant aspects are missing or poorly addressed.
It provides a limited view of the time series data.
3. Score 3: The interpretation covers some important patterns but misses or inadequately addresses others. It gives a
moderate level of insight into the time series data but lacks full comprehensiveness.
4. Score 4: The interpretation covers most of the important patterns, including seasonality, trends, residues,
frequency, and correlations in multivariate data. It is comprehensive but may have minor omissions or weaknesses.
5. Score 5: The interpretation is highly comprehensive, covering all important patterns in the time series data. It
thoroughly addresses seasonality, trends, residues, frequency, and correlations in multivariate data without significant
omissions.

35


	Introduction
	Related Work
	Methodology
	Multi-modal Feature Extraction
	Adaptive Feature Selection
	General Annotation Generation
	Domain-specific Annotation Generation

	Experiments
	Experimental Setup
	Evaluating General Annotations in Downstream Tasks
	Evaluating General Annotations in Synthetic Datasets
	Domain-specific Annotation Evaluation
	In-depth Dissection of TESSA
	Case Study of TESSA

	Conclusion
	Limitations
	Ethics Statement
	More Related Work
	LLMs for Time Series Analysis
	Domain Specialization of LLMs
	Cross-modality Knowledge Transfer Learning through Pre-trained Models

	Notations
	More Details of Multi-modal Feature Extraction
	Time-series Feature Extraction
	Domain Decontextualization
	Text Feature Extraction

	More Details of Adaptive Feature Selection
	Offline LLM-based Feature Selection
	Incremental Reinforcement Learning-based Feature Selection

	Time Complexity Analysis
	Experimental Settings
	Dataset Statistics
	Baseline Methods
	Framework for Multi-modal Downstream tasks

	Additional Results for General Annotation Evaluation in Downstream Tasks
	Implementation Details
	Evaluation in Time Series Forecasting Tasks
	Evaluation in Time Series Imputation Tasks

	Additional Details of General Annotation Evaluation in Synthetic Datasets
	Implementation Details
	Prompt Templates of LLM-as-a-judger

	Additional Results of Domain-specific Annotation Evaluation
	Evaluation Metrics
	Prompt Template
	Additional Results on Other LLM Backbones

	Experimental results of Human in Loop
	Additional Results on Multivariate Time Series
	Additional Details of Ablation Studies
	Evaluation Metric
	Qualitative Examples
	Additional Ablation Studies on the Contributions of TESSA's Components
	Additional Ablation Studies of Data Contamination

	Additional Details of Case Studies

